research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of three salts of sparfloxacin, one incorporating extended tapes of fused penta­gonal water assemblies

crossmark logo

aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and cDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: Passion49432005@gmail.com, yathirajan@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 8 November 2022; accepted 22 November 2022; online 30 November 2022)

Three organic salts of sparfloxacin, a difluorinated third-generation fluoro­quinolone anti­biotic, have been synthesized and their crystal structures determined. The salts, sparfloxacinium 4-nitro­benzoate dihydrate, C19H23F2N4O3+·C7H4NO4·2H2O (I), sparfloxacinium 2-phenyl­acetate, C19H23F2N4O3+·C8H7O2 (II), and sparfloxacinium 4-methyl­benzoate trihydrate, C19H23F2N4O3+·C8H7O2·3H2O (III), exhibit similar inter-species packing inter­actions. The overall crystal structures each, however, have their own distinct characteristics, which are described here along with a Hirshfeld surface analysis of the various atom–atom contacts involving the sparfloxacinium cations. In the crystal structure of III, an extended supra­molecular tape of edge-fused hydrogen-bonded water penta­gons was found. These penta­gonal water and tape motifs are compared to related constructs in a broad selection of structure types, ranging from macromolecules to small mol­ecules, clathrates, and exotic `ice' formations on clean metal surfaces.

1. Chemical context

Fluoro­quinolones are highly effective anti­biotics that have many advantageous pharmacokinetic properties, including high oral bioavailability, large volume of distribution, and broad-spectrum anti­microbial activity (Jain et al., 2002[Jain, S., Jain, N. K. & Pitre, K. S. J. (2002). J. Pharm. Biomed. Anal. 29, 795-801.]; Marona et al., 2001[Marona, H. R. N. & Schapoval, E. E. S. (2001). J. Pharm. Biomed. Anal. 26, 501-504.]; Faria et al., 2006[Faria, A. F., de Souza, M. V. N., de Almeida, M. V. & de Oliveira, M. A. L. (2006). Anal. Chim. Acta, 579, 185-192.]). A critical review of fluoro­quinolones was given by Zhanel et al., 2002[Zhanel, G. G., Ennis, K., Vercaigne, L., Walkty, A., Gin, A. S., Embil, J., Smith, H. & Hoban, D. J. (2002). Drugs, 62, 13-59.]. Sparfloxacin, systematic name: 5-amino-1-cyclo­propyl-7-(cis-3,5-di­methyl-1-piperazin­yl)-6,8-di­fluoro-1,4-di­hydro-4-oxo-3-quin­oline carb­oxy­lic acid, C19H22F2N4O3, is a difluorinated third-generation fluoro­quinolone anti­biotic and is one of the most important and successful classes of man-made anti­bacterials used in the treatment of lung infections, urinary tract infections, and cutaneous allergy. A structural investigation of sparfloxacin using mass spectrometry and MNDO semi-empirical mol­ecular orbital calculations was published by Abd El-Kareem et al. (2018[Sarhan Mahmoud Abd El-kareem, M., ElDesawy, M., Hawash, M. F. & Fahmy Ahmed, M. E. (2018). Int. J. Adv. Chem. 6, 74-78.]). The photodegradation of sparfloxacin and isolation of its degradation products by preparative HPLC was published by Salgado et al. (2005[Salgado, H. R. N., Moreno, P. R. H., Braga, A. L. & Schapoval, E. E. S. (2005). Rev. Ciênc. Farm. Bàsica Apl. 26, 47-54.]). Nanoparticles of Ag–TiO2 for photocatalytic degradation of sparfloxacin was reported by Kulkarni et al. (2018[Kulkarni, R. M., Malladi, R. S. & Hanagadakar, M. S. (2018). Adv. Mat. Proc. 3, 526-529.]). Newly validated UV spectrophotometric methods for the deter­min­ation of sparfloxacin in tablets was described by Sowjanya et al. (2020[Sowjanya, M., Sirisha, C. & Prasad, M. K. (2020). Rese. J. Pharm. Technol. 13, 3587-3592.]). The electrostatic properties of nine fluoro­quinolone anti­biotics derived directly from their crystal structures was given by Holstein et al. (2012[Holstein, J. J., Hübschle, C. B. & Dittrich, B. (2012). CrystEngComm, 14, 2520-2531.]). Reviews of sparfloxacin (Schentag, 2000[Schentag, J. J. (2000). Clin. Ther. 22, 372-387.]), its anti­bacterial activity, pharmacokinetic properties, clinical efficacy, and tolerability in lower respiratory tract infections (Goa et al., 1997[Goa, K. L., Bryson, H. M. & Markham, A. (1997). Drugs, 53, 700-725.]), as well as a review of its penetration into the lower respiratory tract and sinuses (Wise & Honeybourne, 1996[Wise, R. & Honeybourne, D. (1996). J. Antimicrob. Chemother. 37 Suppl. A, 57-63.]) have also been published.

[Scheme 1]

In view of the importance of floxacin drugs, particularly sparfloxacin, the present paper reports the crystal structures of three sparfloxacin salts with organic anions: sparfloxacinium 4-nitro­benzoate dihydrate (I), sparfloxacinium 2-phenyl­acetate (II) and sparfloxacinium 4-methyl­benzoate trihydrate (III). A serendipitous extended tape of fused water penta­gons in III is also described.

2. Structural commentary

Reactions between sparfloxacin and 4-nitro­benzoic acid, phenyl­acetic acid, and 4-methyl­benzoic acid yielded the three salts sparfloxacinium 4-nitro­benzoate (I), sparfloxacinium 2-phenyl­acetate (II), and sparfloxacinium 4-methyl­benzoate (III) (see Scheme[link]). Crystals of I (Fig. 1[link]) form as a dihydrate, with a chain of disordered water mol­ecules occupying channels parallel to the a-axis. In II (Fig. 2[link]), the crystals are solvent free. Compound III (Fig. 3[link]) crystallizes as a trihydrate, with the water mol­ecules in channels parallel to the b-axis (section 3, Supra­molecular details). Within each salt, the sparfloxacinium cations are structurally similar and have no unusual bond lengths or angles. The di­hydro­quinoline ring system plus the attached amino, carboxyl, and fluorine atoms are essentially planar (r.m.s. deviations are: I = 0.0744 Å, II = 0.0505 Å and III = 0.0496 Å), with the largest deviations being 0.1901 (8) Å for F1 in I, 0.1392 (8) Å for O2 in II, and 0.1343 (8) for F1 in III. A pair of intra­molecular hydrogen bonds (Tables 1[link]–3[link][link]), O2—H2O⋯O3 and N2—H2NB⋯O3, each form S(6) ring motifs that are preserved in all three structures. The main differences in the cations result from variations in the orientation of the dimethyl piperazine rings, the C6—C7—N3—C10 torsion angles being 60.12 (16)° in I, 39.09 (16)° in II, and −30.9 (2)° in III. By contrast, there is much less variation of the cyclo­propyl orientations: C1—N1—C16—C17 torsion angles are 105.99 (15)°, 103.20 (12)°, and 102.71 (15)° for I, II, and III, respectively. The similarities and differences are highlighted in a least-squares-fit overlay of the three cations (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3 0.97 (3) 1.60 (3) 2.5257 (15) 157 (2)
N2—H2NB⋯O3 0.92 (2) 1.901 (19) 2.6343 (17) 135.0 (16)
N4—H4NA⋯O4 0.960 (18) 1.824 (18) 2.7666 (15) 166.4 (15)
O1W—H1W1⋯O5 0.81 2.00 2.806 (2) 173
O2W—H1W2⋯O1W 0.82 2.12 2.811 (5) 141
O1W—H2W1⋯O2Wi 0.80 2.01 2.803 (5) 172
O2W—H2W2⋯O1ii 0.82 2.02 2.807 (3) 161
N2—H2NA⋯O1Wiii 0.89 (2) 2.07 (2) 2.947 (2) 167.8 (19)
N4—H4NB⋯O4iv 0.913 (18) 1.957 (18) 2.8405 (16) 162.5 (15)
Symmetry codes: (i) [-x+2, -y+1, -z]; (ii) [-x+1, -y, -z+1]; (iii) [x-1, y, z+1]; (iv) [-x+1, -y+1, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3 0.95 (2) 1.61 (2) 2.5162 (12) 157.3 (18)
N2—H2NB⋯O3 0.900 (17) 1.917 (16) 2.6200 (13) 133.6 (14)
N4—H4NB⋯O4 0.949 (16) 1.781 (16) 2.7122 (12) 166.3 (13)
N2—H2NA⋯O5i 0.869 (17) 2.232 (17) 2.9958 (13) 146.5 (14)
N4—H4NA⋯O4ii 0.956 (16) 1.834 (16) 2.7580 (12) 161.8 (14)
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [-x+1, -y+1, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3 0.92 (2) 1.64 (2) 2.5014 (14) 155 (2)
N2—H2NB⋯O3 0.91 (2) 1.93 (2) 2.6367 (17) 133.4 (18)
N4—H4NA⋯O4 0.967 (19) 1.73 (2) 2.6722 (16) 164.1 (17)
N4—H4NB⋯O5i 0.91 (2) 1.86 (2) 2.7473 (16) 163.0 (18)
N2—H2NA⋯O2Wii 0.91 (2) 2.12 (2) 2.9664 (17) 153.9 (17)
O2W—H2W2⋯O4 0.94 (3) 1.80 (3) 2.7371 (16) 171 (2)
O1W—H1W1⋯O2W 1.04 (3) 1.71 (3) 2.7503 (17) 175 (2)
O2W—H1W2⋯O3W 0.93 (3) 1.83 (3) 2.7546 (18) 171 (2)
O1W—H2W1⋯O1iii 0.96 (3) 1.89 (3) 2.8434 (16) 171 (2)
O3W—H1W3⋯O1Wii 1.02 (3) 1.82 (3) 2.8362 (17) 173 (2)
O3W—H2W3⋯O1Wiv 1.00 (4) 1.88 (4) 2.8798 (18) 178 (3)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, -y+1, -z+1]; (iv) x, y+1, z.
[Figure 1]
Figure 1
An ellipsoid (30% probability) plot of I. Intra­molecular hydrogen bonds are drawn as thick dashed lines while inter­molecular hydrogen bonds are drawn as open dashed lines. Minor disorder components of water mol­ecules are omitted to enhance clarity.
[Figure 2]
Figure 2
An ellipsoid (50% probability) plot of II. Intra­molecular hydrogen bonds are drawn as thick dashed lines while inter­molecular hydrogen bonds are drawn as open dashed lines.
[Figure 3]
Figure 3
An ellipsoid (50% probability) plot of III. Intra­molecular hydrogen bonds are drawn as thick dashed lines while inter­molecular hydrogen bonds are drawn as open dashed lines.
[Figure 4]
Figure 4
A least-squares-fit overlay of the sparfloxacinium cations in I (red), II (green), and III (blue).

In the chosen asymmetric units for each structure, anion placement was selected (amongst symmetry equivalents) so as to form the shortest hydrogen bond between the cationic N4 and the carboxyl­ate O4 of their respective anions (Tables 1[link]–3[link][link]). In I and III, these involve the equatorial hydrogen (H4NA), i.e., N4—H4NA⋯O4, having donor—acceptor distances of 2.7666 (15) Å in I and 2.6722 (16) Å in III. By contrast, in II, the shortest hydrogen bond for N4 involves the axial hydrogen (H4NB), i.e., N4—H4NB⋯O4 at 2.7122 (12) Å.

3. Supra­molecular features

The crystal packing in I, II, and III share a few of types of supra­molecular features, including extensive hydrogen bonding and ππ stacking of their quinoline ring systems. Nevertheless, within each structure, the specific inter­actions lead to distinct structural motifs.

In I, pairs of N4—H4NA⋯O4 and N4—H4NB⋯O4inv (inv = −x + 1, −y + 1, −z + 1) hydrogen bonds (Table 1[link]) form R42(8) ring motifs (Fig. 5[link]) with their inversion-related counterparts, in which the anion O4 atom is a bifurcated acceptor. Hydrogen bonding to the water channel is complicated by the inherent disorder within the water chains, but there is clear evidence of an O1W—H1W1⋯O5 hydrogen bond to the 4-nitro­benzoate anion (Table 1[link], Fig. 5[link]). In II, a similar R42(8) ring motif (Fig. 6[link]), to that in I, with bifurcated acceptor O4, is built from N4—H4NB⋯O4 and N4—H4NA⋯O4inv hydrogen bonds (Table 2[link]). Structure III features a hydrogen-bonded R44(12) ring motif formed from N4—H4NA⋯O4 and N4—H4NB⋯O5inv hydrogen bonds of cation/anion pairs (Table 3[link], Fig. 7[link]). For each structure, additional strong inter­molecular N—H⋯O hydrogen bonds connect the NH2 amine group to a water mol­ecule (in I and III) or to an anion (in II) (Tables 1[link]–3[link][link]). The hydrogen-bonded water structure in III is especially intricate, and will be described separately (vide infra).

[Figure 5]
Figure 5
A partial packing plot of I viewed approximately down the a-axis. Intra­molecular hydrogen bonds are drawn as thick dashed lines while inter­molecular hydrogen bonds are drawn as open dashed lines. Minor disorder components of water mol­ecules and H atoms on groups not involved in hydrogen bonding are omitted.
[Figure 6]
Figure 6
A partial packing plot of II viewed down the a-axis. Intra­molecular hydrogen bonds are drawn as thick dashed lines and inter­molecular hydrogen bonds are drawn as open dashed lines. H atoms on groups not involved in hydrogen bonding are omitted.
[Figure 7]
Figure 7
A partial packing plot of III viewed down the b-axis. Intra­molecular hydrogen bonds are drawn as thick dashed lines, inter­molecular hydrogen bonds are drawn as open dashed lines, and hydrogen bonds to and between water mol­ecules are drawn as thin dashed lines. The water mol­ecules form hydrogen-bonded penta­gons (see also Fig. 11[link]). H atoms on groups not involved in hydrogen bonding are omitted.

Inversion-related quinoline ring systems in I ππ stack to give two different inter­planar spacings: 3.3789 (14) Å (viax, −y, −z + 2) and 3.3901 (14) Å (viax + 1, −y, −z + 2) for the mean planes through N1,C1–C9,O3, leading to columns of cations along the a-axis (Fig. 8[link]). In II, stacking of inversion-related (−x + 2, −y, −z + 2) cations gives an inter­planar spacing of 3.3413 (11) Å, but does not lead to extended columns because the offset to adjacent pairs is too great (Fig. 9[link]). In III, ππ stacking again leads to extended columns, this time parallel to the b-axis (Fig. 10[link]), with inter­planar spacings of 3.3452 (15) Å (viax, −y + 2, −z + 1) and 3.4677 (14) Å (viax, −y + 1, −z + 1).

[Figure 8]
Figure 8
A partial packing plot of I viewed approximately along [0[\overline{1}][\overline{1}]] showing ππ stacking of inversion-related sparfloxacinium cations into columns that extend parallel to the a-axis. Dotted lines connect the centroids of overlapping rings.
[Figure 9]
Figure 9
A partial packing plot of II viewed down the c-axis. Pairs of inversion-related sparfloxacinium cations form ππ-stacked dimers. Dotted lines connect the centroids of overlapping rings.
[Figure 10]
Figure 10
A partial packing plot of III viewed down the c-axis showing ππ stacking of inversion-related sparfloxacinium cations into columns that extend parallel to the b-axis. Dotted lines connect the centroids of overlapping rings.

Atom–atom contact coverages obtained from Hirshfeld surface 2D fingerprint plots calculated using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) for the sparfloxacinium cations in I, II, and III are given in the supporting information (Figs. S1–S3) and summarized in Table 4[link]. In all three salts, the predominant contacts are between H⋯H, H⋯O/O⋯H, and H⋯C/C⋯H.

Table 4
Atom-atom contact coverages (%) in I, II, and III

Atom contacts I II III
H⋯H 41.2 40.3 48.0
H⋯O 28.8 25.5 23.4
H⋯C 10.0 15.5 7.9
C⋯C 6.0 4.6 7.7
H⋯F 3.5 7.7 5.7
O⋯F 2.6 0.2 1.3
C⋯O 2.3 1.4 2.5
H⋯N 1.6 3.0 1.5
Heterogeneous contact types here include the reciprocal inter­actions, e.g., "H⋯O" represents "H⋯O/O⋯H". All other fractions of atom-contact coverages were negligible.

In the structure of III, the three water mol­ecules hydrogen bond to n-glide-related copies (Table 3[link]) to form cyclic five-membered slightly puckered penta­gonal ring structures. These water penta­gons are edge-fused to form extended ribbon- or tape-like chains that propagate parallel to the b-axis by further hydrogen bonding to n-glide- and translation-related water mol­ecules. The tapes hydrogen bond to the sparfloxacinium cation as both donor (O1W—H2W1⋯O1iii) and acceptor (N2—H2NA⋯O2Wii) and to the anion as a donor (O2W—H2W2⋯O4) (symmetry codes as per Table 3[link]). Two views of these supra­molecular water-tape structures are shown in Fig. 11[link]. A few other instances of similar penta­gonal water assemblies are known. These are compared to those of III, along with some additional background information, in section 4 (Database survey and related literature).

[Figure 11]
Figure 11
Two views of the extended chains of water-mol­ecule penta­gons observed in the crystal packing of III. Hydrogen bonds are depicted as dashed lines. For the sake of clarity, the cations and anions are omitted.

4. Database survey and related literature

A search of the Cambridge Structure Database (CSD version 5.43 with all updates through September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the keyword `sparfloxacin' returned (ignoring duplicates) 29 records. Of these, 11 are complexes with metals and have few structural characteristics in common with I, II, or III other than the presence of ligated sparfloxacin mol­ecules. Of the remaining 18 entries, 12 are salts and all but one are co-crystals, hydrates and/or solvates. CSD entry JEKMOB (Miyamoto et al., 1990[Miyamoto, T., Matsumoto, J., Chiba, K., Egawa, H., Shibamori, K., Minamida, A., Nishimura, Y., Okada, H., Kataoka, M., Fujita, M., et al. (1990). J. Med. Chem. 33, 1645-1656.]) corresponds to pure sparfloxacin, while COQWOU (Sivalakshmidevi et al., 2000[Sivalakshmidevi, A., Vyas, K. & Om Reddy, G. (2000). Acta Cryst. C56, e115-e116.]) is a trihydrate of sparfloxacin. Four entries, UXEPUK, UXEQEV, UXEQAR, and UXEQIZ (Gunnam et al., 2016[Gunnam, A., Suresh, K., Ganduri, R. & Nangia, A. (2016). Chem. Commun. 52, 12610-12613.]) are sparfloxacin co-crystallized with methyl, ethyl, propyl, and isobutyl para-hy­droxy­benzoic acids, respectively. The remaining 12 structures are sparfloxacinium salts, five of which have inorganic counter-anions [CIBYIW (BF4; Shingnapurkar et al., 2007[Shingnapurkar, D., Butcher, R., Afrasiabi, Z., Sinn, E., Ahmed, F., Sarkar, F. & Padhye, S. (2007). Inorg. Chem. Commun. 10, 459-462.]), GALFEH (Br; Golovnev & Vasil'ev, 2016[Golovnev, N. N. & Vasil'ev, A. D. (2016). Russ. J. Inorg. Chem. 61, 1419-1422.]), JADGON and JADGUT (CdBr42− and ZnBr42−; Vasil'ev & Golovnev, 2015[Vasiliev, A. D. & Golovnev, N. N. (2015). J. Struct. Chem. 56, 907-911.]), and YOBCUP (CuBr4; Vasil'ev & Golovnev, 2014[Vasil'ev, A. D. & Golovnev, N. N. (2014). Russ. J. Inorg. Chem. 59, 322-325.])]. Of the seven entries with organic counter-anions, GAPCUZ and GAPDAG (Zhang et al., 2022[Zhang, Y., Zhang, Y., Liu, L., Feng, Y., Wu, L., Zhang, L., Zhang, Y., Zou, D. & Liu, Y. (2022). J. Mol. Struct. 1250, 131894.]) are salts with pyrocatechuic acid that differ in their occluded solvent, while IJEBIL, IJEBOR, IJEBUX, IJECAE, and IJEDIN (Djalò et al., 2021[Djaló, M., Cunha, A. E. S., Luís, J. P., Quaresma, S., Fernandes, A., André, V. & Duarte, M. T. (2021). Cryst. Growth Des. 21, 995-1005.]) have 2-(carb­oxy­meth­yl)-2-hy­droxy­butane­dioate, pyridine-3-carboxyl­ate, 3-carb­oxy­benzoate, 3-carb­oxy­prop-2-enoate, and 2-amino­benzoate anions respectively. The crystal structures of some closely related compounds, viz., bis­(lomefloxacin) 1,4-benzene­dicarboxyl­ate dihydrate (XEWSOI; Zhou et al., 2006[Zhou, T., Zhao, L. & Guo, J.-X. (2006). Z. Kristallogr. New Cryst. Struct. 221, 495-496.]), gatifloxacin hydro­chloride (HOTTOA; Yu et al., 2009[Yu, L.-C., Xia, Y. & Liu, S.-L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 237-238.]), lomefloxacinium picrate (IKAPIU; Jasinski et al., 2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Al-arique, Q. N. M. (2011). Acta Cryst. E67, o483-o484.]) and lomefloxacin chloride dihydrate (LATPON; Holstein et al., 2012[Holstein, J. J., Hübschle, C. B. & Dittrich, B. (2012). CrystEngComm, 14, 2520-2531.]) have also been reported.

Assemblies of water having penta­gonal structural units are not uncommon. They are ubiquitous in the clathrate hydrates (see e.g., Englezos, 1993[Englezos, P. (1993). Ind. Eng. Chem. Res. 32, 1251-1274.]), but are far less common in other structure types. They have been reported in studies of small proteins [e.g., crambin (refcode 1CRN in PDB; Teeter, 1984[Teeter, M. M. (1984). Proc. Natl Acad. Sci. USA, 81, 6014-6018.]), BPTI (refcode 1BPI; Parkin et al., 1996[Parkin, S., Rupp, B. & Hope, H. (1996). Acta Cryst. D52, 18-29.]); PDB = Protein Data Bank (Berman et al., 2000[Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235-242.])] and collagen peptides (Bella et al., 1995[Bella, J., Brodsky, B. & Berman, H. M. (1995). Structure, 3, 893-906.]), and in small mol­ecules, including a hexa­hydrate of pinacol (CSD code PINOLH01; Hao et al., 2005[Hao, X., Parkin, S. & Brock, C. P. (2005). Acta Cryst. B61, 689-699.]), amongst others. A few extended linear water–penta­gon tapes similar to those in III have also been reported, e.g., L-leucyl-L-alanine tetra­hydrate (CSD code RAVMOQ; Görbitz, 1997[Görbitz, C. H. (1997). Acta Cryst. C53, 736-739.]); trans-4,4′-azo­pyridine dioxide tetra­hydrate (WAGMOH; Ma et al., 2004[Ma, B. Q., Sun, H. L. & Gao, S. (2004). Chem. Commun. pp. 2220-2221.]), a CuII-based MOF (OFUYOE02; Mukherjee et al., 2011[Mukherjee, P., Drew, M. G. B. & Ghosh, A. (2011). J. Indian Chem. Soc. 88, 1265-1271.]), and a Co(cyclam)Cl2 complex (REFDUD; Jana et al., 2012[Jana, A., Jana, A. D., Bhowmick, I., Mistri, T., Dolai, M., Das, K. K., Panja, A. & Ali, M. (2012). Inorg. Chem. Commun. 24, 157-161.]). In RAVMOQ, the penta­gons have similar regularity to those in III but the tapes are considerably more buckled, while in WAGMOH and OFUYOE02 the penta­gons/tapes are both severely distorted/buckled relative to those in III. In REFDUD, the tapes of penta­gons are further linked into extended layers. Water penta­gons are also believed to play a role in ice nucleation (see e.g. Pirzadeh et al., 2011[Pirzadeh, P., Beaudoin, E. N. & Kusalik, P. G. (2011). Chem. Phys. Lett. 517, 117-125.] and references therein). Indeed, an exotic mono-periodic form of `ice' consisting of a linear array of fused water penta­gons, reported to nucleate on the (110) surface of copper at temperatures between 100 and 140 K (Carrasco et al., 2009[Carrasco, J., Michaelides, A., Forster, M., Haq, S., Raval, R. & Hodgson, A. (2009). Nat. Mater. 8, 427-431.]), bears a striking resemblance to the water-penta­gon tape in III.

5. Synthesis and crystallization

Sparfloxacin (a gift from Recon Healthcare, Bengaluru) (100 mg, 0.255 mmol) was dissolved in methanol (10 ml) and water (1 ml) under constant stirring at 333 K for 30 min. Equimolar solutions of either 4-nitro­benzoic acid (43 mg, 0.255 mmol), phenyl­acetic acid (35 mg, 0.255 mmol), or 4-methyl­benzoic acid (35 mg, 0.255 mmol) in methanol (10 ml) and aceto­nitrile (10 ml) were added separately to the solutions of sparfloxacin and stirring was continued for 60 min at 333 K. The mixtures were then cooled to room temperature. X-ray quality crystals were formed by slow evaporation over fifteen days. The melting points were 511–514 K (I), 485–488 K (II) and 498–503 K (III). A generalized reaction scheme for the three salts of sparfloxacin is given in Fig. 12[link].

[Figure 12]
Figure 12
Synthetic routes to the formation of I, II, and III.

6. Data collection and structure refinement

Crystal data, data collection, and structure refinement details are given in Table 5[link]. At 90 K, crystals of I gave diffraction with satellite reflections, suggesting modulation of the structure. On warming, the satellites diminished, and were absent at the data collection temperature of 250 (1) K. The water mol­ecules in I were extensively disordered. The SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) suggested the presence of ∼40e in the cell `voids', corresponding to two water mol­ecules per asymmetric unit. Thus, a hydrate model consisting of two major components [occupancies 0.688 (3) for O1W and 0.608 (3) for O2W] and two minor parts for each major [occupancies 0.185 (3), 0.127 (3), 0.265 (3), and 0.128 (3) for O1W′, O1W", O2W′, and O2W", respectively] was built from difference-map peaks. Hydrogen atoms on these partial-occupancy fragments were placed so as to make reasonable hydrogen bonds, but other than H1W1 and H1W2, their presence is solely to ensure a correct atom count. Occupancies for these disordered waters were restrained using SUMP and their Uij restrained with SIMU in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Crystals of II and III presented no such problems. All non-disordered hydrogen atoms were found in difference-Fourier maps, but those bound to carbon were subsequently included in the refinement using riding models, with constrained distances set to SHELXL defaults [0.99 Å (R3CH), 0.94 Å (Csp2H), 0.98 Å (R2CH2), 0.97 Å (RCH3) in I and 1.00 Å (R3CH), 0.95 Å (Csp2H), 0.99 Å (R2CH2), 0.98 Å (RCH3) in II and III]. Uiso(H) values for carbon-bound hydrogens were set to 1.2Ueq or 1.5Ueq (CH3) of the parent atom. The OH and NH hydrogen atoms were refined freely (as per Fábry, 2018[Fábry, J. (2018). Acta Cryst. E74, 1344-1357.]), aside from the minor-component water hydrogens of I, which were fixed and had Uiso(H) set to 1.5Ueq of their water oxygen.

Table 5
Experimental details

  I II III
Crystal data
Chemical formula C19H23F2N4O3+·C7H4NO4·2H2O C19H23F2N4O3+·C8H7O2 C19H23F2N4O3+·C8H7O2·3H2O
Mr 595.56 528.55 582.60
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 250 90 90
a, b, c (Å) 7.5736 (4), 13.1809 (9), 13.8947 (9) 10.0222 (4), 10.1145 (4), 13.5255 (5) 18.4423 (9), 7.0694 (3), 21.0669 (10)
α, β, γ (°) 85.658 (2), 82.316 (2), 81.108 (2) 69.606 (2), 73.032 (2), 83.747 (2) 90, 93.252 (2), 90
V3) 1355.94 (15) 1229.15 (9) 2742.2 (2)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.12 0.11 0.11
Crystal size (mm) 0.33 × 0.31 × 0.27 0.34 × 0.28 × 0.26 0.19 × 0.15 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture dual source Bruker D8 Venture dual source Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.930, 0.971 0.914, 0.959 0.894, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 45287, 6210, 4944 41293, 5639, 5029 44990, 6296, 5086
Rint 0.033 0.038 0.043
(sin θ/λ)max−1) 0.653 0.650 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.04 0.034, 0.092, 1.02 0.040, 0.100, 1.04
No. of reflections 6210 5639 6296
No. of parameters 443 365 418
No. of restraints 46 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.22 0.37, −0.20 0.31, −0.23
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

4-(5-Amino-3-carboxy-1-cyclopropyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2,6-dimethylpiperazin-1-ium 4-nitrobenzoate dihydrate (I) top
Crystal data top
C19H23F2N4O3+·C7H4NO4·2H2OZ = 2
Mr = 595.56F(000) = 624
Triclinic, P1Dx = 1.459 Mg m3
a = 7.5736 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.1809 (9) ÅCell parameters from 9803 reflections
c = 13.8947 (9) Åθ = 2.8–27.5°
α = 85.658 (2)°µ = 0.12 mm1
β = 82.316 (2)°T = 250 K
γ = 81.108 (2)°Cut block, yellow
V = 1355.94 (15) Å30.33 × 0.31 × 0.27 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
6210 independent reflections
Radiation source: microsource4944 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.033
φ and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.930, Tmax = 0.971k = 1717
45287 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.4829P]
where P = (Fo2 + 2Fc2)/3
6210 reflections(Δ/σ)max = 0.001
443 parametersΔρmax = 0.27 e Å3
46 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

The crystals appeared to become modulated (doubled cell, some satellite reflections) when cooled to 90K. Visual inspection of crystal integrity and diffraction quality vs temperature established a safe temperature for data collection of -23° C.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1W1.0080 (5)0.43691 (14)0.13115 (13)0.0767 (9)0.688 (3)
H1W10.9896720.4572660.1857550.115*0.688 (3)
H2W11.0796470.4677490.0981190.115*0.688 (3)
O1W'0.8676 (14)0.4128 (5)0.1178 (6)0.070 (3)0.185 (3)
H5W10.8681390.4256470.1745060.105*0.185 (3)
H6W10.8606980.4338120.0568400.105*0.185 (3)
O2W0.7704 (6)0.4430 (2)0.0090 (2)0.0987 (12)0.607 (3)
H1W20.7953340.4319060.0470150.148*0.607 (3)
H2W20.7942770.3874750.0341420.148*0.607 (3)
O2W'0.6241 (18)0.4587 (10)0.0029 (7)0.148 (4)0.265 (3)
H3W20.5912570.5404770.0080660.222*0.265 (3)
H4W20.6116250.4290070.0561050.222*0.265 (3)
O1W"1.1155 (10)0.5163 (6)0.1538 (6)0.035 (2)0.127 (2)
H3W11.0799410.5013090.2109510.053*0.127 (2)
H4W11.0580650.4861540.1220760.053*0.127 (2)
O2W"0.4728 (18)0.3998 (9)0.0386 (7)0.071 (4)0.128 (3)
H5W20.4584490.3554780.0028840.107*0.128 (3)
H6W20.4214420.3830630.0920590.107*0.128 (3)
F10.52757 (11)0.05643 (6)0.77813 (6)0.0371 (2)
F20.18695 (13)0.33665 (6)0.93914 (6)0.0439 (2)
O10.17039 (17)0.28135 (8)1.13520 (8)0.0491 (3)
O20.04706 (18)0.15414 (10)1.22784 (8)0.0531 (3)
H2O0.038 (3)0.080 (2)1.2189 (18)0.092 (8)*
O30.05728 (15)0.02882 (8)1.16122 (7)0.0410 (2)
N10.36989 (15)0.08370 (8)0.91686 (8)0.0278 (2)
N20.06988 (19)0.21803 (10)1.08748 (9)0.0408 (3)
H2NA0.054 (3)0.2860 (17)1.0912 (15)0.068 (6)*
H2NB0.028 (3)0.1740 (15)1.1371 (14)0.056 (5)*
N30.42835 (16)0.25859 (8)0.77468 (8)0.0312 (2)
N40.53893 (17)0.38569 (8)0.61030 (8)0.0302 (2)
H4NA0.627 (2)0.4111 (13)0.5620 (13)0.047 (5)*
H4NB0.433 (2)0.4245 (13)0.5980 (12)0.045 (5)*
C10.30722 (18)0.14548 (10)0.99045 (9)0.0299 (3)
H10.3377770.2168820.9850640.036*
C20.20213 (18)0.11166 (10)1.07257 (9)0.0304 (3)
C30.15347 (17)0.00419 (10)1.08473 (9)0.0292 (3)
C40.22010 (17)0.06439 (10)1.00629 (9)0.0266 (3)
C50.33138 (16)0.02359 (9)0.92265 (9)0.0250 (2)
C60.40038 (17)0.0912 (1)0.85124 (9)0.0269 (3)
C70.35467 (17)0.1980 (1)0.85219 (9)0.0275 (3)
C80.24335 (18)0.23468 (10)0.93348 (10)0.0305 (3)
C90.17783 (18)0.17274 (10)1.01162 (9)0.0292 (3)
C100.38665 (19)0.24164 (10)0.67695 (9)0.0313 (3)
H10A0.2701210.2816900.6660030.038*
H10B0.3785840.1687370.6721660.038*
C110.53265 (18)0.27401 (9)0.60029 (9)0.0297 (3)
H110.6497810.2341950.6133690.036*
C120.5777 (2)0.40582 (10)0.71004 (10)0.0333 (3)
H120.6974900.3679270.7208920.040*
C130.4360 (2)0.36726 (10)0.78632 (10)0.0336 (3)
H13A0.4656250.3757730.8514840.040*
H13B0.3180200.4078350.7794530.040*
C140.5807 (3)0.51991 (11)0.71586 (12)0.0502 (4)
H14A0.6083010.5329200.7795790.075*
H14B0.4637120.5577070.7053810.075*
H14C0.6718270.5421090.6663270.075*
C150.5023 (2)0.25721 (12)0.49722 (10)0.0389 (3)
H15A0.4987850.1847770.4909060.058*
H15B0.5997510.2791890.4518240.058*
H15C0.3888490.2969120.4830880.058*
C160.4737 (2)0.12999 (10)0.83077 (10)0.0334 (3)
H160.6039000.1246210.8217800.040*
C170.3878 (2)0.12486 (13)0.73970 (11)0.0475 (4)
H17A0.2622880.0919450.7414420.057*
H17B0.4632520.1148100.6777110.057*
C180.4245 (3)0.22495 (13)0.79618 (13)0.0575 (5)
H18A0.3215080.2533760.8325120.069*
H18B0.5224630.2762390.7687850.069*
C190.1399 (2)0.18977 (11)1.14682 (10)0.0378 (3)
O40.75064 (14)0.48408 (8)0.46618 (8)0.0416 (3)
O50.9197 (2)0.49587 (10)0.32356 (9)0.0704 (4)
O61.2405 (3)0.02164 (11)0.40432 (12)0.0886 (5)
O71.2235 (3)0.00344 (12)0.55450 (12)0.0933 (6)
N51.20030 (19)0.03305 (10)0.47204 (11)0.0486 (3)
C201.11515 (19)0.13962 (10)0.45442 (11)0.0349 (3)
C211.1012 (2)0.17648 (12)0.35967 (11)0.0441 (4)
H211.1408670.1337230.3075510.053*
C221.0273 (2)0.27779 (12)0.34355 (11)0.0431 (4)
H221.0186550.3047610.2794850.052*
C230.96571 (18)0.34046 (11)0.42053 (10)0.0328 (3)
C240.98225 (19)0.30048 (11)0.51504 (10)0.0338 (3)
H240.9420550.3426960.5675180.041*
C251.05718 (19)0.19935 (11)0.53262 (10)0.0355 (3)
H251.0681580.1721630.5964230.043*
C260.8742 (2)0.44884 (11)0.40125 (11)0.0384 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.150 (3)0.0352 (10)0.035 (1)0.0000 (13)0.0110 (12)0.0034 (7)
O1W'0.089 (6)0.032 (4)0.074 (5)0.014 (4)0.023 (5)0.007 (3)
O2W0.138 (3)0.0614 (17)0.093 (2)0.0114 (19)0.015 (2)0.0300 (15)
O2W'0.152 (9)0.198 (11)0.103 (6)0.014 (9)0.021 (7)0.076 (7)
O1W"0.035 (4)0.035 (4)0.034 (4)0.003 (3)0.005 (3)0.009 (3)
O2W"0.107 (10)0.067 (7)0.043 (6)0.021 (7)0.003 (6)0.022 (5)
F10.0448 (5)0.0298 (4)0.0315 (4)0.0027 (3)0.0113 (3)0.0035 (3)
F20.0602 (6)0.0226 (4)0.0418 (5)0.0027 (4)0.0092 (4)0.0022 (3)
O10.0692 (8)0.0342 (6)0.0456 (6)0.0145 (5)0.0130 (6)0.0113 (5)
O20.0740 (8)0.0489 (7)0.0341 (6)0.0190 (6)0.0073 (5)0.0082 (5)
O30.0515 (6)0.0395 (6)0.0280 (5)0.0064 (5)0.0082 (4)0.0004 (4)
N10.0335 (6)0.0228 (5)0.0262 (5)0.0020 (4)0.0033 (4)0.0010 (4)
N20.0544 (8)0.0304 (7)0.0321 (6)0.0001 (6)0.0092 (6)0.0048 (5)
N30.0459 (7)0.0243 (5)0.0237 (5)0.0093 (5)0.0011 (5)0.0003 (4)
N40.0354 (6)0.0231 (5)0.0296 (6)0.0018 (5)0.0000 (5)0.0031 (4)
C10.0362 (7)0.0242 (6)0.0301 (7)0.0048 (5)0.0095 (5)0.0028 (5)
C20.0346 (7)0.0310 (7)0.0271 (6)0.0078 (5)0.0085 (5)0.0046 (5)
C30.0298 (6)0.0341 (7)0.0241 (6)0.0052 (5)0.0050 (5)0.0006 (5)
C40.0286 (6)0.0270 (6)0.0240 (6)0.0032 (5)0.0048 (5)0.0003 (5)
C50.0272 (6)0.0227 (6)0.0252 (6)0.0024 (5)0.0056 (5)0.0009 (5)
C60.0299 (6)0.0271 (6)0.0225 (6)0.0023 (5)0.0001 (5)0.0034 (5)
C70.0323 (6)0.0259 (6)0.0241 (6)0.0049 (5)0.0037 (5)0.0008 (5)
C80.0373 (7)0.0215 (6)0.0311 (7)0.0002 (5)0.0023 (5)0.0018 (5)
C90.0329 (7)0.0292 (6)0.0244 (6)0.0012 (5)0.0028 (5)0.0027 (5)
C100.0409 (7)0.0279 (6)0.0252 (6)0.0075 (5)0.0032 (5)0.0005 (5)
C110.0369 (7)0.0224 (6)0.0278 (6)0.0015 (5)0.0011 (5)0.0003 (5)
C120.0443 (8)0.0249 (6)0.0306 (7)0.0076 (6)0.0030 (6)0.0001 (5)
C130.0468 (8)0.0234 (6)0.0298 (7)0.0060 (6)0.0001 (6)0.0013 (5)
C140.0772 (12)0.0299 (8)0.0452 (9)0.0202 (8)0.0012 (8)0.0020 (6)
C150.0495 (9)0.0399 (8)0.0272 (7)0.0107 (7)0.0000 (6)0.0014 (6)
C160.0397 (7)0.0263 (6)0.0318 (7)0.0006 (5)0.0011 (6)0.0050 (5)
C170.0602 (10)0.0509 (9)0.0329 (8)0.0105 (8)0.0027 (7)0.0126 (7)
C180.0856 (13)0.0344 (8)0.0513 (10)0.0160 (8)0.0122 (9)0.0163 (7)
C190.0442 (8)0.0379 (8)0.0332 (7)0.0117 (6)0.0110 (6)0.0085 (6)
O40.0427 (6)0.0327 (5)0.0423 (6)0.0030 (4)0.0069 (5)0.0031 (4)
O50.0889 (10)0.0538 (8)0.0475 (7)0.0188 (7)0.0197 (7)0.0213 (6)
O60.1316 (15)0.0443 (8)0.0737 (10)0.0239 (8)0.0071 (10)0.0100 (7)
O70.1428 (16)0.0572 (9)0.0674 (10)0.0305 (9)0.0285 (10)0.0123 (7)
N50.0492 (8)0.0353 (7)0.0557 (9)0.0007 (6)0.0019 (6)0.0043 (6)
C200.0325 (7)0.0303 (7)0.0399 (8)0.0023 (5)0.0014 (6)0.0016 (6)
C210.0546 (9)0.0396 (8)0.0343 (8)0.0008 (7)0.0020 (7)0.0066 (6)
C220.0552 (9)0.0434 (8)0.0261 (7)0.0026 (7)0.0018 (6)0.0017 (6)
C230.0307 (7)0.0337 (7)0.0315 (7)0.0016 (5)0.0001 (5)0.0017 (5)
C240.0347 (7)0.0374 (7)0.0274 (7)0.0014 (6)0.0011 (5)0.0030 (5)
C250.0352 (7)0.0390 (8)0.0308 (7)0.0037 (6)0.0045 (6)0.0042 (6)
C260.0412 (8)0.0357 (8)0.0342 (7)0.0012 (6)0.0004 (6)0.0036 (6)
Geometric parameters (Å, º) top
O1W—O1W'1.196 (10)C6—C71.3973 (18)
O1W—H1W10.8112C7—C81.3865 (18)
O1W—H2W10.8024C8—C91.3923 (18)
O1W—H5W11.1709C10—C111.5170 (18)
O1W'—H5W10.8189C10—H10A0.9800
O1W'—H6W10.8767C10—H10B0.9800
O1W'—H1W21.1808C11—C151.5182 (19)
O2W—H6W11.2013C11—H110.9900
O2W—H1W20.8218C12—C141.5157 (19)
O2W—H2W20.8195C12—C131.5223 (19)
O2W'—H3W21.0717C12—H120.9900
O2W'—H4W20.8116C13—H13A0.9800
O1W"—H3W10.8237C13—H13B0.9800
O1W"—H4W10.8198C14—H14A0.9700
O2W"—H5W20.8223C14—H14B0.9700
O2W"—H6W20.8224C14—H14C0.9700
F1—C61.3573 (14)C15—H15A0.9700
F2—C81.3508 (14)C15—H15B0.9700
O1—C191.2124 (18)C15—H15C0.9700
O2—C191.3224 (19)C16—C181.490 (2)
O2—H2O0.97 (3)C16—C171.491 (2)
O3—C31.2705 (16)C16—H160.9900
N1—C11.3408 (16)C17—C181.491 (2)
N1—C51.4053 (16)C17—H17A0.9800
N1—C161.4601 (16)C17—H17B0.9800
N2—C91.3601 (17)C18—H18A0.9800
N2—H2NA0.89 (2)C18—H18B0.9800
N2—H2NB0.92 (2)O4—C261.2682 (17)
N3—C71.3986 (16)O5—C261.2384 (18)
N3—C131.4644 (16)O6—N51.207 (2)
N3—C101.4751 (17)O7—N51.209 (2)
N4—C111.4975 (16)N5—C201.4694 (18)
N4—C121.5053 (18)C20—C251.374 (2)
N4—H4NA0.960 (18)C20—C211.380 (2)
N4—H4NB0.913 (18)C21—C221.380 (2)
C1—C21.3633 (19)C21—H210.9400
C1—H10.9400C22—C231.388 (2)
C2—C31.4245 (19)C22—H220.9400
C2—C191.4852 (18)C23—C241.3916 (19)
C3—C41.4506 (17)C23—C261.5095 (19)
C4—C91.4199 (18)C24—C251.383 (2)
C4—C51.4292 (17)C24—H240.9400
C5—C61.3867 (17)C25—H250.9400
O1W'—O1W—H1W1104.5C10—C11—H11108.7
O1W'—O1W—H2W1133.2C15—C11—H11108.7
H1W1—O1W—H2W1110.0N4—C12—C14109.29 (11)
O1W'—O1W—H5W140.5N4—C12—C13109.42 (11)
H1W1—O1W—H5W164.5C14—C12—C13111.47 (12)
H2W1—O1W—H5W1156.0N4—C12—H12108.9
O1W—O1W'—H5W168.1C14—C12—H12108.9
O1W—O1W'—H6W1102.1C13—C12—H12108.9
H5W1—O1W'—H6W1150.1N3—C13—C12110.13 (11)
O1W—O1W'—H1W2126.7N3—C13—H13A109.6
H5W1—O1W'—H1W2146.3C12—C13—H13A109.6
H6W1—O1W'—H1W225.0N3—C13—H13B109.6
H6W1—O2W—H1W221.9C12—C13—H13B109.6
H6W1—O2W—H2W2104.5H13A—C13—H13B108.1
H1W2—O2W—H2W2106.0C12—C14—H14A109.5
H3W2—O2W'—H4W2122.7C12—C14—H14B109.5
H3W1—O1W"—H4W1104.8H14A—C14—H14B109.5
H5W2—O2W"—H6W2104.4C12—C14—H14C109.5
C19—O2—H2O105.3 (14)H14A—C14—H14C109.5
C1—N1—C5119.87 (11)H14B—C14—H14C109.5
C1—N1—C16118.82 (11)C11—C15—H15A109.5
C5—N1—C16121.29 (10)C11—C15—H15B109.5
C9—N2—H2NA120.4 (14)H15A—C15—H15B109.5
C9—N2—H2NB115.8 (12)C11—C15—H15C109.5
H2NA—N2—H2NB123.3 (18)H15A—C15—H15C109.5
C7—N3—C13120.17 (11)H15B—C15—H15C109.5
C7—N3—C10116.79 (11)N1—C16—C18119.56 (13)
C13—N3—C10111.65 (10)N1—C16—C17118.95 (12)
C11—N4—C12111.82 (10)C18—C16—C1760.01 (11)
C11—N4—H4NA111.3 (10)N1—C16—H16115.6
C12—N4—H4NA109.6 (11)C18—C16—H16115.6
C11—N4—H4NB110.7 (11)C17—C16—H16115.6
C12—N4—H4NB109.2 (11)C18—C17—C1659.96 (11)
H4NA—N4—H4NB104.0 (14)C18—C17—H17A117.8
N1—C1—C2124.37 (12)C16—C17—H17A117.8
N1—C1—H1117.8C18—C17—H17B117.8
C2—C1—H1117.8C16—C17—H17B117.8
C1—C2—C3120.03 (12)H17A—C17—H17B114.9
C1—C2—C19118.03 (12)C16—C18—C1760.03 (10)
C3—C2—C19121.93 (12)C16—C18—H18A117.8
O3—C3—C2120.95 (12)C17—C18—H18A117.8
O3—C3—C4122.34 (12)C16—C18—H18B117.8
C2—C3—C4116.71 (11)C17—C18—H18B117.8
C9—C4—C5118.93 (11)H18A—C18—H18B114.9
C9—C4—C3120.79 (11)O1—C19—O2120.84 (13)
C5—C4—C3120.28 (11)O1—C19—C2122.93 (14)
C6—C5—N1122.45 (11)O2—C19—C2116.23 (13)
C6—C5—C4118.84 (11)O6—N5—O7122.86 (15)
N1—C5—C4118.70 (11)O6—N5—C20118.87 (15)
F1—C6—C5120.87 (11)O7—N5—C20118.25 (14)
F1—C6—C7115.55 (11)C25—C20—C21122.68 (13)
C5—C6—C7123.46 (11)C25—C20—N5118.74 (13)
C8—C7—C6115.87 (11)C21—C20—N5118.56 (13)
C8—C7—N3125.60 (12)C22—C21—C20118.18 (14)
C6—C7—N3118.49 (11)C22—C21—H21120.9
F2—C8—C7119.99 (11)C20—C21—H21120.9
F2—C8—C9115.54 (11)C21—C22—C23120.96 (14)
C7—C8—C9124.44 (12)C21—C22—H22119.5
N2—C9—C8118.91 (12)C23—C22—H22119.5
N2—C9—C4122.81 (12)C22—C23—C24119.14 (13)
C8—C9—C4118.21 (11)C22—C23—C26119.83 (13)
N3—C10—C11109.88 (11)C24—C23—C26120.96 (13)
N3—C10—H10A109.7C25—C24—C23120.74 (13)
C11—C10—H10A109.7C25—C24—H24119.6
N3—C10—H10B109.7C23—C24—H24119.6
C11—C10—H10B109.7C20—C25—C24118.29 (13)
H10A—C10—H10B108.2C20—C25—H25120.9
N4—C11—C10107.6 (1)C24—C25—H25120.9
N4—C11—C15109.68 (11)O5—C26—O4124.62 (14)
C10—C11—C15113.43 (12)O5—C26—C23118.92 (13)
N4—C11—H11108.7O4—C26—C23116.44 (12)
C5—N1—C1—C21.5 (2)C5—C4—C9—C81.62 (18)
C16—N1—C1—C2176.94 (13)C3—C4—C9—C8179.06 (12)
N1—C1—C2—C30.6 (2)C7—N3—C10—C11155.08 (11)
N1—C1—C2—C19178.70 (12)C13—N3—C10—C1161.19 (14)
C1—C2—C3—O3179.23 (13)C12—N4—C11—C1058.92 (14)
C19—C2—C3—O31.5 (2)C12—N4—C11—C15177.27 (11)
C1—C2—C3—C40.35 (18)N3—C10—C11—N459.62 (14)
C19—C2—C3—C4178.93 (12)N3—C10—C11—C15178.88 (11)
O3—C3—C4—C90.8 (2)C11—N4—C12—C14179.49 (12)
C2—C3—C4—C9179.66 (12)C11—N4—C12—C1357.18 (14)
O3—C3—C4—C5178.54 (12)C7—N3—C13—C12159.20 (12)
C2—C3—C4—C51.03 (18)C10—N3—C13—C1258.45 (15)
C1—N1—C5—C6176.48 (12)N4—C12—C13—N355.29 (15)
C16—N1—C5—C65.09 (19)C14—C12—C13—N3176.29 (13)
C1—N1—C5—C42.13 (17)C1—N1—C16—C1836.0 (2)
C16—N1—C5—C4176.30 (12)C5—N1—C16—C18142.40 (14)
C9—C4—C5—C62.57 (18)C1—N1—C16—C17105.99 (15)
C3—C4—C5—C6176.75 (12)C5—N1—C16—C1772.46 (17)
C9—C4—C5—N1178.76 (11)N1—C16—C17—C18109.38 (15)
C3—C4—C5—N11.92 (18)N1—C16—C18—C17108.37 (15)
N1—C5—C6—F18.58 (19)C1—C2—C19—O14.0 (2)
C4—C5—C6—F1170.03 (11)C3—C2—C19—O1175.27 (14)
N1—C5—C6—C7175.64 (12)C1—C2—C19—O2176.23 (13)
C4—C5—C6—C75.75 (19)C3—C2—C19—O24.5 (2)
F1—C6—C7—C8171.68 (11)O6—N5—C20—C25175.16 (17)
C5—C6—C7—C84.30 (19)O7—N5—C20—C253.3 (2)
F1—C6—C7—N35.98 (18)O6—N5—C20—C216.6 (2)
C5—C6—C7—N3178.03 (12)O7—N5—C20—C21174.94 (18)
C13—N3—C7—C818.0 (2)C25—C20—C21—C220.6 (2)
C10—N3—C7—C8122.47 (14)N5—C20—C21—C22177.55 (15)
C13—N3—C7—C6159.38 (12)C20—C21—C22—C231.2 (3)
C10—N3—C7—C660.12 (16)C21—C22—C23—C241.2 (2)
C6—C7—C8—F2177.64 (12)C21—C22—C23—C26175.88 (15)
N3—C7—C8—F24.9 (2)C22—C23—C24—C250.7 (2)
C6—C7—C8—C90.3 (2)C26—C23—C24—C25176.36 (13)
N3—C7—C8—C9177.18 (13)C21—C20—C25—C240.1 (2)
F2—C8—C9—N22.18 (19)N5—C20—C25—C24178.04 (13)
C7—C8—C9—N2179.79 (13)C23—C24—C25—C200.2 (2)
F2—C8—C9—C4174.87 (11)C22—C23—C26—O531.0 (2)
C7—C8—C9—C43.2 (2)C24—C23—C26—O5151.92 (17)
C5—C4—C9—N2178.55 (13)C22—C23—C26—O4147.01 (15)
C3—C4—C9—N22.1 (2)C24—C23—C26—O430.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.97 (3)1.60 (3)2.5257 (15)157 (2)
N2—H2NB···O30.92 (2)1.901 (19)2.6343 (17)135.0 (16)
N4—H4NA···O40.960 (18)1.824 (18)2.7666 (15)166.4 (15)
O1W—H1W1···O50.812.002.806 (2)173
O2W—H1W2···O1W0.822.122.811 (5)141
O1W—H2W1···O2Wi0.802.012.803 (5)172
O2W—H2W2···O1ii0.822.022.807 (3)161
N2—H2NA···O1Wiii0.89 (2)2.07 (2)2.947 (2)167.8 (19)
N4—H4NB···O4iv0.913 (18)1.957 (18)2.8405 (16)162.5 (15)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1; (iii) x1, y, z+1; (iv) x+1, y+1, z+1.
4-(5-Amino-3-carboxy-1-cyclopropyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2,6-dimethylpiperazin-1-ium 2-phenylacetate (II) top
Crystal data top
C19H23F2N4O3+·C8H7O2Z = 2
Mr = 528.55F(000) = 556
Triclinic, P1Dx = 1.428 Mg m3
a = 10.0222 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1145 (4) ÅCell parameters from 9186 reflections
c = 13.5255 (5) Åθ = 3.0–27.5°
α = 69.606 (2)°µ = 0.11 mm1
β = 73.032 (2)°T = 90 K
γ = 83.747 (2)°Irregular block, pale yellow
V = 1229.15 (9) Å30.34 × 0.28 × 0.26 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
5639 independent reflections
Radiation source: microsource5029 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.038
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.914, Tmax = 0.959k = 1213
41293 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.5792P]
where P = (Fo2 + 2Fc2)/3
5639 reflections(Δ/σ)max = 0.002
365 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.70792 (7)0.00637 (7)0.83721 (5)0.01777 (15)
F20.63127 (7)0.35650 (7)1.00282 (5)0.01665 (14)
O11.05409 (8)0.41085 (8)1.22035 (7)0.01857 (17)
O21.00723 (10)0.25755 (9)1.31012 (7)0.02240 (19)
H2O0.970 (2)0.164 (2)1.2943 (16)0.051 (5)*
O30.89918 (9)0.02316 (8)1.22819 (6)0.01721 (17)
N10.84402 (9)0.17056 (9)0.99535 (7)0.01228 (18)
N20.77272 (12)0.21351 (11)1.14682 (8)0.0201 (2)
H2NA0.7380 (17)0.2964 (18)1.1458 (13)0.029 (4)*
H2NB0.8144 (17)0.1606 (17)1.1985 (13)0.027 (4)*
N30.59393 (10)0.26309 (10)0.84423 (7)0.01448 (19)
N40.58386 (10)0.38019 (10)0.62261 (7)0.01321 (18)
H4NA0.6191 (17)0.3897 (17)0.5467 (13)0.029 (4)*
H4NB0.5030 (16)0.4386 (16)0.6268 (12)0.023 (4)*
C10.91214 (11)0.24536 (11)1.06947 (9)0.0133 (2)
H10.9502090.3343671.0659940.016*
C20.93024 (11)0.20187 (11)1.14943 (8)0.0134 (2)
C30.88013 (11)0.06613 (11)1.15534 (8)0.0129 (2)
C40.80895 (11)0.01794 (11)1.07502 (8)0.0123 (2)
C50.78917 (11)0.03613 (11)0.99549 (8)0.0119 (2)
C60.71912 (11)0.04728 (11)0.91986 (8)0.0131 (2)
C70.66418 (11)0.18133 (11)0.91898 (8)0.0128 (2)
C80.68554 (11)0.22948 (11)0.99773 (9)0.0135 (2)
C90.75685 (11)0.15531 (11)1.07451 (8)0.0131 (2)
C100.49686 (11)0.20780 (11)0.80689 (8)0.0137 (2)
H10A0.4053270.2554220.8226580.016*
H10B0.4835680.1058620.8486790.016*
C110.54638 (11)0.22823 (11)0.68460 (8)0.0132 (2)
H110.6308260.1679580.6702300.016*
C120.68765 (11)0.43180 (11)0.66142 (9)0.0149 (2)
H120.7753190.3745070.6516030.018*
C130.62643 (12)0.41177 (11)0.78307 (9)0.0145 (2)
H13A0.6943160.4431830.8106130.017*
H13B0.5405600.4696190.7936190.017*
C140.72062 (14)0.58531 (13)0.59395 (10)0.0242 (3)
H14A0.7555130.5949900.5161350.036*
H14B0.7918380.6175180.6167810.036*
H14C0.6358070.6425840.6053450.036*
C150.43375 (12)0.18919 (12)0.64521 (9)0.0176 (2)
H15A0.4667700.2085430.5658500.026*
H15B0.3493990.2451870.6620230.026*
H15C0.4124470.0886740.6823580.026*
C160.83214 (11)0.23184 (11)0.91487 (8)0.0139 (2)
H160.8855550.1827590.8373470.017*
C170.69701 (12)0.29534 (12)0.92921 (9)0.0190 (2)
H17A0.6681190.2829940.8624780.023*
H17B0.6195200.2956900.9944380.023*
C180.82133 (13)0.38861 (12)0.94729 (9)0.0189 (2)
H18A0.8201790.4461101.0236120.023*
H18B0.8687860.4334120.8916320.023*
C191.00275 (11)0.29946 (12)1.22819 (9)0.0153 (2)
O40.35788 (9)0.55031 (9)0.60167 (6)0.01934 (18)
O50.29414 (9)0.53584 (9)0.77723 (7)0.02231 (19)
C200.18020 (11)0.80365 (11)0.56629 (9)0.0143 (2)
C210.27729 (12)0.89939 (12)0.55673 (9)0.0183 (2)
H210.3276490.8776910.6101230.022*
C220.30119 (13)1.02595 (13)0.47016 (10)0.0221 (2)
H220.3679331.0900380.4643890.026*
C230.22759 (13)1.05909 (12)0.39183 (9)0.0213 (2)
H230.2431731.1461270.3329360.026*
C240.13151 (12)0.96463 (12)0.40009 (9)0.0194 (2)
H240.0810440.9867440.3467370.023*
C250.10881 (12)0.83743 (12)0.48642 (9)0.0164 (2)
H250.0436100.7726070.4909620.020*
C260.14869 (11)0.66952 (12)0.66354 (9)0.0157 (2)
H26A0.0835210.6125890.6524430.019*
H26B0.1005710.6944570.7298850.019*
C270.27658 (11)0.57882 (11)0.68409 (9)0.0142 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0263 (4)0.0183 (3)0.0142 (3)0.0045 (3)0.0104 (3)0.0093 (3)
F20.0211 (3)0.0131 (3)0.0188 (3)0.0042 (2)0.0083 (3)0.0079 (3)
O10.0188 (4)0.0148 (4)0.0223 (4)0.0014 (3)0.0083 (3)0.0047 (3)
O20.0312 (5)0.0204 (4)0.0215 (4)0.0064 (4)0.0166 (4)0.0083 (3)
O30.0221 (4)0.0179 (4)0.0160 (4)0.0021 (3)0.0099 (3)0.0077 (3)
N10.0138 (4)0.0119 (4)0.0115 (4)0.0007 (3)0.0029 (3)0.0045 (3)
N20.0308 (6)0.0160 (5)0.0210 (5)0.0070 (4)0.0152 (4)0.0106 (4)
N30.0179 (5)0.0123 (4)0.0139 (4)0.0017 (3)0.0078 (4)0.0020 (3)
N40.0144 (4)0.0134 (4)0.0109 (4)0.0004 (3)0.0036 (3)0.0031 (3)
C10.0114 (5)0.0126 (5)0.0139 (5)0.0008 (4)0.0016 (4)0.0032 (4)
C20.0127 (5)0.0135 (5)0.0127 (5)0.0013 (4)0.0031 (4)0.0027 (4)
C30.0116 (5)0.0147 (5)0.0117 (5)0.0026 (4)0.0016 (4)0.0038 (4)
C40.0123 (5)0.0134 (5)0.0107 (5)0.0015 (4)0.0023 (4)0.0038 (4)
C50.0120 (5)0.0115 (5)0.0109 (5)0.0014 (4)0.0011 (4)0.0036 (4)
C60.0151 (5)0.0157 (5)0.0100 (5)0.0015 (4)0.0031 (4)0.0059 (4)
C70.0117 (5)0.0141 (5)0.0108 (5)0.0018 (4)0.0020 (4)0.0025 (4)
C80.0146 (5)0.0112 (5)0.0142 (5)0.0008 (4)0.0026 (4)0.0048 (4)
C90.0140 (5)0.0141 (5)0.0113 (5)0.0013 (4)0.0026 (4)0.0047 (4)
C100.0132 (5)0.0157 (5)0.0125 (5)0.0012 (4)0.0038 (4)0.0042 (4)
C110.0142 (5)0.0124 (5)0.0126 (5)0.0002 (4)0.0035 (4)0.0040 (4)
C120.0147 (5)0.0151 (5)0.0145 (5)0.0014 (4)0.0056 (4)0.0028 (4)
C130.0173 (5)0.0120 (5)0.0145 (5)0.0002 (4)0.0063 (4)0.0033 (4)
C140.0316 (7)0.0180 (6)0.0206 (6)0.0087 (5)0.0097 (5)0.0011 (5)
C150.0189 (5)0.0206 (6)0.0152 (5)0.0025 (4)0.0057 (4)0.0068 (4)
C160.0179 (5)0.0135 (5)0.0114 (5)0.0007 (4)0.0032 (4)0.0058 (4)
C170.0203 (6)0.0218 (6)0.0178 (5)0.0047 (4)0.0043 (4)0.0093 (4)
C180.0276 (6)0.0138 (5)0.0169 (5)0.0023 (4)0.0063 (4)0.0062 (4)
C190.0133 (5)0.0157 (5)0.0156 (5)0.0021 (4)0.0047 (4)0.0026 (4)
O40.0206 (4)0.0220 (4)0.0134 (4)0.0070 (3)0.0039 (3)0.0063 (3)
O50.0283 (5)0.0249 (4)0.0148 (4)0.0089 (4)0.0089 (3)0.0082 (3)
C200.0147 (5)0.0138 (5)0.0140 (5)0.0033 (4)0.0021 (4)0.0065 (4)
C210.0213 (6)0.0183 (5)0.0170 (5)0.0004 (4)0.0063 (4)0.0070 (4)
C220.0279 (6)0.0171 (5)0.0217 (6)0.0041 (5)0.0044 (5)0.0078 (5)
C230.0303 (6)0.0140 (5)0.0159 (5)0.0031 (5)0.0031 (5)0.0038 (4)
C240.0217 (6)0.0215 (6)0.0149 (5)0.0076 (4)0.0064 (4)0.0071 (4)
C250.0149 (5)0.0186 (5)0.0166 (5)0.0023 (4)0.0033 (4)0.0085 (4)
C260.0144 (5)0.0163 (5)0.0147 (5)0.0009 (4)0.0030 (4)0.0041 (4)
C270.0158 (5)0.0117 (5)0.0144 (5)0.0006 (4)0.0033 (4)0.0041 (4)
Geometric parameters (Å, º) top
F1—C61.3562 (11)C12—C131.5266 (15)
F2—C81.3560 (12)C12—H121.0000
O1—C191.2126 (14)C13—H13A0.9900
O2—C191.3304 (14)C13—H13B0.9900
O2—H2O0.95 (2)C14—H14A0.9800
O3—C31.2738 (13)C14—H14B0.9800
N1—C11.3423 (14)C14—H14C0.9800
N1—C51.4104 (13)C15—H15A0.9800
N1—C161.4646 (13)C15—H15B0.9800
N2—C91.3567 (14)C15—H15C0.9800
N2—H2NA0.869 (17)C16—C171.4945 (15)
N2—H2NB0.900 (17)C16—C181.4978 (15)
N3—C71.3812 (14)C16—H161.0000
N3—C101.4548 (13)C17—C181.5044 (17)
N3—C131.4609 (13)C17—H17A0.9900
N4—C111.5000 (13)C17—H17B0.9900
N4—C121.5026 (13)C18—H18A0.9900
N4—H4NA0.956 (16)C18—H18B0.9900
N4—H4NB0.949 (16)O4—C271.2777 (13)
C1—C21.3636 (15)O5—C271.2401 (13)
C1—H10.9500C20—C251.3916 (15)
C2—C31.4305 (15)C20—C211.3949 (16)
C2—C191.4833 (15)C20—C261.5091 (15)
C3—C41.4452 (14)C21—C221.3876 (17)
C4—C91.4285 (15)C21—H210.9500
C4—C51.4329 (14)C22—C231.3906 (18)
C5—C61.3927 (15)C22—H220.9500
C6—C71.4041 (15)C23—C241.3841 (18)
C7—C81.3910 (14)C23—H230.9500
C8—C91.3877 (15)C24—C251.3900 (16)
C10—C111.5264 (14)C24—H240.9500
C10—H10A0.9900C25—H250.9500
C10—H10B0.9900C26—C271.5283 (15)
C11—C151.5194 (15)C26—H26A0.9900
C11—H111.0000C26—H26B0.9900
C12—C141.5169 (15)
C19—O2—H2O105.6 (12)N3—C13—H13B109.8
C1—N1—C5119.83 (9)C12—C13—H13B109.8
C1—N1—C16117.94 (9)H13A—C13—H13B108.2
C5—N1—C16122.22 (9)C12—C14—H14A109.5
C9—N2—H2NA120.6 (11)C12—C14—H14B109.5
C9—N2—H2NB117.6 (10)H14A—C14—H14B109.5
H2NA—N2—H2NB121.7 (14)C12—C14—H14C109.5
C7—N3—C10124.24 (9)H14A—C14—H14C109.5
C7—N3—C13122.03 (9)H14B—C14—H14C109.5
C10—N3—C13113.16 (8)C11—C15—H15A109.5
C11—N4—C12112.99 (8)C11—C15—H15B109.5
C11—N4—H4NA107.3 (10)H15A—C15—H15B109.5
C12—N4—H4NA111.1 (10)C11—C15—H15C109.5
C11—N4—H4NB110.9 (9)H15A—C15—H15C109.5
C12—N4—H4NB109.4 (9)H15B—C15—H15C109.5
H4NA—N4—H4NB104.9 (13)N1—C16—C17119.36 (9)
N1—C1—C2124.25 (10)N1—C16—C18119.26 (9)
N1—C1—H1117.9C17—C16—C1860.36 (8)
C2—C1—H1117.9N1—C16—H16115.6
C1—C2—C3120.08 (10)C17—C16—H16115.6
C1—C2—C19117.76 (10)C18—C16—H16115.6
C3—C2—C19122.16 (10)C16—C17—C1859.93 (7)
O3—C3—C2120.62 (10)C16—C17—H17A117.8
O3—C3—C4122.58 (10)C18—C17—H17A117.8
C2—C3—C4116.80 (9)C16—C17—H17B117.8
C9—C4—C5119.35 (9)C18—C17—H17B117.8
C9—C4—C3120.38 (9)H17A—C17—H17B114.9
C5—C4—C3120.28 (9)C16—C18—C1759.71 (7)
C6—C5—N1122.53 (9)C16—C18—H18A117.8
C6—C5—C4118.75 (9)C17—C18—H18A117.8
N1—C5—C4118.71 (9)C16—C18—H18B117.8
F1—C6—C5121.11 (9)C17—C18—H18B117.8
F1—C6—C7115.64 (9)H18A—C18—H18B114.9
C5—C6—C7123.12 (9)O1—C19—O2121.36 (10)
N3—C7—C8121.0 (1)O1—C19—C2123.17 (10)
N3—C7—C6122.83 (9)O2—C19—C2115.47 (10)
C8—C7—C6116.17 (9)C25—C20—C21118.45 (10)
F2—C8—C9116.52 (9)C25—C20—C26120.7 (1)
F2—C8—C7118.76 (9)C21—C20—C26120.8 (1)
C9—C8—C7124.71 (10)C22—C21—C20120.78 (11)
N2—C9—C8119.61 (10)C22—C21—H21119.6
N2—C9—C4122.51 (10)C20—C21—H21119.6
C8—C9—C4117.87 (9)C21—C22—C23120.09 (11)
N3—C10—C11112.99 (9)C21—C22—H22120.0
N3—C10—H10A109.0C23—C22—H22120.0
C11—C10—H10A109.0C24—C23—C22119.67 (11)
N3—C10—H10B109.0C24—C23—H23120.2
C11—C10—H10B109.0C22—C23—H23120.2
H10A—C10—H10B107.8C23—C24—C25120.03 (11)
N4—C11—C15108.99 (9)C23—C24—H24120.0
N4—C11—C10108.68 (8)C25—C24—H24120.0
C15—C11—C10111.49 (9)C24—C25—C20120.96 (11)
N4—C11—H11109.2C24—C25—H25119.5
C15—C11—H11109.2C20—C25—H25119.5
C10—C11—H11109.2C20—C26—C27114.65 (9)
N4—C12—C14109.52 (9)C20—C26—H26A108.6
N4—C12—C13108.54 (9)C27—C26—H26A108.6
C14—C12—C13111.62 (9)C20—C26—H26B108.6
N4—C12—H12109.0C27—C26—H26B108.6
C14—C12—H12109.0H26A—C26—H26B107.6
C13—C12—H12109.0O5—C27—O4124.4 (1)
N3—C13—C12109.59 (9)O5—C27—C26119.62 (10)
N3—C13—H13A109.8O4—C27—C26115.97 (9)
C12—C13—H13A109.8
C5—N1—C1—C21.77 (16)C7—C8—C9—C41.82 (16)
C16—N1—C1—C2179.51 (10)C5—C4—C9—N2179.51 (10)
N1—C1—C2—C32.65 (17)C3—C4—C9—N20.89 (16)
N1—C1—C2—C19177.40 (9)C5—C4—C9—C81.59 (15)
C1—C2—C3—O3178.44 (10)C3—C4—C9—C8178.01 (9)
C19—C2—C3—O31.50 (16)C7—N3—C10—C11116.00 (11)
C1—C2—C3—C41.16 (15)C13—N3—C10—C1155.53 (12)
C19—C2—C3—C4178.89 (9)C12—N4—C11—C15175.95 (9)
O3—C3—C4—C90.20 (16)C12—N4—C11—C1054.26 (11)
C2—C3—C4—C9179.39 (9)N3—C10—C11—N451.50 (11)
O3—C3—C4—C5179.40 (9)N3—C10—C11—C15171.65 (9)
C2—C3—C4—C51.01 (15)C11—N4—C12—C14179.47 (9)
C1—N1—C5—C6179.14 (10)C11—N4—C12—C1358.45 (11)
C16—N1—C5—C60.48 (15)C7—N3—C13—C12113.64 (11)
C1—N1—C5—C40.54 (14)C10—N3—C13—C1258.10 (12)
C16—N1—C5—C4178.13 (9)N4—C12—C13—N358.10 (11)
C9—C4—C5—C60.12 (15)C14—C12—C13—N3178.90 (9)
C3—C4—C5—C6179.48 (9)C1—N1—C16—C17103.20 (12)
C9—C4—C5—N1178.54 (9)C5—N1—C16—C1778.11 (13)
C3—C4—C5—N11.86 (15)C1—N1—C16—C1832.78 (14)
N1—C5—C6—F14.25 (16)C5—N1—C16—C18148.53 (10)
C4—C5—C6—F1174.35 (9)N1—C16—C17—C18108.97 (11)
N1—C5—C6—C7179.91 (9)N1—C16—C18—C17109.14 (11)
C4—C5—C6—C71.31 (16)C1—C2—C19—O14.97 (16)
C10—N3—C7—C8141.61 (11)C3—C2—C19—O1174.97 (10)
C13—N3—C7—C847.59 (15)C1—C2—C19—O2174.44 (10)
C10—N3—C7—C639.09 (16)C3—C2—C19—O25.62 (15)
C13—N3—C7—C6131.71 (11)C25—C20—C21—C220.59 (17)
F1—C6—C7—N34.61 (15)C26—C20—C21—C22176.77 (10)
C5—C6—C7—N3179.52 (10)C20—C21—C22—C230.31 (18)
F1—C6—C7—C8174.73 (9)C21—C22—C23—C240.65 (18)
C5—C6—C7—C81.15 (16)C22—C23—C24—C250.07 (17)
N3—C7—C8—F22.55 (15)C23—C24—C25—C200.85 (17)
C6—C7—C8—F2178.11 (9)C21—C20—C25—C241.17 (16)
N3—C7—C8—C9178.87 (10)C26—C20—C25—C24176.2 (1)
C6—C7—C8—C90.47 (16)C25—C20—C26—C27128.84 (11)
F2—C8—C9—N22.14 (15)C21—C20—C26—C2753.85 (14)
C7—C8—C9—N2179.25 (10)C20—C26—C27—O5130.02 (11)
F2—C8—C9—C4176.79 (9)C20—C26—C27—O451.32 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.95 (2)1.61 (2)2.5162 (12)157.3 (18)
N2—H2NB···O30.900 (17)1.917 (16)2.6200 (13)133.6 (14)
N4—H4NB···O40.949 (16)1.781 (16)2.7122 (12)166.3 (13)
N2—H2NA···O5i0.869 (17)2.232 (17)2.9958 (13)146.5 (14)
N4—H4NA···O4ii0.956 (16)1.834 (16)2.7580 (12)161.8 (14)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.
4-(5-Amino-3-carboxy-1-cyclopropyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2,6-dimethylpiperazin-1-ium 4-methylbenzoate trihydrate (III) top
Crystal data top
C19H23F2N4O3+·C8H7O2·3H2OF(000) = 1232
Mr = 582.60Dx = 1.411 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 18.4423 (9) ÅCell parameters from 9800 reflections
b = 7.0694 (3) Åθ = 2.9–27.5°
c = 21.0669 (10) ŵ = 0.11 mm1
β = 93.252 (2)°T = 90 K
V = 2742.2 (2) Å3Tablet, pale yellow
Z = 40.19 × 0.15 × 0.04 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
6296 independent reflections
Radiation source: microsource5086 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.043
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2323
Tmin = 0.894, Tmax = 0.959k = 99
44990 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.040P)2 + 1.6577P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6296 reflectionsΔρmax = 0.31 e Å3
418 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (5)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.16930 (4)0.64545 (14)0.41384 (4)0.0232 (2)
F20.19188 (4)0.74700 (13)0.63429 (4)0.0213 (2)
O10.20441 (5)0.79723 (16)0.41468 (5)0.0235 (2)
O20.19618 (5)0.87221 (15)0.51703 (5)0.0202 (2)
H2O0.1594 (12)0.877 (3)0.5482 (10)0.044 (6)*
O30.07638 (5)0.84435 (15)0.57818 (5)0.0189 (2)
N10.01575 (6)0.68755 (17)0.41300 (5)0.0142 (2)
N20.05167 (7)0.8265 (2)0.64025 (6)0.0213 (3)
H2NA0.0811 (11)0.828 (3)0.6762 (10)0.034 (5)*
H2NB0.0031 (12)0.843 (3)0.6419 (10)0.042 (6)*
N30.25676 (6)0.66015 (18)0.52407 (6)0.0177 (3)
N40.40460 (6)0.56168 (18)0.54358 (6)0.0147 (2)
H4NA0.4412 (10)0.495 (3)0.5696 (9)0.029 (5)*
H4NB0.4268 (10)0.618 (3)0.5108 (10)0.034 (5)*
C10.05565 (7)0.7201 (2)0.41541 (7)0.0152 (3)
H10.0853980.7040740.3774840.018*
C20.08820 (7)0.7749 (2)0.46899 (7)0.0151 (3)
C30.04622 (7)0.79463 (19)0.52777 (7)0.0147 (3)
C40.03060 (7)0.75619 (19)0.52685 (7)0.0140 (3)
C50.06170 (7)0.70427 (19)0.46870 (6)0.0138 (3)
C60.13643 (7)0.6767 (2)0.46875 (7)0.0152 (3)
C70.18246 (7)0.6910 (2)0.52359 (7)0.0152 (3)
C80.15010 (7)0.7376 (2)0.57941 (7)0.0161 (3)
C90.07665 (7)0.7750 (2)0.58355 (7)0.0151 (3)
C100.28872 (7)0.5277 (2)0.48072 (7)0.0161 (3)
H10A0.3071780.5971780.4441520.019*
H10B0.2513830.4367970.4642870.019*
C110.35064 (7)0.4220 (2)0.51562 (7)0.0155 (3)
H110.3306770.3468210.5508660.019*
C120.37170 (7)0.7063 (2)0.58566 (7)0.0156 (3)
H120.3533670.6407090.6236320.019*
C130.30834 (7)0.8012 (2)0.54943 (7)0.0160 (3)
H13A0.2836670.8879970.5781330.019*
H13B0.3264370.8768850.5140930.019*
C140.43038 (8)0.8463 (2)0.60792 (7)0.0209 (3)
H14A0.4493600.9098180.5709830.031*
H14B0.4698770.7787360.6312830.031*
H14C0.4097200.9405760.6358260.031*
C150.38846 (8)0.2884 (2)0.47176 (7)0.0206 (3)
H15A0.3539570.1922340.4554460.031*
H15B0.4292110.2266880.4953900.031*
H15C0.4066270.3600470.4361450.031*
C160.04298 (7)0.6192 (2)0.35325 (7)0.0163 (3)
H160.0621440.4868270.3544030.020*
C170.08061 (8)0.7518 (2)0.31081 (7)0.0218 (3)
H17A0.1221530.7022250.2881030.026*
H17B0.0850390.8858320.3240480.026*
C180.00625 (8)0.6788 (3)0.29126 (7)0.0264 (4)
H18A0.0350580.7678820.2925300.032*
H18B0.0020630.5842430.2565780.032*
C190.16741 (7)0.8147 (2)0.46384 (7)0.0173 (3)
O40.48721 (6)0.37218 (16)0.63034 (5)0.0225 (2)
O50.55454 (5)0.23301 (15)0.55920 (5)0.0191 (2)
C200.59698 (7)0.2240 (2)0.66740 (7)0.0146 (3)
C210.58790 (8)0.2764 (2)0.73007 (7)0.0169 (3)
H210.5446170.3388370.7407210.020*
C220.64159 (8)0.2383 (2)0.77720 (7)0.0171 (3)
H220.6343440.2741970.8198320.021*
C230.70593 (8)0.1483 (2)0.76303 (7)0.0166 (3)
C240.71450 (8)0.0948 (2)0.70020 (7)0.0173 (3)
H240.7578920.0330590.6894840.021*
C250.66076 (8)0.1303 (2)0.65326 (7)0.0172 (3)
H250.6672920.0904690.6108910.021*
C260.54199 (7)0.2778 (2)0.61474 (7)0.0159 (3)
C270.76456 (8)0.1112 (2)0.81411 (7)0.0209 (3)
H27A0.7653200.0238190.8247170.031*
H27B0.7548390.1849940.8520670.031*
H27C0.8117170.1481380.7987990.031*
O1W0.29379 (6)0.11084 (17)0.69541 (6)0.0268 (3)
H1W10.3314 (14)0.219 (4)0.7047 (12)0.064 (7)*
H2W10.2678 (15)0.150 (4)0.6565 (14)0.077 (9)*
O2W0.39349 (6)0.39000 (18)0.72635 (5)0.0236 (2)
H1W20.3732 (13)0.510 (4)0.7276 (11)0.060 (7)*
H2W20.4297 (13)0.386 (4)0.6967 (12)0.058 (7)*
O3W0.32955 (6)0.73767 (19)0.74222 (6)0.0302 (3)
H1W30.2830 (13)0.702 (4)0.7636 (11)0.057 (7)*
H2W30.3180 (17)0.868 (5)0.7265 (15)0.100 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0146 (4)0.0418 (6)0.0133 (4)0.0048 (4)0.0013 (3)0.0019 (4)
F20.0176 (4)0.0310 (5)0.0147 (4)0.0010 (4)0.0054 (3)0.0021 (4)
O10.0155 (5)0.0304 (6)0.0241 (6)0.0022 (5)0.0036 (4)0.0007 (5)
O20.0143 (5)0.0240 (6)0.0224 (6)0.0014 (4)0.0015 (4)0.0000 (4)
O30.0168 (5)0.0245 (6)0.0157 (5)0.0019 (4)0.0030 (4)0.0003 (4)
N10.0139 (5)0.0158 (6)0.0127 (6)0.0002 (5)0.0002 (4)0.0003 (5)
N20.0174 (6)0.0331 (8)0.0132 (6)0.0015 (6)0.0001 (5)0.0029 (5)
N30.0124 (5)0.0200 (6)0.0204 (6)0.0009 (5)0.0019 (5)0.0050 (5)
N40.0131 (5)0.0173 (6)0.0136 (6)0.0009 (5)0.0008 (5)0.0009 (5)
C10.0140 (6)0.0134 (6)0.0176 (7)0.0004 (5)0.0028 (5)0.0021 (5)
C20.0130 (6)0.0147 (7)0.0174 (7)0.0001 (5)0.0002 (5)0.0024 (5)
C30.0160 (6)0.0111 (6)0.0171 (7)0.0008 (5)0.0006 (5)0.0031 (5)
C40.0145 (6)0.0122 (6)0.0152 (7)0.0007 (5)0.0001 (5)0.0012 (5)
C50.0144 (6)0.0127 (6)0.0139 (7)0.0013 (5)0.0015 (5)0.0016 (5)
C60.0158 (6)0.0172 (7)0.0127 (6)0.0003 (5)0.0024 (5)0.0001 (5)
C70.0130 (6)0.0141 (7)0.0182 (7)0.0004 (5)0.0010 (5)0.0010 (5)
C80.0166 (7)0.0180 (7)0.0132 (7)0.0010 (5)0.0047 (5)0.0011 (5)
C90.0168 (7)0.0143 (7)0.0142 (7)0.0012 (5)0.0003 (5)0.0012 (5)
C100.0147 (6)0.0175 (7)0.0160 (7)0.0004 (5)0.0013 (5)0.0029 (6)
C110.0143 (6)0.0149 (7)0.0171 (7)0.0013 (5)0.0007 (5)0.0003 (5)
C120.0148 (6)0.0191 (7)0.0127 (6)0.0007 (6)0.0003 (5)0.0021 (6)
C130.0143 (6)0.0164 (7)0.0171 (7)0.0002 (5)0.0009 (5)0.0022 (6)
C140.0158 (7)0.0251 (8)0.0215 (8)0.0008 (6)0.0019 (6)0.0067 (6)
C150.0199 (7)0.0189 (7)0.0229 (8)0.0025 (6)0.0007 (6)0.0042 (6)
C160.0163 (6)0.0177 (7)0.0147 (7)0.0017 (5)0.0008 (5)0.0020 (5)
C170.0234 (7)0.0245 (8)0.0180 (7)0.0036 (6)0.0040 (6)0.0041 (6)
C180.0223 (7)0.0419 (10)0.0148 (7)0.0071 (7)0.0009 (6)0.0002 (7)
C190.0154 (7)0.0166 (7)0.0200 (7)0.0004 (6)0.0015 (5)0.0021 (6)
O40.0197 (5)0.0300 (6)0.0174 (5)0.0076 (5)0.0009 (4)0.0015 (5)
O50.0201 (5)0.0236 (6)0.0135 (5)0.0011 (4)0.0011 (4)0.0008 (4)
C200.0158 (6)0.0138 (6)0.0139 (7)0.0016 (5)0.0008 (5)0.0012 (5)
C210.0153 (6)0.0191 (7)0.0164 (7)0.0003 (6)0.0013 (5)0.0005 (6)
C220.0199 (7)0.0180 (7)0.0135 (7)0.0009 (6)0.0010 (5)0.0003 (6)
C230.0185 (7)0.0137 (7)0.0172 (7)0.0014 (5)0.0015 (5)0.0032 (5)
C240.0176 (7)0.0149 (7)0.0194 (7)0.0030 (6)0.0007 (6)0.0010 (6)
C250.0211 (7)0.0151 (7)0.0152 (7)0.0003 (6)0.0012 (5)0.0004 (6)
C260.0160 (6)0.0158 (7)0.0159 (7)0.0024 (5)0.0002 (5)0.0027 (5)
C270.0225 (7)0.0212 (7)0.0184 (7)0.0025 (6)0.0041 (6)0.0018 (6)
O1W0.0254 (6)0.0285 (6)0.0262 (6)0.0007 (5)0.0017 (5)0.0008 (5)
O2W0.0219 (5)0.0287 (6)0.0201 (6)0.0018 (5)0.0008 (4)0.0019 (5)
O3W0.0257 (6)0.0307 (7)0.0349 (7)0.0040 (5)0.0072 (5)0.0039 (5)
Geometric parameters (Å, º) top
F1—C61.3541 (16)C13—H13B0.9900
F2—C81.3540 (15)C14—H14A0.9800
O1—C191.2138 (18)C14—H14B0.9800
O2—C191.3305 (18)C14—H14C0.9800
O2—H2O0.92 (2)C15—H15A0.9800
O3—C31.2758 (17)C15—H15B0.9800
N1—C11.3404 (17)C15—H15C0.9800
N1—C51.4129 (17)C16—C171.493 (2)
N1—C161.4636 (18)C16—C181.497 (2)
N2—C91.3542 (19)C16—H161.0000
N2—H2NA0.91 (2)C17—C181.501 (2)
N2—H2NB0.91 (2)C17—H17A0.9900
N3—C71.3870 (17)C17—H17B0.9900
N3—C101.4558 (18)C18—H18A0.9900
N3—C131.4585 (18)C18—H18B0.9900
N4—C111.4987 (18)O4—C261.2692 (18)
N4—C121.5036 (18)O5—C261.2465 (17)
N4—H4NA0.967 (19)C20—C211.391 (2)
N4—H4NB0.91 (2)C20—C251.397 (2)
C1—C21.364 (2)C20—C261.5089 (19)
C1—H10.9500C21—C221.388 (2)
C2—C31.4296 (19)C21—H210.9500
C2—C191.4855 (19)C22—C231.394 (2)
C3—C41.4438 (19)C22—H220.9500
C4—C51.4298 (19)C23—C241.394 (2)
C4—C91.4321 (19)C23—C271.5045 (19)
C5—C61.3920 (19)C24—C251.383 (2)
C6—C71.3980 (19)C24—H240.9500
C7—C81.388 (2)C25—H250.9500
C8—C91.3877 (19)C27—H27A0.9800
C10—C111.5193 (19)C27—H27B0.9800
C10—H10A0.9900C27—H27C0.9800
C10—H10B0.9900O1W—H1W11.04 (3)
C11—C151.518 (2)O1W—H2W10.96 (3)
C11—H111.0000O2W—H1W20.93 (3)
C12—C131.5155 (19)O2W—H2W20.94 (3)
C12—C141.521 (2)O3W—H1W31.02 (3)
C12—H121.0000O3W—H2W31.00 (4)
C13—H13A0.9900
C19—O2—H2O107.5 (14)C12—C13—H13B109.6
C1—N1—C5119.89 (12)H13A—C13—H13B108.1
C1—N1—C16118.36 (11)C12—C14—H14A109.5
C5—N1—C16121.53 (11)C12—C14—H14B109.5
C9—N2—H2NA121.5 (12)H14A—C14—H14B109.5
C9—N2—H2NB117.1 (13)C12—C14—H14C109.5
H2NA—N2—H2NB120.8 (18)H14A—C14—H14C109.5
C7—N3—C10122.11 (12)H14B—C14—H14C109.5
C7—N3—C13121.25 (12)C11—C15—H15A109.5
C10—N3—C13113.00 (11)C11—C15—H15B109.5
C11—N4—C12113.50 (11)H15A—C15—H15B109.5
C11—N4—H4NA109.2 (11)C11—C15—H15C109.5
C12—N4—H4NA106.8 (11)H15A—C15—H15C109.5
C11—N4—H4NB107.8 (12)H15B—C15—H15C109.5
C12—N4—H4NB111.4 (13)N1—C16—C17120.10 (13)
H4NA—N4—H4NB108.1 (16)N1—C16—C18119.79 (12)
N1—C1—C2124.01 (13)C17—C16—C1860.25 (10)
N1—C1—H1118.0N1—C16—H16115.2
C2—C1—H1118.0C17—C16—H16115.2
C1—C2—C3120.15 (12)C18—C16—H16115.2
C1—C2—C19118.06 (13)C16—C17—C1860.0 (1)
C3—C2—C19121.78 (13)C16—C17—H17A117.8
O3—C3—C2120.51 (12)C18—C17—H17A117.8
O3—C3—C4122.51 (13)C16—C17—H17B117.8
C2—C3—C4116.98 (12)C18—C17—H17B117.8
C5—C4—C9119.40 (12)H17A—C17—H17B114.9
C5—C4—C3120.09 (12)C16—C18—C1759.75 (10)
C9—C4—C3120.49 (13)C16—C18—H18A117.8
C6—C5—N1122.42 (12)C17—C18—H18A117.8
C6—C5—C4118.73 (12)C16—C18—H18B117.8
N1—C5—C4118.83 (12)C17—C18—H18B117.8
F1—C6—C5120.90 (12)H18A—C18—H18B114.9
F1—C6—C7115.95 (12)O1—C19—O2121.19 (13)
C5—C6—C7123.03 (13)O1—C19—C2123.08 (13)
N3—C7—C8120.21 (12)O2—C19—C2115.72 (12)
N3—C7—C6123.22 (13)C21—C20—C25118.51 (13)
C8—C7—C6116.57 (12)C21—C20—C26121.24 (13)
F2—C8—C9116.56 (12)C25—C20—C26120.12 (13)
F2—C8—C7118.93 (12)C22—C21—C20120.52 (13)
C9—C8—C7124.51 (13)C22—C21—H21119.7
N2—C9—C8119.27 (13)C20—C21—H21119.7
N2—C9—C4123.04 (13)C21—C22—C23121.13 (13)
C8—C9—C4117.69 (13)C21—C22—H22119.4
N3—C10—C11109.43 (11)C23—C22—H22119.4
N3—C10—H10A109.8C22—C23—C24118.09 (13)
C11—C10—H10A109.8C22—C23—C27120.84 (13)
N3—C10—H10B109.8C24—C23—C27121.07 (13)
C11—C10—H10B109.8C25—C24—C23120.97 (13)
H10A—C10—H10B108.2C25—C24—H24119.5
N4—C11—C15109.35 (11)C23—C24—H24119.5
N4—C11—C10109.27 (11)C24—C25—C20120.76 (13)
C15—C11—C10111.72 (12)C24—C25—H25119.6
N4—C11—H11108.8C20—C25—H25119.6
C15—C11—H11108.8O5—C26—O4124.71 (13)
C10—C11—H11108.8O5—C26—C20118.24 (13)
N4—C12—C13109.24 (11)O4—C26—C20117.00 (12)
N4—C12—C14108.69 (11)C23—C27—H27A109.5
C13—C12—C14112.46 (12)C23—C27—H27B109.5
N4—C12—H12108.8H27A—C27—H27B109.5
C13—C12—H12108.8C23—C27—H27C109.5
C14—C12—H12108.8H27A—C27—H27C109.5
N3—C13—C12110.49 (12)H27B—C27—H27C109.5
N3—C13—H13A109.6H1W1—O1W—H2W1104 (2)
C12—C13—H13A109.6H1W2—O2W—H2W2110 (2)
N3—C13—H13B109.6H1W3—O3W—H2W3102 (2)
C5—N1—C1—C21.9 (2)C5—C4—C9—N2178.94 (13)
C16—N1—C1—C2176.62 (13)C3—C4—C9—N20.8 (2)
N1—C1—C2—C32.2 (2)C5—C4—C9—C81.3 (2)
N1—C1—C2—C19177.15 (13)C3—C4—C9—C8179.45 (13)
C1—C2—C3—O3179.45 (13)C7—N3—C10—C11140.81 (13)
C19—C2—C3—O31.3 (2)C13—N3—C10—C1160.49 (15)
C1—C2—C3—C40.6 (2)C12—N4—C11—C15177.44 (12)
C19—C2—C3—C4178.66 (12)C12—N4—C11—C1054.87 (15)
O3—C3—C4—C5178.86 (13)N3—C10—C11—N456.09 (15)
C2—C3—C4—C51.06 (19)N3—C10—C11—C15177.22 (12)
O3—C3—C4—C90.7 (2)C11—N4—C12—C1353.64 (15)
C2—C3—C4—C9179.20 (13)C11—N4—C12—C14176.68 (12)
C1—N1—C5—C6178.40 (13)C7—N3—C13—C12141.28 (13)
C16—N1—C5—C67.0 (2)C10—N3—C13—C1259.81 (16)
C1—N1—C5—C40.05 (19)N4—C12—C13—N354.01 (15)
C16—N1—C5—C4174.64 (12)C14—C12—C13—N3174.77 (12)
C9—C4—C5—C61.1 (2)C1—N1—C16—C17102.71 (15)
C3—C4—C5—C6177.05 (13)C5—N1—C16—C1782.62 (17)
C9—C4—C5—N1179.52 (12)C1—N1—C16—C1831.9 (2)
C3—C4—C5—N11.36 (19)C5—N1—C16—C18153.41 (14)
N1—C5—C6—F14.8 (2)N1—C16—C17—C18109.28 (15)
C4—C5—C6—F1173.55 (12)N1—C16—C18—C17109.78 (15)
N1—C5—C6—C7179.38 (13)C1—C2—C19—O11.4 (2)
C4—C5—C6—C72.3 (2)C3—C2—C19—O1179.26 (14)
C10—N3—C7—C8148.72 (14)C1—C2—C19—O2178.35 (13)
C13—N3—C7—C854.31 (19)C3—C2—C19—O21.0 (2)
C10—N3—C7—C630.9 (2)C25—C20—C21—C220.8 (2)
C13—N3—C7—C6126.05 (15)C26—C20—C21—C22175.08 (13)
F1—C6—C7—N35.2 (2)C20—C21—C22—C230.5 (2)
C5—C6—C7—N3178.76 (13)C21—C22—C23—C241.0 (2)
F1—C6—C7—C8175.12 (12)C21—C22—C23—C27178.68 (14)
C5—C6—C7—C80.9 (2)C22—C23—C24—C250.1 (2)
N3—C7—C8—F21.9 (2)C27—C23—C24—C25179.53 (14)
C6—C7—C8—F2177.78 (12)C23—C24—C25—C201.2 (2)
N3—C7—C8—C9178.56 (13)C21—C20—C25—C241.6 (2)
C6—C7—C8—C91.8 (2)C26—C20—C25—C24174.28 (13)
F2—C8—C9—N23.0 (2)C21—C20—C26—O5177.27 (13)
C7—C8—C9—N2177.39 (14)C25—C20—C26—O51.5 (2)
F2—C8—C9—C4176.72 (12)C21—C20—C26—O40.3 (2)
C7—C8—C9—C42.8 (2)C25—C20—C26—O4176.07 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.92 (2)1.64 (2)2.5014 (14)155 (2)
N2—H2NB···O30.91 (2)1.93 (2)2.6367 (17)133.4 (18)
N4—H4NA···O40.967 (19)1.73 (2)2.6722 (16)164.1 (17)
N4—H4NB···O5i0.91 (2)1.86 (2)2.7473 (16)163.0 (18)
N2—H2NA···O2Wii0.91 (2)2.12 (2)2.9664 (17)153.9 (17)
O2W—H2W2···O40.94 (3)1.80 (3)2.7371 (16)171 (2)
O1W—H1W1···O2W1.04 (3)1.71 (3)2.7503 (17)175 (2)
O2W—H1W2···O3W0.93 (3)1.83 (3)2.7546 (18)171 (2)
O1W—H2W1···O1iii0.96 (3)1.89 (3)2.8434 (16)171 (2)
O3W—H1W3···O1Wii1.02 (3)1.82 (3)2.8362 (17)173 (2)
O3W—H2W3···O1Wiv1.00 (4)1.88 (4)2.8798 (18)178 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x, y+1, z.
Atom-atom contact coverages (%) in I, II, and III top
Atom contactsIIIIII
H···H41.240.348.0
H···O28.825.523.4
H···C10.015.57.9
C···C6.04.67.7
H···F3.57.75.7
O···F2.60.21.3
C···O2.31.42.5
H···N1.63.01.5
Heterogeneous contact types here include the reciprocal interactions, e.g., "H···O" represents "H···O/O···H". All other fractions of atom-contact coverages were negligible.
 

Acknowledgements

One of the authors (HJS) is grateful to the University of Mysore for research facilities. HSY also thanks UGC for a BSR Faculty fellowship for three years.

Funding information

Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 Venture diffractometer) to SP.

References

First citationBella, J., Brodsky, B. & Berman, H. M. (1995). Structure, 3, 893–906.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBerman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarrasco, J., Michaelides, A., Forster, M., Haq, S., Raval, R. & Hodgson, A. (2009). Nat. Mater. 8, 427–431.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDjaló, M., Cunha, A. E. S., Luís, J. P., Quaresma, S., Fernandes, A., André, V. & Duarte, M. T. (2021). Cryst. Growth Des. 21, 995–1005.  Google Scholar
First citationEnglezos, P. (1993). Ind. Eng. Chem. Res. 32, 1251–1274.  CrossRef CAS Google Scholar
First citationFábry, J. (2018). Acta Cryst. E74, 1344–1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaria, A. F., de Souza, M. V. N., de Almeida, M. V. & de Oliveira, M. A. L. (2006). Anal. Chim. Acta, 579, 185–192.  CrossRef PubMed CAS Google Scholar
First citationGoa, K. L., Bryson, H. M. & Markham, A. (1997). Drugs, 53, 700–725.  CrossRef CAS PubMed Google Scholar
First citationGolovnev, N. N. & Vasil'ev, A. D. (2016). Russ. J. Inorg. Chem. 61, 1419–1422.  CrossRef CAS Google Scholar
First citationGörbitz, C. H. (1997). Acta Cryst. C53, 736–739.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunnam, A., Suresh, K., Ganduri, R. & Nangia, A. (2016). Chem. Commun. 52, 12610–12613.  Web of Science CSD CrossRef CAS Google Scholar
First citationHao, X., Parkin, S. & Brock, C. P. (2005). Acta Cryst. B61, 689–699.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHolstein, J. J., Hübschle, C. B. & Dittrich, B. (2012). CrystEngComm, 14, 2520–2531.  Web of Science CSD CrossRef CAS Google Scholar
First citationJain, S., Jain, N. K. & Pitre, K. S. J. (2002). J. Pharm. Biomed. Anal. 29, 795–801.  CrossRef PubMed CAS Google Scholar
First citationJana, A., Jana, A. D., Bhowmick, I., Mistri, T., Dolai, M., Das, K. K., Panja, A. & Ali, M. (2012). Inorg. Chem. Commun. 24, 157–161.  CrossRef CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Al-arique, Q. N. M. (2011). Acta Cryst. E67, o483–o484.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKulkarni, R. M., Malladi, R. S. & Hanagadakar, M. S. (2018). Adv. Mat. Proc. 3, 526–529.  Google Scholar
First citationMa, B. Q., Sun, H. L. & Gao, S. (2004). Chem. Commun. pp. 2220–2221.  CrossRef Google Scholar
First citationMarona, H. R. N. & Schapoval, E. E. S. (2001). J. Pharm. Biomed. Anal. 26, 501–504.  CrossRef PubMed CAS Google Scholar
First citationMiyamoto, T., Matsumoto, J., Chiba, K., Egawa, H., Shibamori, K., Minamida, A., Nishimura, Y., Okada, H., Kataoka, M., Fujita, M., et al. (1990). J. Med. Chem. 33, 1645–1656.  CrossRef CAS PubMed Google Scholar
First citationMukherjee, P., Drew, M. G. B. & Ghosh, A. (2011). J. Indian Chem. Soc. 88, 1265–1271.  CAS Google Scholar
First citationParkin, S., Rupp, B. & Hope, H. (1996). Acta Cryst. D52, 18–29.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPirzadeh, P., Beaudoin, E. N. & Kusalik, P. G. (2011). Chem. Phys. Lett. 517, 117–125.  CrossRef CAS Google Scholar
First citationSalgado, H. R. N., Moreno, P. R. H., Braga, A. L. & Schapoval, E. E. S. (2005). Rev. Ciênc. Farm. Bàsica Apl. 26, 47–54.  CAS Google Scholar
First citationSarhan Mahmoud Abd El-kareem, M., ElDesawy, M., Hawash, M. F. & Fahmy Ahmed, M. E. (2018). Int. J. Adv. Chem. 6, 74–78.  Google Scholar
First citationSchentag, J. J. (2000). Clin. Ther. 22, 372–387.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShingnapurkar, D., Butcher, R., Afrasiabi, Z., Sinn, E., Ahmed, F., Sarkar, F. & Padhye, S. (2007). Inorg. Chem. Commun. 10, 459–462.  Web of Science CSD CrossRef CAS Google Scholar
First citationSivalakshmidevi, A., Vyas, K. & Om Reddy, G. (2000). Acta Cryst. C56, e115–e116.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSowjanya, M., Sirisha, C. & Prasad, M. K. (2020). Rese. J. Pharm. Technol. 13, 3587–3592.  CrossRef Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeeter, M. M. (1984). Proc. Natl Acad. Sci. USA, 81, 6014–6018.  CrossRef PubMed CAS Web of Science Google Scholar
First citationVasil'ev, A. D. & Golovnev, N. N. (2014). Russ. J. Inorg. Chem. 59, 322–325.  CAS Google Scholar
First citationVasiliev, A. D. & Golovnev, N. N. (2015). J. Struct. Chem. 56, 907–911.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWise, R. & Honeybourne, D. (1996). J. Antimicrob. Chemother. 37 Suppl. A, 57–63.  CrossRef Google Scholar
First citationYu, L.-C., Xia, Y. & Liu, S.-L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 237–238.  CrossRef CAS Google Scholar
First citationZhanel, G. G., Ennis, K., Vercaigne, L., Walkty, A., Gin, A. S., Embil, J., Smith, H. & Hoban, D. J. (2002). Drugs, 62, 13–59.  CrossRef PubMed CAS Google Scholar
First citationZhang, Y., Zhang, Y., Liu, L., Feng, Y., Wu, L., Zhang, L., Zhang, Y., Zou, D. & Liu, Y. (2022). J. Mol. Struct. 1250, 131894.  CrossRef Google Scholar
First citationZhou, T., Zhao, L. & Guo, J.-X. (2006). Z. Kristallogr. New Cryst. Struct. 221, 495–496.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds