CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 3 October 2022
Accepted 7 October 2022

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; α-haloketone; chlorinated acetophenone.

CCDC reference: 2211527

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structure of 2-chloro-1-(3hydroxyphenyl)ethanone

Prabhakar Priyanka, ${ }^{\text {a }}$ Bidarur K. Jayanna, ${ }^{\text {a }}$ Vinaya, ${ }^{\text {b }}$ Holehundi J. Shankara Prasad, ${ }^{\text {c }}$ Thayamma R. Divakara, ${ }^{\text {d }}$ Hemmige S. Yathirajan ${ }^{\text {b* }}$ and Sean Parkin ${ }^{\text {e }}$

${ }^{\text {a }}$ Department of Chemistry, B. N. M. Institute of Technology, Bengaluru-560 070, India, ${ }^{\mathbf{b}}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, ${ }^{\text {c Department of Chemistry, Yuvaraja's College, }}$ University of Mysore, Mysore-570 005, India, ${ }^{\text {d } T \text {. John Institute of Technology, Bengaluru-560 083, India, and }}$ ${ }^{\text {e }}$ Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA. *Correspondence e-mail: yathirajan@hotmail.com

The structure of 2-chloro-1-(3-hydroxyphenyl)ethanone, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$, an α-haloketone is described. The molecule is planar (r.m.s. deviation $=$ $0.0164 \AA$) and in the crystal, inversion-symmetric dimers are formed as a result of pairs of strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. A brief comparison is made with structurally related compounds deposited in the CSD. In addition, the synthesis and some spectroscopic details are presented.

1. Chemical context

α-Haloketones have proven to be useful building blocks for the preparation of compounds of various classes because of their high reactivity and selective transformations with a variety of reagents (Erian et al., 2003). Chlorinated acetophenones are widely used in organic synthesis as intermediates for the manufacture of active pharmaceutical ingredients (Ott-Dombrowski et al., 2019). For example, 2-chloro-1-(4-hydroxyphenyl)ethanone is a reagent that is used in the preparation of hydroxypyrimidine derivatives for their HDAC (histone deacetylase) inhibitory activity (Kemp et al., 2011). In light of the importance of α-haloketones, this paper reports the synthesis, crystal structure, and some spectroscopic details for the title compound, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{Cl}$, (I).

OPEN \bigodot ACCESS
Published under a CC BY 4.0 licence

2. Structural commentary

The molecule of \mathbf{I} (Fig. 1) is planar (r.m.s. deviation = $0.0164 \AA$), with the largest deviation being for Cl 1 , which is 0.0346 (5) A from the mean plane through all non-H atoms due to the $\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 1$ torsion angle of $-2.07(14)^{\circ}$. The hydroxyl hydrogen atom, $\mathrm{H} 1 O$, which was refined freely, lies 0.045 (16) Å out of the mean plane, with a $\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1-$ $\mathrm{H} 1 O$ torsion angle of $1.8(12)^{\circ}$, its position being mandated by intermolecular hydrogen bonding (see section 3, Supramolecular details). All bond lengths and angles fall within the expected ranges for organic structures.

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.803(17)$	$2.004(18)$	$2.8029(12)$	$173.4(16)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.945(15)$	$2.547(15)$	$3.2633(14)$	$132.7(11)$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots 1^{\mathrm{ii}}$	0.99	2.36	$3.3485(14)$	176

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.

3. Supramolecular features

The main supramolecular feature is an inversion dimer resulting from a pair of symmetrically equivalent hydrogen bonds, $\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O} 2^{\mathrm{i}}$ and $\mathrm{O} 1^{\mathrm{i}}-\mathrm{H} 1 O^{\mathrm{i}} \ldots \mathrm{O} 2$ [symmetry code: (i) $-x+1,-y+1,-z+1$], giving an $R_{2}^{2}(14)$ motif. The cohesion of this dimer is augmented by a pair of weak hydrogen bonds, $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$ and $\mathrm{C}^{\mathrm{i}}-\mathrm{H} 2^{\mathrm{i}} \cdots \mathrm{O} 2$ (Table 1). It also, however, brings inversion-related H 2 atoms into unfavourably close proximity $\left[\mathrm{H} 2 \cdots \mathrm{H} 2^{\mathrm{i}}=2.22(3) \AA\right]$. These interactions are all illustrated in Fig. 2. Other noteworthy intermolecular contacts are weak $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 1^{\text {ii }}$ [symmetry code: (ii) $\left.-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}\right]$ interactions between 2_{1} screwrelated molecules, which loosely connect the dimers into layers parallel to $(10 \overline{1})$. Almost all of the atom-atom contact coverages quantified in a Hirshfeld-surface analysis using CrystalExplorer (Spackman et al., 2021) involve hydrogen $(\mathrm{H} \cdots \mathrm{H}=26.6 \%, \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}=23.7 \%, \mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}=$ $21.2 \%, \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}=15.8 \%$), with all other contact types being $<5 \%$. Further details are given in individual Hirshfeldsurface fingerprint plots (Fig. 3).

4. Database survey

A search of the Cambridge Structure Database (v5.43 with updates as of June 2022; Groom et al., 2016) for a search fragment consisting of the structure of \mathbf{I} but with the OH and Cl groups replaced by 'any non- H ' gave 71 hits. If the Cl site is specified as 'any halogen', there are just four hits, only three of which are unique, and all have Br as the halogen. Structure

Figure 1
An ellipsoid plot (50\% probability) of I. Hydrogen atoms are drawn as small circles.

Figure 2
A partial packing plot showing the main supramolecular motif in \mathbf{I} : a hydrogen-bonded dimer between inversion-related [symmetry code: (i) $-x+1,-y+1,-z+1]$ molecules. Strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as thick dashed lines, weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as open dashed lines, and an unfavourable, forced close contact between hydrogen atoms as a dotted line.

AWOCAS (Aldeborgh et al., 2014) is chemically a Br analogue of \mathbf{I}, but its crystal structure is quite different (triclinic $P \overline{1} \mathrm{vs}$ $P 2_{1} / n$ for I). QAJNAS (Jasinski et al., 2011) [and QAJNAS01 (Mounir et al., 2013)] has NO_{2} in place of the hydroxyl. Lastly,

Figure 3
Hirshfeld surface fingerprint plots showing the relative contributions of various atom-atom contacts in the packing of I. (a) All contacts, (b) $\mathrm{H} \cdots \mathrm{H}(26.6 \%),(c) \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}(23.7 \%),(d) \mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}(21.2 \%)$, (e) $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(15.7 \%)$, (f) $\mathrm{C} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{C}(4.5 \%),(g) \mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}$ (3.6\%), (h) $\mathrm{C} \cdots \mathrm{C}(3.0 \%)$, (i) $\mathrm{O} \cdots \mathrm{O}(1.2 \%)$. All other contact types are $<1 \%$.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$
$M_{\text {r }}$	170.59
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	90
$a, b, c(\AA)$	4.9172 (2), 12.7016 (4), 11.8573 (3)
$\beta\left({ }^{\circ}\right.$)	96.294 (1)
$V\left(\mathrm{~A}^{3}\right)$	736.10 (4)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.46
Crystal size (mm)	$0.25 \times 0.22 \times 0.19$
Data collection	
Diffractometer	Bruker D8 Venture dual source
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.855, 0.971
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	12264, 1685, 1569
$R_{\text {int }}$	0.028
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.650
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.024, 0.067, 1.04
No. of reflections	1685
No. of parameters	106
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.35,-0.18$

Computer programs: APEX3 (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), XP in SHELXTL and SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010).

MEXCOJ (Ambekar et al., 2013) has $\mathrm{OC}=\mathrm{OPh}$ in place of the OH in \mathbf{I}. Other similar structures in the literature include: LEFNAN (Fun et al., 2012), which is the 4-hydroxyphenyl analogue of \mathbf{I} and crystallizes with the symmetry of $P 2_{1} / c$; FUHHOG (Qing \& Zhang, 2009), which is the bromo analogue of LEFNAN; and CUYDOR (Mei et al., 2015), which has 4-fluorophenyl in place of the halogen of LEFNAN and FUHHOG.

5. Synthesis, crystallization and spectroscopic details

Synthesis and crystallization: For the synthesis of I, sulfuryl chloride ($150 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added dropwise to a stirred mixture of 3-hydroxyacetophenone ($100 \mathrm{mg}, 0.74 \mathrm{mmol}$) in 5 ml of methanol and 10 ml of ethyl acetate/dichloromethane at 293-303 K. After completion of the addition, it was allowed to return to RT with stirring for 1 h . The reaction was monitored by TLC. Then the solvent was removed under reduced

Figure 4
The overall reaction scheme for the synthesis of \mathbf{I}.
pressure by rotary evaporation to give the desired product in 95% yield. An overall reaction scheme is depicted in Fig. 4. X-ray quality crystals were obtained by crystallization from ethanol (m.p. 352-354 K).

Spectroscopic data: Infrared and NMR spectroscopic details are as follows.

FTIR (γ in cm^{-1}): 3400 ($\mathrm{Ar}-\mathrm{OH}$, broad), $2987(\mathrm{C}-\mathrm{H}$ stretching $), 1694(\mathrm{C}=\mathrm{C}$ stretching $), 1789(s, \mathrm{C}=\mathrm{O}$ stretching $)$, 832 (s, Ar-C-H bending).
${ }^{1} \mathrm{H}$ NMR: $\mathrm{CDCl}_{3}(400 \mathrm{MHz}, \delta \mathrm{ppm}): 4.7\left(s, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 5.671$ $(s, 1 \mathrm{H},-\mathrm{OH}), 7.14(d, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, J=4.8 \mathrm{~Hz}), 7.36-7.4(t, 2 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}, J=16 \mathrm{~Hz}), 7.493-7.51(m, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, J=6.4 \mathrm{~Hz})$.

6. Refinement

Crystal data, data collection, and structure refinement details are given in Table 2. All hydrogen atoms were found in difference-Fourier maps, but subsequently, the carbon-bound hydrogens were included using riding models, with constrained distances set to $0.95 \AA\left(\mathrm{Csp}^{2}-\mathrm{H}\right)$ and $0.99 \AA$ $\left(R_{2} \mathrm{CH}_{2}\right)$. The hydroxyl hydrogen atom coordinates were refined freely. In all cases, $U_{\text {iso }}(\mathrm{H})$ values were set to $1.2 U_{\text {eq }}$ of the attached atom.

Acknowledgements

PP is grateful to the B. N. M. Institute of Technology, Bengaluru for research facilities.

Funding information

HSY is grateful to UGC, New Delhi for a BSR Faculty Fellowship for three years. Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 Venture diffractometer).

References

Aldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. \& Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 7081.

Ambekar, S. P., Devarajegowda, H. C., ShylajaKumari, J., Kumar, K. M. \& Kotresh, O. (2013). Acta Cryst. E69, o322.

Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
Erian, A. W., Sherif, S. M. \& Gaber, H. M. (2003). Molecules, 8, 793865.

Fun, H.-K., Quah, C. K., Shetty, D. N., Narayana, B. \& Sarojini, B. K. (2012). Acta Cryst. E68, o2424.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jasinski, J. P., Butcher, R. J., Praveen, A. S., Yathirajan, H. S. \& Narayana, B. (2011). Acta Cryst. E67, o29-o30.
Kemp, M. M., Wang, Q., Fuller, J. H., West, N., Martinez, N. M., Morse, E. M., Weïwer, M., Schreiber, S. L., Bradner, J. E. \& Koehler, A. N. (2011). Bioorg. Med. Chem. Lett. 21, 4164-4169.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Mei, Q., Liu, H. \& Han, B. (2015). CSD Communication (refcode CUYDOR). CCDC, Cambridge, England.
Mounir, F., Gandour, R. D. \& Fronczek, F. (2013). CSD Communication (refcode QAJNAS01). CCDC, Cambridge, England.
Ott-Dombrowski, S., Rüter, H. \& Ulrich, R. (2019). European patent EP3498687A1.

Qing, W.-X. \& Zhang, W. (2009). Acta Cryst. E65, o2837.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2022). E78, 1127-1130 [https://doi.org/10.1107/S2056989022009835]

Synthesis and crystal structure of 2-chloro-1-(3-hydroxyphenyl)ethanone

Prabhakar Priyanka, Bidarur K. Jayanna, Vinaya, Holehundi J. Shankara Prasad, Thayamma R.
Divakara, Hemmige S. Yathirajan and Sean Parkin

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010).

2-Chloro-1-(3-hydroxyphenyl)ethanone

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{2}$
$M_{r}=170.59$
Monoclinic, $P 2{ }_{1} / n$
$a=4.9172$ (2) \AA
$b=12.7016$ (4) \AA
$c=11.8573(3) \AA$
$\beta=96.294(1)^{\circ}$
$V=736.10(4) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Venture dual source diffractometer
Radiation source: microsource
Detector resolution: 7.41 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.855, T_{\text {max }}=0.971$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.067$
$S=1.04$
1685 reflections
106 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=352$
$D_{\mathrm{x}}=1.539 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9994 reflections
$\theta=2.4-27.5^{\circ}$
$\mu=0.46 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Cut block, colourless
$0.25 \times 0.22 \times 0.19 \mathrm{~mm}$

12264 measured reflections
1685 independent reflections
1569 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-6 \rightarrow 6$
$k=-15 \rightarrow 16$
$l=-15 \rightarrow 15$

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0323 P)^{2}+0.366 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$1.05641(18)$	$0.59830(6)$	$0.66167(7)$	$0.01786(19)$
H1O	$0.938(3)$	$0.6217(12)$	$0.6166(14)$	0.021^{*}
O2	$0.38728(17)$	$0.32908(6)$	$0.48648(7)$	$0.01810(19)$
C11	$0.22134(5)$	$0.10971(2)$	$0.48449(2)$	$0.01719(10)$
C1	$0.7757(2)$	$0.33060(8)$	$0.62318(9)$	$0.0131(2)$
C2	$0.8093(2)$	$0.43878(9)$	$0.60814(9)$	$0.0140(2)$
H2	$0.686(3)$	$0.4757(12)$	$0.5553(12)$	0.017^{*}
C3	$1.0190(2)$	$0.49212(9)$	$0.67174(9)$	$0.0139(2)$
C4	$1.1997(2)$	$0.43790(9)$	$0.74969(9)$	$0.0151(2)$
H4	1.345037	0.474217	0.792591	0.018^{*}
C5	$1.1662(2)$	$0.33023(9)$	$0.76434(9)$	$0.0157(2)$
H5	1.289511	0.293235	0.817524	0.019^{*}
C6	$0.9546(2)$	$0.27607(9)$	$0.70220(9)$	$0.0147(2)$
H6	0.931888	0.202668	0.713351	0.018^{*}
C7	$0.5426(2)$	$0.27915(8)$	$0.55286(9)$	$0.0133(2)$
C8	$0.5108(2)$	$0.16148(9)$	$0.56861(10)$	$0.0148(2)$
H8A	0.493730	0.146717	0.649517	0.018^{*}
H8B	0.677307	0.125426	0.548476	0.018^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
O1	$0.0212(4)$	$0.0116(4)$	$0.0191(4)$	$-0.0027(3)$	$-0.0048(3)$	$0.0006(3)$
O2	$0.0185(4)$	$0.0146(4)$	$0.0198(4)$	$-0.0007(3)$	$-0.0042(3)$	$0.0025(3)$
C11	$0.01466(15)$	$0.01477(15)$	$0.02144(16)$	$-0.00314(9)$	$-0.00114(11)$	$-0.00204(10)$
C1	$0.0128(5)$	$0.0128(5)$	$0.0137(5)$	$-0.0003(4)$	$0.0021(4)$	$-0.0010(4)$
C2	$0.0143(5)$	$0.0132(5)$	$0.0141(5)$	$0.0006(4)$	$-0.0001(4)$	$0.0008(4)$
C3	$0.0160(5)$	$0.0120(5)$	$0.0141(5)$	$-0.0006(4)$	$0.0030(4)$	$-0.0012(4)$
C4	$0.0142(5)$	$0.0162(5)$	$0.0146(5)$	$-0.0004(4)$	$-0.0004(4)$	$-0.0032(4)$
C5	$0.0159(5)$	$0.0157(5)$	$0.0150(5)$	$0.0033(4)$	$-0.0006(4)$	$-0.0001(4)$
C6	$0.0161(5)$	$0.0121(5)$	$0.0159(5)$	$0.0010(4)$	$0.0020(4)$	$0.0000(4)$
C7	$0.0136(5)$	$0.0129(5)$	$0.0138(5)$	$0.0000(4)$	$0.0029(4)$	$-0.0006(4)$
C8	$0.0125(5)$	$0.0126(5)$	$0.0184(5)$	$-0.0011(4)$	$-0.0020(4)$	$0.0005(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 3$	$1.3682(13)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3922(16)$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	$0.803(17)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.3906(16)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.2138(14)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500

C11-C8	1.7725 (11)	C5-C6	1.3892 (16)
C1-C6	1.3967 (15)	C5-H5	0.9500
C1-C2	1.3978 (15)	C6-H6	0.9500
C1-C7	1.4921 (15)	C7-C8	1.5164 (15)
C2-C3	1.3857 (15)	C8-H8A	0.9900
C2-H2	0.945 (15)	C8-H8B	0.9900
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	109.2 (11)	C6-C5-H5	119.6
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.91 (10)	C4-C5-H5	119.6
C6-C1-C7	123.12 (10)	C5-C6-C1	119.35 (10)
C2-C1-C7	116.97 (10)	C5-C6-H6	120.3
C3-C2-C1	120.16 (10)	C1-C6-H6	120.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.1 (9)	O2-C7-C1	121.59 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.7 (9)	O2-C7-C8	121.91 (10)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	122.25 (10)	C1-C7-C8	116.50 (9)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	117.6 (1)	C7-C8-Cl1	112.57 (8)
C2-C3-C4	120.15 (10)	C7-C8-H8A	109.1
C5-C4-C3	119.57 (10)	$\mathrm{Cl} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.1
C5-C4-H4	120.2	C7-C8-H8B	109.1
C3-C4-H4	120.2	$\mathrm{Cl} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.1
C6-C5-C4	120.86 (10)	H8A-C8-H8B	107.8
C6-C1-C2-C3	-0.24 (16)	C2-C1-C6-C5	-0.61 (16)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.06 (10)	C7-C1-C6-C5	-179.86 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	-178.62 (10)	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	178.50 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.97 (16)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	-0.77 (15)
O1-C3-C4-C5	178.75 (10)	C6-C1-C7-C8	-1.61 (15)
C2-C3-C4-C5	-0.85 (16)	C2-C1-C7-C8	179.11 (9)
C3-C4-C5-C6	0.00 (17)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 1$	-2.07 (14)
C4-C5-C6-C1	0.73 (17)	C1-C7-C8-Cl1	178.05 (7)

Hydrogen-bond geometry (A, o)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.803(17)$	$2.004(18)$	$2.8029(12)$	$173.4(16)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.945(15)$	$2.547(15)$	$3.2633(14)$	$132.7(11)$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{1 i}$	0.99	2.36	$3.3485(14)$	176

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+3 / 2, y-1 / 2,-z+3 / 2$.

