research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­chlorido­tetra­kis­(4-methyl-1H-pyrazole-κN2)nickel(II) aceto­nitrile disolvate

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, b"Poni Petru" Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania, and cEnamine Ltd, Oleksandra Matrosova Str. 23, Kyiv 01103, Ukraine
*Correspondence e-mail: osvynohradov@ukr.net

Edited by J. T. Mague, Tulane University, USA (Received 30 September 2022; accepted 26 October 2022; online 1 November 2022)

The title compound, [NiCl2(C4H6N2)4]·2CH3CN, is a mononuclear octa­hedral NiII pyrazole-based complex. Two aceto­nitrile mol­ecules are linked to the NiII complex by N—H⋯N hydrogen bonds. The NiII atom is octa­hedrally coordinated by four N atoms of four 4-methyl-1H-pyrazole ligands, forming the equatorial plane. The axial positions are occupied by two Cl atoms. [NiCl2(C4H6N2)4]·2CH3CN was synthesized by the reaction of 4-methyl-1H-pyrazole with nickel(II) chloride hexa­hydrate in aceto­nitrile solution under ambient conditions and characterized by single-crystal X-ray diffraction analysis. A Hirshfeld surface analysis was performed, which suggests that the most important contributions to the surface contacts are from H⋯H (62.1%), H⋯N/N⋯H (13.7%), H⋯C/C⋯H (13.4%) and H⋯Cl/Cl⋯H (10.1%) inter­actions.

1. Chemical context

Pyrazoles as ligands are widely used for the synthesis of coordination compounds because of their rich coordinative flexibility (Trofimenko, 1972[Trofimenko, S. (1972). Chem. Rev. 72, 497-509.]; Mukherjee, 2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]; Monica & Ardizzoia, 2007[Monica, G. L. & Ardizzoia, G. A. (2007). Prog. Inorg. Chem. 46, 151-238.]; Halcrow, 2009[Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.]; Viciano-Chumillas et al., 2010[Viciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403-3418.]; Klingele et al., 2009[Klingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698-2741.]). Numerous studies of the synthesis and structure of transition-metal complexes such as Cu, Fe, Co, Ni, and Zn with pyrazole ligands indicate such compounds exhibit promising properties (Evans et al., 2004[Evans, I. R., Howard, J. A. K., Howard, L. E. M., Evans, J. S. O., Jaćimović, Ž. K., Jevtović, V. S. & Leovac, V. M. (2004). Inorg. Chim. Acta, 357, 4528-4536.]; Kirthan et al., 2020[Kirthan, B. R., Prabhakara, M. C., Naik, H. S. B., Nayak, P. H. A. & Naik, E. I. (2020). Chem. Data Collect. 29, 100506.]; Govor et al., 2012[Govor, E. V., Chakraborty, I., Piñero, D. M., Baran, P., Sanakis, Y. & Raptis, R. G. (2012). Polyhedron, 45, 55-60.]; Kulkarni et al., 2011[Kulkarni, N. V., Kamath, A., Budagumpi, S. & Revankar, V. K. (2011). J. Mol. Struct. 1006, 580-588.]; Dias et al., 2020[Dias, I. M., Junior, H. C. S., Costa, S. C., Cardoso, C. M., Cruz, A. G. B., Santos, C. E. R., Candela, D. R. S., Soriano, S., Marques, M. M., Ferreira, G. B. & Guedes, G. P. (2020). J. Mol. Struct. 1205, 127564.]; Naik et al., 2016[Naik, K., Nevrekar, A., Kokare, D. G., Kotian, A., Kamat, V. & Revankar, V. K. (2016). J. Mol. Struct. 1125, 671-679.]; Malinkin et al., 2012[Malinkin, S. O., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna-Kontecka, E., Pavlenko, V. A., Pavlova, S., Nordlander, E. & Fritsky, I. O. (2012). Eur. J. Inorg. Chem. 2012, 1639-1649.]). For example, CuII pyrazole-based complexes are very promising as anti­oxidants (Kupcewicz, Sobiesiak et al., 2013[Kupcewicz, B., Sobiesiak, K., Malinowska, K., Koprowska, K., Czyz, M., Keppler, B. & Budzisz, E. (2013). Med. Chem. Res. 22, 2395-2402.]; Chkirate et al., 2019[Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21-28.]) and anti­cancer agents because of their cytotoxic activity (Kupcewicz, Ciolkowski et al., 2013[Kupcewicz, B., Ciolkowski, M., Karwowski, B. T., Rozalski, M., Krajewska, U., Lorenz, I.-P., Mayer, P. & Budzisz, E. (2013). J. Mol. Struct. 1052, 32-37.]; Aljuhani et al., 2021[Aljuhani, E., Aljohani, M. M., Alsoliemy, A., Shah, R., Abumelha, H. M., Saad, F. A., Hossan, A., Al-Ahmed, Z. A., Alharbi, A. & El-Metwaly, N. M. (2021). Heliyon, 7, e08485.]; Santini et al., 2014[Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815-862.]). Iron pyrazole-containing complexes have extraordinary electronic properties (Kulmaczewski et al., 2021[Kulmaczewski, R., Bamiduro, F., Shahid, N., Cespedes, O. & Halcrow, M. A. (2021). Chem. Eur. J. 27, 2082-2092.]; Olguín & Brooker, 2011[Olguín, J. & Brooker, S. (2011). Coord. Chem. Rev. 255, 203-240.]) and catalytic activity in the hydro­silylation of organocarbonyl substrates (Lin et al., 2018[Lin, H.-J., Lutz, S., O'Kane, C., Zeller, M., Chen, C.-H., Al Assil, T. & Lee, W.-T. (2018). Dalton Trans. 47, 3243-3247.]). Cobalt complexes with pyrazole ligands are used as catalyst precursors for the peroxidative oxidation of cyclo­hexane (Silva et al., 2014[Silva, F. S. T., Martins, M. D. R. S., Guedes da Silva, m. F. C., Kuznetsov, M. L., Fernandes, A. R., Silva, A., Pan, C.-J., Lee, J.-F., & Pombeiro, A. J. L. (2014). Chem. Asian J. 9, 1132-1143.]) and have useful optical and photoluminescence properties (Direm et al., 2021[Direm, A., El Bali, B., Sayin, K., Abdelbaky, M. S. M. & García-Granda, S. (2021). J. Mol. Struct. 1235, 130266.]). Zinc complexes with pyrazoles also exhibit anti­oxidative activity (Barta Holló et al., 2022[Barta Holló, B., Radanović, M. M., Rodić, M. V., Krstić, S., Jaćimović, Ž. K. & Vojinović Ješić, L. S. (2022). Inorganics, 10, 20.]) and have useful luminescent properties (Li et al., 2004[Li, J., Zhou, J.-H., Li, Y.-Z., Weng, L.-H., Chen, X.-T., Yu, Z. & Xue, Z. (2004). Inorg. Chem. Commun. 7, 538-541.]; Singh et al., 2009[Singh, U. P., Tyagi, P. & Pal, S. (2009). Inorg. Chim. Acta, 362, 4403-4408.]). The study of the synthesis, structure and properties of nickel complexes with pyrazoles is also important. Nickel(II) pyrazolate complexes can be synthesized by the reaction between nickel(II) salts and pyrazoles in water or organic solvents (Nicholls & Warburton, 1970[Nicholls, D. & Warburton, B. A. (1970). J. Inorg. Nucl. Chem. 32, 3871-3874.]; Sun et al., 2002[Sun, Y.-J., Chen, X.-Y., Cheng, P., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Shen, P.-W. (2002). J. Mol. Struct. 613, 167-173.]; Małecka et al., 2001[Małecka, M., Rybarczyk-Pirek, A., Olszak, T. A., Malinowska, K. & Ochocki, J. (2001). Acta Cryst. C57, 513-514.]; Chen et al., 2009[Chen, C.-H., Hsieh, C.-C., Lee, H. M. & Horng, Y.-C. (2009). Acta Cryst. E65, m1680.]). Nickel complexes incorporating pyrazole-based ligands are used for ethyl­ene dimerization (Wang et al., 2015[Wang, T., Dong, B., Chen, Y.-H., Mao, G.-L. & Jiang, T. (2015). J. Organomet. Chem. 798, 388-392.]) or polymerization (Nelana et al., 2004[Nelana, S. M., Darkwa, J., Guzei, I. A. & Mapolie, S. F. (2004). J. Organomet. Chem. 689, 1835-1842.]; Moreno-Lara et al., 2015[Moreno-Lara, B., Carabineiro, S. A., Krishnamoorthy, P., Rodríguez, A. M., Mano, J. F., Manzano, B. R., Jalón, F. A. & Gomes, P. T. (2015). J. Organomet. Chem. 799-800, 90-98.]). Mononuclear nickel(II) coordin­ation compounds with pyrazoles show anti­cancer activity. The cytotoxic and apoptotic effects of such compounds suggested that they could be good candidates for further pharmacol­ogical research in the field of the development of effective anti­cancer agents (Gogoi et al., 2019[Gogoi, A., Dutta, D., Verma, A. K., Nath, H., Frontera, A., Guha, A. K. & Bhattacharyya, M. K. (2019). Polyhedron, 168, 113-126.]; Sobiesiak et al., 2011[Sobiesiak, M., Lorenz, I.-P., Mayer, P., Woźniczka, M., Kufelnicki, A., Krajewska, U., Rozalski, M. & Budzisz, E. (2011). Eur. J. Med. Chem. 46, 5917-5926.]). There is also a report on the activation of some organo­nitriles by transition-metal centers, such as Ni, toward nucleophilic addition of pyrazole (Hsieh et al., 2009[Hsieh, C.-C., Lee, C.-J. & Horng, Y.-C. (2009). Organometallics, 28, 4923-4928.]). NiII complexes can activate the pyrazole-nitrile coupling reaction. As part of our continuing inter­est in multifunctional transition-metal complexes with pyrazole ligands, we report herein the synthesis and crystal structure of a new mononuclear octa­hedral nickel(II) coordination compound based on 4-methyl-1H-pyrazole.

[Scheme 1]

2. Structural commentary

The title compound has a mol­ecular crystal structure, which is built-up from neutral monomeric [NiCl2(4-MeHpz)4] units (Fig. 1[link]) and aceto­nitrile as inter­stitial mol­ecules in a 1:2 ratio. All the components of the structure are associated via inter­molecular N—H⋯N and C—H⋯N hydrogen bonds. Intra­molecular N—H⋯N hydrogen bonding is also observed. The NiII ion displays a distorted octa­hedral coordination environment formed by four pyridine-like nitro­gen atoms of 4-MeHpz ligands in the equatorial positions with Ni1—N1 = 2.112 (2) Å and Ni1—N3 = 2.092 (2) Å bond distances and two Cl anions in axial positions with an Ni1—Cl1 distance of 2.4581 (6) Å. Selected bond lengths and bond angles are given in Table 1[link]. The orientation of the pyrazole ligands around the metal ion is different, as indicated by the plane-to-plane angles of pyrazole rings. Two pyrazole ring planes are almost perpendicular to the NiN4 equatorial plane [86.6 (1)°] whereas two other pyrazole rings are less tilted [43.9 (1)°]. The complex has an NiCl2L4 structure with a trans arrangement of the ligands and crystallographically imposed centrosymmetry.

Table 1
Selected geometric parameters (Å, °)

Ni1—N3 2.091 (2) Ni1—Cl1 2.4581 (6)
Ni1—N1 2.112 (2)    
       
N3—Ni1—N3i 180.0 N3—Ni1—Cl1i 90.57 (6)
N3i—Ni1—N1i 88.18 (9) N1i—Ni1—N1 180.0
N3i—Ni1—N1 91.82 (9) N1—Ni1—Cl1 89.91 (6)
N3—Ni1—N1i 91.83 (9) N1i—Ni1—Cl1 90.09 (6)
N3—Ni1—N1 88.17 (9) N1—Ni1—Cl1i 90.09 (6)
N3i—Ni1—Cl1i 89.43 (6) N1i—Ni1—Cl1i 89.91 (6)
N3i—Ni1—Cl1 90.57 (6) Cl1i—Ni1—Cl1 180.0
N3—Ni1—Cl1 89.43 (6)    
Symmetry code: (i) [-x+1, -y+1, -z+2].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen-bond parameters are given in Table 2[link]. Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) −1 + x, 1 + y, + z; (iii) 2 − x, −y, 2 - z.

3. Supra­molecular features

The crystal structure is built up from the parallel packing of discrete supra­molecular chains running along the a-axis direction with an Ni⋯Ni separation of 6.9625 (4) Å. A perspective view of a chain is depicted in Fig. 2[link]. Within the chain, the complex mol­ecules inter­act through N—H⋯Cl hydrogen bonds, while the association with the inter­stitial aceto­nitrile mol­ecules occurs via N—H⋯N hydrogen bonds. The geometric parameters of the hydrogen bonds are given in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N5ii 0.86 2.60 3.217 (4) 130
N2—H2⋯Cl1 0.86 2.50 3.088 (3) 127
N4—H4⋯Cl1iii 0.86 2.45 3.217 (2) 149
C5—H5⋯N5iv 0.93 2.74 3.5785 (2) 150
Symmetry codes: (ii) [x-1, y+1, z]; (iii) [-x, -y+1, -z+2]; (iv) [x-1, y, z].
[Figure 2]
Figure 2
View of the one-dimensional supra­molecular architecture in the crystal structure of the title compound.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.3714 (red) to 2.0459 (blue) a.u. There are six red spots on the dnorm surface (Fig. 3[link]). The dark-red spots arise from inter­atomic contacts less than the sum of the corresponding van der Waals radii and represent negative dnorm values on the surface, while the other weaker inter­molecular inter­actions appear as light-red spots. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯N/N⋯H, H⋯C/C⋯H, and H⋯Cl/Cl⋯H contacts. The Hirshfeld surface representations with the function dnorm, which were plotted onto the surface for inter­actions mentioned above, the overall two-dimensional fingerprint plot, and the decomposed two-dimensional fingerprint plots for the several inter­actions are given in Fig. 4[link]. The most significant contributions to the overall crystal packing are from H⋯H (62.1%), H⋯N/N⋯H (13.7%), H⋯C/C⋯H (13.4%), and H⋯Cl/Cl⋯H (10.1%). There is also a small contribution from weak Cl⋯C/C⋯Cl (0.2%) and C⋯C (0.4%) inter­molecular contacts. These contacts are not visible as red spots on the Hirshfeld surface. The H⋯H contacts are located in the middle region of the two-dimensional fingerprint plot, while H⋯Cl/Cl⋯H contacts form sharp wings on the sides of the corresponding two-dimensional plot.

[Figure 3]
Figure 3
Two projections of Hirshfeld surfaces mapped over dnorm showing the inter­molecular inter­actions within the mol­ecule. The N4—H4⋯Cl1 and N2—H2⋯N5 contacts are shown as pink and yellow dashed lines, respectively.
[Figure 4]
Figure 4
(a) The Hirshfeld surface representations with the function dnorm plotted onto the surface for selected inter­actions and (b) two-dimensional fingerprint plots for the title compound, showing the contributions of different types of inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.43,November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the Ni(C3HN2)4 moiety (C3HN2 is the skeleton of pyrazole ring which is coordinated in a monodentate way) gave 60 hits while the fragment Ni(C3HN2)4X2, where X is any halogen, gave 20 hits (complexes with Cl and Br were found). Most similar to the title compound are the mononuclear nickel(II) pyrazole-based complexes AZEREC (Nelana et al., 2004[Nelana, S. M., Darkwa, J., Guzei, I. A. & Mapolie, S. F. (2004). J. Organomet. Chem. 689, 1835-1842.]) and BOGFIN (Tao et al., 2008[Tao, T. L., Riordan, C. G. & Yap, G. P. A. (2008). CSD Communication (CCDC 669874). CCDC, Cambridge, England. https://doi.org/10.5517/ccqh1v2]). These complexes also crystallized in the triclinic P[\overline{1}] space group and have similar crystal packings. Other pyrazole-containing complexes are BRTPNI (Mighell et al., 1969[Mighell, A. D., Reimann, C. W. & Santoro, A. (1969). Acta Cryst. B25, 595-599.]), MUWFER (Serpas et al., 2016[Serpas, L., Baum, R. R., McGhee, A., Nieto, I., Jernigan, K. L., Zeller, M., Ferrence, G. M., Tierney, D. L. & Papish, E. T. (2016). Polyhedron, 114, 62-71.]), NIPYRA (Reimann et al., 1967[Reimann, C. W., Mighell, A. D. & Mauer, F. A. (1967). Acta Cryst. 23, 135-141.]), NIPYRA01 (Helmholdt et al., 1987[Helmholdt, R. B., Hinrichs, W. & Reedijk, J. (1987). Acta Cryst. C43, 226-229.]), SAGBAH (Akkurt et al., 2020[Akkurt, M. (2020). CSD Communication (CCDC 2040441). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26h7pn]) and SANSUW (Michaud et al., 2005[Michaud, A., Fontaine, F.-G. & Zargarian, D. (2005). Acta Cryst. E61, m846-m848.]), which crystallized in the monoclinic crystal system and, accordingly, have different crystal structures. In addition, all of the above pyrazole-based complexes with terminal chlorine ligands have similar geometric parameters. Finally, the central nickel atom has an octa­hedral geometric environment in all cases.

6. Synthesis and crystallization

The title compound was obtained by the reaction of 4-MeHpz (1.7 mmol, 0.14g) with NiCl2·6H2O (0.84mmol, 0.2 g) in aceto­nitrile (10 ml). The mixture of solid starting materials was stirred for 8 h at room temperature and the resultant green–blue solution was then filtered. Light-blue crystals of [NiCl2(C4H6N2)4]·2CH3CN were obtained upon slow evaporation of the solvent over two weeks. CHN elemental analysis: calculated for NiCl2(C4H6N2)4: C 41.95, H 5.28, N 24.46%; found: C 41.79, H 5.07, N 24.78%. The IR spectra of the starting 4-methyl-1H-pyrazole and clear, light-blue crystals of the title coordination compound are given in the supporting information for this article. The synthesis can be described by the following reaction: NiCl2·6H2O + 4C4H6N2 + 2CH3CN = [NiCl2(C4H6N2)4]·2CH3CN + 6H2O.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions [C—N = 0.86 Å, C—H = 0.93 Å (0.96 Å for C-meth­yl)] and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C-meth­yl). Reflections with (ΔF2/esd) > 10 were omitted from the refinement.

Table 3
Experimental details

Crystal data
Chemical formula [NiCl2(C4H6N2)4]·2C2H3N
Mr 540.15
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.9625 (4), 9.8482 (8), 11.0920 (12)
α, β, γ (°) 74.417 (8), 81.495 (6), 71.191 (6)
V3) 691.92 (10)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.92
Crystal size (mm) 0.2 × 0.15 × 0.03
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.795, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5491, 3161, 2500
Rint 0.031
(sin θ/λ)max−1) 0.691
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.03
No. of reflections 3161
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.45
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dichloridotetrakis(4-methyl-1H-pyrazole-κN2)nickel(II) acetonitrile disolvate top
Crystal data top
[NiCl2(C4H6N2)4]·2C2H3NZ = 1
Mr = 540.15F(000) = 282
Triclinic, P1Dx = 1.296 Mg m3
a = 6.9625 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8482 (8) ÅCell parameters from 1586 reflections
c = 11.0920 (12) Åθ = 2.3–29.1°
α = 74.417 (8)°µ = 0.92 mm1
β = 81.495 (6)°T = 293 K
γ = 71.191 (6)°Plate, clear light blue
V = 691.92 (10) Å30.2 × 0.15 × 0.03 mm
Data collection top
Xcalibur, Eos
diffractometer
3161 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1593 pixels mm-1θmax = 29.4°, θmin = 1.9°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1312
Tmin = 0.795, Tmax = 1.000l = 1415
5491 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.1286P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3161 reflectionsΔρmax = 0.57 e Å3
154 parametersΔρmin = 0.45 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000001.0000000.03038 (17)
C30.7595 (4)0.6698 (3)0.7894 (3)0.0418 (7)
H30.8851780.6005210.8075030.050*
N20.4458 (4)0.7836 (3)0.7985 (2)0.0433 (6)
H20.3186500.8071180.8226300.052*
N30.4456 (3)0.4131 (2)0.8602 (2)0.0357 (5)
C50.2833 (5)0.3210 (4)0.7604 (3)0.0509 (8)
H50.1846290.2854300.7426810.061*
C20.7297 (5)0.7927 (4)0.6882 (3)0.0451 (7)
C70.5519 (4)0.3886 (3)0.7546 (3)0.0423 (7)
H70.6762770.4068950.7287290.051*
C60.4560 (5)0.3325 (3)0.6874 (3)0.0464 (7)
C10.5283 (5)0.8623 (4)0.6981 (3)0.0522 (8)
H10.4589250.9494410.6446590.063*
C80.5300 (7)0.2883 (5)0.5643 (4)0.0789 (12)
H8A0.6024130.1848140.5804750.118*
H8B0.6189330.3438790.5178550.118*
H8C0.4157330.3080090.5165570.118*
N10.5870 (3)0.6636 (2)0.8565 (2)0.0354 (5)
Cl10.14603 (9)0.65951 (7)0.99696 (7)0.0397 (2)
N40.2819 (3)0.3701 (3)0.8618 (3)0.0433 (6)
H40.1868290.3735600.9210750.052*
C40.8908 (6)0.8343 (5)0.5915 (4)0.0752 (12)
H4A1.0213700.7911100.6262540.113*
H4B0.8611160.9397850.5680220.113*
H4C0.8923910.7984920.5188910.113*
C90.9065 (6)0.0384 (4)0.8290 (4)0.0599 (9)
N51.0344 (5)0.0551 (4)0.7595 (4)0.0803 (11)
C100.7409 (5)0.0148 (4)0.9202 (4)0.0674 (11)
H10A0.6209060.0351230.8774850.101*
H10B0.7147970.0794300.9758070.101*
H10C0.7776460.0859020.9677670.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0233 (2)0.0330 (3)0.0342 (3)0.01078 (19)0.00342 (19)0.0069 (2)
C30.0322 (14)0.0492 (18)0.0462 (18)0.0196 (13)0.0066 (13)0.0110 (15)
N20.0338 (12)0.0407 (15)0.0471 (15)0.0084 (11)0.0012 (11)0.0019 (12)
N30.0285 (11)0.0391 (13)0.0412 (14)0.0139 (10)0.0028 (10)0.0105 (11)
C50.0442 (17)0.057 (2)0.061 (2)0.0219 (15)0.0078 (16)0.0199 (17)
C20.0520 (18)0.056 (2)0.0330 (16)0.0293 (16)0.0077 (14)0.0092 (14)
C70.0400 (15)0.0505 (18)0.0417 (17)0.0208 (13)0.0078 (13)0.0160 (14)
C60.0565 (19)0.0449 (19)0.0390 (17)0.0168 (15)0.0018 (14)0.0104 (14)
C10.057 (2)0.052 (2)0.0391 (18)0.0174 (16)0.0001 (15)0.0031 (15)
C80.109 (3)0.085 (3)0.056 (3)0.038 (3)0.008 (2)0.034 (2)
N10.0320 (11)0.0358 (13)0.0383 (13)0.0136 (10)0.0027 (10)0.0072 (11)
Cl10.0231 (3)0.0415 (4)0.0513 (5)0.0089 (3)0.0037 (3)0.0101 (3)
N40.0299 (12)0.0513 (15)0.0537 (16)0.0178 (11)0.0060 (11)0.0181 (13)
C40.079 (3)0.092 (3)0.056 (2)0.047 (2)0.023 (2)0.007 (2)
C90.057 (2)0.052 (2)0.067 (3)0.0080 (17)0.011 (2)0.0142 (19)
N50.066 (2)0.081 (3)0.091 (3)0.0224 (18)0.009 (2)0.022 (2)
C100.059 (2)0.065 (3)0.071 (3)0.0125 (19)0.002 (2)0.014 (2)
Geometric parameters (Å, º) top
Ni1—N32.091 (2)C2—C41.511 (4)
Ni1—N3i2.092 (2)C7—H70.9300
Ni1—N12.112 (2)C7—C61.383 (4)
Ni1—N1i2.112 (2)C6—C81.512 (5)
Ni1—Cl1i2.4581 (6)C1—H10.9300
Ni1—Cl12.4581 (6)C8—H8A0.9600
C3—H30.9300C8—H8B0.9600
C3—C21.394 (4)C8—H8C0.9600
C3—N11.326 (3)N4—H40.8600
N2—H20.8600C4—H4A0.9600
N2—C11.344 (4)C4—H4B0.9600
N2—N11.345 (3)C4—H4C0.9600
N3—C71.327 (4)C9—N51.113 (5)
N3—N41.334 (3)C9—C101.452 (5)
C5—H50.9300C10—H10A0.9600
C5—C61.365 (4)C10—H10B0.9600
C5—N41.337 (4)C10—H10C0.9600
C2—C11.350 (5)
N3—Ni1—N3i180.0C6—C7—H7124.0
N3i—Ni1—N1i88.18 (9)C5—C6—C7104.0 (3)
N3i—Ni1—N191.82 (9)C5—C6—C8128.1 (3)
N3—Ni1—N1i91.83 (9)C7—C6—C8127.9 (3)
N3—Ni1—N188.17 (9)N2—C1—C2108.0 (3)
N3i—Ni1—Cl1i89.43 (6)N2—C1—H1126.0
N3i—Ni1—Cl190.57 (6)C2—C1—H1126.0
N3—Ni1—Cl189.43 (6)C6—C8—H8A109.5
N3—Ni1—Cl1i90.57 (6)C6—C8—H8B109.5
N1i—Ni1—N1180.0C6—C8—H8C109.5
N1—Ni1—Cl189.91 (6)H8A—C8—H8B109.5
N1i—Ni1—Cl190.09 (6)H8A—C8—H8C109.5
N1—Ni1—Cl1i90.09 (6)H8B—C8—H8C109.5
N1i—Ni1—Cl1i89.91 (6)C3—N1—Ni1134.1 (2)
Cl1i—Ni1—Cl1180.0C3—N1—N2104.4 (2)
C2—C3—H3124.1N2—N1—Ni1120.53 (17)
N1—C3—H3124.1N3—N4—C5111.9 (3)
N1—C3—C2111.8 (3)N3—N4—H4124.0
C1—N2—H2124.3C5—N4—H4124.0
C1—N2—N1111.4 (2)C2—C4—H4A109.5
N1—N2—H2124.3C2—C4—H4B109.5
C7—N3—Ni1131.41 (19)C2—C4—H4C109.5
C7—N3—N4104.5 (2)H4A—C4—H4B109.5
N4—N3—Ni1124.12 (18)H4A—C4—H4C109.5
C6—C5—H5126.2H4B—C4—H4C109.5
N4—C5—H5126.2N5—C9—C10179.3 (5)
N4—C5—C6107.6 (3)C9—C10—H10A109.5
C3—C2—C4126.4 (3)C9—C10—H10B109.5
C1—C2—C3104.3 (3)C9—C10—H10C109.5
C1—C2—C4129.3 (3)H10A—C10—H10B109.5
N3—C7—H7124.0H10A—C10—H10C109.5
N3—C7—C6112.1 (3)H10B—C10—H10C109.5
Ni1—N3—C7—C6178.4 (2)C1—N2—N1—Ni1170.4 (2)
Ni1—N3—N4—C5179.1 (2)C1—N2—N1—C30.0 (3)
C3—C2—C1—N20.5 (4)N1—C3—C2—C10.5 (4)
N3—C7—C6—C51.2 (4)N1—C3—C2—C4179.4 (3)
N3—C7—C6—C8178.9 (3)N1—N2—C1—C20.3 (4)
C2—C3—N1—Ni1168.1 (2)N4—N3—C7—C61.0 (3)
C2—C3—N1—N20.3 (3)N4—C5—C6—C70.8 (4)
C7—N3—N4—C50.5 (3)N4—C5—C6—C8178.5 (3)
C6—C5—N4—N30.3 (4)C4—C2—C1—N2179.4 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N5ii0.862.603.217 (4)130
C10ii—H10Cii···Cl10.962.943.697 (3)137
N2—H2···Cl10.862.503.088 (3)127
N4—H4···Cl1iii0.862.453.217 (2)149
C10i—H10Bi···Cl10.963.123.8958 (3)139
C5—H5···N5iv0.932.743.5785 (2)150
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y+1, z; (iii) x, y+1, z+2; (iv) x1, y, z.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037-09).

References

First citationAkkurt, M. (2020). CSD Communication (CCDC 2040441). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26h7pn  Google Scholar
First citationAljuhani, E., Aljohani, M. M., Alsoliemy, A., Shah, R., Abumelha, H. M., Saad, F. A., Hossan, A., Al-Ahmed, Z. A., Alharbi, A. & El-Metwaly, N. M. (2021). Heliyon, 7, e08485.  Web of Science CrossRef PubMed Google Scholar
First citationBarta Holló, B., Radanović, M. M., Rodić, M. V., Krstić, S., Jaćimović, Ž. K. & Vojinović Ješić, L. S. (2022). Inorganics, 10, 20.  Google Scholar
First citationChen, C.-H., Hsieh, C.-C., Lee, H. M. & Horng, Y.-C. (2009). Acta Cryst. E65, m1680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDias, I. M., Junior, H. C. S., Costa, S. C., Cardoso, C. M., Cruz, A. G. B., Santos, C. E. R., Candela, D. R. S., Soriano, S., Marques, M. M., Ferreira, G. B. & Guedes, G. P. (2020). J. Mol. Struct. 1205, 127564.  Web of Science CSD CrossRef Google Scholar
First citationDirem, A., El Bali, B., Sayin, K., Abdelbaky, M. S. M. & García-Granda, S. (2021). J. Mol. Struct. 1235, 130266.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, I. R., Howard, J. A. K., Howard, L. E. M., Evans, J. S. O., Jaćimović, Ž. K., Jevtović, V. S. & Leovac, V. M. (2004). Inorg. Chim. Acta, 357, 4528–4536.  Web of Science CSD CrossRef CAS Google Scholar
First citationGogoi, A., Dutta, D., Verma, A. K., Nath, H., Frontera, A., Guha, A. K. & Bhattacharyya, M. K. (2019). Polyhedron, 168, 113–126.  Web of Science CSD CrossRef CAS Google Scholar
First citationGovor, E. V., Chakraborty, I., Piñero, D. M., Baran, P., Sanakis, Y. & Raptis, R. G. (2012). Polyhedron, 45, 55–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalcrow, M. A. (2009). Dalton Trans. pp. 2059–2073.  Web of Science CrossRef Google Scholar
First citationHelmholdt, R. B., Hinrichs, W. & Reedijk, J. (1987). Acta Cryst. C43, 226–229.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHsieh, C.-C., Lee, C.-J. & Horng, Y.-C. (2009). Organometallics, 28, 4923–4928.  Web of Science CSD CrossRef CAS Google Scholar
First citationKirthan, B. R., Prabhakara, M. C., Naik, H. S. B., Nayak, P. H. A. & Naik, E. I. (2020). Chem. Data Collect. 29, 100506.  CrossRef Google Scholar
First citationKlingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698–2741.  Web of Science CrossRef CAS Google Scholar
First citationKulkarni, N. V., Kamath, A., Budagumpi, S. & Revankar, V. K. (2011). J. Mol. Struct. 1006, 580–588.  Web of Science CrossRef CAS Google Scholar
First citationKulmaczewski, R., Bamiduro, F., Shahid, N., Cespedes, O. & Halcrow, M. A. (2021). Chem. Eur. J. 27, 2082–2092.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKupcewicz, B., Ciolkowski, M., Karwowski, B. T., Rozalski, M., Krajewska, U., Lorenz, I.-P., Mayer, P. & Budzisz, E. (2013). J. Mol. Struct. 1052, 32–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationKupcewicz, B., Sobiesiak, K., Malinowska, K., Koprowska, K., Czyz, M., Keppler, B. & Budzisz, E. (2013). Med. Chem. Res. 22, 2395–2402.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, J., Zhou, J.-H., Li, Y.-Z., Weng, L.-H., Chen, X.-T., Yu, Z. & Xue, Z. (2004). Inorg. Chem. Commun. 7, 538–541.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, H.-J., Lutz, S., O'Kane, C., Zeller, M., Chen, C.-H., Al Assil, T. & Lee, W.-T. (2018). Dalton Trans. 47, 3243–3247.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMałecka, M., Rybarczyk-Pirek, A., Olszak, T. A., Malinowska, K. & Ochocki, J. (2001). Acta Cryst. C57, 513–514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMalinkin, S. O., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna–Kontecka, E., Pavlenko, V. A., Pavlova, S., Nordlander, E. & Fritsky, I. O. (2012). Eur. J. Inorg. Chem. 2012, 1639–1649.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichaud, A., Fontaine, F.-G. & Zargarian, D. (2005). Acta Cryst. E61, m846–m848.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMighell, A. D., Reimann, C. W. & Santoro, A. (1969). Acta Cryst. B25, 595–599.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMonica, G. L. & Ardizzoia, G. A. (2007). Prog. Inorg. Chem. 46, 151–238.  Google Scholar
First citationMoreno-Lara, B., Carabineiro, S. A., Krishnamoorthy, P., Rodríguez, A. M., Mano, J. F., Manzano, B. R., Jalón, F. A. & Gomes, P. T. (2015). J. Organomet. Chem. 799–800, 90–98.  CAS Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationNaik, K., Nevrekar, A., Kokare, D. G., Kotian, A., Kamat, V. & Revankar, V. K. (2016). J. Mol. Struct. 1125, 671–679.  Web of Science CrossRef CAS Google Scholar
First citationNelana, S. M., Darkwa, J., Guzei, I. A. & Mapolie, S. F. (2004). J. Organomet. Chem. 689, 1835–1842.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicholls, D. & Warburton, B. A. (1970). J. Inorg. Nucl. Chem. 32, 3871–3874.  CrossRef CAS Web of Science Google Scholar
First citationOlguín, J. & Brooker, S. (2011). Coord. Chem. Rev. 255, 203–240.  Google Scholar
First citationReimann, C. W., Mighell, A. D. & Mauer, F. A. (1967). Acta Cryst. 23, 135–141.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSantini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815–862.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSerpas, L., Baum, R. R., McGhee, A., Nieto, I., Jernigan, K. L., Zeller, M., Ferrence, G. M., Tierney, D. L. & Papish, E. T. (2016). Polyhedron, 114, 62–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, F. S. T., Martins, M. D. R. S., Guedes da Silva, m. F. C., Kuznetsov, M. L., Fernandes, A. R., Silva, A., Pan, C.-J., Lee, J.-F., & Pombeiro, A. J. L. (2014). Chem. Asian J. 9, 1132–1143.  Web of Science CAS PubMed Google Scholar
First citationSingh, U. P., Tyagi, P. & Pal, S. (2009). Inorg. Chim. Acta, 362, 4403–4408.  Web of Science CSD CrossRef CAS Google Scholar
First citationSobiesiak, M., Lorenz, I.-P., Mayer, P., Woźniczka, M., Kufelnicki, A., Krajewska, U., Rozalski, M. & Budzisz, E. (2011). Eur. J. Med. Chem. 46, 5917–5926.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-J., Chen, X.-Y., Cheng, P., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Shen, P.-W. (2002). J. Mol. Struct. 613, 167–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationTao, T. L., Riordan, C. G. & Yap, G. P. A. (2008). CSD Communication (CCDC 669874). CCDC, Cambridge, England. https://doi.org/10.5517/ccqh1v2  Google Scholar
First citationTrofimenko, S. (1972). Chem. Rev. 72, 497–509.  CrossRef CAS Web of Science Google Scholar
First citationViciano–Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403–3418.  Google Scholar
First citationWang, T., Dong, B., Chen, Y.-H., Mao, G.-L. & Jiang, T. (2015). J. Organomet. Chem. 798, 388–392.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds