research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of di-μ-methoxo-bis­­(oxido{N′-[3-(oxido­imino)­butan-2-yl­­idene]benzo­hydrazonato-κ3O,N,O′}vanadium(V))

crossmark logo

aSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, India
*Correspondence e-mail: 19chph09@uohyd.ac.in

Edited by S. Parkin, University of Kentucky, USA (Received 10 October 2022; accepted 10 November 2022; online 15 November 2022)

The structure of the dimeric oxomethoxovanadium(V) complex, [V2(CH3O)2(C11H11N3O3)2] or [VO(μ-OMe)(L)]2 (1), with N′-[3-(hy­droxy­imino)-butan-2-yl­idene]benzohydrazide (H2L, where 2 Hs represent the dissociable oxime and amide protons) is reported. The oximate functionality can coordinate through either the O or the N atom. In the present complex, it is coordinated through the O atom. Here, methoxo groups bridge the two VV centers with a V⋯V separation of 3.3275 (10) Å. Within the centrosymmetric edge-shared di­octa­hedral structure, each metal center is in a distorted octa­hedral NO5 environment, assembled by the O,N,O-donor L2– ligand, bridging OMe groups and the oxo group. The complex is diamagnetic in nature and brown in color. Solution electrical conductivity measurements confirmed its electrically non-conducting behavior.

1. Chemical context

Inter­est in the coordination complexes of vanadium is primarily due to their variety of roles in biological processes such as nitro­gen fixation, haloperoxidation, phospho­rylation, insulin mimicking, anti-microbial and anti-fungal activities, and for their possible use as efficient catalysts in various organic reactions (Noblía et al., 2004[Noblía, P., Baran, E. J., Otero, L., Draper, P., Cerecetto, H., González, M., Piro, O. E., Castellano, E. E., Inohara, T., Adachi, Y., Sakurai, H. & Gambino, D. (2004). Eur. J. Inorg. Chem. pp. 322-328.]; Plass et al., 2007[Plass, W., Bangesh, M., Nica, S. & Buchholz, A. (2007). Model Studies of Vanadium-Dependent Haloperoxidation: Structural and Functional Lessons, ACS Symposium Series, Vol. 974, pp. 163-177. Washington: American Chemical Society.]; Zabin & Abdelbaset, 2016[Zabin, S. A. & Abdelbaset, M. (2016). Eur. J. Chem. 7, 322-328.]; Tsave et al., 2016[Tsave, O., Petanidis, S., Kioseoglou, E., Yavropoulou, M. P., Yovos, J. G., Anestakis, D. & Salifoglou, A. (2016). Oxidative Med. Cell. Longev. Article ID 4013639. https://doi.org/10.1155/2016/4013639]; Tanabe & Nishibayashi, 2019[Tanabe, Y. & Nishibayashi, Y. (2019). Coord. Chem. Rev. 381, 135-150.]; Assey & Mgohamwende, 2020[Assey, G. E. & Mgohamwende, R. (2020). Pharm. & Pharmacol. Int. J. 8, 136-146.]). Oxovanadium(V) (VO3+) and dioxovanadium(V) (VO2+) catalyzed reactions include C—C bond formation, hydrogenation, de­hydro­genation, sulfide oxidation, C—C/C—O bond cleavage, alcohol/aldehyde/ketone oxidation, de­oxy­dehydration (Langeslay et al., 2019[Langeslay, R. R., Kaphan, D. M., Marshall, C. L., Stair, P. C., Sattelberger, A. P. & Delferro, M. (2019). Chem. Rev. 119, 2128-2191.]). Oxovanadium(IV/V) materials have also found several industrial applications such as gas sensors, electrochemical and optical switching devices, and reversible cathode materials for Li batteries (Guerrero-Pérez, 2017[Guerrero-Pérez, M. O. (2017). Catal. Today, 285, 226-233.]).

[Scheme 1]

Our research group has previously reported some penta­valent vanadium complexes with aroylhydrazine-based Schiff bases (Srivastava et al., 2020[Srivastava, A. K., Ghosh, S. & Pal, S. (2020). Inorg. Chim. Acta, 502, 119344.]). Herein we report a dinuclear centrosymmetric complex [VO(μ-OMe)(L)]2, where we have used an ambidentate oxime containing N′-[3-(hy­droxy­imino)­butan-2-yl­idene]benzohydrazide (H2L).

2. Structural commentary

The dimeric complex [VO(μ-OMe)(L)]2 (1) crystallizes in the triclinic P[\overline{1}] space group. Here the asymmetric unit contains half of the formula unit and the two halves of the dimeric mol­ecule are related by an inversion center. A displacement ellipsoid plot of 1 is illustrated in Fig. 1[link]. The meridionally spanning L2– coordinates to the metal center via the oximate-O, the imine-N and the amidate-O atoms (O1, N2 and O2, respectively) and forms fused five- and six-membered chelate rings. The methoxo-O atom (O3) completes an NO3 square plane (r.m.s. deviation = 0.02 Å) and the oxo group (O4) occupies the apical position to complete a square-pyramidal NO4 coordination environment around the metal center. As generally observed in a square-pyramidal geometry, here the vanadium atom is also shifted towards the apical oxo group by 0.34 Å. The dimeric structure is formed by two such inversion-symmetry-related square-pyramidal units, in which the methoxo-O atoms act as equatorial–axial bridging atoms. As a result, a divanadium(V) core, [OV(μ-OMe)2VO]4+, is formed at the center of 1 and each metal center in it resides in a distorted octa­hedral NO5 coordination sphere. Overall, two O,N,O-donor L2–, two methoxo-O atoms, and the two oxo-O atoms constitute an edge-shared di­octa­hedral geometry [O3NVO2VNO3] (Fig. 1[link]). The central V2(μ-OMe)2 moiety has a pair of short [1.8351 (14) Å] and a pair of long [2.3240 (14) Å] V—O bonds (Table 1[link]). The longer pair of bonds is trans to the corresponding oxo groups. The V⋯V distance is 3.3275 (10) Å. In general, the V=O, V—N, and V—O bond lengths in 1 are comparable with the corresponding bond lengths in other penta­valent vanadium complexes with analogous ligands (Dash et al., 2012[Dash, S. P., Pasayat, S., Saswati, Dash, H. R., Das, S., Butcher, R. J. & Dinda, R. (2012). Polyhedron, 31, 524-529.]; Sutradhar et al., 2013[Sutradhar, M., Roy Barman, T., Ghosh, S. & Drew, M. G. B. (2013). J. Mol. Struct. 1037, 276-282.]; Srivastava et al., 2018[Srivastava, A. K., Ghosh, S., Jana, S. & Pal, S. (2018). Inorg. Chim. Acta, 483, 329-336.]; Srivastava et al., 2020[Srivastava, A. K., Ghosh, S. & Pal, S. (2020). Inorg. Chim. Acta, 502, 119344.]).

Table 1
Selected geometric parameters (Å, °)

V1—O4 1.5795 (16) V1—O2 1.9469 (14)
V1—O1 1.8200 (16) V1—N2 2.1013 (16)
V1—O3 1.8351 (14) V1—O3i 2.3240 (14)
       
O4—V1—O1 100.13 (9) O2—V1—N2 74.61 (6)
O4—V1—O3 103.30 (7) O4—V1—O3i 177.40 (7)
O1—V1—O3 107.22 (7) O1—V1—O3i 79.72 (7)
O4—V1—O2 100.48 (8) O3—V1—O3i 74.33 (6)
O1—V1—O2 149.15 (7) O2—V1—O3i 80.69 (6)
O3—V1—O2 90.01 (6) N2—V1—O3i 87.30 (5)
O4—V1—N2 95.24 (7) C12—O3—V1i 124.22 (14)
O1—V1—N2 80.87 (6) V1—O3—V1i 105.67 (6)
O3—V1—N2 157.85 (6)    
Symmetry code: (i) [-x, -y+1, -z].
[Figure 1]
Figure 1
The mol­ecular structure of [VO(μ-OMe)(L)]2 (1). The non-hydrogen atoms are displayed as 30% probability ellipsoids. Unlabeled non-hydrogen atoms are related to the labeled non-hydrogen atoms by an inversion center (symmetry operator: −x, −y + 1, −z).

3. Supra­molecular features

We have investigated the self-assembly pattern of complex 1 via inter­molecular hydrogen-bonding inter­actions having an H⋯A distance of up to 3 Å. Only non-classical C—H⋯A (A = O and N) inter­actions have been found (Table 2[link]). These are: one bifurcated C—H⋯O/N, two C—H⋯O and one C—H⋯N inter­actions involving the methyl C—H (C1—H1A and C4—H4A) and methoxo C—H groups (C12—H12B and C12—H12C) as donors, and imino­late-O (O2), oxo-O (O4), oximate-N (N1), and imine-N (N3) atoms as acceptors. The C—H⋯O (C12—H12B⋯O2 and C12—H12C⋯O4) inter­actions link the complex mol­ecules and form linear chains parallel to each other. The bifurcated C—H⋯O/N (C1—H1A⋯O4/N1) hydrogen bonds connect the parallel linear chains and a di-periodic layered structure is formed. The C—H⋯N (C4—H4A⋯N3) inter­actions provide the links between the layers, assembling a three-dimensional network structure (Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4ii 0.96 2.98 3.583 (3) 122
C1—H1A⋯N1iii 0.96 3.02 3.508 (3) 113
C4—H4A⋯N3iv 0.96 2.81 3.663 (3) 149
C12—H12B⋯O2v 0.96 2.96 3.531 (3) 119
C12—H12C⋯O4v 0.96 2.81 3.629 (3) 144
Symmetry codes: (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y, -z]; (v) [-x-1, -y+1, -z].
[Figure 2]
Figure 2
Three-dimensional network of 1 viewed down the b-axis. Green dashed lines indicate non-classical hydrogen bonds listed in Table 2[link]. Hydrogen atoms not involved in these inter­actions are omitted for clarity.

4. Database survey

Five more structures of analogous dinuclear dimethoxo bridged oxovanadium(V) complexes are reported in the literature and deposited in the Cambridge Structure Database (CSD v5.43; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). These are [VO(μ-OMe)(L1)]2 (CSD refcode XIVJUH) with H2L1 = benzoyl­hydrazone of 2-hy­droxy-5-meth­oxy­benzaldehyde (Sangeetha et al., 2000[Sangeetha, N. R., Kavita, V., Wocadlo, S., Powell, A. K. & Pal, S. (2000). J. Coord. Chem. 51, 55-66.]), [VO(μ-OMe)(L2)]2 (CSD: GAVROL) with H2L2 = diacetyl monoxime (4-meth­oxy­benzo­yl)hydrazone (Deng et al., 2005[Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2214-m2216.]), [VO(μ-OMe)(L3)]2 (CSD: KUBSUW) with H2L3 = benzoic acid (1-methyl-3-oxo-butyl­idene)hydrazide, [VO(μ-OMe)(L4)]2 (CSD: KUBTAD) with H2L4 = 4-Cl-benzoic acid (1-methyl-3-oxo-butyl­idene)hydrazide (Sarkar & Pal, 2009[Sarkar, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807-3812.]), and [VO(μ-OMe)(HL5)]2 (CSD: FUDTUW) with H3L5 = di­acetyl­monoxime salicyloylhydrazone (Srivastava et al., 2020[Srivastava, A. K., Ghosh, S. & Pal, S. (2020). Inorg. Chim. Acta, 502, 119344.]).

5. Synthesis and crystallization

The Schiff base (H2L) was prepared in ∼72% yield by a condensation reaction with equimolar amounts of diacetyl-monoxime and benzohydrazide in methanol, following a reported procedure (Naskar et al., 2007[Naskar, S., Mishra, D., Butcher, R. J. & Chattopadhyay, S. K. (2007). Polyhedron, 26, 3703-3714.]).

A methanol solution (10 ml) of [VO(acac)2] (80 mg, 0.3 mmol) was added to a methanol solution (10 ml) of H2L (65 mg, 0.3 mmol) and the mixture was stirred under aerobic conditions for 6 h at room temperature. The resulting brown solution was kept for slow evaporation at room temperature in air. The dark-brown crystalline material was obtained in about a week. It was filtered, washed with cold methanol, and dried in air. A single crystal suitable for X-ray structure determination was selected from the crystals thus obtained. Yield: 47 mg (50%). HRMS in aceto­nitrile m/z found (calculated) for ([M + Li]+): 637.3059 (637.1008).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically. A riding model was used to include all hydrogen atoms at idealized positions with C—H distances of 0.93 Å (Car—H) and 0.96 Å (CMe—H) and Uiso = 1.2 or 1.5 Ueq of the attached carbon atom.

Table 3
Experimental details

Crystal data
Chemical formula [V2(CH3O)2(C11H11N3O3)2]
Mr 630.40
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 7.3050 (16), 9.825 (2), 11.121 (3)
α, β, γ (°) 105.586 (8), 107.226 (8), 101.610 (9)
V3) 699.3 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.23 × 0.22 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.851, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 26928, 2849, 2495
Rint 0.046
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.05
No. of reflections 2849
No. of parameters 184
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Di-µ-methoxo-bis(oxido{N'-[3-(oxidoimino)butan-2-ylidene]benzohydrazonato-κ3O,N,O'}vanadium(V)) top
Crystal data top
[V2(CH3O)2(C11H11N3O3)2]Z = 1
Mr = 630.40F(000) = 324
Triclinic, P1Dx = 1.497 Mg m3
a = 7.3050 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.825 (2) ÅCell parameters from 9603 reflections
c = 11.121 (3) Åθ = 3.0–26.3°
α = 105.586 (8)°µ = 0.73 mm1
β = 107.226 (8)°T = 298 K
γ = 101.610 (9)°Block, brown
V = 699.3 (3) Å30.23 × 0.22 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2495 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
φ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.851, Tmax = 0.863k = 1212
26928 measured reflectionsl = 1313
2849 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.3713P]
where P = (Fo2 + 2Fc2)/3
2849 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The structure was solved by direct methods and refined on F2 using full-matrix least-squares procedures.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.08607 (5)0.44936 (3)0.10918 (3)0.03903 (12)
O10.1665 (2)0.50789 (16)0.23557 (15)0.0541 (4)
O20.29767 (19)0.30059 (14)0.05246 (14)0.0404 (3)
O30.0981 (2)0.58907 (14)0.02824 (14)0.0409 (3)
O40.2093 (3)0.48301 (18)0.20281 (16)0.0578 (4)
N10.2299 (3)0.4859 (2)0.35485 (19)0.0553 (5)
N20.0753 (2)0.24395 (17)0.12871 (16)0.0359 (3)
N30.2005 (2)0.11897 (17)0.01885 (15)0.0369 (4)
C10.2508 (4)0.3332 (3)0.4857 (2)0.0611 (6)
H1A0.3167160.4287660.5555510.092*
H1B0.3459530.2790530.4823810.092*
H1C0.1433450.2792880.5038270.092*
C20.1669 (3)0.3528 (2)0.3532 (2)0.0454 (5)
C30.0332 (3)0.2233 (2)0.23344 (19)0.0380 (4)
C40.0235 (3)0.0707 (2)0.2350 (2)0.0484 (5)
H4A0.0117440.0078750.1486580.073*
H4B0.0913110.0317690.2545900.073*
H4C0.1438120.0743590.3026700.073*
C50.3129 (3)0.1622 (2)0.06967 (19)0.0355 (4)
C60.4598 (3)0.0488 (2)0.19731 (19)0.0369 (4)
C70.5068 (3)0.1011 (2)0.2135 (2)0.0457 (5)
H70.4529410.1303140.1412870.055*
C80.6331 (3)0.2060 (2)0.3364 (2)0.0551 (6)
H80.6627850.3061940.3471490.066*
C90.7154 (4)0.1640 (3)0.4428 (2)0.0618 (6)
H90.7996250.2353200.5258640.074*
C100.6730 (4)0.0165 (3)0.4264 (2)0.0681 (7)
H100.7308460.0120050.4983260.082*
C110.5455 (4)0.0906 (3)0.3042 (2)0.0534 (6)
H110.5175650.1905390.2941520.064*
C120.2584 (4)0.6538 (3)0.0049 (3)0.0625 (7)
H12A0.2151160.7435120.0118240.094*
H12B0.2947360.6761840.0825610.094*
H12C0.3728970.5852400.0716730.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0405 (2)0.03042 (18)0.0430 (2)0.00729 (14)0.01466 (15)0.01163 (14)
O10.0502 (9)0.0411 (8)0.0513 (9)0.0025 (7)0.0044 (7)0.0144 (7)
O20.0355 (7)0.0337 (7)0.0459 (8)0.0062 (6)0.0091 (6)0.0146 (6)
O30.0379 (7)0.0321 (7)0.0557 (8)0.0134 (6)0.0187 (6)0.0166 (6)
O40.0737 (11)0.0503 (9)0.0594 (10)0.0227 (8)0.0364 (9)0.0188 (8)
N10.0509 (11)0.0482 (11)0.0458 (10)0.0052 (9)0.0016 (8)0.0096 (8)
N20.0333 (8)0.0333 (8)0.0376 (8)0.0067 (6)0.0127 (7)0.0102 (7)
N30.0358 (8)0.0347 (8)0.0356 (8)0.0075 (7)0.0113 (7)0.0101 (7)
C10.0609 (15)0.0654 (15)0.0410 (12)0.0124 (12)0.0056 (11)0.0138 (11)
C20.0405 (11)0.0473 (12)0.0406 (11)0.0116 (9)0.0098 (9)0.0106 (9)
C30.0345 (10)0.0413 (10)0.0383 (10)0.0114 (8)0.0146 (8)0.0130 (8)
C40.0535 (13)0.0465 (12)0.0470 (12)0.0206 (10)0.0148 (10)0.0191 (10)
C50.0316 (9)0.0366 (10)0.0396 (10)0.0067 (8)0.0177 (8)0.0131 (8)
C60.0316 (9)0.0378 (10)0.0391 (10)0.0058 (8)0.0153 (8)0.0113 (8)
C70.0422 (11)0.0410 (11)0.0504 (12)0.0095 (9)0.0157 (9)0.0146 (9)
C80.0523 (13)0.0381 (11)0.0623 (14)0.0043 (10)0.0213 (11)0.0053 (10)
C90.0574 (14)0.0589 (15)0.0445 (13)0.0026 (12)0.0132 (11)0.0016 (11)
C100.0775 (18)0.0694 (17)0.0404 (12)0.0095 (14)0.0067 (12)0.0199 (12)
C110.0619 (14)0.0455 (12)0.0437 (12)0.0054 (10)0.012 (1)0.0183 (10)
C120.0553 (14)0.0576 (14)0.098 (2)0.0325 (12)0.0389 (14)0.0391 (14)
Geometric parameters (Å, º) top
V1—O41.5795 (16)C4—H4A0.9600
V1—O11.8200 (16)C4—H4B0.9600
V1—O31.8351 (14)C4—H4C0.9600
V1—O21.9469 (14)C5—C61.475 (3)
V1—N22.1013 (16)C6—C111.378 (3)
V1—O3i2.3240 (14)C6—C71.392 (3)
O1—N11.361 (2)C7—C81.377 (3)
O2—C51.298 (2)C7—H70.9300
O3—C121.433 (3)C8—C91.369 (4)
N1—C21.289 (3)C8—H80.9300
N2—C31.293 (2)C9—C101.369 (4)
N2—N31.385 (2)C9—H90.9300
N3—C51.308 (2)C10—C111.382 (3)
C1—C21.499 (3)C10—H100.9300
C1—H1A0.9600C11—H110.9300
C1—H1B0.9600C12—H12A0.9600
C1—H1C0.9600C12—H12B0.9600
C2—C31.472 (3)C12—H12C0.9600
C3—C41.491 (3)
O4—V1—O1100.13 (9)N2—C3—C4121.05 (18)
O4—V1—O3103.30 (7)C2—C3—C4119.71 (18)
O1—V1—O3107.22 (7)C3—C4—H4A109.5
O4—V1—O2100.48 (8)C3—C4—H4B109.5
O1—V1—O2149.15 (7)H4A—C4—H4B109.5
O3—V1—O290.01 (6)C3—C4—H4C109.5
O4—V1—N295.24 (7)H4A—C4—H4C109.5
O1—V1—N280.87 (6)H4B—C4—H4C109.5
O3—V1—N2157.85 (6)O2—C5—N3123.23 (17)
O2—V1—N274.61 (6)O2—C5—C6118.16 (17)
O4—V1—O3i177.40 (7)N3—C5—C6118.58 (17)
O1—V1—O3i79.72 (7)C11—C6—C7119.27 (19)
O3—V1—O3i74.33 (6)C11—C6—C5119.82 (18)
O2—V1—O3i80.69 (6)C7—C6—C5120.85 (18)
N2—V1—O3i87.30 (5)C8—C7—C6120.0 (2)
N1—O1—V1129.68 (13)C8—C7—H7120.0
C5—O2—V1117.55 (12)C6—C7—H7120.0
C12—O3—V1124.15 (13)C9—C8—C7120.4 (2)
C12—O3—V1i124.22 (14)C9—C8—H8119.8
V1—O3—V1i105.67 (6)C7—C8—H8119.8
C2—N1—O1116.97 (17)C10—C9—C8119.7 (2)
C3—N2—N3117.28 (16)C10—C9—H9120.2
C3—N2—V1126.48 (13)C8—C9—H9120.2
N3—N2—V1116.22 (11)C9—C10—C11120.8 (2)
C5—N3—N2107.95 (15)C9—C10—H10119.6
C2—C1—H1A109.5C11—C10—H10119.6
C2—C1—H1B109.5C6—C11—C10119.8 (2)
H1A—C1—H1B109.5C6—C11—H11120.1
C2—C1—H1C109.5C10—C11—H11120.1
H1A—C1—H1C109.5O3—C12—H12A109.5
H1B—C1—H1C109.5O3—C12—H12B109.5
N1—C2—C3125.5 (2)H12A—C12—H12B109.5
N1—C2—C1114.69 (19)O3—C12—H12C109.5
C3—C2—C1119.7 (2)H12A—C12—H12C109.5
N2—C3—C2119.24 (18)H12B—C12—H12C109.5
O4—V1—O1—N141.62 (19)N3—N2—C3—C40.1 (3)
O3—V1—O1—N1149.08 (17)V1—N2—C3—C4178.75 (14)
O2—V1—O1—N189.6 (2)N1—C2—C3—N220.0 (3)
N2—V1—O1—N152.12 (18)C1—C2—C3—N2163.8 (2)
O3i—V1—O1—N1141.01 (18)N1—C2—C3—C4160.6 (2)
O4—V1—O3—C1227.48 (19)C1—C2—C3—C415.7 (3)
O1—V1—O3—C12132.69 (18)V1—O2—C5—N33.6 (2)
O2—V1—O3—C1273.30 (18)V1—O2—C5—C6174.43 (12)
N2—V1—O3—C12118.6 (2)N2—N3—C5—O21.7 (2)
O3i—V1—O3—C12153.6 (2)N2—N3—C5—C6179.71 (15)
O4—V1—O3—V1i178.90 (8)O2—C5—C6—C1113.4 (3)
O1—V1—O3—V1i73.68 (8)N3—C5—C6—C11164.71 (19)
O2—V1—O3—V1i80.33 (7)O2—C5—C6—C7169.48 (17)
N2—V1—O3—V1i35.03 (18)N3—C5—C6—C712.4 (3)
O3i—V1—O3—V1i0.001 (1)C11—C6—C7—C81.9 (3)
V1—O1—N1—C248.4 (3)C5—C6—C7—C8175.28 (19)
C3—N2—N3—C5172.97 (16)C6—C7—C8—C90.9 (3)
V1—N2—N3—C55.80 (18)C7—C8—C9—C100.6 (4)
O1—N1—C2—C30.3 (3)C8—C9—C10—C111.1 (4)
O1—N1—C2—C1176.7 (2)C7—C6—C11—C101.4 (3)
N3—N2—C3—C2179.30 (16)C5—C6—C11—C10175.8 (2)
V1—N2—C3—C20.7 (3)C9—C10—C11—C60.1 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4ii0.962.983.583 (3)122
C1—H1A···N1iii0.963.023.508 (3)113
C4—H4A···N3iv0.962.813.663 (3)149
C12—H12B···O2v0.962.963.531 (3)119
C12—H12C···O4v0.962.813.629 (3)144
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z; (v) x1, y+1, z.
 

Acknowledgements

We thank Professor S. Pal, School of Chemistry, University of Hyderabad, for his constant support and helpful discussions throughout this work.

Funding information

Funding for this research was provided by: The Ministry of Education, Government of India [grant No. F11/9/2019-102U3(A) to the Univesity of Hyderabad, Institution of Eminence].

References

First citationAssey, G. E. & Mgohamwende, R. (2020). Pharm. & Pharmacol. Int. J. 8, 136–146.  CrossRef Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDash, S. P., Pasayat, S., Saswati, Dash, H. R., Das, S., Butcher, R. J. & Dinda, R. (2012). Polyhedron, 31, 524–529.  CrossRef CAS Google Scholar
First citationDeng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2214–m2216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrero-Pérez, M. O. (2017). Catal. Today, 285, 226–233.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLangeslay, R. R., Kaphan, D. M., Marshall, C. L., Stair, P. C., Sattelberger, A. P. & Delferro, M. (2019). Chem. Rev. 119, 2128–2191.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaskar, S., Mishra, D., Butcher, R. J. & Chattopadhyay, S. K. (2007). Polyhedron, 26, 3703–3714.  CrossRef CAS Google Scholar
First citationNoblía, P., Baran, E. J., Otero, L., Draper, P., Cerecetto, H., González, M., Piro, O. E., Castellano, E. E., Inohara, T., Adachi, Y., Sakurai, H. & Gambino, D. (2004). Eur. J. Inorg. Chem. pp. 322–328.  Google Scholar
First citationPlass, W., Bangesh, M., Nica, S. & Buchholz, A. (2007). Model Studies of Vanadium-Dependent Haloperoxidation: Structural and Functional Lessons, ACS Symposium Series, Vol. 974, pp. 163–177. Washington: American Chemical Society.  Google Scholar
First citationSangeetha, N. R., Kavita, V., Wocadlo, S., Powell, A. K. & Pal, S. (2000). J. Coord. Chem. 51, 55–66.  CrossRef CAS Google Scholar
First citationSarkar, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807–3812.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrivastava, A. K., Ghosh, S., Jana, S. & Pal, S. (2018). Inorg. Chim. Acta, 483, 329–336.  CrossRef CAS Google Scholar
First citationSrivastava, A. K., Ghosh, S. & Pal, S. (2020). Inorg. Chim. Acta, 502, 119344.  CrossRef Google Scholar
First citationSutradhar, M., Roy Barman, T., Ghosh, S. & Drew, M. G. B. (2013). J. Mol. Struct. 1037, 276–282.  CrossRef CAS Google Scholar
First citationTanabe, Y. & Nishibayashi, Y. (2019). Coord. Chem. Rev. 381, 135–150.  Web of Science CrossRef CAS Google Scholar
First citationTsave, O., Petanidis, S., Kioseoglou, E., Yavropoulou, M. P., Yovos, J. G., Anestakis, D. & Salifoglou, A. (2016). Oxidative Med. Cell. Longev. Article ID 4013639. https://doi.org/10.1155/2016/4013639  Google Scholar
First citationZabin, S. A. & Abdelbaset, M. (2016). Eur. J. Chem. 7, 322–328.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds