research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

BaY16Si4O33 containing Ba(SiO4)4 orthosilicates

crossmark logo

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1 Aoba-ku, Sendai 980-8577, Japan, bDepartment of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-4 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan, and cScience & Innovation Center, Inorganic Materials Laboratory, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
*Correspondence e-mail: hisanori.yamane.a1@tohoku.ac.jp

Edited by S. Parkin, University of Kentucky, USA (Received 2 November 2022; accepted 17 November 2022; online 30 November 2022)

Single crystals of a new quaternary oxide, barium hexa­deca­yttrium tetra­silicon tritriacontaoxide, BaY16Si4O33, were obtained from a melt-solidified sample prepared by heating a mixture of BaCO3, Y2O3, and SiO2 at 2073 K. X-ray crystal structure analysis revealed that Ba(SiO4)4 orthosilicate clusters in which a Ba atom is surrounded by four SiO4 tetra­hedra were isolated in a framework composed of Y and O in the structure of BaY16Si4O33. The dielectric constant measured for polycrystalline ceramics of BaY16Si4O33 sintered at 1953 K was 13 (298 K, 1 MHz), and the thermal expansion coefficient was 8.70 × 10 −6 K−1 (298–873 K), which are close to the values previously reported for Y2O3.

1. Chemical context

Numerous silicates in minerals and ceramic materials have been studied (Liebau, 1985[Liebau, F. (1985). Structural Chemistry of Silicates. Berlin: Springer-Verlag.]). Silicates have also attracted attention as host materials for phosphors because of their structural diversity and stability (Gupta et al., 2021[Gupta, I., Singh, S., Bhagwan, S. & Singh, D. (2021). Ceram. Int. 47, 19282-19303.], Singh et al., 2017[Singh, D., Sheoran, S. & Tanwar, V. (2017). Adv. Mater. Lett. 8, 656-672.]). In the Ba–Y–Si–O system, BaY2Si3O10, Ba9Y2Si6O24, BaY4Si5O17, Ba5.2Y13Si8O41, and Ba2Y2Si4O13 have been reported. Among these oxides, phosphors based on Pr3+, Sm3+, Er3+, Ce3+, Tb3+, and Eu3+ doping of BaY2Si3O10 (Wierzbicka-Wieczorek et al., 2015[Wierzbicka-Wieczorek, M., Kolitsch, U., Lenz, C. & Giester, G. (2015). J. Lumin. 168, 207-217.]; Xia et al., 2014[Xia, Z., Liang, Y., Yu, D., Zhang, M., Huang, W., Tong, M., Wu, J. & Zhao, J. (2014). Opt. Laser Technol. 56, 387-392.]; Zhou & Xia, 2015[Zhou, J. & Xia, Z. (2015). J. Mater. Chem. C. 3, 7552-7560.]; Liu et al., 2009[Liu, W.-R., Lin, C. C., Chiu, Y.-C., Yeh, Y.-T., Jang, S.-M., Liu, R.-S. & Cheng, B.-M. (2009). Opt. Express, 17, 18103-18109.]), Pr3+, Sm3+, Er3+, and Ho3+ doping of BaY4Si5O17 (Wierzbicka-Wieczorek et al., 2015[Wierzbicka-Wieczorek, M., Kolitsch, U., Lenz, C. & Giester, G. (2015). J. Lumin. 168, 207-217.]), Ce3+ doping of Ba9Y2Si6O24 (Liu et al., 2015[Liu, Y., Zhang, J., Zhang, C., Xu, J., Liu, G., Jiang, J. & Jiang, H. (2015). Adv. Opt. Mater. 3, 1096-1101.]; Brgoch et al., 2013[Brgoch, J., Borg, C. K. H., Denault, K. A., Mikhailovsky, A., DenBaars, S. P. & Seshadri, R. (2013). Inorg. Chem. 52, 8010-8016.]), and Bi3+ and Eu3+ doping of Ba2Y2Si4O13 (Song et al., 2019[Song, W., Chen, X., Teng, L., Zheng, Z., Wen, J., Hu, F., Wei, R., Chen, L. & Guo, H. (2019). J. Am. Ceram. Soc. 102, 1822-1831.]) as activator ions have been studied. Recently, BaY2Si3O10 has been investigated for its potential application as a microwave dielectric material for 5G communication devices (Lin et al., 2020[Lin, Q., Song, K., Liu, B., Bafrooei, H. B., Zhou, D., Su, W., Shi, F., Wang, D., Lin, H. & M.Reaney, I. (2020). Ceram. Int. 46, 1171-1177.]). In the present study, we found a new quaternary oxide, BaY16Si4O33, with a Y2O3 content greater than that of previously reported compounds in the Ba–Y–Si–O system.

The dielectric constants measured at 100 Hz and 1 MHz for BaY16Si4O33 ceramics at 298 K were 14 and 13, respectively, and the dielectric loss was less than 0.01 (Figs. S1 and S2). These dielectric constants are close to the value reported for Y2O3 ceramics (12; Tsukuda, 1980[Tsukuda, Y. (1980). J. Can. Ceram. Soc. 49, 36-41.]) and the values measured for Y2O3 fabricated by oxidation of Y metal on Si substrates (17–20; Manchanda & Gurvitch, 1988[Manchanda, L. & Gurvitch, M. (1988). IEEE Electron Device Lett. 9, 180-182.]). The temperature coefficient of the dielectric constant at 298–413 K was 3.5 × 10 −3 K−1. The thermal expansion coefficient measured for the polycrystalline BaY16Si4O33 in the temperature range 298–873 K was 8.7 × 10 −6 K−1 (Fig. S3). This value is in good agreement with the thermal expansion coefficient of Y2O3 of 8.5 × 10 −6 K−1 in the temperature range 298–1272 K (Kirch­ner, 1964[Kirchner, H. P. (1964). Prog. Solid State Chem. 1, 1-36.]). In BaY16Si4O33, the portion of Y–O frameworks in the crystal structure is large, which might be related to the fact that the dielectric constant and thermal expansion coefficient of BaY16Si4O33 and Y2O3 are similar to each other.

2. Structural commentary

The literature contains no reports of silicates or other oxides with the same structure as BaY16Si4O33. In the crystal structure of BaY16Si4O33, clusters composed of a Ba atom surrounded by four isolated SiO4 tetra­hedra are isolated in a three-dimensional framework formed by 16 Y sites with six- or sevenfold coordination to oxygen atoms within an inter­atomic distance of 2.65 Å (Figs. 1[link] and 2[link]). BaY16Si4O33 has a large portion of Y in the cation sites, and more than one-half of the oxygen atoms are not bonded to Si. Thus, BaY16Si4O33 can be expressed as an oxide silicate with the formula Y16O17Ba(SiO4)4.

[Figure 1]
Figure 1
The atomic arrangement of BaY16Si4O33 depicted with displacement ellipsoids at the 80% probability level. [Symmetry codes: (i) −x, y − [{1\over 2}], −z + [{1\over 2}]; (ii) x − 1, y, z; (iii) x, −y + [{1\over 2}], z − [{1\over 2}]; (iv) −x, y + [{1\over 2}], −z + [{1\over 2}]; (v) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (vi) −x, −y + 1, −z + 1; (vii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (viii) −x + 1, −y + 1, −z; (ix) −x + 1, −y, −z; (x) x, y − 1, z.]
[Figure 2]
Figure 2
A polyhedral representation of BaY16Si4O33 showing the Y-centered oxygen polyhedra (yellow) and the Ba-centered oxygen polyhedra (green) surrounded by isolated Si-centered oxygen tetra­hedra (blue).

The Si—O bond lengths for the SiO4 tetra­hedra range from 1.6198 (17) to 1.6596 (18) Å (Table 1[link]). Bond-valence sums (BVSs) of 3.85 to 4.01, which are similar to the Si formal valence of IV, were calculated using the bond-valence parameter of Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]). Ba1 is coordinated by twelve oxygen atoms of four SiO4 tetra­hedra with Ba1—O distances ranging from 2.7478 (18) to 3.274 (2) Å. The BVS for Ba1 is 2.10, which is close to the formal Ba valence of II.

Table 1
Selected bond lengths (Å)

Ba1—O17 2.7478 (17) Y9—O17 2.3963 (17)
Ba1—O11i 2.7696 (19) Y9—O14 2.4017 (17)
Ba1—O19 2.7793 (17) Y10—O16 2.1430 (16)
Ba1—O14 2.8395 (17) Y10—O26 2.2131 (16)
Ba1—O32ii 2.8661 (18) Y10—O21 2.2207 (16)
Ba1—O8 2.9444 (17) Y10—O25 2.3482 (16)
Ba1—O3 2.9600 (17) Y10—O14 2.4055 (16)
Ba1—O5 3.0333 (18) Y10—O19 2.4223 (16)
Ba1—O4i 3.0551 (19) Y11—O20 2.2790 (16)
Ba1—O12 3.1141 (18) Y11—O16 2.2876 (16)
Ba1—O2i 3.1369 (19) Y11—O28ix 2.3342 (16)
Ba1—O31ii 3.274 (2) Y11—O23 2.3374 (16)
Y1—O16 2.2005 (16) Y11—O9 2.3637 (16)
Y1—O33ii 2.2170 (16) Y11—O26 2.3799 (16)
Y1—O7i 2.2498 (16) Y11—O30 2.5071 (16)
Y1—O9 2.3055 (16) Y12—O24 2.1194 (16)
Y1—O1iii 2.3079 (16) Y12—O28 2.1921 (16)
Y1—O3 2.5694 (17) Y12—O29 2.2564 (16)
Y2—O15 2.1496 (16) Y12—O25 2.2959 (16)
Y2—O13iv 2.1736 (16) Y12—O19 2.4673 (17)
Y2—O10 2.2282 (16) Y12—O17 2.4859 (17)
Y2—O6iv 2.3233 (17) Y13—O27 2.2879 (16)
Y2—O5 2.3485 (17) Y13—O26 2.2892 (16)
Y2—O2i 2.5253 (18) Y13—O15ix 2.3290 (16)
Y3—O7 2.2297 (16) Y13—O10ix 2.3466 (16)
Y3—O7v 2.2436 (17) Y13—O29 2.3585 (16)
Y3—O9vi 2.2546 (16) Y13—O23 2.4039 (16)
Y3—O1v 2.2620 (16) Y13—O18 2.4563 (17)
Y3—O28vii 2.3197 (17) Y14—O20x 2.2389 (15)
Y3—O8v 2.4654 (17) Y14—O33 2.2856 (16)
Y4—O1iv 2.1898 (16) Y14—O7ix 2.2879 (16)
Y4—O29viii 2.2225 (16) Y14—O24iii 2.3189 (16)
Y4—O10 2.2772 (16) Y14—O20 2.3499 (16)
Y4—O11 2.2894 (19) Y14—O28iii 2.3810 (16)
Y4—O6iv 2.3810 (17) Y14—O30 2.5306 (16)
Y4—O12iv 2.4084 (17) Y15—O33 2.2050 (16)
Y5—O9 2.1569 (16) Y15—O27iii 2.2231 (16)
Y5—O13 2.2115 (15) Y15—O24iii 2.2812 (16)
Y5—O23 2.2252 (16) Y15—O21 2.3529 (16)
Y5—O18 2.3281 (16) Y15—O29iii 2.3660 (16)
Y5—O32ix 2.3295 (17) Y15—O31 2.4990 (19)
Y5—O5i 2.4652 (18) Y15—O4ix 2.5259 (19)
Y6—O10 2.1976 (16) Y16—O27iii 2.1983 (16)
Y6—O33viii 2.2074 (16) Y16—O13viii 2.2097 (16)
Y6—O26viii 2.2225 (16) Y16—O22xi 2.3185 (16)
Y6—O31viii 2.3284 (18) Y16—O22 2.3304 (16)
Y6—O30viii 2.3395 (17) Y16—O15xi 2.3343 (16)
Y6—O3iv 2.4547 (17) Y16—O2ix 2.5198 (18)
Y7—O24 2.2120 (16) Y16—O32 2.6127 (17)
Y7—O20vi 2.2383 (16) Si1—O4i 1.6218 (19)
Y7—O16vi 2.2964 (16) Si1—O6iii 1.6274 (17)
Y7—O1 2.3113 (16) Si1—O14 1.6423 (18)
Y7—O21vi 2.3455 (16) Si1—O2i 1.6428 (18)
Y7—O8 2.5336 (17) Si2—O18 1.6205 (17)
Y7—O12 2.6233 (17) Si2—O19 1.6356 (17)
Y8—O21vi 2.2060 (16) Si2—O3 1.6422 (18)
Y8—O27 2.2339 (16) Si2—O12 1.6441 (18)
Y8—O13 2.2527 (16) Si3—O30viii 1.6198 (17)
Y8—O22vi 2.2630 (16) Si3—O8 1.6277 (17)
Y8—O18 2.3772 (16) Si3—O17 1.6505 (17)
Y8—O6 2.3887 (17) Si3—O5 1.6596 (18)
Y9—O15 2.1739 (16) Si4—O31 1.6201 (18)
Y9—O23viii 2.1745 (16) Si4—O11ix 1.621 (2)
Y9—O22 2.2201 (16) Si4—O32 1.6240 (17)
Y9—O25 2.2847 (16) Si4—O25 1.6276 (17)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, -y+1, -z+1]; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+1, -y+1, -z+1]; (viii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (x) [-x+1, -y, -z]; (xi) [-x+1, -y+1, -z].

The respective average distances between the sixfold-coordinated Y1–6, Y8–10, and Y12 sites and oxygen are between 2.275 and 2.308 Å, which are approximately equal to the Y1—O1 distance [2.2847 (11) Å] and Y2—O1 average distance (2.282 Å) for sixfold Y coordination reported for Y2O3 (Coduri et al., 2013[Coduri, M., Scavini, M., Allieta, M., Brunelli, M. & Ferrero, C. (2013). Chem. Mater. 25, 4278-4289.]). The respective average distances between oxygen atoms and sevenfold-coordinated Y7, Y11, Y13, and Y14–16 are 2.342–2.366 Å, which are close to the Y2—O average distance of 2.360 Å reported for sevenfold-coordinated Y in the structure of Y2SiO5 (Denault et al., 2015[Denault, K. A., Brgoch, J., Kloss, S. D., Gaultois, M. W., Siewenie, J., Page, K. & Seshadri, R. (2015). Appl. Mater. Interfaces, 7, 7264-7272.]). The BVSs ranged from 2.77 to 2.97, close to the Y valence of III.

The Madelung part of the lattice energy (MAPLE; Hoppe, 1970[Hoppe, R. (1970). Advances in Fluorine Chemistry, 6, 387-438.]) for BaY16Si4O33, as calculated using the VESTA software (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]), is −186,000 kJ mol−1. The difference between the MAPLE for BaY16Si4O33 and the sum of the MAPLEs (−186,999 kJ·mol−1) for binary oxides with the formula BaY16Si4O33 (= BaO + 8 Y2O3 + 4SiO2) {BaO [−3,511 kJ mol−1 (Zollweg, 1955[Zollweg, R. J. (1955). Phys. Rev. 100, 671-673.])], Y2O3 [−15,287 kJ mol−1 (Coduri et al., 2013[Coduri, M., Scavini, M., Allieta, M., Brunelli, M. & Ferrero, C. (2013). Chem. Mater. 25, 4278-4289.])], SiO2 [−15,298 kJ mol−1 (Smith & Alexander, 1963[Smith, G. S. & Alexander, L. E. (1963). Acta Cryst. 16, 462-471.])]} is 0.5%.

3. Database survey

The ICSD database (ICSD, 2022[ICSD (2022). Inorganic Crystal Structure Database, Web version. FIZ Karlsruhe, Germany.]) contains crystal-structure data for BaY2Si3O10 (space group P121/m1) (Kolitsch et al., 2006[Kolitsch, U., Wierzbicka, M. & Tillmanns, E. (2006). Acta Cryst. C62, i97-i99.]; Shi et al., 2018[Shi, R., Wang, X., Huang, Y., Tao, Y., Zheng, L. & Liang, H. (2018). J. Phys. Chem. C, 122, 7421-7431.]), Ba9Y2Si6O24 (space group R[\overline{3}]) (Brgoch et al., 2013[Brgoch, J., Borg, C. K. H., Denault, K. A., Mikhailovsky, A., DenBaars, S. P. & Seshadri, R. (2013). Inorg. Chem. 52, 8010-8016.]) and BaY4Si5O17 (space group P121/m1) (Wierzbicka-Wieczorek et al., 2015[Wierzbicka-Wieczorek, M., Kolitsch, U., Lenz, C. & Giester, G. (2015). J. Lumin. 168, 207-217.]). Lattice constants and space group I[\overline{4}]2m were reported for Ba5.2Y13Si8O41 (Wierzbicka-Wieczorek et al., 2011[Wierzbicka-Wieczorek, M., Kolitsch, U. & Tillmanns, E. (2011). Joint Meeting, 19. Jahrestagung der Deutschen Gesellschaft für Kristallographie, 89. Jahrestagung der Deutschen Mineralogischen Gesellschaft, Jahrestagung der Österreichischen Mineralogischen Gesellschaft, pp. 100-101. Oldenbourg Verlag.]). For Ba2Y2Si4O13, the structure was described as isomorphic to Ba2Gd2Si4O13 (space group C12/c1), but lattice parameters were not reported (Song et al., 2019[Song, W., Chen, X., Teng, L., Zheng, Z., Wen, J., Hu, F., Wei, R., Chen, L. & Guo, H. (2019). J. Am. Ceram. Soc. 102, 1822-1831.]).

4. Synthesis and crystallization

BaCO3 (98% purity, Hakushin Chemical Laboratory), Y2O3 (99.99% purity, Shin-Etsu Chemical), and SiO2 (99.999% purity, Mitsuwa Chemicals) were used as starting materials. Each powder was heated at 1273 K for 5 h and kept in an oven at 453 K. The powders were weighed in a molar ratio of Ba:Y:Si = 1:16:4 and mixed in an agate mortar; the mixed powder was then placed in a mold and formed into disks 5 mm in diameter by uniaxial pressing at ∼60 MPa. The disk was crumbled, and pieces of the fragment were placed on a Pt–Rh plate that was, in turn, placed in an alumina crucible with a lid. The crucible was heated in an electric furnace to 1373 K in air for 3 h; the furnace temperature was then raised from 1373 to 2073 K over a period of 4 h and held at this temperature for 0.5 h. The sample was cooled to room temperature, and a solidified melt was obtained. The sample was crushed, and single crystals were collected from the resulting fragments.

The sample used for powder X-ray diffraction (XRD) analysis was prepared by weighing and mixing the starting materials to obtain a stoichiometric composition of BaY16Si4O33 (Ba:Y:Si molar ratio = 1:16:4). The powder was compacted into a disk shape and heated in an electric furnace from room temperature to 1373 K over a period of 3 h, heated from 1373 to 1793 K over a period of 3 h, maintained at this temperature for 24 h, and then cooled. The resultant polycrystalline ceramic of BaY16Si4O33 was ground in an agate mortar to obtain a powdered sample. The powder XRD pattern was recorded at room temperature using a powder X-ray diffractometer (Bruker AXS, D2PHASER; Fig. S4) equipped with a Cu Kα radiation (λ = 1.5418 Å) source. Diffraction patterns were recorded in the diffraction-angle range 5° ≤ 2θ ≤ 140° with a step inter­val of 0.025° and a measurement time of 8 s step−1. The obtained XRD pattern was analyzed by the Rietveld method with the program TOPAS (Bruker, 2009[Bruker (2009). TOPAS.B. A. G., Karlsruhe, Germany.]) using the model determined by single-crystal X-ray structure analysis (Fig. S4 and Table S1) (Rwp = 3.03%, RB = 0.752%). The refined lattice constants [a = 9.11234 (8) Å, b = 18.73111 (19) Å, c = 18.31827 (17) Å, β = 109.0441 (7)°] and atomic positions were close to those obtained from the single-crystal structure analysis (Table S2). The composition of BaO: 8.5 (4), Y2O3: 81 (1), SiO2: 10.6 (2) mass%, which is approximately consistent with the formula BaY16Si4O33 (BaO: 7.0, Y2O3: 82.1, SiO2: 10.9 mass%), was determined by electron-probe microanalysis (EPMA, JEOL A-8200) using a surface-polished and carbon-coated ceramic sample.

Polycrystalline ceramic samples for measurements of the thermal expansion coefficients and dielectric constants were prepared by heating compacted disks of the starting powder mixture with a stoichiometric metal ratio Ba:Y:Si = 1:16:4 at 1793 K for 24 h. The obtained disks were pulverized, and the powder was compacted and heated again under the same conditions. The resultant disks were pulverized and then compacted into a cuboid for measurement of their thermal expansion coefficient and into a disk shape for measurement of their dielectric constant. These compacts were heated at 1953 K for 12 h. The thermal expansion coefficient was measured using a dilatometer (Netzsch Japan, TD5000SA). The capacitance C and dielectric loss tan δ were measured using an LCR meter (HIOKI, IM3536) for the disk sample (96% relative density) with Au electrodes prepared by baking Au paste at 800°C.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atomic coordinates, equivalent isotropic displacement parameters and anisotropic displacement parameters are given in the supporting information.

Table 2
Experimental details

Crystal data
Chemical formula BaY16Si4O33
Mr 2200.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 9.1095 (2), 18.7306 (4), 18.3105 (4)
β (°) 109.008 (1)
V3) 2953.90 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 32.60
Crystal size (mm) 0.09 × 0.08 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.037, 0.094
No. of measured, independent and observed [I > 2σ(I)] reflections 128151, 8279, 7469
Rint 0.054
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.034, 1.07
No. of reflections 8279
No. of parameters 488
Δρmax, Δρmin (e Å−3) 0.76, −0.90
Computer programs: BIS (Bruker, 2018[Bruker (2018). BIS, APEX3 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]), APEX3 (Bruker, 2018[Bruker (2018). BIS, APEX3 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2018[Bruker (2018). BIS, APEX3 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.])

Supporting information


Computing details top

Data collection: BIS (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011).

Barium hexadecayttrium tetrasilicon tritriacontaoxide top
Crystal data top
BaY16Si4O33F(000) = 4000
Mr = 2200.26Dx = 4.948 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1095 (2) ÅCell parameters from 120 reflections
b = 18.7306 (4) Åθ = 6.9–30.7°
c = 18.3105 (4) ŵ = 32.60 mm1
β = 109.008 (1)°T = 300 K
V = 2953.90 (11) Å3Prismatic, translucent colourless
Z = 40.09 × 0.08 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
8279 independent reflections
Radiation source: micro focus sealed tube7469 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.054
φ and ω scansθmax = 29.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.037, Tmax = 0.094k = 2626
128151 measured reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0053P)2 + 3.9938P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max = 0.002
wR(F2) = 0.034Δρmax = 0.76 e Å3
S = 1.07Δρmin = 0.90 e Å3
8279 reflectionsExtinction correction: SHELXL-2017/1 (Sheldrick 2015b)
488 parametersExtinction coefficient: 0.000458 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.05096 (2)0.34871 (2)0.21348 (2)0.01140 (3)
Y10.02577 (3)0.14161 (2)0.08564 (2)0.00889 (4)
Y20.04208 (3)0.55228 (2)0.10929 (2)0.00978 (4)
Y30.06456 (3)0.54810 (2)0.58895 (2)0.00912 (4)
Y40.07501 (3)0.75067 (2)0.11164 (2)0.00919 (4)
Y50.21458 (3)0.03182 (2)0.28469 (2)0.00892 (4)
Y60.21892 (3)0.65949 (2)0.30143 (2)0.00932 (4)
Y70.28387 (3)0.34616 (2)0.47068 (2)0.00820 (4)
Y80.33165 (3)0.14258 (2)0.46043 (2)0.00887 (4)
Y90.39522 (3)0.44733 (2)0.15331 (2)0.00900 (4)
Y100.40049 (3)0.24990 (2)0.14656 (2)0.00889 (4)
Y110.40726 (3)0.05855 (2)0.14981 (2)0.00802 (4)
Y120.52776 (3)0.34670 (2)0.33477 (2)0.00940 (4)
Y130.59233 (3)0.13725 (2)0.33939 (2)0.00793 (4)
Y140.65146 (2)0.06006 (2)0.01018 (2)0.00798 (4)
Y150.65622 (3)0.24911 (2)0.01128 (2)0.00842 (4)
Y160.68494 (2)0.45394 (2)0.02227 (2)0.00852 (4)
Si10.04708 (7)0.35119 (3)0.04451 (4)0.00844 (11)
Si20.21185 (7)0.21283 (3)0.29091 (4)0.00787 (11)
Si30.21308 (7)0.47988 (3)0.30422 (4)0.00811 (11)
Si40.71110 (7)0.34341 (3)0.20491 (4)0.00886 (11)
O10.02416 (19)0.34345 (8)0.46027 (9)0.0087 (3)
O20.0293 (2)0.92849 (10)0.44535 (11)0.0184 (4)
O30.0538 (2)0.19082 (9)0.22050 (10)0.0140 (3)
O40.0610 (2)0.78439 (10)0.44866 (11)0.0197 (4)
O50.0615 (2)0.50967 (10)0.23272 (10)0.0155 (3)
O60.0702 (2)0.15333 (9)0.46016 (9)0.0121 (3)
O70.09118 (19)0.54121 (9)0.47234 (9)0.0106 (3)
O80.1498 (2)0.42907 (9)0.35965 (10)0.0123 (3)
O90.15764 (19)0.04903 (8)0.16211 (9)0.0096 (3)
O100.16254 (19)0.64694 (8)0.17595 (9)0.0097 (3)
O110.1635 (2)0.83162 (11)0.20990 (11)0.0241 (4)
O120.1654 (2)0.25295 (9)0.36021 (10)0.0142 (3)
O130.20274 (18)0.04431 (8)0.40274 (9)0.0082 (3)
O140.22185 (19)0.34823 (9)0.10856 (10)0.0122 (3)
O150.26570 (18)0.53999 (9)0.09494 (9)0.0096 (3)
O160.26979 (19)0.15764 (8)0.09357 (9)0.0092 (3)
O170.3161 (2)0.42989 (9)0.26470 (10)0.0120 (3)
O180.31663 (19)0.14382 (8)0.32837 (9)0.0105 (3)
O190.31924 (19)0.26628 (9)0.25893 (9)0.0111 (3)
O200.40515 (19)0.05377 (8)0.02510 (9)0.0091 (3)
O210.41112 (19)0.25876 (8)0.02745 (9)0.0102 (3)
O220.44583 (19)0.44667 (8)0.04263 (9)0.0099 (3)
O230.45573 (18)0.03137 (8)0.28014 (9)0.0098 (3)
O240.50650 (19)0.34326 (8)0.44659 (9)0.0097 (3)
O250.53739 (18)0.35011 (8)0.21108 (9)0.0096 (3)
O260.54671 (19)0.16143 (8)0.21134 (9)0.0096 (3)
O270.57760 (19)0.14377 (8)0.46158 (9)0.0092 (3)
O280.66921 (19)0.44072 (8)0.38329 (9)0.0103 (3)
O290.67975 (19)0.25219 (8)0.38636 (9)0.0100 (3)
O300.68286 (19)0.04695 (9)0.15203 (9)0.0110 (3)
O310.7075 (2)0.27406 (9)0.15147 (11)0.0190 (4)
O320.7519 (2)0.41584 (9)0.16672 (10)0.0134 (3)
O330.77970 (19)0.15657 (8)0.07783 (9)0.0085 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01007 (6)0.01158 (6)0.01264 (7)0.00016 (5)0.00381 (5)0.00013 (5)
Y10.00706 (10)0.01126 (10)0.00829 (10)0.00009 (8)0.00242 (8)0.00038 (7)
Y20.00673 (10)0.00988 (10)0.01212 (10)0.00019 (8)0.00223 (8)0.00088 (8)
Y30.00828 (10)0.00970 (9)0.00923 (10)0.00122 (8)0.00264 (8)0.00187 (8)
Y40.00750 (10)0.00867 (9)0.01056 (10)0.00052 (8)0.00178 (8)0.00148 (8)
Y50.00866 (10)0.01055 (10)0.00723 (9)0.00086 (8)0.00217 (8)0.00042 (7)
Y60.00816 (10)0.01254 (10)0.00706 (9)0.00077 (8)0.00223 (8)0.00055 (7)
Y70.00724 (10)0.00913 (9)0.00804 (9)0.00020 (8)0.00224 (7)0.00029 (7)
Y80.00789 (10)0.00854 (9)0.01006 (10)0.00088 (8)0.00273 (8)0.00153 (7)
Y90.01067 (10)0.00790 (9)0.00788 (9)0.00026 (8)0.00226 (8)0.00023 (7)
Y100.01035 (10)0.00768 (9)0.00781 (10)0.00013 (7)0.00182 (8)0.00046 (7)
Y110.00807 (10)0.00840 (9)0.00715 (9)0.00019 (7)0.00186 (7)0.00013 (7)
Y120.01153 (10)0.00896 (9)0.00710 (9)0.00063 (8)0.00222 (8)0.00024 (7)
Y130.00789 (10)0.00852 (9)0.00716 (9)0.00028 (7)0.00215 (7)0.00015 (7)
Y140.00767 (10)0.00776 (9)0.00807 (9)0.00032 (7)0.00196 (7)0.00037 (7)
Y150.00900 (10)0.00763 (9)0.00850 (9)0.00073 (7)0.00266 (8)0.00070 (7)
Y160.00846 (10)0.00831 (9)0.00839 (9)0.00055 (8)0.00221 (8)0.00087 (7)
Si10.0082 (3)0.0095 (3)0.0074 (3)0.0004 (2)0.0021 (2)0.0001 (2)
Si20.0074 (3)0.0080 (3)0.0078 (3)0.0001 (2)0.0020 (2)0.0005 (2)
Si30.0081 (3)0.0082 (3)0.0078 (3)0.0006 (2)0.0024 (2)0.0003 (2)
Si40.0077 (3)0.0089 (3)0.0098 (3)0.0004 (2)0.0026 (2)0.0016 (2)
O10.0095 (8)0.0092 (7)0.0075 (7)0.0002 (6)0.0027 (6)0.0005 (6)
O20.0129 (9)0.0146 (8)0.0244 (10)0.0032 (7)0.0017 (7)0.0048 (7)
O30.0102 (8)0.0183 (9)0.0112 (8)0.0022 (7)0.0006 (6)0.0022 (7)
O40.0168 (9)0.0195 (9)0.0230 (10)0.0051 (7)0.0069 (8)0.0031 (8)
O50.0118 (8)0.0212 (9)0.0121 (8)0.0018 (7)0.0020 (7)0.0048 (7)
O60.0113 (8)0.0156 (8)0.0087 (8)0.0005 (6)0.0022 (6)0.0004 (6)
O70.0086 (8)0.0130 (8)0.0094 (8)0.0008 (6)0.0017 (6)0.0004 (6)
O80.0127 (8)0.0119 (8)0.0135 (8)0.0001 (6)0.0058 (6)0.0020 (6)
O90.0092 (8)0.0104 (7)0.0085 (7)0.0016 (6)0.0017 (6)0.0010 (6)
O100.0099 (8)0.0099 (7)0.0083 (7)0.0003 (6)0.0018 (6)0.0008 (6)
O110.0132 (9)0.0377 (12)0.0181 (9)0.0014 (8)0.0005 (7)0.0145 (8)
O120.0133 (9)0.0170 (8)0.0147 (8)0.0021 (7)0.0077 (7)0.0038 (7)
O130.0084 (7)0.0085 (7)0.0073 (7)0.0001 (6)0.0020 (6)0.0002 (6)
O140.0092 (8)0.0126 (8)0.0113 (8)0.0008 (6)0.0016 (6)0.0013 (6)
O150.0085 (8)0.0108 (7)0.0097 (7)0.0008 (6)0.0031 (6)0.0004 (6)
O160.0081 (8)0.0099 (7)0.0093 (7)0.0003 (6)0.0026 (6)0.0001 (6)
O170.0125 (8)0.0121 (8)0.0125 (8)0.0015 (6)0.0054 (6)0.0004 (6)
O180.0102 (8)0.0092 (7)0.0111 (8)0.0002 (6)0.0021 (6)0.0011 (6)
O190.0128 (8)0.0109 (7)0.0107 (8)0.0021 (6)0.0053 (6)0.0001 (6)
O200.0105 (8)0.0077 (7)0.0089 (7)0.0011 (6)0.0028 (6)0.0006 (6)
O210.0115 (8)0.0091 (7)0.0110 (8)0.0004 (6)0.0049 (6)0.0013 (6)
O220.0092 (8)0.0114 (8)0.0097 (7)0.0003 (6)0.0038 (6)0.0004 (6)
O230.0081 (8)0.0121 (8)0.0086 (7)0.0005 (6)0.0021 (6)0.0011 (6)
O240.0081 (8)0.0112 (7)0.0099 (7)0.0003 (6)0.0030 (6)0.0005 (6)
O250.0081 (8)0.0108 (7)0.0094 (7)0.0004 (6)0.0019 (6)0.0004 (6)
O260.0084 (8)0.0108 (7)0.0088 (7)0.0003 (6)0.0020 (6)0.0003 (6)
O270.0099 (8)0.0091 (7)0.0086 (7)0.0002 (6)0.0032 (6)0.0009 (6)
O280.0104 (8)0.0104 (7)0.0091 (7)0.0017 (6)0.0020 (6)0.0001 (6)
O290.0093 (8)0.0099 (7)0.0107 (8)0.0003 (6)0.0031 (6)0.0005 (6)
O300.0103 (8)0.0109 (7)0.0111 (8)0.0023 (6)0.0024 (6)0.0025 (6)
O310.0301 (11)0.0097 (8)0.0221 (10)0.0016 (7)0.0153 (8)0.0009 (7)
O320.0161 (9)0.0114 (8)0.0130 (8)0.0029 (7)0.0052 (7)0.0014 (6)
O330.0082 (7)0.0086 (7)0.0082 (7)0.0002 (6)0.0019 (6)0.0003 (6)
Geometric parameters (Å, º) top
Ba1—O172.7478 (17)Y8—O122.8503 (18)
Ba1—O11i2.7696 (19)Y9—O152.1739 (16)
Ba1—O192.7793 (17)Y9—O23viii2.1745 (16)
Ba1—O142.8395 (17)Y9—O222.2201 (16)
Ba1—O32ii2.8661 (18)Y9—O252.2847 (16)
Ba1—O82.9444 (17)Y9—O172.3963 (17)
Ba1—O32.9600 (17)Y9—O142.4017 (17)
Ba1—O53.0333 (18)Y10—O162.1430 (16)
Ba1—Si23.0467 (6)Y10—O262.2131 (16)
Ba1—Si4ii3.0500 (7)Y10—O212.2207 (16)
Ba1—O4i3.0551 (19)Y10—O252.3482 (16)
Ba1—Si33.0626 (6)Y10—O142.4055 (16)
Ba1—Si13.0831 (6)Y10—O192.4223 (16)
Ba1—O123.1141 (18)Y10—O312.8058 (19)
Ba1—O2i3.1369 (19)Y11—O202.2790 (16)
Ba1—O31ii3.274 (2)Y11—O162.2876 (16)
Ba1—Y94.0878 (3)Y11—O28ix2.3342 (16)
Ba1—Y4i4.1637 (3)Y11—O232.3374 (16)
Ba1—Y124.1851 (3)Y11—O92.3637 (16)
Ba1—Y104.1960 (3)Y11—O262.3799 (16)
Y1—O162.2005 (16)Y11—O302.5071 (16)
Y1—O33ii2.2170 (16)Y12—O242.1194 (16)
Y1—O7i2.2498 (16)Y12—O282.1921 (16)
Y1—O92.3055 (16)Y12—O292.2564 (16)
Y1—O1iii2.3079 (16)Y12—O252.2959 (16)
Y1—O32.5694 (17)Y12—O192.4673 (17)
Y1—O4i2.8014 (19)Y12—O172.4859 (17)
Y1—Y14ii3.5777 (3)Y13—O272.2879 (16)
Y1—Y113.6356 (3)Y13—O262.2892 (16)
Y2—O152.1496 (16)Y13—O15ix2.3290 (16)
Y2—O13iv2.1736 (16)Y13—O10ix2.3466 (16)
Y2—O102.2282 (16)Y13—O292.3585 (16)
Y2—O6iv2.3233 (17)Y13—O232.4039 (16)
Y2—O52.3485 (17)Y13—O182.4563 (17)
Y2—O2i2.5253 (18)Y14—O20x2.2389 (15)
Y3—O72.2297 (16)Y14—O332.2856 (16)
Y3—O7v2.2436 (17)Y14—O7ix2.2879 (16)
Y3—O9vi2.2546 (16)Y14—O24iii2.3189 (16)
Y3—O1v2.2620 (16)Y14—O202.3499 (16)
Y3—O28vii2.3197 (17)Y14—O28iii2.3810 (16)
Y3—O8v2.4654 (17)Y14—O302.5306 (16)
Y4—O1iv2.1898 (16)Y15—O332.2050 (16)
Y4—O29viii2.2225 (16)Y15—O27iii2.2231 (16)
Y4—O102.2772 (16)Y15—O24iii2.2812 (16)
Y4—O112.2894 (19)Y15—O212.3529 (16)
Y4—O6iv2.3810 (17)Y15—O29iii2.3660 (16)
Y4—O12iv2.4084 (17)Y15—O312.4990 (19)
Y5—O92.1569 (16)Y15—O4ix2.5259 (19)
Y5—O132.2115 (15)Y16—O27iii2.1983 (16)
Y5—O232.2252 (16)Y16—O13viii2.2097 (16)
Y5—O182.3281 (16)Y16—O22xi2.3185 (16)
Y5—O32ix2.3295 (17)Y16—O222.3304 (16)
Y5—O5i2.4652 (18)Y16—O15xi2.3343 (16)
Y6—O102.1976 (16)Y16—O2ix2.5198 (18)
Y6—O33viii2.2074 (16)Y16—O322.6127 (17)
Y6—O26viii2.2225 (16)Si1—O4i1.6218 (19)
Y6—O31viii2.3284 (18)Si1—O6iii1.6274 (17)
Y6—O30viii2.3395 (17)Si1—O141.6423 (18)
Y6—O3iv2.4547 (17)Si1—O2i1.6428 (18)
Y7—O242.2120 (16)Si2—O181.6205 (17)
Y7—O20vi2.2383 (16)Si2—O191.6356 (17)
Y7—O16vi2.2964 (16)Si2—O31.6422 (18)
Y7—O12.3113 (16)Si2—O121.6441 (18)
Y7—O21vi2.3455 (16)Si3—O30viii1.6198 (17)
Y7—O82.5336 (17)Si3—O81.6277 (17)
Y7—O122.6233 (17)Si3—O171.6505 (17)
Y8—O21vi2.2060 (16)Si3—O51.6596 (18)
Y8—O272.2339 (16)Si4—O311.6201 (18)
Y8—O132.2527 (16)Si4—O11ix1.621 (2)
Y8—O22vi2.2630 (16)Si4—O321.6240 (17)
Y8—O182.3772 (16)Si4—O251.6276 (17)
Y8—O62.3887 (17)
O17—Ba1—O11i125.29 (6)O15ix—Y13—O18117.55 (5)
O17—Ba1—O1967.40 (5)O10ix—Y13—O18166.82 (5)
O11i—Ba1—O19118.72 (5)O29—Y13—O18101.48 (5)
O17—Ba1—O1467.54 (5)O23—Y13—O1868.84 (5)
O11i—Ba1—O14167.12 (5)O20x—Y14—O33159.82 (6)
O19—Ba1—O1465.07 (5)O20x—Y14—O7ix91.30 (6)
O17—Ba1—O32ii120.23 (5)O33—Y14—O7ix74.14 (6)
O11i—Ba1—O32ii56.19 (5)O20x—Y14—O24iii123.98 (6)
O19—Ba1—O32ii172.15 (5)O33—Y14—O24iii76.20 (6)
O14—Ba1—O32ii118.45 (5)O7ix—Y14—O24iii125.50 (6)
O17—Ba1—O855.42 (5)O20x—Y14—O2081.19 (6)
O11i—Ba1—O869.87 (5)O33—Y14—O20108.39 (6)
O19—Ba1—O891.90 (5)O7ix—Y14—O20161.75 (6)
O14—Ba1—O8122.96 (5)O24iii—Y14—O2071.84 (5)
O32ii—Ba1—O891.53 (5)O20x—Y14—O28iii78.17 (6)
O17—Ba1—O3122.95 (5)O33—Y14—O28iii110.40 (6)
O11i—Ba1—O381.95 (6)O7ix—Y14—O28iii75.13 (6)
O19—Ba1—O355.78 (5)O24iii—Y14—O28iii73.94 (5)
O14—Ba1—O391.56 (5)O20—Y14—O28iii118.95 (6)
O32ii—Ba1—O3116.44 (5)O20x—Y14—O3098.17 (5)
O8—Ba1—O3118.40 (5)O33—Y14—O3069.73 (5)
O17—Ba1—O554.50 (5)O7ix—Y14—O3094.20 (5)
O11i—Ba1—O593.27 (6)O24iii—Y14—O30116.53 (5)
O19—Ba1—O5121.73 (5)O20—Y14—O3070.66 (5)
O14—Ba1—O594.48 (5)O28iii—Y14—O30168.52 (5)
O32ii—Ba1—O565.78 (5)O33—Y15—O27iii166.92 (6)
O8—Ba1—O552.96 (5)O33—Y15—O24iii78.57 (6)
O3—Ba1—O5171.32 (5)O27iii—Y15—O24iii114.43 (6)
O17—Ba1—O4i121.87 (5)O33—Y15—O21108.96 (6)
O11i—Ba1—O4i112.30 (5)O27iii—Y15—O2177.87 (6)
O19—Ba1—O4i93.13 (5)O24iii—Y15—O2172.07 (6)
O14—Ba1—O4i54.85 (5)O33—Y15—O29iii109.61 (6)
O32ii—Ba1—O4i84.19 (5)O27iii—Y15—O29iii74.46 (6)
O8—Ba1—O4i172.47 (5)O24iii—Y15—O29iii73.58 (6)
O3—Ba1—O4i69.12 (5)O21—Y15—O29iii120.73 (6)
O5—Ba1—O4i119.52 (5)O33—Y15—O3171.83 (6)
O17—Ba1—O1290.81 (5)O27iii—Y15—O31100.32 (6)
O11i—Ba1—O1265.77 (5)O24iii—Y15—O31123.73 (6)
O19—Ba1—O1253.63 (4)O21—Y15—O3173.98 (6)
O14—Ba1—O12118.59 (5)O29iii—Y15—O31161.71 (6)
O32ii—Ba1—O12121.94 (5)O33—Y15—O4ix75.92 (6)
O8—Ba1—O1265.98 (5)O27iii—Y15—O4ix92.57 (6)
O3—Ba1—O1252.51 (4)O24iii—Y15—O4ix136.88 (6)
O5—Ba1—O12118.90 (5)O21—Y15—O4ix149.68 (6)
O4i—Ba1—O12121.55 (5)O29iii—Y15—O4ix83.02 (6)
O17—Ba1—O2i88.07 (5)O31—Y15—O4ix79.68 (6)
O11i—Ba1—O2i122.33 (5)O27iii—Y16—O13viii172.57 (6)
O19—Ba1—O2i117.32 (5)O27iii—Y16—O22xi109.86 (6)
O14—Ba1—O2i52.26 (5)O13viii—Y16—O22xi76.11 (6)
O32ii—Ba1—O2i66.56 (5)O27iii—Y16—O2275.36 (6)
O8—Ba1—O2i120.61 (5)O13viii—Y16—O22102.30 (6)
O3—Ba1—O2i120.81 (5)O22xi—Y16—O2277.17 (6)
O5—Ba1—O2i67.87 (5)O27iii—Y16—O15xi76.29 (6)
O4i—Ba1—O2i51.95 (5)O13viii—Y16—O15xi110.19 (6)
O12—Ba1—O2i170.28 (4)O22xi—Y16—O15xi73.17 (6)
O17—Ba1—O31ii171.58 (5)O22—Y16—O15xi128.31 (6)
O11i—Ba1—O31ii51.27 (5)O27iii—Y16—O2ix102.52 (6)
O19—Ba1—O31ii120.95 (5)O13viii—Y16—O2ix76.41 (6)
O14—Ba1—O31ii115.88 (5)O22xi—Y16—O2ix126.26 (6)
O32ii—Ba1—O31ii51.38 (5)O22—Y16—O2ix154.03 (6)
O8—Ba1—O31ii120.55 (4)O15xi—Y16—O2ix74.45 (6)
O3—Ba1—O31ii65.30 (5)O27iii—Y16—O32101.72 (6)
O5—Ba1—O31ii117.09 (5)O13viii—Y16—O3270.85 (5)
O4i—Ba1—O31ii61.03 (5)O22xi—Y16—O32130.53 (5)
O12—Ba1—O31ii93.83 (5)O22—Y16—O3275.19 (5)
O2i—Ba1—O31ii88.51 (5)O15xi—Y16—O32153.20 (6)
O16—Y1—O33ii164.90 (6)O2ix—Y16—O3280.06 (6)
O16—Y1—O7i117.27 (6)O4i—Si1—O6iii107.60 (10)
O33ii—Y1—O7i76.22 (6)O4i—Si1—O14112.98 (10)
O16—Y1—O975.36 (6)O6iii—Si1—O14106.32 (9)
O33ii—Y1—O9116.75 (6)O4i—Si1—O2i112.40 (10)
O7i—Y1—O974.38 (6)O6iii—Si1—O2i110.10 (10)
O16—Y1—O1iii74.23 (6)O14—Si1—O2i107.27 (9)
O33ii—Y1—O1iii103.99 (6)O18—Si2—O19107.53 (9)
O7i—Y1—O1iii77.49 (6)O18—Si2—O3112.15 (9)
O9—Y1—O1iii121.91 (6)O19—Si2—O3110.27 (9)
O16—Y1—O396.07 (6)O18—Si2—O12107.58 (9)
O33ii—Y1—O378.37 (6)O19—Si2—O12109.31 (9)
O7i—Y1—O3129.56 (6)O3—Si2—O12109.91 (9)
O9—Y1—O379.47 (6)O30viii—Si3—O8114.47 (9)
O1iii—Y1—O3151.51 (6)O30viii—Si3—O17109.39 (9)
O16—Y1—O4i95.15 (6)O8—Si3—O17108.02 (9)
O33ii—Y1—O4i70.09 (5)O30viii—Si3—O5109.38 (9)
O7i—Y1—O4i129.53 (6)O8—Si3—O5108.41 (9)
O9—Y1—O4i155.15 (6)O17—Si3—O5106.90 (9)
O1iii—Y1—O4i75.60 (5)O31—Si4—O11ix109.95 (11)
O3—Y1—O4i78.78 (6)O31—Si4—O32111.84 (10)
O15—Y2—O13iv164.19 (6)O11ix—Si4—O32109.85 (10)
O15—Y2—O1080.50 (6)O31—Si4—O25105.96 (10)
O13iv—Y2—O10114.60 (6)O11ix—Si4—O25109.90 (10)
O15—Y2—O6iv106.62 (6)O32—Si4—O25109.25 (9)
O13iv—Y2—O6iv75.30 (6)Y3v—O1—Y1vi99.97 (6)
O10—Y2—O6iv72.67 (6)Y4i—O1—Y7106.13 (6)
O15—Y2—O5107.69 (6)Y3v—O1—Y7103.68 (6)
O13iv—Y2—O580.07 (6)Y1vi—O1—Y7103.92 (6)
O10—Y2—O582.76 (6)Si1iv—O2—Y16viii125.68 (10)
O6iv—Y2—O5133.27 (6)Si1iv—O2—Y2iv142.19 (10)
O15—Y2—O2i89.15 (6)Y16viii—O2—Y2iv91.86 (6)
O13iv—Y2—O2i76.91 (6)Si1iv—O2—Ba1iv72.88 (7)
O10—Y2—O2i164.80 (6)Y16viii—O2—Ba1iv102.67 (6)
O6iv—Y2—O2i121.37 (6)Y2iv—O2—Ba1iv96.77 (6)
O5—Y2—O2i89.90 (6)Si2—O3—Y6i140.38 (10)
O7—Y3—O7v74.11 (7)Si2—O3—Y1129.18 (9)
O7—Y3—O9vi112.65 (6)Y6i—O3—Y188.78 (5)
O7v—Y3—O9vi75.50 (6)Si2—O3—Ba177.07 (7)
O7—Y3—O1v78.85 (6)Y6i—O3—Ba1103.76 (6)
O7v—Y3—O1v112.62 (6)Y1—O3—Ba1108.66 (6)
O9vi—Y3—O1v167.88 (6)Si1iv—O4—Y15viii140.05 (11)
O7—Y3—O28vii77.47 (6)Si1iv—O4—Y1iv128.30 (10)
O7v—Y3—O28vii128.51 (6)Y15viii—O4—Y1iv90.11 (6)
O9vi—Y3—O28vii77.21 (6)Si1iv—O4—Ba1iv75.63 (7)
O1v—Y3—O28vii102.63 (6)Y15viii—O4—Ba1iv111.80 (6)
O7—Y3—O8v136.24 (6)Y1iv—O4—Ba1iv100.26 (6)
O7v—Y3—O8v82.52 (6)Si3—O5—Y2131.00 (10)
O9vi—Y3—O8v95.99 (6)Si3—O5—Y5iv135.25 (9)
O1v—Y3—O8v76.80 (6)Y2—O5—Y5iv93.69 (6)
O28vii—Y3—O8v143.34 (6)Si3—O5—Ba175.18 (7)
O1iv—Y4—O29viii102.44 (6)Y2—O5—Ba1103.67 (6)
O1iv—Y4—O10173.96 (6)Y5iv—O5—Ba199.19 (6)
O29viii—Y4—O1079.72 (6)Si1vi—O6—Y2i107.89 (8)
O1iv—Y4—O1185.27 (7)Si1vi—O6—Y4i110.09 (9)
O29viii—Y4—O1183.33 (6)Y2i—O6—Y4i104.79 (7)
O10—Y4—O11100.62 (7)Si1vi—O6—Y8115.51 (9)
O1iv—Y4—O6iv103.27 (6)Y2i—O6—Y8101.15 (6)
O29viii—Y4—O6iv113.18 (6)Y4i—O6—Y8116.09 (7)
O10—Y4—O6iv70.74 (6)Y3—O7—Y3v105.89 (7)
O11—Y4—O6iv158.61 (7)Y3—O7—Y1iv102.77 (7)
O1iv—Y4—O12iv83.61 (6)Y3v—O7—Y1iv105.20 (7)
O29viii—Y4—O12iv167.30 (6)Y3—O7—Y14viii106.45 (7)
O10—Y4—O12iv95.40 (6)Y3v—O7—Y14viii129.59 (8)
O11—Y4—O12iv86.09 (7)Y1iv—O7—Y14viii104.07 (6)
O6iv—Y4—O12iv75.61 (6)Si3—O8—Y3v128.47 (9)
O9—Y5—O13158.36 (6)Si3—O8—Y7133.04 (9)
O9—Y5—O2382.38 (6)Y3v—O8—Y791.99 (5)
O13—Y5—O23113.58 (6)Si3—O8—Ba178.32 (7)
O9—Y5—O1899.01 (6)Y3v—O8—Ba1112.96 (6)
O13—Y5—O1873.14 (6)Y7—O8—Ba1109.92 (6)
O23—Y5—O1874.20 (6)Y5—O9—Y3iii114.47 (7)
O9—Y5—O32ix119.60 (6)Y5—O9—Y1130.21 (7)
O13—Y5—O32ix76.55 (6)Y3iii—O9—Y1103.02 (6)
O23—Y5—O32ix90.16 (6)Y5—O9—Y11101.40 (6)
O18—Y5—O32ix136.15 (6)Y3iii—O9—Y11101.04 (6)
O9—Y5—O5i90.07 (6)Y1—O9—Y11102.27 (6)
O13—Y5—O5i76.80 (6)Y6—O10—Y2124.30 (7)
O23—Y5—O5i166.55 (6)Y6—O10—Y4111.88 (7)
O18—Y5—O5i118.19 (6)Y2—O10—Y4111.63 (7)
O32ix—Y5—O5i83.90 (6)Y6—O10—Y13viii103.06 (6)
O10—Y6—O33viii165.38 (6)Y2—O10—Y13viii101.01 (6)
O10—Y6—O26viii78.30 (6)Y4—O10—Y13viii100.99 (6)
O33viii—Y6—O26viii114.42 (6)Si4viii—O11—Y4143.51 (12)
O10—Y6—O31viii115.27 (6)Si4viii—O11—Ba1iv83.64 (8)
O33viii—Y6—O31viii75.21 (6)Y4—O11—Ba1iv110.42 (7)
O26viii—Y6—O31viii81.58 (6)Si2—O12—Y4i129.61 (10)
O10—Y6—O30viii102.46 (6)Si2—O12—Y7139.00 (9)
O33viii—Y6—O30viii74.70 (6)Y4i—O12—Y791.21 (5)
O26viii—Y6—O30viii77.67 (6)Si2—O12—Y887.08 (7)
O31viii—Y6—O30viii131.74 (7)Y4i—O12—Y8100.30 (6)
O10—Y6—O3iv88.57 (6)Y7—O12—Y889.28 (5)
O33viii—Y6—O3iv81.09 (6)Si2—O12—Ba172.27 (6)
O26viii—Y6—O3iv159.14 (6)Y4i—O12—Ba197.04 (6)
O31viii—Y6—O3iv89.66 (6)Y7—O12—Ba1102.71 (5)
O30viii—Y6—O3iv121.43 (6)Y8—O12—Ba1158.69 (6)
O24—Y7—O20vi75.98 (6)Y2i—O13—Y16ix111.58 (7)
O24—Y7—O16vi122.82 (6)Y2i—O13—Y5106.46 (7)
O20vi—Y7—O16vi76.51 (6)Y16ix—O13—Y5111.48 (7)
O24—Y7—O1164.43 (6)Y2i—O13—Y8110.63 (7)
O20vi—Y7—O1113.49 (6)Y16ix—O13—Y8105.63 (6)
O16vi—Y7—O172.41 (6)Y5—O13—Y8111.16 (7)
O24—Y7—O21vi73.43 (6)Si1—O14—Y9126.47 (9)
O20vi—Y7—O21vi113.78 (6)Si1—O14—Y10129.76 (9)
O16vi—Y7—O21vi73.56 (6)Y9—O14—Y10100.68 (6)
O1—Y7—O21vi111.28 (6)Si1—O14—Ba182.27 (7)
O24—Y7—O895.10 (6)Y9—O14—Ba1102.19 (6)
O20vi—Y7—O883.28 (6)Y10—O14—Ba1105.96 (6)
O16vi—Y7—O8129.72 (6)Y2—O15—Y9114.18 (7)
O1—Y7—O874.59 (5)Y2—O15—Y13viii104.01 (6)
O21vi—Y7—O8155.33 (6)Y9—O15—Y13viii104.44 (7)
O24—Y7—O1290.20 (6)Y2—O15—Y16xi125.53 (7)
O20vi—Y7—O12156.93 (6)Y9—O15—Y16xi104.76 (6)
O16vi—Y7—O12126.50 (6)Y13viii—O15—Y16xi101.29 (6)
O1—Y7—O1276.64 (5)Y10—O16—Y1122.70 (7)
O21vi—Y7—O1278.69 (6)Y10—O16—Y11107.97 (7)
O8—Y7—O1279.60 (6)Y1—O16—Y11108.19 (7)
O21vi—Y8—O2780.79 (6)Y10—O16—Y7iii105.58 (7)
O21vi—Y8—O13166.37 (6)Y1—O16—Y7iii107.98 (7)
O27—Y8—O13112.37 (6)Y11—O16—Y7iii102.64 (6)
O21vi—Y8—O22vi104.62 (6)Si3—O17—Y9131.87 (9)
O27—Y8—O22vi76.04 (6)Si3—O17—Y12125.83 (9)
O13—Y8—O22vi76.40 (6)Y9—O17—Y1297.30 (6)
O21vi—Y8—O18117.22 (6)Si3—O17—Ba184.34 (7)
O27—Y8—O1874.62 (6)Y9—O17—Ba1105.04 (6)
O13—Y8—O1871.48 (6)Y12—O17—Ba1106.08 (6)
O22vi—Y8—O18123.05 (6)Si2—O18—Y5117.33 (9)
O21vi—Y8—O694.41 (6)Si2—O18—Y8105.61 (8)
O27—Y8—O6174.58 (6)Y5—O18—Y8103.00 (6)
O13—Y8—O672.59 (6)Si2—O18—Y13121.35 (9)
O22vi—Y8—O6107.80 (6)Y5—O18—Y13105.44 (6)
O18—Y8—O6105.67 (6)Y8—O18—Y13101.38 (6)
O21vi—Y8—O1276.10 (6)Si2—O19—Y10127.62 (9)
O27—Y8—O12108.64 (5)Si2—O19—Y12127.79 (9)
O13—Y8—O12101.78 (5)Y10—O19—Y1299.39 (6)
O22vi—Y8—O12175.29 (5)Si2—O19—Ba182.94 (7)
O18—Y8—O1259.70 (5)Y10—O19—Ba1107.35 (6)
O6—Y8—O1267.50 (5)Y12—O19—Ba1105.67 (6)
O15—Y9—O23viii80.64 (6)Y7iii—O20—Y14x129.43 (7)
O15—Y9—O2278.25 (6)Y7iii—O20—Y11104.78 (6)
O23viii—Y9—O22103.77 (6)Y14x—O20—Y11104.63 (6)
O15—Y9—O25177.52 (6)Y7iii—O20—Y14104.94 (6)
O23viii—Y9—O2599.28 (6)Y14x—O20—Y1498.81 (6)
O22—Y9—O2599.39 (6)Y11—O20—Y14114.69 (7)
O15—Y9—O17105.18 (6)Y8iii—O21—Y10119.84 (7)
O23viii—Y9—O1785.86 (6)Y8iii—O21—Y7iii115.47 (7)
O22—Y9—O17170.26 (6)Y10—O21—Y7iii101.50 (6)
O25—Y9—O1777.27 (6)Y8iii—O21—Y1598.47 (6)
O15—Y9—O14104.95 (6)Y10—O21—Y15117.68 (7)
O23viii—Y9—O14166.38 (6)Y7iii—O21—Y15103.42 (6)
O22—Y9—O1489.61 (6)Y9—O22—Y8iii115.09 (7)
O25—Y9—O1475.67 (6)Y9—O22—Y16xi103.81 (6)
O17—Y9—O1480.71 (6)Y8iii—O22—Y16xi101.78 (6)
O16—Y10—O2677.73 (6)Y9—O22—Y16128.94 (7)
O16—Y10—O2179.11 (6)Y8iii—O22—Y16100.83 (6)
O26—Y10—O21111.79 (6)Y16xi—O22—Y16102.83 (6)
O16—Y10—O25176.38 (6)Y9ix—O23—Y5115.19 (7)
O26—Y10—O25101.57 (6)Y9ix—O23—Y11127.28 (7)
O21—Y10—O25104.39 (6)Y5—O23—Y11100.19 (6)
O16—Y10—O14105.23 (6)Y9ix—O23—Y13101.97 (6)
O26—Y10—O14163.87 (6)Y5—O23—Y13110.62 (7)
O21—Y10—O1484.29 (6)Y11—O23—Y13100.31 (6)
O25—Y10—O1474.45 (6)Y12—O24—Y7124.75 (8)
O16—Y10—O19102.02 (6)Y12—O24—Y15vi107.30 (7)
O26—Y10—O1986.37 (6)Y7—O24—Y15vi110.31 (7)
O21—Y10—O19161.43 (6)Y12—O24—Y14vi104.19 (6)
O25—Y10—O1974.37 (5)Y7—O24—Y14vi106.85 (6)
O14—Y10—O1977.51 (6)Y15vi—O24—Y14vi100.67 (6)
O16—Y10—O31123.07 (6)Si4—O25—Y9116.53 (8)
O26—Y10—O3171.57 (6)Si4—O25—Y12114.63 (8)
O21—Y10—O3169.97 (6)Y9—O25—Y12106.31 (6)
O25—Y10—O3159.63 (5)Si4—O25—Y10105.81 (8)
O14—Y10—O31117.33 (5)Y9—O25—Y10106.03 (6)
O19—Y10—O31121.98 (6)Y12—O25—Y10106.82 (6)
O20—Y11—O1675.89 (6)Y10—O26—Y6ix112.77 (7)
O20—Y11—O28ix78.36 (6)Y10—O26—Y13125.02 (7)
O16—Y11—O28ix125.24 (6)Y6ix—O26—Y13104.14 (7)
O20—Y11—O23162.10 (6)Y10—O26—Y11102.55 (6)
O16—Y11—O23122.00 (6)Y6ix—O26—Y11108.66 (6)
O28ix—Y11—O2390.02 (6)Y13—O26—Y11102.45 (6)
O20—Y11—O9113.46 (6)Y16vi—O27—Y15vi120.90 (7)
O16—Y11—O972.64 (6)Y16vi—O27—Y8106.02 (7)
O28ix—Y11—O974.83 (6)Y15vi—O27—Y8101.61 (6)
O23—Y11—O975.75 (5)Y16vi—O27—Y13106.97 (6)
O20—Y11—O26109.58 (5)Y15vi—O27—Y13109.56 (7)
O16—Y11—O2671.68 (6)Y8—O27—Y13111.61 (7)
O28ix—Y11—O26163.06 (6)Y12—O28—Y3vii126.58 (7)
O23—Y11—O2678.39 (6)Y12—O28—Y11viii124.62 (7)
O9—Y11—O26113.44 (5)Y3vii—O28—Y11viii100.01 (6)
O20—Y11—O3072.21 (6)Y12—O28—Y14vi99.94 (6)
O16—Y11—O30118.43 (6)Y3vii—O28—Y14vi100.67 (6)
O28ix—Y11—O3097.75 (6)Y11viii—O28—Y14vi98.62 (6)
O23—Y11—O3096.28 (5)Y4ix—O29—Y12119.57 (7)
O9—Y11—O30168.90 (5)Y4ix—O29—Y13102.27 (6)
O26—Y11—O3071.65 (5)Y12—O29—Y13118.37 (7)
O24—Y12—O2881.93 (6)Y4ix—O29—Y15vi113.01 (7)
O24—Y12—O2978.96 (6)Y12—O29—Y15vi100.15 (6)
O28—Y12—O29105.13 (6)Y13—O29—Y15vi102.53 (6)
O24—Y12—O25177.11 (6)Si3ix—O30—Y6ix115.21 (9)
O28—Y12—O2599.85 (6)Si3ix—O30—Y11119.79 (9)
O29—Y12—O25102.67 (6)Y6ix—O30—Y11100.95 (6)
O24—Y12—O19103.26 (6)Si3ix—O30—Y14115.80 (8)
O28—Y12—O19164.10 (6)Y6ix—O30—Y14100.86 (6)
O29—Y12—O1990.66 (6)Y11—O30—Y14101.37 (6)
O25—Y12—O1974.42 (5)Si4—O31—Y6ix124.64 (10)
O24—Y12—O17102.60 (6)Si4—O31—Y15136.94 (10)
O28—Y12—O1787.72 (6)Y6ix—O31—Y1598.23 (6)
O29—Y12—O17167.12 (6)Si4—O31—Y1088.42 (8)
O25—Y12—O1775.27 (5)Y6ix—O31—Y1091.53 (6)
O19—Y12—O1776.51 (6)Y15—O31—Y1094.93 (7)
O27—Y13—O26160.42 (6)Si4—O31—Ba1xii67.62 (7)
O27—Y13—O15ix74.71 (6)Y6ix—O31—Ba1xii97.93 (6)
O26—Y13—O15ix124.66 (6)Y15—O31—Ba1xii105.91 (6)
O27—Y13—O10ix118.30 (6)Y10—O31—Ba1xii155.51 (7)
O26—Y13—O10ix74.01 (6)Si4—O32—Y5viii129.38 (9)
O15ix—Y13—O10ix74.47 (5)Si4—O32—Y16130.79 (9)
O27—Y13—O2973.44 (6)Y5viii—O32—Y1695.18 (6)
O26—Y13—O2996.89 (6)Si4—O32—Ba1xii80.42 (7)
O15ix—Y13—O29117.45 (6)Y5viii—O32—Ba1xii107.55 (6)
O10ix—Y13—O2975.62 (6)Y16—O32—Ba1xii107.95 (6)
O27—Y13—O23107.38 (5)Y15—O33—Y6ix111.69 (7)
O26—Y13—O2378.84 (5)Y15—O33—Y1xii117.26 (7)
O15ix—Y13—O2372.93 (6)Y6ix—O33—Y1xii105.23 (7)
O10ix—Y13—O23112.50 (5)Y15—O33—Y14104.09 (6)
O29—Y13—O23168.89 (6)Y6ix—O33—Y14113.43 (7)
O27—Y13—O1872.16 (6)Y1xii—O33—Y14105.22 (6)
O26—Y13—O1893.80 (6)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x, y+1, z+1; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1, z+1; (viii) x+1, y+1/2, z+1/2; (ix) x+1, y1/2, z+1/2; (x) x+1, y, z; (xi) x+1, y+1, z; (xii) x+1, y, z.
 

Acknowledgements

The authors would like to thank Takashi Kamaya for conducting the EPMA analysis.

Funding information

This work was supported in part by Mitsubishi Chemical Corporation (a joint research of Tohoku University and Mitsubishi Chemical Corporation, J190002825). RS was partly supported by the Project to Promote Gender Equality and Female Researchers of the Tohoku University Center for Gender Equality Promotion, Japan and the IMRAM project of the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan.

References

First citationBrgoch, J., Borg, C. K. H., Denault, K. A., Mikhailovsky, A., DenBaars, S. P. & Seshadri, R. (2013). Inorg. Chem. 52, 8010–8016.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). TOPAS.B. A. G., Karlsruhe, Germany.  Google Scholar
First citationBruker (2018). BIS, APEX3 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoduri, M., Scavini, M., Allieta, M., Brunelli, M. & Ferrero, C. (2013). Chem. Mater. 25, 4278–4289.  Web of Science CrossRef ICSD CAS Google Scholar
First citationDenault, K. A., Brgoch, J., Kloss, S. D., Gaultois, M. W., Siewenie, J., Page, K. & Seshadri, R. (2015). Appl. Mater. Interfaces, 7, 7264–7272.  Web of Science CrossRef ICSD CAS Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, I., Singh, S., Bhagwan, S. & Singh, D. (2021). Ceram. Int. 47, 19282–19303.  CrossRef CAS Google Scholar
First citationHoppe, R. (1970). Advances in Fluorine Chemistry, 6, 387–438.  CAS Google Scholar
First citationICSD (2022). Inorganic Crystal Structure Database, Web version. FIZ Karlsruhe, Germany.  Google Scholar
First citationKirchner, H. P. (1964). Prog. Solid State Chem. 1, 1–36.  CrossRef CAS Google Scholar
First citationKolitsch, U., Wierzbicka, M. & Tillmanns, E. (2006). Acta Cryst. C62, i97–i99.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiebau, F. (1985). Structural Chemistry of Silicates. Berlin: Springer-Verlag.  Google Scholar
First citationLin, Q., Song, K., Liu, B., Bafrooei, H. B., Zhou, D., Su, W., Shi, F., Wang, D., Lin, H. & M.Reaney, I. (2020). Ceram. Int. 46, 1171–1177.  Google Scholar
First citationLiu, W.-R., Lin, C. C., Chiu, Y.-C., Yeh, Y.-T., Jang, S.-M., Liu, R.-S. & Cheng, B.-M. (2009). Opt. Express, 17, 18103–18109.  CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Zhang, J., Zhang, C., Xu, J., Liu, G., Jiang, J. & Jiang, H. (2015). Adv. Opt. Mater. 3, 1096–1101.  CrossRef CAS Google Scholar
First citationManchanda, L. & Gurvitch, M. (1988). IEEE Electron Device Lett. 9, 180–182.  CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, R., Wang, X., Huang, Y., Tao, Y., Zheng, L. & Liang, H. (2018). J. Phys. Chem. C, 122, 7421–7431.  CrossRef CAS Google Scholar
First citationSingh, D., Sheoran, S. & Tanwar, V. (2017). Adv. Mater. Lett. 8, 656–672.  CrossRef CAS Google Scholar
First citationSmith, G. S. & Alexander, L. E. (1963). Acta Cryst. 16, 462–471.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationSong, W., Chen, X., Teng, L., Zheng, Z., Wen, J., Hu, F., Wei, R., Chen, L. & Guo, H. (2019). J. Am. Ceram. Soc. 102, 1822–1831.  CAS Google Scholar
First citationTsukuda, Y. (1980). J. Can. Ceram. Soc. 49, 36–41.  CAS Google Scholar
First citationWierzbicka-Wieczorek, M., Kolitsch, U., Lenz, C. & Giester, G. (2015). J. Lumin. 168, 207–217.  CAS Google Scholar
First citationWierzbicka-Wieczorek, M., Kolitsch, U. & Tillmanns, E. (2011). Joint Meeting, 19. Jahrestagung der Deutschen Gesellschaft für Kristallographie, 89. Jahrestagung der Deutschen Mineralogischen Gesellschaft, Jahrestagung der Österreichischen Mineralogischen Gesellschaft, pp. 100–101. Oldenbourg Verlag.  Google Scholar
First citationXia, Z., Liang, Y., Yu, D., Zhang, M., Huang, W., Tong, M., Wu, J. & Zhao, J. (2014). Opt. Laser Technol. 56, 387–392.  CrossRef CAS Google Scholar
First citationZhou, J. & Xia, Z. (2015). J. Mater. Chem. C. 3, 7552–7560.  CrossRef CAS Google Scholar
First citationZollweg, R. J. (1955). Phys. Rev. 100, 671–673.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds