

Received 26 September 2022 Accepted 30 September 2022

Edited by B. Therrien, University of Neuchâtel, Switzerland

**Keywords:** crystal structure; phenylpyrazole; insecticide.

CCDC reference: 2210523

**Supporting information**: this article has supporting information at journals.iucr.org/e

## Synthesis, spectroscopic and crystal structure studies of *N*-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(ethylsulfanyl)-1*H*-pyrazol-5-yl}-2,2,2-trifluoroacetamide

Prabhakar Priyanka,<sup>a</sup> Bidarur K. Jayanna,<sup>a</sup> Yelekere C. Sunil Kumar,<sup>b</sup> Mellekatte T. Shreenivas,<sup>b</sup> Gejjelegere R. Srinivasa,<sup>b</sup> Thayamma R. Divakara,<sup>c</sup> Hemmige S. Yathirajan<sup>d</sup>\* and Sean Parkin<sup>e</sup>

<sup>a</sup>Department of Chemistry, B.N.M. Institute of Technology, Bengaluru-560 070, India, <sup>b</sup>Honeychem Pharma Research Pvt. Ltd., Peenya Industrial Area, Bengaluru-560 058, India, <sup>c</sup>T. John Institute of Technology, Bengaluru-560 083, India, <sup>d</sup>Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and <sup>e</sup>Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA. \*Correspondence e-mail: yathirajan@hotmail.com

The structure of the title compound,  $C_{15}H_8N_4Cl_2F_6OS$ , a phenylpyrazole-based insecticide related to ethiprole, fipronil, and derivatives thereof is presented. The pyrazole ring has four chemically diverse substituents, namely a nitrogenbound 2,6-dichloro-4-trifluoromethylphenyl and carbon-bound cyano, ethyl-sulfanyl, and 2,2,2-trifluoroacetamide groups. The pyrazole and phenyl rings are perpendicular, subtending a dihedral angle of 89.80 (5)°. In the crystal, strong  $N-H\cdots O$  hydrogen bonds link the molecules into chains that extend parallel to the *a*-axis.

#### 1. Chemical context

The title compound is a phenylpyrazole-based insecticide. It is related to ethiprole, an insecticide used to kill or remove insects from crops and grains during storage (Arthur, 2002). Phenylpyrazole insecticides render an insect's central nervous system toxic by blocking the body's glutamate-gated chloride channel. Ethiprole itself is a non-systemic insecticide that is effective against a wide range of chewing and sucking insects (Wu, 1998) and is an active ingredient used in many insecticides for crop-protection products. Fipronil (see, for example, Park *et al.*, 2017) and fipronil sulfone belong to the same class of compounds. The design, synthesis, and insecticidal activity of novel phenylpyrazoles containing a 2,2,2-trichloro-1-alkoxyethyl moiety have been published by Zhao *et al.* (2010).





1084







The starting material for the title compound, 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-ethylsulfanyl-1*H*pyrazole-3-carbonitrile, is also an important intermediate in the preparation of ethiprole. In view of the importance of phenylpyrazoles, especially in the context of their use in insecticides, this paper reports the synthesis, crystal structure, and spectroscopic studies of the phenylpyrazole derivative,  $C_{15}H_8N_4Cl_2F_6OS$  (I).

#### 2. Structural commentary

The molecular structure of I (Fig. 1), consists of a pyrazole ring with four chemically diverse substituents. A 2,6-dichloro-4-trifluoromethylphenyl group is attached to atom N1 of the pyrazole ring. A 2,2,2-trifluoroacetamide group is attached to the adjacent carbon of the pyrazole, with ethylsulfanyl and cyano substituents attached sequentially at the next two carbon atoms of the pyrazole. The pyrazole and phenyl rings are essentially perpendicular, forming a dihedral angle of 89.80 (5)°. The mean plane of the amide group (r.m.s. deviation = 0.0079 Å) forms a dihedral angle of 74.33 (6)° with the pyrazole ring, while the dihedral angle between the plane of

| Table 1                                                                     |  |
|-----------------------------------------------------------------------------|--|
| Hydrogen bonds and other short contacts $(\text{\AA}, \circ)$ in <b>I</b> . |  |

Cg(C9-C14) represents the centroid of C9-C14 benzene ring.

| Atoms                                                      | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$              | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------------------------|------------|-------------------------|---------------------------|--------------------------------------|
| $N3-H3N\cdotsO1^{i}$                                       | 0.855 (16) | 2.034 (16)              | 2.8172 (13)               | 151.9 (14)                           |
| $C5-H5B\cdots F2^n$                                        | 0.99       | 2.58                    | 3.5641 (16)               | 173.9                                |
| $C11 - H11 \cdots F5^{m}$                                  | 0.95       | 2.62                    | 3.4873 (15)               | 151.8                                |
| $C13 - H13 \cdots F6^{v}$<br>$C11 \cdots Cg(C9 - C14)^{v}$ | 0.95       | 2.39                    | 3.2071 (15)<br>3.4967 (6) | 143.8                                |

Symmetry codes: (i)  $x + \frac{1}{2}, y, -z + \frac{1}{2}$ ; (ii)  $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (iii)  $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$ ; (iv)  $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$ ; (v) -x + 1, -y + 1, -z + 1.

the ethylsulfanyl substituent and the pyrazole is  $81.31 (8)^{\circ}$ . There are no unusual bond lengths, bond angles, or torsion angles in the structure, and no noteworthy intramolecular interactions.

#### 3. Supramolecular features

There is only one strong intermolecular hydrogen bond in **I**, namely N3-H3N···O1<sup>i</sup> (symmetry codes as per Table 1), between *c*-glide related acetamide groups (Table 1), which propagates to form chains that extend parallel to the *a*-axis (Fig. 2). The default HTAB command in *SHELXL* (Sheldrick, 2015*b*) also flags three C-H···F close contacts (Table 1). Two of these, C11-H11···F5<sup>iii</sup> and C13-H13···F6<sup>iv</sup>, are oriented so as to associate 2<sub>1</sub>-screw-related molecules into chains,



Figure 2

A packing plot of I showing strong hydrogen-bonded chains (thick dashed lines) along the a-axis direction.

### research communications

| Table 2                               |  |
|---------------------------------------|--|
| Atom-atom contact coverages (%) in I. |  |

| Atom contacts                                   | %    | Atom contacts                                   | %   |
|-------------------------------------------------|------|-------------------------------------------------|-----|
| $H \cdots F/F \cdots H$                         | 23.0 | $F \cdots Cl/Cl \cdots F$                       | 8.3 |
| $N \cdots F/F \cdots N$                         | 7.3  | $C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$   | 7.1 |
| $H \cdot \cdot \cdot Cl/Cl \cdot \cdot \cdot H$ | 7.1  | $H{\cdots}N/N{\cdots}H$                         | 6.9 |
| $H{\cdots}O/O{\cdots}H$                         | 5.9  | $H \cdot \cdot \cdot H$                         | 4.8 |
| $C{\cdots}F/F{\cdots}C$                         | 3.8  | $C \cdots Cl/Cl \cdots C$                       | 3.8 |
| $C{\cdots}N/N{\cdots}C$                         | 3.4  | $F \cdot \cdot \cdot S / S \cdot \cdot \cdot F$ | 3.0 |
| $S \cdot \cdot \cdot Cl/Cl \cdot \cdot \cdot S$ | 1.9  | $Cl \cdot \cdot \cdot Cl$                       | 1.3 |
| $H \cdot \cdot \cdot S/S \cdot \cdot \cdot H$   | 1.3  | $O \cdot \cdot \cdot Cl/Cl \cdot \cdot \cdot O$ | 1.2 |
| $C \cdots C$                                    | 0.9  | $O \cdots N/N \cdots O$                         | 0.8 |
| $N{\cdots}Cl/Cl{\cdots}N$                       | 0.7  | $N \cdots N$                                    | 0.3 |
| $O{\cdots}F/F{\cdots}O$                         | 0.2  | $C \cdots S/S \cdots C$                         | 0.2 |
| $C{\cdots}O/O{\cdots}C$                         | 0.1  |                                                 |     |

All other atom–atom contact coverages are  ${\sim}0.0\%$ 

which again extend parallel to the *a*-axis (Fig. 3). There are no  $\pi$ - $\pi$  stacking interactions, but inversion-related molecules have their Cl1 atoms mutually located directly over the benzene rings of their inversion-related counterparts [Cl1...Cg(C9-C14)<sup>v</sup> = 3.4967 (6) Å, where Cg represents the ring centroid], as shown in Table 1 and Fig. 4. These combine to produce pleated sheets that extend in the *ac* plane (Fig. 5), which then stack along the *b*-axis direction. Atom-atom contact coverages derived from a Hirshfeld-surface analysis using CrystalExplorer (Spackman *et al.*, 2021) are given in Table 2.



#### Figure 3

A partial packing plot of **I** showing zigzag chains along the *a*-axis direction resulting from weak  $C-H\cdots F$  contacts (thin dashed lines).

Some structures similar to I deposited in the CSD.

All entries have 2,6-dichloro-4-(trifluoromethyl)phenyl and cyano groups attached at the equivalent of N1 and C3 of  $\mathbf{I}$ , respectively. Substituents R' and R represent groups attached at the equivalent of C1 and C2 in  $\mathbf{I}$ , respectively.

| CSD code | R'                                                | <i>R</i> "        | Reference                             |
|----------|---------------------------------------------------|-------------------|---------------------------------------|
| DUKVAJ   | NHCOCH <sub>2</sub> Ph                            | SOCF <sub>3</sub> | Chen <i>et al.</i> (2020)             |
| EFIXEZ   | NHCOCHCHPh                                        | SOCF <sub>3</sub> | Chen (2019)                           |
| PAZFAY   | NH <sub>2</sub>                                   | SOCF <sub>3</sub> | Tang, Zhong, Lin <i>et al.</i> (2005) |
| TOLFAE   | NHCH <sub>2</sub> PhOMe                           | SOCF <sub>3</sub> | Chen & Wu (2019)                      |
| YEGJAY   | NH <sub>2</sub>                                   | SOCF <sub>3</sub> | Park <i>et al.</i> (2017)             |
| ZITNAU   | NHCHPhF                                           | SOCF <sub>3</sub> | Chen <i>et al.</i> (2019)             |
| GIXDAT   | $\begin{array}{c} NH_2\\ NH_2\\ NH_2 \end{array}$ | I                 | Li <i>et al.</i> (2007)               |
| HILTUS   |                                                   | H                 | Luo <i>et al.</i> (2007)              |
| TIDNUP   |                                                   | CF <sub>3</sub>   | Hainzl & Casida (1996)                |

#### 4. Database survey

A search of the Cambridge Structural Database (CSD version 5.43 with updates through June 2022; Groom *et al.*, 2016) for the 1-phenyl-cyanopyrazole fragment of **I** gave 82 hits. A



#### Figure 4

Pairs of inversion-related molecules in **I** showing mutual contacts between Cl and the benzene rings (dotted lines).





A partial packing plot of **I** showing pleated sheets that extend in the *ac* plane. Diagram generated using *Mercury* (Macrae *et al.*, 2020).

## research communications

| Table 4 | 4      |          |
|---------|--------|----------|
| Experin | nental | details. |

Crystal data Chemical formula C15H8Cl2F6N4OS М., 477.21 Crystal system, space group Orthorhombic, Pbca Temperature (K) 90 9.9350 (3), 17.5133 (7), 21.4662 (8) *a*, *b*, *c* (Å)  $V(Å^3)$ 3735.0 (2) Z 8 Radiation type Μο Κα  $\mu \,({\rm mm}^{-1})$ 0.53  $0.30 \times 0.23 \times 0.19$ Crystal size (mm) Data collection Diffractometer Bruker D8 Venture dual source Absorption correction Multi-scan (SADABS; Krause et al 2015) 0.831, 0.958  $T_{\min}, T_{\max}$ No. of measured, independent and 27352, 4271, 3893 observed  $[I > 2\sigma(I)]$  reflections  $R_{\rm int}$ 0.036  $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$ 0.650 Refinement  $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.026, 0.064, 1.04 No. of reflections 4271 No. of parameters 267 H-atom treatment H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.42, -0.25

Computer programs: *APEX3* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2019/2* (Sheldrick, 2015*b*), *XP* in *SHELXTL* (Sheldrick, 2008), and *publCIF* (Westrip, 2010).

search on this fragment with any nitrogen-bound substituent at the equivalent of C1 (*i.e.*, the carbon adjacent to the substituted nitrogen) gave 76 hits, and a subsequent search with 2,6-dichloro-4-(trifluoromethyl)phenyl attached at N1 of the pyrazole ring gave 60 hits. Further addition of any sulfurbound substituent at the equivalent of C2 gave nine hits, only eight of which are unique. Two of these structures, FOCCUW (Tang, Zhong, Li *et al.*, 2005) and TOLFUY (Du *et al.*, 2019) are dimers. The remaining six, along with three other similar structures, are listed in Table 3.

#### 5. Synthesis, crystallization and spectroscopic details

Trifluoroacetic anhydride (550  $\mu$ L, 3.8 mmol) was added dropwise to a stirred solution of 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-ethylsulfanyl-1*H*-pyrazole-3-carbonitrile (a gift from Honeychem Pharma: 724 mg, 1.9 mmol), triethylamine (412 mg, 5.7 mmol) and DCM (5 ml) at 273 K. The reaction was kept at 273 K for 5 h, warmed to room temperature over 3 h, quenched with water and extracted with DCM three times. An overall scheme for the reaction is shown in Fig. 6. The combined organic extracts were washed with water and brine. The crude residue obtained after drying with sodium sulfate followed by concentration, was purified by column chromatography using ethyl acetate:hexane (2:3) as eluent to give *N*-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)-



Figure 6 The overall reaction scheme for the synthesis of **I**.

phenyl]-4-(ethylsulfanyl)-1*H*-pyrazol-5-yl}-2,2,2-trifluoroacetamide ( $C_{15}H_8Cl_2F_6N_4OS$ , I, yield = 600 mg, 85%).

The product was dissolved in ethanol at 333 K and stirred for 30 min. The resulting solution was allowed to cool slowly to room temperature with slow evaporation. X-ray-quality crystals appeared in two days (m.p. 366–367 K).

The title compound was characterized by IR and <sup>1</sup>H NMR spectroscopies, as follows: FT–IR ( $\nu$  in cm<sup>-1</sup>): 3227 (N–H stretching), 2250 (C=N stretching), 1737 (C=O stretching), 1694–1652 (C=C stretching), 1313, 1222 (C–F stretching), 881, 818 (*s*, Ar–C–H bending), 711, 628 (C–Cl). <sup>1</sup>H NMR: DMSO–*d*<sub>6</sub> (400 MHz,  $\delta$  ppm): 12.42 (*b*, 1H, NH), 8.36 (*s*, 2H, Ar–H), 2.90–2.85 (*q*, 2H, CH<sub>2</sub>, *J* = 7.6 Hz), 1.19–1.15 (*t*, 3H, CH<sub>3</sub>, *J* = 7.6 Hz).

#### 6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 4. All H atoms were found in difference-Fourier maps. Carbon-bound hydrogens were subsequently included in the refinement using riding models, with constrained distances set to 0.98 Å (*R*CH<sub>3</sub>), 0.99 Å (*R*<sub>2</sub>CH<sub>2</sub>) and 0.95 Å (*R*<sub>2</sub>CH). The nitrogen-bound hydrogenatom coordinates were refined freely.  $U_{\rm iso}$ (H) parameters were set to values of either  $1.2U_{\rm eq}$  or  $1.5U_{\rm eq}$  (*R*CH<sub>3</sub> only) of the attached atom.

#### Acknowledgements

PP is grateful to the B. N. M. Institute of Technology for research facilities.

#### **Funding information**

HSY is grateful to UGC, New Delhi, for the award of BSR Faculty Fellowship for three years. Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 Venture diffractometer).

#### References

Arthur, F. H. (2002). J. Econ. Entomol. 95, 1314–1318.
Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, L. (2019). CSD Communication (refcode EFIXEZ). CCDC, Cambridge, England.

### research communications

- Chen, L., Tang, C., Long, Z. & Wu, Z. (2020). Z. Krist. New Cryst. Struct. 235 721-723.
- Chen, L. & Wu, Z. (2019). Z. Krist. New Cryst. Struct. 234, 715-717.
- Chen, L., Wu, Z., Du, Y., Huang, Y. & Jin, S. (2019). J. Mol. Struct. 1196, 555–566.
  Du, Y., Zhou, Q., Huang, Y. & Chen, L. (2019). Z. Krist. New Cryst.
- Struct. 234, 665–667.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.
- Hainzl, D. & Casida, J. E. (1996). Proc. Nat. Acad. Sci. USA, 93, 12764–12767.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Li, S.-Y., Zhong, P. & Hu, M.-L. (2007). Z. Krist. New Cryst. Struct. 222, 423–424.
- Luo, Y., Zhong, P. & Hu, M. (2007). Acta Cryst. E63, 04077.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.

- Park, H., Kim, J., Kwon, E. & Kim, T. H. (2017). Acta Cryst. E73, 1472–1474.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Tang, R.-Y., Zhong, P., Li, S.-Y. & Hu, M.-L. (2005). Acta Cryst. E61, 01564–01565.
- Tang, R.-Y., Zhong, P., Lin, Q.-L., Hu, M.-L. & Shi, Q. (2005). Acta Cryst. E61, 04374–04375.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, T.-T. (1998). US Patent US5814652.
- Zhao, Q., Li, Y., Xiong, L. & Wang, Q. (2010). J. Agric. Food Chem. 58, 4992–4998.

## supporting information

Acta Cryst. (2022). E78, 1084-1088 [https://doi.org/10.1107/S2056989022009653]

Synthesis, spectroscopic and crystal structure studies of *N*-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(ethylsulfanyl)-1*H*-pyrazol-5-yl}-2,2,2-trifluoroacetamide

Prabhakar Priyanka, Bidarur K. Jayanna, Yelekere C. Sunil Kumar, Mellekatte T. Shreenivas, Gejjelegere R. Srinivasa, Thayamma R. Divakara, Hemmige S. Yathirajan and Sean Parkin

#### **Computing details**

Data collection: *APEX3* (Bruker, 2016); cell refinement: *APEX3* (Bruker, 2016); data reduction: *APEX3* (Bruker, 2016); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2019/2* (Sheldrick, 2015b); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELX* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

*N*-{3-Cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(ethylsulfanyl)-1*H*-pyrazol-5-yl}-2,2,2-trifluoroacetamide

#### Crystal data

C<sub>15</sub>H<sub>8</sub>Cl<sub>2</sub>F<sub>6</sub>N<sub>4</sub>OS  $M_r = 477.21$ Orthorhombic, *Pbca*  a = 9.9350 (3) Å b = 17.5133 (7) Å c = 21.4662 (8) Å V = 3735.0 (2) Å<sup>3</sup> Z = 8F(000) = 1904

#### Data collection

Bruker D8 Venture dual source diffractometer Radiation source: microsource Detector resolution: 7.41 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015)  $T_{\min} = 0.831, T_{\max} = 0.958$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.026$  $wR(F^2) = 0.064$ S = 1.04  $D_x = 1.697 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9972 reflections  $\theta = 2.5-27.5^{\circ}$  $\mu = 0.53 \text{ mm}^{-1}$ T = 90 KCut block, colourless  $0.30 \times 0.23 \times 0.19 \text{ mm}$ 

27352 measured reflections 4271 independent reflections 3893 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.036$  $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.3^{\circ}$  $h = -12 \rightarrow 10$  $k = -22 \rightarrow 22$  $l = -27 \rightarrow 27$ 

4271 reflections267 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

| Secondary atom site location: difference Fourier<br>map | $(\Delta/\sigma)_{\rm max} = 0.001$<br>$\Delta\rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$ |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Hydrogen site location: mixed                           | $\Delta \rho_{\rm min} = -0.25 \ {\rm e \ A}^3$                                                 |
| H atoms treated by a mixture of independent             | Extinction correction: SHELXL-2019/2                                                            |
| and constrained refinement                              | (Sheldrick 2015b),                                                                              |
| $w = 1/[\sigma^2(F_o^2) + (0.0273P)^2 + 2.0142P]$       | $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$                                         |
| where $P = (F_o^2 + 2F_c^2)/3$                          | Extinction coefficient: 0.0017 (3)                                                              |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|-------------|-------------|-----------------------------|--|
| Cl1 | 0.63935 (3)  | 0.51208 (2) | 0.40861 (2) | 0.01864 (8)                 |  |
| Cl2 | 0.09945 (3)  | 0.53537 (2) | 0.40975 (2) | 0.02419 (9)                 |  |
| S1  | 0.32287 (3)  | 0.38515 (2) | 0.20184 (2) | 0.01658 (8)                 |  |
| F1  | 0.35596 (9)  | 0.62440 (5) | 0.15112 (4) | 0.02447 (19)                |  |
| F2  | 0.38608 (8)  | 0.69639 (4) | 0.23078 (4) | 0.02336 (18)                |  |
| F3  | 0.18898 (8)  | 0.68747 (5) | 0.18872 (4) | 0.02659 (19)                |  |
| F4  | 0.36645 (9)  | 0.70022 (5) | 0.59601 (4) | 0.02648 (19)                |  |
| F5  | 0.30334 (10) | 0.77508 (5) | 0.52258 (4) | 0.0323 (2)                  |  |
| F6  | 0.51380 (8)  | 0.75448 (5) | 0.53817 (4) | 0.02669 (19)                |  |
| 01  | 0.15013 (9)  | 0.55566 (5) | 0.24758 (4) | 0.01724 (19)                |  |
| N1  | 0.36297 (11) | 0.47239 (6) | 0.36809 (5) | 0.0145 (2)                  |  |
| N2  | 0.35250 (11) | 0.39898 (6) | 0.38684 (5) | 0.0168 (2)                  |  |
| N3  | 0.37119 (10) | 0.55065 (6) | 0.27566 (5) | 0.0130 (2)                  |  |
| H3N | 0.4502 (17)  | 0.5686 (8)  | 0.2699 (7)  | 0.016*                      |  |
| N4  | 0.30803 (13) | 0.21428 (6) | 0.33539 (6) | 0.0255 (3)                  |  |
| C1  | 0.36015 (12) | 0.47954 (7) | 0.30511 (6) | 0.0131 (2)                  |  |
| C2  | 0.34539 (12) | 0.40781 (7) | 0.28031 (6) | 0.0141 (2)                  |  |
| C3  | 0.34127 (13) | 0.36032 (7) | 0.33357 (6) | 0.0155 (2)                  |  |
| C4  | 0.32423 (14) | 0.27879 (7) | 0.33502 (6) | 0.0185 (3)                  |  |
| C5  | 0.49124 (14) | 0.35383 (9) | 0.18065 (6) | 0.0234 (3)                  |  |
| H5A | 0.556533     | 0.395746    | 0.187298    | 0.028*                      |  |
| H5B | 0.518388     | 0.309910    | 0.206827    | 0.028*                      |  |
| C6  | 0.48964 (15) | 0.33069 (9) | 0.11230 (7) | 0.0275 (3)                  |  |
| H6A | 0.460330     | 0.374098    | 0.086883    | 0.041*                      |  |
| H6B | 0.427263     | 0.287945    | 0.106458    | 0.041*                      |  |
| H6C | 0.580318     | 0.315148    | 0.099566    | 0.041*                      |  |
| C7  | 0.26356 (12) | 0.58029 (6) | 0.24545 (5) | 0.0131 (2)                  |  |
| C8  | 0.29906 (13) | 0.64906 (7) | 0.20371 (6) | 0.0166 (3)                  |  |
| C9  | 0.37120 (13) | 0.53275 (7) | 0.41254 (6) | 0.0141 (2)                  |  |
| C10 | 0.49581 (12) | 0.55813 (7) | 0.43330 (6) | 0.0140 (2)                  |  |
| C11 | 0.50542 (12) | 0.61972 (7) | 0.47388 (5) | 0.0145 (2)                  |  |
| H11 | 0.590543     | 0.637395    | 0.487965    | 0.017*                      |  |

# supporting information

| C12 | 0.38740 (13) | 0.65467 (7) | 0.49325 (6) | 0.0143 (2) |
|-----|--------------|-------------|-------------|------------|
| C13 | 0.26172 (13) | 0.62922 (7) | 0.47417 (6) | 0.0160 (2) |
| H13 | 0.182136     | 0.653612    | 0.488522    | 0.019*     |
| C14 | 0.25432 (13) | 0.56765 (7) | 0.43387 (6) | 0.0156 (2) |
| C15 | 0.39317 (13) | 0.72121 (7) | 0.53760 (6) | 0.0176 (3) |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | U <sup>23</sup> |
|-----|--------------|--------------|--------------|---------------|---------------|-----------------|
| C11 | 0.01593 (15) | 0.01905 (15) | 0.02095 (16) | 0.00316 (11)  | 0.00349 (11)  | -0.00045 (11)   |
| Cl2 | 0.01509 (16) | 0.02479 (17) | 0.03269 (19) | -0.00092 (12) | -0.00540 (13) | -0.00730 (13)   |
| S1  | 0.01774 (16) | 0.01755 (15) | 0.01445 (15) | 0.00235 (11)  | -0.00419 (12) | -0.00360 (11)   |
| F1  | 0.0328 (5)   | 0.0231 (4)   | 0.0175 (4)   | -0.0014 (3)   | 0.0079 (3)    | -0.0003 (3)     |
| F2  | 0.0286 (4)   | 0.0160 (4)   | 0.0255 (4)   | -0.0086 (3)   | -0.0006 (3)   | -0.0001 (3)     |
| F3  | 0.0246 (4)   | 0.0215 (4)   | 0.0336 (5)   | 0.0074 (3)    | -0.0018 (4)   | 0.0101 (3)      |
| F4  | 0.0389 (5)   | 0.0253 (4)   | 0.0152 (4)   | -0.0056 (4)   | 0.0072 (3)    | -0.0047 (3)     |
| F5  | 0.0409 (5)   | 0.0182 (4)   | 0.0378 (5)   | 0.0121 (4)    | -0.0129 (4)   | -0.0102 (4)     |
| F6  | 0.0286 (4)   | 0.0231 (4)   | 0.0285 (4)   | -0.0110 (3)   | 0.0052 (4)    | -0.0093 (3)     |
| 01  | 0.0122 (4)   | 0.0175 (4)   | 0.0220 (5)   | -0.0002 (3)   | -0.0008 (4)   | 0.0010 (4)      |
| N1  | 0.0183 (5)   | 0.0108 (5)   | 0.0143 (5)   | 0.0006 (4)    | -0.0015 (4)   | -0.0007 (4)     |
| N2  | 0.0213 (5)   | 0.0118 (5)   | 0.0172 (5)   | 0.0005 (4)    | -0.0025 (4)   | 0.0006 (4)      |
| N3  | 0.0104 (5)   | 0.0123 (5)   | 0.0162 (5)   | -0.0011 (4)   | -0.0003 (4)   | 0.0007 (4)      |
| N4  | 0.0355 (7)   | 0.0170 (5)   | 0.0239 (6)   | -0.0005 (5)   | -0.0053 (5)   | 0.0002 (4)      |
| C1  | 0.0109 (5)   | 0.0138 (5)   | 0.0146 (6)   | 0.0012 (4)    | -0.0017 (4)   | -0.0001 (4)     |
| C2  | 0.0131 (5)   | 0.0145 (6)   | 0.0147 (6)   | 0.0012 (4)    | -0.0017 (5)   | -0.0018 (4)     |
| C3  | 0.0164 (6)   | 0.0132 (5)   | 0.0168 (6)   | 0.0008 (5)    | -0.0026 (5)   | -0.0006 (4)     |
| C4  | 0.0230 (7)   | 0.0172 (6)   | 0.0153 (6)   | 0.0009 (5)    | -0.0040 (5)   | -0.0005 (5)     |
| C5  | 0.0188 (6)   | 0.0332 (7)   | 0.0181 (6)   | 0.0040 (6)    | 0.0001 (5)    | -0.0035 (5)     |
| C6  | 0.0248 (7)   | 0.0388 (8)   | 0.0190 (7)   | -0.0018 (6)   | 0.0022 (6)    | -0.0067 (6)     |
| C7  | 0.0145 (5)   | 0.0116 (5)   | 0.0132 (5)   | 0.0018 (4)    | 0.0006 (5)    | -0.0026 (4)     |
| C8  | 0.0180 (6)   | 0.0142 (6)   | 0.0177 (6)   | 0.0007 (5)    | -0.0001 (5)   | -0.0002 (5)     |
| C9  | 0.0200 (6)   | 0.0110 (5)   | 0.0115 (6)   | -0.0001 (4)   | -0.0017 (5)   | 0.0004 (4)      |
| C10 | 0.0150 (6)   | 0.0139 (5)   | 0.0131 (6)   | 0.0013 (4)    | 0.0014 (5)    | 0.0024 (4)      |
| C11 | 0.0161 (6)   | 0.0144 (5)   | 0.0132 (6)   | -0.0024 (4)   | -0.0014 (5)   | 0.0016 (4)      |
| C12 | 0.0195 (6)   | 0.0114 (5)   | 0.0120 (5)   | 0.0000 (4)    | -0.0002 (5)   | 0.0013 (4)      |
| C13 | 0.0169 (6)   | 0.0144 (5)   | 0.0166 (6)   | 0.0029 (5)    | 0.0003 (5)    | 0.0003 (4)      |
| C14 | 0.0151 (6)   | 0.0150 (5)   | 0.0166 (6)   | -0.0003 (5)   | -0.0027 (5)   | 0.0014 (5)      |
| C15 | 0.0209 (6)   | 0.0146 (6)   | 0.0173 (6)   | -0.0005 (5)   | 0.0000 (5)    | -0.0012 (5)     |

Geometric parameters (Å, °)

| Cl1—C10 | 1.7219 (12) | C1—C2  | 1.3722 (16) |
|---------|-------------|--------|-------------|
| Cl2—C14 | 1.7191 (13) | C2—C3  | 1.4143 (17) |
| S1—C2   | 1.7450 (13) | C3—C4  | 1.4381 (17) |
| S1—C5   | 1.8181 (14) | C5—C6  | 1.5222 (19) |
| F1—C8   | 1.3342 (15) | C5—H5A | 0.9900      |
| F2—C8   | 1.3312 (15) | С5—Н5В | 0.9900      |
| F3—C8   | 1.3237 (15) | С6—Н6А | 0.9800      |
|         |             |        |             |

# supporting information

| F5—C151.3381 (15)C6—H6C0.9800F6—C151.327 (15)C7—C81.5421 (16)O1—C71.2075 (15)C9—C101.3888 (17)N1—N21.3511 (14)C9—C141.3898 (17)N1—C11.3581 (16)C10—C111.3898 (17)N1—C91.4264 (15)C11—C121.3865 (17)N2—C31.3337 (16)C11—H110.9500N3—C71.3540 (16)C12—C131.3877 (18)N3—C11.4010 (15)C12—C151.5059 (17)N3—H3N0.855 (16)C13—C141.3843 (17)N4—C41.1412 (17)C13—H130.9500C2—S1—C5101.08 (6)N3—C7—C8113.4 (1)N2—N1—C1112.5 (1)F3—C8—F2109.04 (10)N2—N1—C9120.69 (10)F3—C8—F1107.2 (1)C3—N2—N1103.54 (10)F2—C8—F1107.2 (1)C7—N3—C1119.68 (10)F2—C8—C7112.41 (10)C7—N3—H3N121 (1)F1—C8—C7109.61 (10)C1—N3—H3N117.7 (10)C10—C9—N1120.19 (11)N1—C1—N3121.98 (10)C14—C9—N1119.90 (11)C2—C1—N3130.32 (12)C9—C10—C11120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F6—C15 $1.3327 (15)$ C7—C8 $1.5421 (16)$ O1—C7 $1.2075 (15)$ C9—C10 $1.3888 (17)$ N1—N2 $1.3511 (14)$ C9—C14 $1.3898 (17)$ N1—C1 $1.3581 (16)$ C10—C11 $1.3898 (17)$ N1—C9 $1.4264 (15)$ C11—C12 $1.3865 (17)$ N2—C3 $1.3337 (16)$ C11—H11 $0.9500$ N3—C7 $1.3540 (16)$ C12—C13 $1.3877 (18)$ N3—C1 $1.4010 (15)$ C12—C15 $1.5059 (17)$ N3—H3N $0.855 (16)$ C13—C14 $1.3843 (17)$ N4—C4 $1.1412 (17)$ C13—H13 $0.9500$ C2—S1—C5101.08 (6)N3—C7—C8113.4 (1)N2—N1—C1 $112.5 (1)$ F3—C8—F2 $109.04 (10)$ N2—N1—C9120.69 (10)F3—C8—F1 $108.0 (1)$ C1—N1—C9126.78 (10)F2—C8—F1 $107.2 (1)$ C3—N2—N1103.54 (10)F3—C8—C7 $112.41 (10)$ C7—N3—H3N121 (1)F1—C8—C7 $109.61 (10)$ C1—N3—H3N117.7 (10)C10—C9—N1 $120.19 (11)$ N1—C1—N3121.98 (10)C14—C9—N1 $119.90 (11)$ C2—C1—N3 $130.32 (12)$ C9—C10—C11 $120.71 (11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| N3-C11.6019 (10)C12-C151.6019 (10)N3-H3N0.855 (16)C13-C141.3843 (17)N4-C41.1412 (17)C13-H130.9500C2-S1-C5101.08 (6)N3-C7-C8113.4 (1)N2-N1-C1112.5 (1)F3-C8-F2109.04 (10)N2-N1-C9120.69 (10)F3-C8-F1108.0 (1)C1-N1-C9126.78 (10)F2-C8-F1107.2 (1)C3-N2-N1103.54 (10)F3-C8-C7110.44 (10)C7-N3-C1119.68 (10)F2-C8-C7112.41 (10)C7-N3-H3N121 (1)F1-C8-C7109.61 (10)N1-C1-C2107.7 (1)C10-C9-N1120.19 (11)N1-C1-N3121.98 (10)C14-C9-N1119.90 (11)C2-C1-N3130.32 (12)C9-C10-C11120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N3H3 $(11)$ $(11)$ $(12)$ $(12)$ $(13)$ N3H3N $0.855(16)$ $C13$ $C13$ $1.3843(17)$ N4 $-C4$ $1.1412(17)$ $C13$ $H13$ $0.9500$ C2S1C5 $101.08(6)$ $N3$ $-C7$ $C8$ $113.4(1)$ N2N1C1 $112.5(1)$ F3 $-C8$ $F2$ $109.04(10)$ N2N1C9 $120.69(10)$ F3 $-C8$ $F1$ $108.0(1)$ C1N1C9 $126.78(10)$ F2 $-C8$ $F1$ $107.2(1)$ C3N2N1 $103.54(10)$ F3 $-C8$ $C7$ $110.44(10)$ C7N3C1 $119.68(10)$ F2 $-C8$ $-C7$ $112.41(10)$ C7N3 $121(1)$ F1 $-C8$ $-C7$ $109.61(10)$ C1N3 $117.7(10)$ $C10$ $-C9$ $C14$ $119.89(11)$ N1 $-C1$ $-C2$ $107.7(1)$ $C10$ $-C9$ $N1$ N1 $-C1$ N3 $121.98(10)$ $C14$ $-C9$ $N1$ N1 $-C1$ $N3$ $130.32(12)$ $C9$ $-C10$ $-C11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N3N3 $(10)$ $(10)$ $(13)$ $(13)$ N4—C4 $1.1412 (17)$ $C13$ —H13 $0.9500$ C2—S1—C5 $101.08 (6)$ N3—C7—C8 $113.4 (1)$ N2—N1—C1 $112.5 (1)$ F3—C8—F2 $109.04 (10)$ N2—N1—C9 $120.69 (10)$ F3—C8—F1 $108.0 (1)$ C1—N1—C9 $126.78 (10)$ F2—C8—F1 $107.2 (1)$ C3—N2—N1 $103.54 (10)$ F3—C8—C7 $110.44 (10)$ C7—N3—C1 $119.68 (10)$ F2—C8—C7 $112.41 (10)$ C7—N3—H3N $121 (1)$ F1—C8—C7 $109.61 (10)$ C1—N3—H3N $117.7 (10)$ C10—C9—C14 $119.89 (11)$ N1—C1—C2 $107.7 (1)$ C10—C9—N1 $120.19 (11)$ N1—C1—N3 $121.98 (10)$ C14—C9—N1 $119.90 (11)$ C2—C1—N3 $130.32 (12)$ C9—C10—C11 $120.71 (11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C2-S1-C5 $101.08 (6)$ $N3-C7-C8$ $113.4 (1)$ $N2-N1-C1$ $112.5 (1)$ $F3-C8-F2$ $109.04 (10)$ $N2-N1-C9$ $120.69 (10)$ $F3-C8-F1$ $108.0 (1)$ $C1-N1-C9$ $126.78 (10)$ $F2-C8-F1$ $107.2 (1)$ $C3-N2-N1$ $103.54 (10)$ $F3-C8-C7$ $110.44 (10)$ $C7-N3-C1$ $119.68 (10)$ $F2-C8-C7$ $112.41 (10)$ $C7-N3-H3N$ $121 (1)$ $F1-C8-C7$ $109.61 (10)$ $C1-N3-H3N$ $117.7 (10)$ $C10-C9-C14$ $119.89 (11)$ $N1-C1-C2$ $107.7 (1)$ $C10-C9-N1$ $120.19 (11)$ $N1-C1-N3$ $121.98 (10)$ $C14-C9-N1$ $119.90 (11)$ $C2-C1-N3$ $130.32 (12)$ $C9-C10-C11$ $120.71 (11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| N2N1C1112.5 (1)F3C8F2109.04 (10)N2N1C9120.69 (10)F3C8F1108.0 (1)C1N1C9126.78 (10)F2C8F1107.2 (1)C3N2N1103.54 (10)F3C8C7110.44 (10)C7N3C1119.68 (10)F2C8C7112.41 (10)C7N3H3N121 (1)F1C8C7109.61 (10)C1N3H3N117.7 (10)C10C9C14119.89 (11)N1C1C2107.7 (1)C10C9N1120.19 (11)N1C1N3121.98 (10)C14C9N1119.90 (11)C2C1N3130.32 (12)C9C10C11120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N2—N1—C9120.69 (10)F3—C8—F1108.0 (1)C1—N1—C9126.78 (10)F2—C8—F1107.2 (1)C3—N2—N1103.54 (10)F3—C8—C7110.44 (10)C7—N3—C1119.68 (10)F2—C8—C7112.41 (10)C7—N3—H3N121 (1)F1—C8—C7109.61 (10)C1—N3—H3N117.7 (10)C10—C9—C14119.89 (11)N1—C1—C2107.7 (1)C10—C9—N1120.19 (11)N1—C1—N3121.98 (10)C14—C9—N1119.90 (11)C2—C1—N3130.32 (12)C9—C10—C11120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C3-N2-N1103.54 (10)F3-C8-C7110.44 (10)C7-N3-C1119.68 (10)F2-C8-C7112.41 (10)C7-N3-H3N121 (1)F1-C8-C7109.61 (10)C1-N3-H3N117.7 (10)C10-C9-C14119.89 (11)N1-C1-C2107.7 (1)C10-C9-N1120.19 (11)N1-C1-N3121.98 (10)C14-C9-N1119.90 (11)C2-C1-N3130.32 (12)C9-C10-C11120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C7-N3-C1119.68 (10)F2-C8-C7112.41 (10)C7-N3-H3N121 (1)F1-C8-C7109.61 (10)C1-N3-H3N117.7 (10)C10-C9-C14119.89 (11)N1-C1-C2107.7 (1)C10-C9-N1120.19 (11)N1-C1-N3121.98 (10)C14-C9-N1119.90 (11)C2-C1-N3130.32 (12)C9-C10-C11120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C7—N3—H3N       121 (1)       F1—C8—C7       109.61 (10)         C1—N3—H3N       117.7 (10)       C10—C9—C14       119.89 (11)         N1—C1—C2       107.7 (1)       C10—C9—N1       120.19 (11)         N1—C1—N3       121.98 (10)       C14—C9—N1       119.90 (11)         C2—C1—N3       130.32 (12)       C9—C10—C11       120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C1—N3—H3N       117.7 (10)       C10—C9—C14       119.89 (11)         N1—C1—C2       107.7 (1)       C10—C9—N1       120.19 (11)         N1—C1—N3       121.98 (10)       C14—C9—N1       119.90 (11)         C2—C1—N3       130.32 (12)       C9—C10—C11       120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N1—C1—C2       107.7 (1)       C10—C9—N1       120.19 (11)         N1—C1—N3       121.98 (10)       C14—C9—N1       119.90 (11)         C2—C1—N3       130.32 (12)       C9—C10—C11       120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| N1—C1—N3121.98 (10)C14—C9—N1119.90 (11)C2—C1—N3130.32 (12)C9—C10—C11120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C2—C1—N3 130.32 (12) C9—C10—C11 120.71 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C1-C2-C3 103 17 (11) $C9-C10-C11$ 119 31 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C1-C2-S1 126.61 (10) $C11-C10-C11$ 119.97 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $C_3 = C_2 = S_1$ 130.01 (9) $C_1 = C_1 =$ |
| $N_2$ —C3—C2 113.09 (11) C12—C11—H11 120.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N2-C3-C4 119 69 (11) C10-C11-H11 120 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $C_2 = C_3 = C_4$ $127.21(11)$ $C_{11} = C_{12} = C_{13}$ $122.05(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| N4-C4-C3 178 42 (15) C11-C12-C15 119 94 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C6-C5-H5A 1101 $C14-C13-C12$ 118 84 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S1—C5—H5A 110.1 C14—C13—H13 120.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C6—C5—H5B 110.1 C12—C13—H13 120.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| S1—C5—H5B 110.1 C13—C14—C9 120.27 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $H_{5A} = C_{5} = H_{5B}$ 108.4 $C_{13} = C_{14} = C_{12}$ 119.47 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C5—C6—H6A 109.5 C9—C14—C12 120.26 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C5—C6—H6B 109.5 F6—C15—F4 106.92 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| H6A—C6—H6B 109.5 F6—C15—F5 107.08 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C5—C6—H6C 109.5 F4—C15—F5 106.75 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| H6A - C6 - H6C 109.5 $F6 - C15 - C12$ 112.23 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Home Control       Home Controwant       Home Controwant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 01-C7-N3 125 59 (11) F5-C15-C12 111 58 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 01-C7-C8 120.96 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C1—N1—N2—C3 -0.77 (14) N3—C7—C8—F1 77.52 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C9—N1—N2—C3 177.32 (11) N2—N1—C9—C10 91.61 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| N2—N1—C1—C2 | 0.79 (14)    | C1—N1—C9—C10    | -90.59 (15)  |
|-------------|--------------|-----------------|--------------|
| C9—N1—C1—C2 | -177.16 (11) | N2—N1—C9—C14    | -90.12 (14)  |
| N2—N1—C1—N3 | -179.23 (11) | C1—N1—C9—C14    | 87.67 (16)   |
| C9—N1—C1—N3 | 2.82 (19)    | C14—C9—C10—C11  | -1.93 (18)   |
| C7—N3—C1—N1 | -111.17 (13) | N1-C9-C10-C11   | 176.34 (11)  |
| C7—N3—C1—C2 | 68.80 (18)   | C14—C9—C10—C11  | 177.67 (9)   |
| N1—C1—C2—C3 | -0.45 (13)   | N1—C9—C10—C11   | -4.06 (16)   |
| N3—C1—C2—C3 | 179.58 (12)  | C9—C10—C11—C12  | 0.37 (18)    |
| N1—C1—C2—S1 | 174.65 (9)   | Cl1—C10—C11—C12 | -179.23 (9)  |
| N3—C1—C2—S1 | -5.3 (2)     | C10-C11-C12-C13 | 1.06 (18)    |
| C5—S1—C2—C1 | 101.74 (12)  | C10-C11-C12-C15 | 179.53 (11)  |
| C5—S1—C2—C3 | -84.50 (13)  | C11—C12—C13—C14 | -0.90 (18)   |
| N1—N2—C3—C2 | 0.47 (14)    | C15-C12-C13-C14 | -179.39 (11) |
| N1—N2—C3—C4 | -178.34 (12) | C12—C13—C14—C9  | -0.69 (18)   |
| C1-C2-C3-N2 | -0.02 (14)   | C12—C13—C14—Cl2 | -179.99 (9)  |
| S1—C2—C3—N2 | -174.87 (10) | C10-C9-C14-C13  | 2.09 (18)    |
| C1—C2—C3—C4 | 178.68 (13)  | N1—C9—C14—C13   | -176.18 (11) |
| S1—C2—C3—C4 | 3.8 (2)      | C10-C9-C14-Cl2  | -178.62 (9)  |
| C2—S1—C5—C6 | 179.48 (10)  | N1—C9—C14—Cl2   | 3.11 (16)    |
| C1—N3—C7—O1 | 10.00 (18)   | C11-C12-C15-F6  | 20.04 (16)   |
| C1—N3—C7—C8 | -167.28 (10) | C13—C12—C15—F6  | -161.43 (11) |
| O1—C7—C8—F3 | 18.96 (16)   | C11—C12—C15—F4  | -100.19 (13) |
| N3—C7—C8—F3 | -163.61 (10) | C13—C12—C15—F4  | 78.33 (14)   |
| O1—C7—C8—F2 | 140.97 (12)  | C11—C12—C15—F5  | 140.24 (12)  |
| N3—C7—C8—F2 | -41.60 (14)  | C13—C12—C15—F5  | -41.23 (16)  |
| O1—C7—C8—F1 | -99.91 (13)  |                 |              |
|             |              |                 |              |

### Hydrogen-bond geometry (Å, °)

| D—H···A                       | D—H        | H····A     | D····A      | D—H···A    |
|-------------------------------|------------|------------|-------------|------------|
| N3—H3N····O1 <sup>i</sup>     | 0.855 (16) | 2.034 (16) | 2.8172 (13) | 151.9 (14) |
| C5—H5 $B$ ···F2 <sup>ii</sup> | 0.99       | 2.58       | 3.5641 (16) | 174        |
| C11—H11…F5 <sup>iii</sup>     | 0.95       | 2.62       | 3.4873 (15) | 152        |
| C13—H13…F6 <sup>iv</sup>      | 0.95       | 2.39       | 3.2071 (15) | 144        |

Symmetry codes: (i) x+1/2, y, -z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) x+1/2, -y+3/2, -z+1; (iv) x-1/2, -y+3/2, -z+1.