

Received 5 September 2022 Accepted 8 September 2022

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: piperazine; crystal structure; absolute structure; aggregate crystal.

CCDC references: 2205954; 2205953

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis and crystal structures of 1-benzoyl-4-(4nitrophenyl)piperazine and 1-(4-bromobenzoyl)-4phenylpiperazine at 90 K

Sreeramapura D. Archana,^a Haruvegowda Kiran Kumar,^a Holehundi J. Shankara Prasad,^b Hemmige S. Yathirajan^a* and Sean Parkin^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, ^bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, and ^cDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA. *Correspondence e-mail: yathirajan@hotmail.com

Synthesis and crystal structures of 1-benzoyl-4-(4-nitrophenyl)piperazine, $C_{17}H_{17}N_3O_3$, (I) and 1-(4-bromobenzoyl)-4-phenylpiperazine, $C_{17}H_{17}BrN_2O$, (II) are described. Compounds I and II crystallize in the orthorhombic and monoclinic crystal systems with space groups $Pna2_1$ (Z' = 2, I) and $P2_1$ (Z' = 1, II), respectively. The crystal of II was a two-component aggregate, treated as a 'twin' for data-acquisition purposes. There are no conventional hydrogen bonds in either I or II, but there are weaker $C-H\cdots O$ contacts. Each molecule consists of a central piperazine ring in a chair conformation, with either benzoyl and nitrophenyl (I) or 4-bromobenzoyl and phenyl (II) groups attached to different nitrogen atoms of the piperazine. The various atom-atom contact coverages as quantified by Hirshfeld surface analysis fingerprint plots are given.

1. Chemical context

Piperazines are important pharmacophores that are found in many biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005; Brockunier et al., 2004; Bogatcheva et al., 2006) such as antifungal (Upadhayaya et al., 2004), anti-bacterial, anti-malarial and antipsychotic agents (Chaudhary et al., 2006). The pharmacological properties of phenylpiperazines and their derivatives have been described by Cohen et al. (1982), Conrado et al. (2008), Neves et al. (2003), and by Hanano et al. (2000). The design and synthesis of phenylpiperazine derivatives as potent anticancer agents for prostate cancer have been described by Demirci et al. (2019). Many pharmaceutical compounds are derived from 1-phenylpiperazine, viz., oxypertine, trazodone, nefazodone, etc. Valuable insights into recent advances in antimicrobial activity of piperazine derivatives have been provided by Kharb et al. (2012). A review of current pharmacological and toxicological information for piperazine derivatives was conducted by Elliott (2011).

4-Nitrophenylpiperazinium chloride monohydrate has been used as an intermediate in the synthesis of anticancer drugs, transcriptase inhibitors and antifungal reagents, and is also an important reagent for potassium channel openers, which show considerable biomolecular current-voltage rectification characteristics (Lu, 2007). The inclusion behaviours of 4-sulfonatocalix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4nitrophenyl)piperazine (NPP) were investigated by UV and fluorescence spectroscopies at different pH values (Zhang *et* *al.*, 2014). The design, synthesis and biological profiling of aryl piperazine-based scaffolds for the management of androgensensitive prostatic disorders has also been reported by Gupta *et al.* (2016). 4-Nitrophenylpiperazine was the starting material in the synthesis and biological evaluation of novel piperazine containing hydrazone derivatives (Kaya *et al.*, 2016).

In view of the importance of piperazines in general and the use of 4-nitrophenylpiperazine and 1-phenylpiperazine in particular, this paper reports the synthesis and crystal structures of 1-benzoyl-4-(4-nitrophenyl)piperazine, $C_{17}H_{17}N_3O_3$, (I) and 1-(4-bromobenzoyl)phenylpiperazine, $C_{17}H_{17}BrN_2O$, (II).

2. Structural commentary

There are no unusual bond distances or angles in either I or II. The asymmetric unit of I (see scheme) contains two molecules, suffixed 'A' and 'B' in Fig. 1. Each consists of a central piperazine ring in a chair conformation, with a benzoyl and nitrophenyl group attached to different nitrogen atoms. The nitro groups are almost coplanar with their attached benzene rings, forming dihedral angles of 4.4 (2) and 3.0 (2)° for molecules A and B, respectively. The phenyl rings are twisted out of planarity with the carbonyl group and its linkage to the piperazine rings, giving N1–C11–C12–C13 torsion angles of -46.8 (3) and 45.4 (3)° for A and B, respectively. The dihedral angles between the phenyl and nitrobenzene rings are

Figure 1 An ellipsoid plot (50% probability) of **I** showing the two molecules in the asymmetric unit.

Table 1	
Short intermolecular $C-H \cdots O$ contacts (Å, °) in I and II.	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
T				
$C6B - H6B \cdots O1A$	0.95	2.50	3.140 (2)	124.5
$C7B-H7B\cdots O1A$	0.95	2.58	3.171 (2)	120.3
$C6A - H6A \cdots O1B^{i}$	0.95	2.47	3.173 (2)	131.0
$C7A - H7A \cdots O1B^{i}$	0.95	2.78	3.317 (2)	116.8
П				
C13-H13···O1 ⁱⁱ	0.95	2.60	3.018 (4)	107.3
$C14-H14\cdots O1^{ii}$	0.95	2.68	3.052 (4)	104.0

Symmetry codes: (i) x, y, z + 1; (ii) x, y - 1, z

51.52 (6)° in A and 57.23 (7)° in B. Compound II on the other hand has just one molecule in its asymmetric unit (Fig. 2). The piperazine ring is also in a chair conformation and the brominated ring is torsioned [N1-C11-C12-C13 = 46.4 (4)°] to a similar degree to that in I, but the dihedral angle between the phenyl and brominated benzene rings is larger, at 86.6 (1)°.

3. Supramolecular features

There are no conventional hydrogen bonds in either I or II, but there are weaker $C-H \cdots O$ contacts (Table 1). For I, SHELXL identifies a number of 'potential' hydrogen-bonding interactions, but most of these have poor geometry for hydrogen bonds. The shortest donor-acceptor distances occur for the bifurcated pair $C6B - H6B \cdots O1A$ and C7B -H7B···O1A within the chosen asymmetric unit. A similar bifurcated pair of contacts $C6A - H6A \cdots O1B^{i}$ and C7A - $H7A \cdots O1B^{i}$ [symmetry code: (i) x, y, z + 1] occur between the A and B molecules in adjacent (along c) asymmetric units. In combination, these interactions lead to double chains that extend parallel to [001] (Fig. 3). In contrast to I, SHELXL identifies no 'potential' hydrogen bonds for II. Mercury (Macrae et al., 2020) on the other hand, which has different default parameters for flagging hydrogen bonds, identifies a bifurcated pair, C13-H13...O1ⁱⁱ and C14-H14...O1ⁱⁱ [symmetry code: (ii) x, y + 1, z] (Table 1). A clearer picture of this interaction is provided by a view of the Hirshfeld surface plotted over d_{norm} , as calculated by CrystalExplorer (Spackman et al., 2021), which highlights contacts shorter than the van der Waals radius sum as red blobs (Fig. 4). This bifurcated pair of interactions link molecules of II into chains

An ellipsoid plot (50% probability) of **II**.

research communications

A partial packing plot of I, showing close contacts (dashed lines) that connect the molecules into chains parallel to the *c*-axis.

Figure 4

A partial packing plot of \mathbf{II} , showing the Hirshfeld surface of the central molecule, highlighting (red blobs) the bifurcated close contacts (dashed lines) that join the molecules into chains parallel to the *b*-axis.

Figure 5

Hirshfeld surface analysis fingerprint plots showing the relative coverage of different atom-atom contacts in **I**: (*a*) $H \cdot \cdot \cdot H = 38.3\%$, (*b*) $O \cdot \cdot \cdot H/H \cdot \cdot O = 28.8\%$, (*c*) $C \cdot \cdot \cdot H/H \cdot \cdot C = 24.1\%$, (*d*) $N \cdot \cdot \cdot H/H \cdot \cdot N = 4.1\%$, (*e*) $C \cdot \cdot O/O \cdot C = 2.4\%$, (*f*) $C \cdot \cdot C = 1.8\%$. All other contacts are negligible.

that extend along [010]. The various atom-atom contacts as quantified in Hirshfeld surface analysis fingerprint plots are given in Figs. 5 and 6.

4. Database survey

There are numerous crystal structures related to I and II in the Cambridge Structure Database (CSD v5.42 with updates

Figure 6

Hirshfeld surface analysis fingerprint plots showing the relative coverage of different atom-atom contacts in **II**: (a) $H \cdot \cdot \cdot H = 45.5\%$, (b) $C \cdot \cdot \cdot H/H \cdot \cdot C = 26.8$, (c) $Br \cdot \cdot \cdot H/H \cdot \cdot \cdot Br = 12.6\%$, (d) $O \cdot \cdot \cdot H/H \cdot \cdot O = 7.1\%$, (e) $N \cdot \cdot \cdot H/H \cdot \cdot N = 3.1\%$, (f) $O \cdot \cdot \cdot Br/Br \cdot \cdot O = 1.7\%$, (g) $Br \cdot \cdot \cdot Br = 1.1\%$, (h) $C \cdot \cdot \cdot Br/Br \cdot \cdot C = 1.0\%$, (i) $C \cdot \cdot \cdot O/O \cdot \cdot C = 0.8\%$. All other contacts are negligible.

Table 2Experimental details.

	I	II
Crystal data		
Chemical formula	$C_{17}H_{17}N_2O_2$	C ₁₇ H ₁₇ BrN ₂ O
$M_{\rm r}$	311.33	345.23
Crystal system, space group	Orthorhombic, Pna21	Monoclinic, $P2_1$
Temperature (K)	90	90
a, b, c (Å)	18,7779 (4), 10,0699 (2), 15,7288 (3)	7,5162 (3), 6,1125 (2), 15,7249 (5)
α , β , γ (°)	90, 90, 90	90, 98,625 (1), 90
$V(A^3)$	2974.18 (10)	714.28 (4)
Z	8	2
Radiation type	Cu <i>Kα</i>	Μο Κα
$\mu (\mathrm{mm}^{-1})^{31}$	0.80	2.88
Crystal size (mm)	$0.24\times0.18\times0.12$	$0.35 \times 0.20 \times 0.06$
Data collection		
Diffractometer	Bruker D8 Venture dual source	Bruker D8 Venture dual source
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (TWINABS; Sheldrick, 2012)
$T_{\min}, \tilde{T}_{\max}$	0.854, 0.942	0.568, 0.806
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	24139, 5684, 5575	6918, 6918, 6410
R _{int}	0.027	0.065
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.625	0.650
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.075, 1.04	0.023, 0.049, 1.04
No. of reflections	5684	6918
No. of parameters	416	191
No. of restraints	1	1
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.18, -0.16	0.29, -0.22
Absolute structure	Flack x determined using 2442 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 1306 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.01 (5)	0.012 (4)

Computer programs: APEX3 (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), SHELXTL and XP in SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

through June 2022; Groom et al., 2016). A search on the central core, piperazine-1-carbaldehyde gave 834 hits whereas search fragments 4-benzoylpiperazine and 4-phenylpiperazine-1-carbaldehyde gave 132 and 110 hits, respectively. A search on 1-benzoyl-4-phenylpiperazine gave 20 hits, two of which have little in common with I or II. An NMR-based investigation of conformational behaviour in solution by Wodtke et al. (2018) of acyl-functionalized piperazines includes the crystal structures of 1-(4-fluorobenzoyl)-4-(4nitrophenyl)piperazine (BIQYIM), 1-(4-bromobenzoyl)-4-(4nitrophenyl)piperazine (BIRHES), and 1-(3-bromobenzovl)-4-(4-nitrophenyl)piperazine (BIRHIW). Six new 1-aroyl-4-(4methoxyphenyl)piperazines (VONFOW, VONGAJ, VONGEN, VONGIR, VONGOX, VONGUD) were prepared using coupling reactions between benzoic acids and N-(4methoxyphenyl)piperazine (Kiran Kumar et al., 2019). Six 1-halobenzoyl-4-(2-methoxyphenyl)piperazines (FALHEJ, FALHIN, FALHOT, FALHUZ, FALJAH, FALJEL) with a variety of disorder, pseudosymmetry and twinning were described by Harish Chinthal et al. (2021). 1-(3,5-Dinitrobenzoyl)-4-(2-methoxyphenyl)piperazine (LAHBIJ) was published by Harish Chinthal et al. (2020). The remaining two hits are piperazine derivatives with (2-methoxyphenylsulfanyl)benzoyl groups plus 2,3-dichlorophenyl (DEGHAZ: Chu et al., 2006) and 2-methoxyphenyl (SAYYEX: Li et al., 2006).

5. Synthesis and crystallization

Synthetic routes for compounds similar to I and II have already been reported by two separate research groups (Kumari et al., 2015; Wodtke et al., 2018). The present syntheses are totally different from those earlier reports. 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride 0.7 mmol), (109 mg, 1-hydroxybenzotriazole (68 mg, 0.5 mmol) and triethylamine (0.5 ml, 1.5 mmol) were added to a solution of benzoic acid (0.5 mmol) or 4-bromobenzoic acid (0.5 mmol) in N,N-dimethylformamide (5 ml) and the resulting mixture was stirred for 20 min at 273 K. A solution of 1-(4-nitrophenyl)piperazine (104 mg, 0.5 mmol) or 1-phenylpiperazine (81 mg, 0.5 mmol) in N,N-dimethylformamide

Figure 7

Reaction schemes for the synthesis of I and II. $EDC \cdot HCl = 1 - (3 - dimethylaminopropyl) - 3 - ethylcarbodiimide hydrochloride, HOBt = 1 - hydroxybenzotriazole, TEA = triethylamine, DMF = dimethylformamide.$

(5 ml) was then added and stirring was continued overnight at ambient temperature. Reaction schemes are summarized in Fig. 7. When the reactions were confirmed to be complete using thin-layer chromatography, each mixture was quenched with water (10 ml) and extracted with ethyl acetate (20 ml). Each organic fraction was separated and washed successively with an aqueous hydrochloric acid solution (1 mol dm⁻³), a saturated solution of sodium hydrogencarbonate, and lastly with brine. The organic phases were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethyl acetate (I: yield 81%, m.p. 428–430 K; II: yield 75%, m.p. 394–396 K).

6. Data collection and structure refinement

For I, an orange, irregular block-shaped crystal was mounted using polyisobutene oil on the tip of a fine glass fibre in a copper mounting pin. Cu $K\alpha$ radiation was chosen to facilitate setting the correct absolute structure, which was definitively established by variants of Flack's parameter (Flack & Bernardinelli, 1999; Hooft et al., 2008; Parsons et al., 2013). For II, the available sample consisted of colourless plates, none of which were single crystals. A suitable specimen was mounted in the same way as for I. Diffraction data collected at 90 K showed two slightly mis-aligned, but sharp and distinct reciprocal lattices. These were not related by any rational twin operation, but by a seemingly arbitrary $\sim 4^{\circ}$ rotation, presumably due to mis-stacking of aggregated plates. Nevertheless, for data acquisition and processing, facilities for handling twinning by non-merohedry were used. For a brief discussion of true twins vs aggregates, see Parkin (2021). The absolute structure was again determined unambiguously via the Flack parameter and related methods. Crystal data, data collection and refinement statistics are summarized in Table 2. For both structures, hydrogen atoms were included using riding models, with constrained distances set to 0.95 Å (Csp²H) and 0.99 Å (R_2 CH₂). U_{iso} (H) parameters were set to $1.2U_{\rm eq}$ of the attached atom.

Acknowledgements

One of the authors (SDA) is grateful to the University of Mysore for research facilities.

Funding information

Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 182 Venture diffractometer). HSY thanks the UGC for a BSR Faculty fellowship for three years.

References

Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). *Tetrahedron Lett.* **46**, 2369–2371.

- Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.
- Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). *Bioorg. Med. Chem. Lett.* 14, 4763–4766.
- Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). *Bioorg. Med. Chem.* 14, 1819–1826.
- Chu, J.-C., Shang, Z.-H., Zhou, X.-Q. & Liu, D.-Z. (2006). Acta Cryst. E62, o1042–o1043.
- Cohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110–119.
- Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699–707.
- Demirci, S., Hayal, T. B., Kıratli, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). *Chem. Biol. Drug Des.* 94, 1584–1595.
- Elliott, S. (2011). Drug Test. Anal. 3, 430-438.
- Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). *MedChemComm*, 7, 2111– 2121.
- Hanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). *Bioorg. Med. Chem. Lett.* 10, 875–879.
- Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020). *IUCrData*, **5**, x201523.
- Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2021). Acta Cryst. E77, 5–13.
- Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.
- Kaya, B., Özkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. *Chem.* Article ID 5878410.
- Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.
- Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Kumari, S., Mishra, C. B. & Tiwari, M. (2015). Bioorg. Med. Chem. Lett. 25, 1092–1099.
- Li, A.-J., Tao, M.-L., Ma, J., Zhou, X.-Q. & Liu, D.-Z. (2006). Acta Cryst. E62, 0158–0159.
- Lu, Y.-X. (2007). Acta Cryst. E63, o3611.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Neves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). *Braz. J. Med. Biol. Res.* **36**, 625–629.
- Parkin, S. R. (2021). Acta Cryst. E77, 452-465.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). *Bioorg. Med. Chem.* **12**, 2225–2238.

- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
 Wodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921–40933.
- Zhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta Part A. 132, 44-51.

supporting information

Acta Cryst. (2022). E78, 1028-1033 [https://doi.org/10.1107/S2056989022009008]

Synthesis and crystal structures of 1-benzoyl-4-(4-nitrophenyl)piperazine and 1-(4-bromobenzoyl)-4-phenylpiperazine at 90 K

Sreeramapura D. Archana, Haruvegowda Kiran Kumar, Holehundi J. Shankara Prasad, Hemmige S. Yathirajan and Sean Parkin

Computing details

For both structures, data collection: *APEX3* (Bruker, 2016); cell refinement: *APEX3* (Bruker, 2016); data reduction: *APEX3* (Bruker, 2016); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2019/2* (Sheldrick, 2015b); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

1-Benzoyl-4-(4-nitrophenyl)piperazine (I)

Crystal data

 $C_{17}H_{17}N_3O_3$ $M_r = 311.33$ Orthorhombic, $Pna2_1$ a = 18.7779 (4) Å b = 10.0699 (2) Å c = 15.7288 (3) Å V = 2974.18 (10) Å³ Z = 8F(000) = 1312

Data collection

Bruker D8 Venture dual source diffractometer Radiation source: microsource Detector resolution: 7.41 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Krause et al., 2015) $T_{\min} = 0.854, T_{\max} = 0.942$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.075$ S = 1.045684 reflections 416 parameters 1 restraint $D_x = 1.391 \text{ Mg m}^{-3}$ Cu *Ka* radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9920 reflections $\theta = 4.4-74.3^{\circ}$ $\mu = 0.80 \text{ mm}^{-1}$ T = 90 KCut block, orange $0.24 \times 0.18 \times 0.12 \text{ mm}$

24139 measured reflections 5684 independent reflections 5575 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 74.5^{\circ}, \theta_{min} = 4.7^{\circ}$ $h = -23 \rightarrow 23$ $k = -12 \rightarrow 11$ $l = -17 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0371P)^2 + 0.6857P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$
$$\begin{split} &\Delta\rho_{max} = 0.18 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min} = -0.15 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL2019/2} \\ & \text{(Sheldrick 2015b),} \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \end{split}$$

Extinction coefficient: 0.0022 (4) Absolute structure: Flack *x* determined using 2442 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.01 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using *Platon* (Spek, 2020) and by an *R*-tensor (Parkin, 2000). The final model was further checked with the IUCr utility *checkCIF*.

Fractional	atomic	coordinates	and	isotror	oic or	eauivalent	isotror	oic dis	placement	parameters	(\mathring{A}^2))
1		000101111101000		1001. op			1001.00		processies	pen ennerers	()	/

	x	v	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
01A	0.49268 (7)	0.25685 (14)	0.56553 (9)	0.0244 (3)	
O2A	0.68624 (9)	0.60163 (17)	1.17477 (10)	0.0361 (4)	
O3A	0.76060 (9)	0.73323 (17)	1.11319 (11)	0.0414 (4)	
N1A	0.55858 (8)	0.41895 (16)	0.62597 (10)	0.0210 (3)	
N2A	0.61000 (8)	0.49591 (17)	0.78914 (10)	0.0195 (3)	
N3A	0.71215 (9)	0.65057 (17)	1.11034 (11)	0.0261 (4)	
C1A	0.62179 (10)	0.5034 (2)	0.63281 (12)	0.0214 (4)	
H1AA	0.607617	0.597868	0.628176	0.026*	
H1AB	0.654911	0.483266	0.585577	0.026*	
C2A	0.65919 (10)	0.48038 (19)	0.71744 (12)	0.0207 (4)	
H2AA	0.679576	0.389723	0.718316	0.025*	
H2AB	0.698868	0.544445	0.723448	0.025*	
C3A	0.55049 (10)	0.4032 (2)	0.78203 (12)	0.0210 (4)	
H3AA	0.517626	0.415436	0.830622	0.025*	
H3AB	0.568435	0.310825	0.783299	0.025*	
C4A	0.51124 (10)	0.4282 (2)	0.69932 (12)	0.0226 (4)	
H4AA	0.472393	0.362465	0.693253	0.027*	
H4AB	0.489499	0.517774	0.700923	0.027*	
C5A	0.6365(1)	0.52962 (18)	0.86888 (12)	0.0185 (4)	
C6A	0.61095 (10)	0.4696 (2)	0.94373 (13)	0.0212 (4)	
H6A	0.576303	0.401156	0.939965	0.025*	
C7A	0.63554 (10)	0.5089 (2)	1.02259 (13)	0.0224 (4)	
H7A	0.618067	0.467679	1.072742	0.027*	
C8A	0.68595 (10)	0.6092 (2)	1.02784 (13)	0.0210 (4)	
C9A	0.71253 (10)	0.67057 (19)	0.95518 (13)	0.0204 (4)	
H9A	0.746997	0.739266	0.959720	0.025*	
C10A	0.68827 (10)	0.63056 (19)	0.87663 (12)	0.0196 (4)	
H10A	0.706667	0.671542	0.826856	0.024*	
C11A	0.54106 (10)	0.33847 (18)	0.55996 (12)	0.0193 (4)	
C12A	0.58053 (10)	0.35251 (18)	0.47737 (12)	0.0192 (4)	
C13A	0.59294 (11)	0.47549 (19)	0.43979 (13)	0.0217 (4)	
H13A	0.580037	0.554491	0.468986	0.026*	

C14A	0.62417 (11)	0.4834 (2)	0.35964 (13)	0.0248 (4)
H14A	0.632511	0.567619	0.334269	0.030*
C15A	0.64312 (11)	0.3679 (2)	0.31679 (13)	0.0245 (4)
H15A	0.664928	0.373155	0.262397	0.029*
C16A	0.6302(1)	0.24515 (19)	0.35343 (12)	0.0235 (4)
H16A	0.643110	0.166306	0.324057	0.028*
C17A	0.59843 (10)	0.23706 (19)	0.43299 (12)	0.0216 (4)
H17A	0.588821	0.152610	0.457348	0.026*
O1B	0.51435 (8)	0.27356 (15)	0.05162 (9)	0.0293(3)
02B	0.33405 (8)	-0.06911(15)	0.67739 (9)	0.0282(3)
03B	0.26109 (8)	-0.20433(15)	0.61629 (10)	0.0329(4)
N1B	0.26109(0)	0 11868 (16)	0.12905(11)	0.0229(1) 0.0228(4)
N2B	0.40172(9)	0.04918(17)	0 29159 (10)	0.0220(1) 0.0217(3)
N3B	0.10172(9) 0.30667(8)	-0.11612(16)	0.29199(10) 0.61295(11)	0.0217(3)
C1B	0.41561(12)	-0.0033(2)	0.01299(11) 0.14059(13)	0.0224(3) 0.0253(4)
HIBA	0.41901 (12)	-0.078227	0.151053	0.0203 (4)
	0.3880/1	-0.023286	0.131933	0.030*
	0.366941 0.26400 (11)	-0.023280	0.067627 0.21286(12)	0.030°
	0.30400 (11)	0.0112(2)	0.21560 (15)	0.0234 (4)
H2BA	0.328046	0.079722	0.199825	0.028*
H2BB	0.338820	-0.073922	0.223114	0.028*
C3B	0.4460/(11)	0.1676(2)	0.28017 (13)	0.0233 (4)
H3BA	0.473969	0.183527	0.332597	0.028*
H3BB	0.415063	0.245682	0.270653	0.028*
C4B	0.49644 (10)	0.1524 (2)	0.20567 (13)	0.0250 (4)
H4BA	0.522715	0.236492	0.196672	0.030*
H4BB	0.531553	0.081701	0.218093	0.030*
C5B	0.37409 (10)	0.01813 (18)	0.37065 (13)	0.0188 (4)
C6B	0.40552 (10)	0.06711 (19)	0.44607 (13)	0.0217 (4)
H6B	0.442914	0.130351	0.442141	0.026*
C7B	0.38332 (10)	0.02550 (19)	0.52486 (13)	0.0199 (4)
H7B	0.405633	0.058671	0.574731	0.024*
C8B	0.32797 (10)	-0.0655 (2)	0.53103 (13)	0.0215 (4)
C9B	0.29260 (11)	-0.1085 (2)	0.45864 (14)	0.0291 (5)
H9B	0.252897	-0.166422	0.463589	0.035*
C10B	0.31504 (11)	-0.0671 (2)	0.37969 (13)	0.0286 (5)
H10B	0.290331	-0.096502	0.330455	0.034*
C11B	0.46938 (10)	0.1852 (2)	0.05581 (13)	0.0220 (4)
C12B	0.42532 (10)	0.15513 (18)	-0.02141 (13)	0.0221 (4)
C13B	0.35132 (11)	0.14223 (19)	-0.01901 (14)	0.0256 (4)
H13B	0.327087	0.142772	0.034009	0.031*
C14B	0.31314 (12)	0.1286 (2)	-0.09407 (15)	0.0306 (5)
H14B	0.262847	0.118875	-0.091983	0.037*
C15B	0.34732 (13)	0.1291 (2)	-0.17155 (15)	0.0322(5)
H15B	0.320685	0.120065	-0.222572	0.039*
C16B	0.42102 (13)	0.1427 (2)	-0.17482 (14)	0.0299 (5)
H16B	0.444836	0.143404	-0.228106	0.036*
C17B	0.45955 (11)	0.15539 (19)	-0.10018(14)	0.0256 (4)
H17B	0.509876	0.164349	-0.102622	0.031*
			· · · -	

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0266 (7)	0.0212 (7)	0.0255 (7)	-0.0069 (5)	-0.0025 (6)	-0.0020 (6)
O2A	0.0437 (9)	0.0473 (10)	0.0173 (7)	-0.0087 (7)	-0.0004 (7)	-0.0012 (7)
O3A	0.0493 (9)	0.0485 (10)	0.0263 (8)	-0.0226 (8)	-0.0077 (8)	-0.0045 (8)
N1A	0.0202 (8)	0.0234 (8)	0.0195 (8)	-0.0048 (6)	0.0003 (6)	-0.0035 (7)
N2A	0.0180 (7)	0.0237 (9)	0.0169 (8)	-0.0036 (6)	0.0013 (6)	-0.0035 (6)
N3A	0.0289 (8)	0.0304 (9)	0.0189 (8)	-0.0013 (7)	-0.0027 (7)	-0.0021 (7)
C1A	0.0228 (9)	0.0241 (10)	0.0173 (10)	-0.0060(7)	0.0006 (7)	-0.0028 (7)
C2A	0.0190 (9)	0.0244 (9)	0.0188 (10)	-0.0021 (7)	0.0013 (7)	-0.0036 (8)
C3A	0.0188 (8)	0.0249 (10)	0.0194 (9)	-0.0062 (7)	0.0018 (7)	-0.0022 (8)
C4A	0.0193 (9)	0.0273 (10)	0.0213 (10)	-0.0036 (7)	0.0013 (8)	-0.0043 (8)
C5A	0.0170 (8)	0.0199 (9)	0.0185 (9)	0.0025 (7)	0.0000(7)	-0.0021 (7)
C6A	0.0198 (9)	0.0218 (9)	0.0219 (10)	-0.0022 (7)	0.0009 (8)	-0.0001 (8)
C7A	0.0235 (9)	0.0255 (10)	0.0183 (9)	0.0000 (8)	0.0033 (8)	0.0008 (8)
C8A	0.0212 (9)	0.0243 (10)	0.0175 (9)	0.0027 (7)	-0.0005 (7)	-0.0035 (8)
C9A	0.0181 (8)	0.0200 (9)	0.0232 (10)	-0.0010 (7)	-0.0013 (8)	-0.0019 (8)
C10A	0.0194 (9)	0.0213 (9)	0.0182 (9)	0.0004 (7)	0.0018 (7)	0.0008 (7)
C11A	0.0215 (9)	0.0170 (9)	0.0193 (9)	0.0016 (7)	-0.0053 (7)	0.0004 (7)
C12A	0.0206 (9)	0.0187 (9)	0.0183 (9)	0.0000(7)	-0.0064 (7)	-0.0027 (7)
C13A	0.0262 (9)	0.0198 (9)	0.0192 (9)	0.0008 (7)	-0.0034 (8)	-0.0007 (7)
C14A	0.027(1)	0.0231 (10)	0.0243 (11)	-0.0019 (8)	-0.0061 (8)	0.0034 (8)
C15A	0.0224 (10)	0.0327 (11)	0.0185 (10)	0.0009 (8)	-0.0033 (7)	-0.0007 (8)
C16A	0.0233 (9)	0.0255 (10)	0.0218 (11)	0.0043 (8)	-0.0047 (8)	-0.0055 (8)
C17A	0.0244 (9)	0.0188 (9)	0.0215 (10)	0.0008 (7)	-0.0058 (7)	-0.0001 (7)
O1B	0.0278 (7)	0.0310 (8)	0.0290 (8)	-0.0081 (6)	0.0022 (6)	0.0076 (6)
O2B	0.0288 (7)	0.0390 (8)	0.0169 (7)	-0.0015 (6)	-0.0034 (6)	-0.0029 (6)
O3B	0.0366 (8)	0.0368 (8)	0.0255 (8)	-0.0143 (7)	0.0050 (7)	-0.0004 (7)
N1B	0.0261 (8)	0.0203 (8)	0.0221 (9)	-0.0031 (7)	0.0031 (6)	0.0008 (7)
N2B	0.0228 (8)	0.0239 (8)	0.0183 (8)	-0.0061 (7)	-0.0002 (6)	-0.0008 (6)
N3B	0.0220 (7)	0.0263 (8)	0.0189 (8)	0.0012 (6)	0.0009 (7)	-0.0011 (7)
C1B	0.0353 (11)	0.0183 (9)	0.0224 (10)	-0.0035 (8)	0.0039 (8)	-0.0009 (7)
C2B	0.0285 (10)	0.024 (1)	0.0176 (10)	-0.0089 (8)	0.0001 (8)	-0.0007 (8)
C3B	0.0253 (9)	0.0245 (10)	0.0203 (10)	-0.0070 (8)	0.0000 (8)	-0.0004 (8)
C4B	0.0220 (9)	0.0263 (10)	0.0266 (11)	-0.0026 (7)	-0.0001 (8)	0.0035 (8)
C5B	0.0186 (9)	0.0188 (9)	0.0189 (9)	0.0028 (7)	-0.0006 (7)	-0.0011 (7)
C6B	0.0200 (8)	0.0214 (9)	0.0236 (9)	-0.0025 (7)	-0.0005 (8)	-0.0024 (8)
C7B	0.0199 (9)	0.0204 (10)	0.0194 (9)	0.0003 (7)	-0.0035 (7)	-0.0041 (7)
C8B	0.0209 (9)	0.0248 (10)	0.0187 (9)	0.0004 (8)	0.0019 (7)	-0.0014 (8)
C9B	0.0268 (10)	0.0377 (12)	0.0227 (10)	-0.0135 (9)	0.0010 (9)	-0.0025 (9)
C10B	0.0263 (10)	0.0397 (12)	0.0197 (10)	-0.0116 (9)	-0.0011 (8)	-0.0035 (9)
C11B	0.0206 (9)	0.0196 (9)	0.0257 (10)	0.0019 (7)	0.0052 (8)	0.0007 (8)
C12B	0.0269 (10)	0.0136 (9)	0.0258 (10)	0.0013 (7)	0.0041 (8)	0.0028 (7)
C13B	0.0264 (10)	0.0194 (10)	0.0311 (12)	0.0011 (8)	0.0035 (8)	-0.0021 (8)
C14B	0.0300 (11)	0.022 (1)	0.0398 (12)	-0.0012 (8)	-0.0013 (10)	-0.0051 (9)
C15B	0.0452 (13)	0.0194 (10)	0.0319 (12)	0.0013 (9)	-0.0079 (10)	-0.0056 (9)
C16B	0.0457 (13)	0.0185 (10)	0.0256 (11)	0.0027 (8)	0.0056 (9)	-0.0001 (8)

C17B 0.0299 (10) 0.0180 (9) 0.0289 (11) 0.0043 (8) 0.0065 (9) 0.0025 (8) Geometric parameters (Å, °) O1A-C11A 1.228 (2) O1B-C11B 1.228(2)O2A—N3A 1.228(2)O2B-N3B 1.231(2)O3A—N3A 1.234(2)O3B-N3B 1.235(2)N1A-C11A 1.358 (2) N1B-C11B 1.354 (3) N1A—C4A 1.459(2)N1B-C4B 1.457 (3) N1A-C1A 1.464 (2) N1B-C1B 1.462(2)N2A—C5A 1.391 (2) N2B-C5B 1.383 (3) N2A—C3A 1.460(2)N2B-C2B 1.464(2)N2A—C2A 1.466(2)N2B-C3B 1.465(2)N3A—C8A N3B—C8B 1.449(3) 1.442(3)C1A—C2A 1.523 (3) C1B-C2B 1.513 (3) C1A—H1AA 0.9900 C1B—H1BA 0.9900 C1A—H1AB 0.9900 C1B—H1BB 0.9900 C2A—H2AA 0.9900 C2B—H2BA 0.9900 C2A—H2AB 0.9900 C2B—H2BB 0.9900 C3A-C4A C3B-C4B 1.516(3) 1.514(3)СЗА—НЗАА 0.9900 СЗВ—НЗВА 0.9900 СЗА-НЗАВ 0.9900 C3B—H3BB 0.9900 C4A—H4AA 0.9900 C4B—H4BA 0.9900 C4A—H4AB 0.9900 C4B—H4BB 0.9900 C5A—C6A 1.407(3)C5B-C10B 1.409 (3) C5A-C10A 1.412(3)C5B-C6B 1.414(3)C6A-C7A 1.381(3)C6B-C7B 1.373 (3) С6А—Н6А 0.9500 C6B—H6B 0.9500 C7A—C8A 1.386(3)C7B-C8B 1.389(3) C7A—H7A 0.9500 0.9500 C7B—H7B C8A-C9A C8B-C9B 1.392 (3) 1.388 (3) C9A-C10A 1.377 (3) C9B-C10B 1.376 (3) С9А-Н9А 0.9500 C9B-H9B 0.9500 C10A—H10A 0.9500 C10B-H10B 0.9500 C11A-C12A 1.502 (3) C11B-C12B 1.500(3)C12A-C13A 1.392(3)C12B-C17B 1.396 (3) C12A-C17A 1.397 (3) C12B-C13B 1.396(3) C13A-C14A 1.393 (3) C13B-C14B 1.388 (3) C13A—H13A C13B-H13B 0.9500 0.9500 C14A-C15A 1.391 (3) C14B-C15B 1.377 (3) C14A—H14A 0.9500 C14B—H14B 0.9500 C15A-C16A C15B-C16B 1.392 (4) 1.385(3)0.9500 0.9500 C15A—H15A C15B-H15B C16A-C17A 1.389(3) C16B-C17B 1.385 (3) C16A-H16A 0.9500 C16B-H16B 0.9500 C17A—H17A 0.9500 0.9500 C17B-H17B

119.69 (15)

C11B—N1B—C4B

119.94 (16)

supporting information

C11A—N1A—C1A	126.84 (16)	C11B—N1B—C1B	127.86 (17)
C4A—N1A—C1A	113.47 (15)	C4B—N1B—C1B	111.31 (16)
C5A—N2A—C3A	119.91 (16)	C5B—N2B—C2B	120.68 (15)
C5A—N2A—C2A	119.61 (16)	C5B—N2B—C3B	120.49 (16)
C3A—N2A—C2A	110.80 (15)	C2B—N2B—C3B	112.64 (16)
O2A—N3A—O3A	122.22 (18)	O2B—N3B—O3B	122.08 (17)
O2A—N3A—C8A	119.29 (16)	O2B—N3B—C8B	118.93 (15)
O3A—N3A—C8A	118.49 (17)	O3B—N3B—C8B	118.99 (17)
N1A—C1A—C2A	110.46 (16)	N1B—C1B—C2B	110.61 (16)
N1A—C1A—H1AA	109.6	N1B—C1B—H1BA	109.5
C2A—C1A—H1AA	109.6	C2B-C1B-H1BA	109.5
N1A—C1A—H1AB	109.6	N1B—C1B—H1BB	109.5
C2A—C1A—H1AB	109.6	$C^2B-C^1B-H^1BB$	109.5
H1AA—C1A—H1AB	108.1	H1BA—C1B—H1BB	108.1
N2A - C2A - C1A	111 44 (16)	N2B-C2B-C1B	110.58 (16)
N2A—C2A—H2AA	109 3	N2B—C2B—H2BA	109 5
C1A - C2A - H2AA	109.3	C1B-C2B-H2BA	109.5
N2A - C2A - H2AB	109.3	N2B-C2B-H2BB	109.5
C1A - C2A - H2AB	109.3	C1B-C2B-H2BB	109.5
$H_{2A} = C_{2A} = H_{2AB}$	108.0	$H^2BA = C^2B = H^2BB$	109.5
N2A - C3A - C4A	109.37 (16)	N2B-C3B-C4B	111 59 (17)
N2A - C3A - H3AA	109.8	N2B-C3B-H3BA	109.3
$C_{4A} = C_{3A} = H_{3AA}$	109.8	C4B-C3B-H3BA	109.3
N2A C3A H3AB	109.8	N2B C3B H3BB	109.3
$C_{AA} = C_{AA} = H_{AB}$	109.8	CAB C3B H3BB	109.3
$H_{A} = C_{A} = H_{A} B$	109.0	H3BA C3B H3BB	109.5
NIA CAA CZA	111.81 (15)	N1P C4P C2P	100.0
$\mathbf{N}\mathbf{I}\mathbf{A} = \mathbf{C}\mathbf{I}\mathbf{A} = \mathbf{C}\mathbf{J}\mathbf{A}$	100.2	NID CAD HADA	100.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.0
$C_{JA} = C_{A} = \Pi_{AA}$	109.5	$C_{3}D_{-}C_{4}D_{-}\Pi_{4}DA$	109.0
MA - C4A - HAAD	109.5	$\begin{array}{cccc} \mathbf{N}\mathbf{I}\mathbf{D} & \mathbf{C}4\mathbf{D} & \mathbf{I}14\mathbf{D}\mathbf{D} \\ \mathbf{C}2\mathbf{D} & \mathbf{C}4\mathbf{D} & \mathbf{I}4\mathbf{D}\mathbf{D} \end{array}$	109.0
	109.5	$C_{3}D_{-}C_{4}D_{-}H_{4}D_{1}D_{1}D_{1}D_{1}D_{1}D_{1}D_{1}D_{1$	109.0
$\mathbf{M}_{\mathbf{A}\mathbf{A}} = \mathbf{C}_{\mathbf{A}\mathbf{A}} = \mathbf{M}_{\mathbf{A}\mathbf{A}} = \mathbf{M}_{\mathbf{A}\mathbf{A}}$	107.9	$\mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} $	100.1 121.57(18)
N2A = C5A = C10A	121.03(17)	N2D C5D C(D	121.37(18)
NZA = CJA = CI0A	119.99(17) 118.12(17)	N2B - C3B - C0B	121.23(10)
C7A = C(A = C5A)	110.15(17)	C10B - C3B - C0B	117.13(18)
C/A = COA = CSA	120.95 (17)	C/B = C0B = C3B	121.01 (17)
C/A - COA - HOA	119.5		119.2
$C_{A} = C_{A} = C_{A}$	119.5	COB COB COB	119.2
C(A = C7A = U7A	119.30 (19)	COB - C/B - COB	119.45 (18)
COA - C/A - H/A	120.3	$C_{0}B = C/B = H/B$	120.3
C8A - C/A - H/A	120.3		120.3
C/A = C8A = C9A	121.29 (19)	C9B - C8B - C/B	120.44 (19)
C/A = C8A = N2A	119.05 (18)	$C_{AB} = C_{AB} = N_{AB}$	119.34 (17)
CIA-CA-N3A	119.06 (17)	$C/B = C \delta B = C \delta B$	120.22 (17)
C10A - C9A - C8A	119.21 (17)	CIUB-C9B-C8B	119.97 (18)
CIUA - C9A - H9A	120.4		120.0
Сба—Суа—Нуа	120.4	Сов стор стр	120.0
C9A—C10A—C5A	121.06 (18)	C9B—C10B—C5B	121.08 (19)

C9A—C10A—H10A	119.5	C9B—C10B—H10B	119.5
C5A—C10A—H10A	119.5	C5B-C10B-H10B	119.5
O1A—C11A—N1A	121.61 (18)	O1B—C11B—N1B	121.63 (19)
O1A—C11A—C12A	119.32 (17)	O1B—C11B—C12B	118.80 (18)
N1A—C11A—C12A	119.05 (16)	N1B—C11B—C12B	119.51 (17)
C13A—C12A—C17A	119.19 (18)	C17B—C12B—C13B	118.9 (2)
C13A—C12A—C11A	122.26 (17)	C17B—C12B—C11B	117.66 (17)
C17A—C12A—C11A	118.19 (16)	C13B—C12B—C11B	123.07 (18)
C12A—C13A—C14A	120.40 (18)	C14B—C13B—C12B	120.0 (2)
C12A—C13A—H13A	119.8	C14B—C13B—H13B	120.0
C14A—C13A—H13A	119.8	C12B—C13B—H13B	120.0
C15A—C14A—C13A	119.89 (19)	C15B—C14B—C13B	120.76 (19)
C15A—C14A—H14A	120.1	C15B—C14B—H14B	119.6
C13A—C14A—H14A	120.1	C13B—C14B—H14B	119.6
C16A—C15A—C14A	120.00 (18)	C14B—C15B—C16B	119.8 (2)
C16A—C15A—H15A	120.0	C14B—C15B—H15B	120.1
C14A—C15A—H15A	120.0	C16B—C15B—H15B	120.1
C15A—C16A—C17A	120.16 (18)	C17B—C16B—C15B	119.8 (2)
C15A—C16A—H16A	119.9	C17B—C16B—H16B	120.1
C17A—C16A—H16A	119.9	C15B—C16B—H16B	120.1
C16A—C17A—C12A	120.32 (18)	C16B—C17B—C12B	120.77 (19)
C16A—C17A—H17A	119.8	C16B—C17B—H17B	119.6
C12A—C17A—H17A	119.8	C12B—C17B—H17B	119.6
C11A—N1A—C1A—C2A	-129.76 (19)	C11B—N1B—C1B—C2B	-132.2 (2)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A	-129.76 (19) 51.1 (2)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B	-132.2 (2) 58.7 (2)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A	-129.76 (19) 51.1 (2) -155.27 (17)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B	-132.2 (2) 58.7 (2) -154.05 (17)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B	-132.2 (2) 58.7 (2) -154.05 (17) 53.5 (2)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2) -53.4 (2)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B	-132.2 (2) 58.7 (2) -154.05 (17) 53.5 (2) -55.6 (2)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2) -53.4 (2) 155.04 (17)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B	-132.2 (2) 58.7 (2) -154.05 (17) 53.5 (2) -55.6 (2) 154.12 (18)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2) -53.4 (2) 155.04 (17) -59.0 (2)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B	-132.2 (2) 58.7 (2) -154.05 (17) 53.5 (2) -55.6 (2) 154.12 (18) -53.3 (2)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2) -53.4 (2) 155.04 (17) -59.0 (2) 127.48 (18)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B	-132.2 (2) 58.7 (2) -154.05 (17) 53.5 (2) -55.6 (2) 154.12 (18) -53.3 (2) 132.20 (19)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A C1A—N1A—C4A—C3A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2) -53.4 (2) 155.04 (17) -59.0 (2) 127.48 (18) -53.3 (2)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B	-132.2 (2) 58.7 (2) -154.05 (17) 53.5 (2) -55.6 (2) 154.12 (18) -53.3 (2) 132.20 (19) -57.7 (2)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2) -53.4 (2) 155.04 (17) -59.0 (2) 127.48 (18) -53.3 (2) 56.2 (2)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B	-132.2 (2) 58.7 (2) -154.05 (17) 53.5 (2) -55.6 (2) 154.12 (18) -53.3 (2) 132.20 (19) -57.7 (2) 54.6 (2)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2) -53.4 (2) 155.04 (17) -59.0 (2) 127.48 (18) -53.3 (2) 56.2 (2) 4.6 (3)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B	-132.2 (2) 58.7 (2) -154.05 (17) 53.5 (2) -55.6 (2) 154.12 (18) -53.3 (2) 132.20 (19) -57.7 (2) 54.6 (2) 9.5 (3)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2) -53.4 (2) 155.04 (17) -59.0 (2) 127.48 (18) -53.3 (2) 56.2 (2) 4.6 (3) -138.34 (19)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B	-132.2 (2) 58.7 (2) -154.05 (17) 53.5 (2) -55.6 (2) 154.12 (18) -53.3 (2) 132.20 (19) -57.7 (2) 54.6 (2) 9.5 (3) 159.88 (19)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C3A—N2A—C5A—C6A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2) -53.4 (2) 155.04 (17) -59.0 (2) 127.48 (18) -53.3 (2) 56.2 (2) 4.6 (3) -138.34 (19) -172.59 (16)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C2B—N2B—C5B—C6B	-132.2 (2) 58.7 (2) -154.05 (17) 53.5 (2) -55.6 (2) 154.12 (18) -53.3 (2) 132.20 (19) -57.7 (2) 54.6 (2) 9.5 (3) 159.88 (19) -172.66 (17)
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C3A—N2A—C5A—C10A C2A—N2A—C5A—C10A	$\begin{array}{c} -129.76 (19) \\ 51.1 (2) \\ -155.27 (17) \\ 58.7 (2) \\ -53.4 (2) \\ 155.04 (17) \\ -59.0 (2) \\ 127.48 (18) \\ -53.3 (2) \\ 56.2 (2) \\ 4.6 (3) \\ -138.34 (19) \\ -172.59 (16) \\ 44.4 (3) \end{array}$	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C2B—N2B—C5B—C6B C3B—N2B—C5B—C6B	$\begin{array}{c} -132.2 \ (2) \\ 58.7 \ (2) \\ -154.05 \ (17) \\ 53.5 \ (2) \\ -55.6 \ (2) \\ 154.12 \ (18) \\ -53.3 \ (2) \\ 132.20 \ (19) \\ -57.7 \ (2) \\ 54.6 \ (2) \\ 9.5 \ (3) \\ 159.88 \ (19) \\ -172.66 \ (17) \\ -22.3 \ (3) \end{array}$
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C3A—N2A—C5A—C10A N2A—C5A—C6A—C7A	$\begin{array}{c} -129.76 (19) \\ 51.1 (2) \\ -155.27 (17) \\ 58.7 (2) \\ -53.4 (2) \\ 155.04 (17) \\ -59.0 (2) \\ 127.48 (18) \\ -53.3 (2) \\ 56.2 (2) \\ 4.6 (3) \\ -138.34 (19) \\ -172.59 (16) \\ 44.4 (3) \\ -176.91 (18) \end{array}$	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B	$\begin{array}{c} -132.2 (2) \\ 58.7 (2) \\ -154.05 (17) \\ 53.5 (2) \\ -55.6 (2) \\ 154.12 (18) \\ -53.3 (2) \\ 132.20 (19) \\ -57.7 (2) \\ 54.6 (2) \\ 9.5 (3) \\ 159.88 (19) \\ -172.66 (17) \\ -22.3 (3) \\ -172.84 (18) \end{array}$
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C3A—N2A—C5A—C10A N2A—C5A—C6A—C7A C10A—C5A—C6A—C7A	$\begin{array}{c} -129.76 (19) \\ 51.1 (2) \\ -155.27 (17) \\ 58.7 (2) \\ -53.4 (2) \\ 155.04 (17) \\ -59.0 (2) \\ 127.48 (18) \\ -53.3 (2) \\ 56.2 (2) \\ 4.6 (3) \\ -138.34 (19) \\ -172.59 (16) \\ 44.4 (3) \\ -176.91 (18) \\ 0.4 (3) \end{array}$	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C2B—N2B—C5B—C6B C3B—N2B—C5B—C6B N2B—C5B—C6B—C7B C10B—C5B—C6B—C7B	$\begin{array}{c} -132.2 \ (2) \\ 58.7 \ (2) \\ -154.05 \ (17) \\ 53.5 \ (2) \\ -55.6 \ (2) \\ 154.12 \ (18) \\ -53.3 \ (2) \\ 132.20 \ (19) \\ -57.7 \ (2) \\ 54.6 \ (2) \\ 9.5 \ (3) \\ 159.88 \ (19) \\ -172.66 \ (17) \\ -22.3 \ (3) \\ -172.84 \ (18) \\ 5.0 \ (3) \end{array}$
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C2A—N2A—C5A—C10A C2A—N2A—C5A—C10A N2A—C5A—C6A—C7A C10A—C5A—C6A—C7A C5A—C6A—C7A—C8A	$\begin{array}{c} -129.76 (19) \\ 51.1 (2) \\ -155.27 (17) \\ 58.7 (2) \\ -53.4 (2) \\ 155.04 (17) \\ -59.0 (2) \\ 127.48 (18) \\ -53.3 (2) \\ 56.2 (2) \\ 4.6 (3) \\ -138.34 (19) \\ -172.59 (16) \\ 44.4 (3) \\ -176.91 (18) \\ 0.4 (3) \\ 0.2 (3) \end{array}$	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C2B—N2B—C5B—C6B C3B—N2B—C5B—C6B N2B—C5B—C6B—C7B C10B—C5B—C6B—C7B C5B—C6B—C7B—C8B	$\begin{array}{c} -132.2 \ (2) \\ 58.7 \ (2) \\ -154.05 \ (17) \\ 53.5 \ (2) \\ -55.6 \ (2) \\ 154.12 \ (18) \\ -53.3 \ (2) \\ 132.20 \ (19) \\ -57.7 \ (2) \\ 54.6 \ (2) \\ 9.5 \ (3) \\ 159.88 \ (19) \\ -172.66 \ (17) \\ -22.3 \ (3) \\ -172.84 \ (18) \\ 5.0 \ (3) \\ -0.9 \ (3) \end{array}$
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C11A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C2A—N2A—C5A—C6A C3A—N2A—C5A—C6A C3A—N2A—C5A—C10A N2A—C5A—C6A—C7A C10A—C5A—C6A—C7A C5A—C6A—C7A—C8A C6A—C7A—C8A—C9A	$\begin{array}{c} -129.76 (19) \\ 51.1 (2) \\ -155.27 (17) \\ 58.7 (2) \\ -53.4 (2) \\ 155.04 (17) \\ -59.0 (2) \\ 127.48 (18) \\ -53.3 (2) \\ 56.2 (2) \\ 4.6 (3) \\ -138.34 (19) \\ -172.59 (16) \\ 44.4 (3) \\ -176.91 (18) \\ 0.4 (3) \\ 0.2 (3) \\ -0.3 (3) \end{array}$	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B N2B—C5B—C6B—C7B C10B—C5B—C6B—C7B C5B—C6B—C7B—C8B C6B—C7B—C8B—C9B	$\begin{array}{c} -132.2 \ (2) \\ 58.7 \ (2) \\ -154.05 \ (17) \\ 53.5 \ (2) \\ -55.6 \ (2) \\ 154.12 \ (18) \\ -53.3 \ (2) \\ 132.20 \ (19) \\ -57.7 \ (2) \\ 54.6 \ (2) \\ 9.5 \ (3) \\ 159.88 \ (19) \\ -172.66 \ (17) \\ -22.3 \ (3) \\ -172.84 \ (18) \\ 5.0 \ (3) \\ -0.9 \ (3) \\ -3.6 \ (3) \end{array}$
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C1A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C2A—N2A—C5A—C6A C3A—N2A—C5A—C10A N2A—C5A—C6A—C7A C10A—C5A—C6A—C7A C10A—C5A—C6A—C7A C5A—C6A—C7A—C8A C6A—C7A—C8A—C9A C6A—C7A—C8A—N3A	$\begin{array}{c} -129.76 (19) \\ 51.1 (2) \\ -155.27 (17) \\ 58.7 (2) \\ -53.4 (2) \\ 155.04 (17) \\ -59.0 (2) \\ 127.48 (18) \\ -53.3 (2) \\ 56.2 (2) \\ 4.6 (3) \\ -138.34 (19) \\ -172.59 (16) \\ 44.4 (3) \\ -176.91 (18) \\ 0.4 (3) \\ 0.2 (3) \\ -0.3 (3) \\ -179.79 (17) \end{array}$	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C3B—N2B—C5B—C10B C2B—N2B—C5B—C6B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B N2B—C5B—C6B—C7B C10B—C5B—C6B—C7B C5B—C6B—C7B—C8B C6B—C7B—C8B—C9B C6B—C7B—C8B—N3B	$\begin{array}{c} -132.2 \ (2) \\ 58.7 \ (2) \\ -154.05 \ (17) \\ 53.5 \ (2) \\ -55.6 \ (2) \\ 154.12 \ (18) \\ -53.3 \ (2) \\ 132.20 \ (19) \\ -57.7 \ (2) \\ 54.6 \ (2) \\ 9.5 \ (3) \\ 159.88 \ (19) \\ -172.66 \ (17) \\ -22.3 \ (3) \\ -172.84 \ (18) \\ 5.0 \ (3) \\ -0.9 \ (3) \\ -3.6 \ (3) \\ 176.42 \ (17) \end{array}$
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C5A—N2A—C3A—C4A C1A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C2A—N2A—C5A—C6A C3A—N2A—C5A—C10A N2A—C5A—C6A—C7A C10A—C5A—C6A—C7A C10A—C5A—C6A—C7A C5A—C6A—C7A—C8A C6A—C7A—C8A—C9A C6A—C7A—C8A—N3A O2A—N3A—C8A—C7A	$\begin{array}{c} -129.76 (19) \\ 51.1 (2) \\ -155.27 (17) \\ 58.7 (2) \\ -53.4 (2) \\ 155.04 (17) \\ -59.0 (2) \\ 127.48 (18) \\ -53.3 (2) \\ 56.2 (2) \\ 4.6 (3) \\ -138.34 (19) \\ -172.59 (16) \\ 44.4 (3) \\ -176.91 (18) \\ 0.4 (3) \\ 0.2 (3) \\ -0.3 (3) \\ -179.79 (17) \\ -4.2 (3) \end{array}$	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C2B—N2B—C5B—C6B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B C3B—C5B—C6B—C7B C10B—C5B—C6B—C7B C5B—C6B—C7B—C8B C6B—C7B—C8B—C9B C6B—C7B—C8B—N3B O2B—N3B—C8B—C9B	$\begin{array}{c} -132.2 \ (2) \\ 58.7 \ (2) \\ -154.05 \ (17) \\ 53.5 \ (2) \\ -55.6 \ (2) \\ 154.12 \ (18) \\ -53.3 \ (2) \\ 132.20 \ (19) \\ -57.7 \ (2) \\ 54.6 \ (2) \\ 9.5 \ (3) \\ 159.88 \ (19) \\ -172.66 \ (17) \\ -22.3 \ (3) \\ -172.84 \ (18) \\ 5.0 \ (3) \\ -0.9 \ (3) \\ -3.6 \ (3) \\ 176.42 \ (17) \\ -173.79 \ (18) \end{array}$
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C5A—N2A—C3A—C4A C1A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C2A—N2A—C5A—C6A C3A—N2A—C5A—C10A N2A—C5A—C6A—C7A C10A—C5A—C6A—C7A C10A—C5A—C6A—C7A C5A—C6A—C7A—C8A C6A—C7A—C8A—C9A C6A—C7A—C8A—N3A O2A—N3A—C8A—C7A	-129.76 (19) 51.1 (2) -155.27 (17) 58.7 (2) -53.4 (2) 155.04 (17) -59.0 (2) 127.48 (18) -53.3 (2) 56.2 (2) 4.6 (3) -138.34 (19) -172.59 (16) 44.4 (3) -176.91 (18) 0.4 (3) 0.2 (3) -0.3 (3) -179.79 (17) -4.2 (3) 174.95 (19)	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C1B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C2B—N2B—C5B—C6B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B C3B—C5B—C6B—C7B C10B—C5B—C6B—C7B C5B—C6B—C7B—C8B C6B—C7B—C8B—C9B C6B—C7B—C8B—C9B O3B—N3B—C8B—C9B	$\begin{array}{c} -132.2 \ (2) \\ 58.7 \ (2) \\ -154.05 \ (17) \\ 53.5 \ (2) \\ -55.6 \ (2) \\ 154.12 \ (18) \\ -53.3 \ (2) \\ 132.20 \ (19) \\ -57.7 \ (2) \\ 54.6 \ (2) \\ 9.5 \ (3) \\ 159.88 \ (19) \\ -172.66 \ (17) \\ -22.3 \ (3) \\ -172.84 \ (18) \\ 5.0 \ (3) \\ -0.9 \ (3) \\ -3.6 \ (3) \\ 176.42 \ (17) \\ -173.79 \ (18) \\ 5.5 \ (3) \end{array}$
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C5A—N2A—C3A—C4A C1A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C3A—N2A—C5A—C6A C3A—N2A—C5A—C10A N2A—C5A—C6A—C7A C10A—C5A—C6A—C7A C10A—C5A—C6A—C7A C5A—C6A—C7A—C8A C6A—C7A—C8A—C9A C6A—C7A—C8A—N3A O2A—N3A—C8A—C7A O2A—N3A—C8A—C9A	$\begin{array}{c} -129.76 (19) \\ 51.1 (2) \\ -155.27 (17) \\ 58.7 (2) \\ -53.4 (2) \\ 155.04 (17) \\ -59.0 (2) \\ 127.48 (18) \\ -53.3 (2) \\ 56.2 (2) \\ 4.6 (3) \\ -138.34 (19) \\ -172.59 (16) \\ 44.4 (3) \\ -176.91 (18) \\ 0.4 (3) \\ 0.2 (3) \\ -0.3 (3) \\ -179.79 (17) \\ -4.2 (3) \\ 174.95 (19) \\ 176.25 (18) \end{array}$	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C2B—N2B—C5B—C6B N2B—C5B—C6B—C7B C10B—C5B—C6B—C7B C10B—C5B—C6B—C7B C5B—C6B—C7B—C8B C6B—C7B—C8B—C9B C6B—C7B—C8B—N3B O2B—N3B—C8B—C9B O3B—N3B—C8B—C9B	$\begin{array}{c} -132.2 \ (2) \\ 58.7 \ (2) \\ -154.05 \ (17) \\ 53.5 \ (2) \\ -55.6 \ (2) \\ 154.12 \ (18) \\ -53.3 \ (2) \\ 132.20 \ (19) \\ -57.7 \ (2) \\ 54.6 \ (2) \\ 9.5 \ (3) \\ 159.88 \ (19) \\ -172.66 \ (17) \\ -22.3 \ (3) \\ -172.84 \ (18) \\ 5.0 \ (3) \\ -0.9 \ (3) \\ -3.6 \ (3) \\ 176.42 \ (17) \\ -173.79 \ (18) \\ 5.5 \ (3) \\ 6.2 \ (3) \end{array}$
C11A—N1A—C1A—C2A C4A—N1A—C1A—C2A C5A—N2A—C2A—C1A C3A—N2A—C2A—C1A N1A—C1A—C2A—N2A C5A—N2A—C3A—C4A C2A—N2A—C3A—C4A C1A—N1A—C4A—C3A C1A—N1A—C4A—C3A N2A—C3A—C4A—N1A C3A—N2A—C5A—C6A C2A—N2A—C5A—C6A C2A—N2A—C5A—C6A C3A—N2A—C5A—C10A N2A—C5A—C6A—C7A C10A—C5A—C6A—C7A C10A—C5A—C6A—C7A C5A—C6A—C7A—C8A C6A—C7A—C8A—C9A C6A—C7A—C8A—C7A O3A—N3A—C8A—C9A O3A—N3A—C8A—C9A	$\begin{array}{c} -129.76 (19) \\ 51.1 (2) \\ -155.27 (17) \\ 58.7 (2) \\ -53.4 (2) \\ 155.04 (17) \\ -59.0 (2) \\ 127.48 (18) \\ -53.3 (2) \\ 56.2 (2) \\ 4.6 (3) \\ -138.34 (19) \\ -172.59 (16) \\ 44.4 (3) \\ -176.91 (18) \\ 0.4 (3) \\ 0.2 (3) \\ -0.3 (3) \\ -179.79 (17) \\ -4.2 (3) \\ 174.95 (19) \\ 176.25 (18) \\ -4.6 (3) \end{array}$	C11B—N1B—C1B—C2B C4B—N1B—C1B—C2B C5B—N2B—C2B—C1B C3B—N2B—C2B—C1B N1B—C1B—C2B—N2B C5B—N2B—C3B—C4B C2B—N2B—C3B—C4B C11B—N1B—C4B—C3B C1B—N1B—C4B—C3B N2B—C3B—C4B—N1B C2B—N2B—C5B—C10B C3B—N2B—C5B—C10B C3B—N2B—C5B—C6B C3B—N2B—C5B—C6B N2B—C5B—C6B—C7B C10B—C5B—C6B—C7B C5B—C6B—C7B—C8B C6B—C7B—C8B—C9B C6B—C7B—C8B—C9B O3B—N3B—C8B—C7B O3B—N3B—C8B—C7B	$\begin{array}{c} -132.2 \ (2) \\ 58.7 \ (2) \\ -154.05 \ (17) \\ 53.5 \ (2) \\ -55.6 \ (2) \\ 154.12 \ (18) \\ -53.3 \ (2) \\ 132.20 \ (19) \\ -57.7 \ (2) \\ 54.6 \ (2) \\ 9.5 \ (3) \\ 159.88 \ (19) \\ -172.66 \ (17) \\ -22.3 \ (3) \\ -172.84 \ (18) \\ 5.0 \ (3) \\ -0.9 \ (3) \\ -3.6 \ (3) \\ 176.42 \ (17) \\ -173.79 \ (18) \\ 5.5 \ (3) \\ 6.2 \ (3) \\ -174.52 \ (18) \end{array}$

N3A—C8A—C9A—C10A	179.36 (17)	N3B—C8B—C9B—C10B	-176.2(2)
N2A—C5A—C10A—C9A N2A—C5A—C10A—C9A	176.52 (17)	N2B—C5B—C10B—C9B	0.4 (3) 173.1 (2)
C6A—C5A—C10A—C9A	-0.8 (3)	C6B-C5B-C10B-C9B	-4.8 (3)
C4A—N1A—C11A—O1A	-12.0 (3)	C4B—N1B—C11B—O1B	0.7 (3)
C1A—N1A—C11A—O1A	168.91 (18)	C1B—N1B—C11B—O1B	-167.5 (2)
C4A—N1A—C11A—C12A	166.20 (16)	C4B—N1B—C11B—C12B	-176.48 (16)
C1A—N1A—C11A—C12A	-12.9 (3)	C1B—N1B—C11B—C12B	15.3 (3)
O1A—C11A—C12A—C13A	131.5 (2)	O1B—C11B—C12B—C17B	40.6 (3)
N1A—C11A—C12A—C13A	-46.8 (3)	N1B—C11B—C12B—C17B	-142.11 (18)
O1A—C11A—C12A—C17A	-41.6 (2)	O1B—C11B—C12B—C13B	-131.9 (2)
N1A—C11A—C12A—C17A	140.11 (18)	N1B-C11B-C12B-C13B	45.4 (3)
C17A—C12A—C13A—C14A	-1.3 (3)	C17B—C12B—C13B—C14B	0.6 (3)
C11A—C12A—C13A—C14A	-174.32 (17)	C11B—C12B—C13B—C14B	173.05 (18)
C12A—C13A—C14A—C15A	0.0 (3)	C12B—C13B—C14B—C15B	-0.7 (3)
C13A—C14A—C15A—C16A	0.7 (3)	C13B—C14B—C15B—C16B	0.3 (3)
C14A—C15A—C16A—C17A	-0.1 (3)	C14B—C15B—C16B—C17B	0.2 (3)
C15A—C16A—C17A—C12A	-1.2 (3)	C15B—C16B—C17B—C12B	-0.3 (3)
C13A—C12A—C17A—C16A	1.9 (3)	C13B—C12B—C17B—C16B	-0.2 (3)
C11A—C12A—C17A—C16A	175.23 (16)	C11B—C12B—C17B—C16B	-172.98 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
C6B—H6B…O1A	0.95	2.50	3.140 (2)	125	
C7 <i>B</i> —H7 <i>B</i> ···O1 <i>A</i>	0.95	2.58	3.171 (2)	120	
$C6A - H6A - O1B^{i}$	0.95	2.47	3.173 (2)	131	
$C7A$ — $H7A$ ···O1 B^{i}	0.95	2.78	3.317 (2)	117	

Symmetry code: (i) x, y, z+1.

1-(4-Bromobenzoyl)-4-phenylpiperazine (II)

Crystal data

C₁₇H₁₇BrN₂O $M_r = 345.23$ Monoclinic, P2₁ a = 7.5162 (3) Å b = 6.1125 (2) Å c = 15.7249 (5) Å $\beta = 98.625$ (1)° V = 714.28 (4) Å³ Z = 2

Data collection

Bruker D8 Venture dual source diffractometer Radiation source: microsource Detector resolution: 7.41 pixels mm⁻¹ φ and ω scans F(000) = 352 $D_x = 1.605 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9856 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 2.88 \text{ mm}^{-1}$ T = 90 KSlab cut from lath, colourless $0.35 \times 0.20 \times 0.06 \text{ mm}$

Absorption correction: multi-scan (*TWINABS*; Sheldrick, 2012) $T_{min} = 0.568$, $T_{max} = 0.806$ 6918 measured reflections 6918 independent reflections 6410 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.065$	$k = -7 \rightarrow 7$
$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 2.6^{\circ}$	$l = -20 \rightarrow 20$
$h = -9 \longrightarrow 9$	

Refinement	
Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.023$	$w = 1/[\sigma^2(F_o^2) + (0.0158P)^2 + 0.0999P]$
$wR(F^2) = 0.049$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
6918 reflections	$\Delta ho_{ m max} = 0.29 \ { m e} \ { m \AA}^{-3}$
191 parameters	$\Delta ho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$
1 restraint	Absolute structure: Flack x determined using
Primary atom site location: structure-invariant direct methods	1306 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.012 (4)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using *Platon* (Spek, 2020) and by an *R*-tensor (Parkin, 2000). The final model was further checked with the IUCr utility *checkCIF*.

Refined as a 2-component aggregate.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.09055 (3)	0.11286 (6)	0.95039 (2)	0.01878 (8)	
01	0.6730 (3)	0.8844 (4)	0.83992 (15)	0.0238 (5)	
N1	0.7763 (3)	0.6022 (7)	0.76896 (13)	0.0138 (4)	
N2	0.8022 (3)	0.5773 (4)	0.58908 (14)	0.0128 (6)	
C1	0.7544 (4)	0.3913 (5)	0.72408 (19)	0.0170 (6)	
H1A	0.666366	0.300535	0.749181	0.020*	
H1B	0.870892	0.312654	0.731847	0.020*	
C2	0.6896 (4)	0.4248 (5)	0.62881 (19)	0.0170 (6)	
H2A	0.688355	0.281887	0.599077	0.020*	
H2B	0.564666	0.480861	0.621072	0.020*	
C3	0.8331 (4)	0.7843 (5)	0.63607 (18)	0.0151 (6)	
H3A	0.719803	0.869390	0.629414	0.018*	
H3B	0.923829	0.871335	0.611219	0.018*	
C4	0.8985 (4)	0.7459 (5)	0.73118 (19)	0.0153 (6)	
H4A	1.019905	0.679267	0.738344	0.018*	
H4B	0.907757	0.887866	0.761819	0.018*	
C5	0.7688 (3)	0.5918 (7)	0.49830 (16)	0.0139 (6)	
C6	0.8200 (4)	0.7753 (5)	0.4548 (2)	0.0187 (6)	
H6	0.874536	0.895931	0.486795	0.022*	
C7	0.7922 (5)	0.7840 (5)	0.3655 (2)	0.0211 (7)	
H7	0.828030	0.910876	0.337573	0.025*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C8	0.7134 (3)	0.6116 (10)	0.31631 (16)	0.0204 (5)	
H8	0.694672	0.618576	0.255269	0.024*	
C9	0.6633 (5)	0.4301 (6)	0.3587 (2)	0.0234 (7)	
Н9	0.610006	0.309579	0.326239	0.028*	
C10	0.6889 (5)	0.4190 (5)	0.4478 (2)	0.0218 (7)	
H10	0.651625	0.291940	0.475097	0.026*	
C11	0.6668 (4)	0.6894 (5)	0.82122 (18)	0.0146 (6)	
C12	0.5338 (4)	0.5444 (4)	0.85605 (17)	0.0135 (6)	
C13	0.5770 (4)	0.3395 (5)	0.89205 (18)	0.0128 (6)	
H13	0.696220	0.285267	0.894978	0.015*	
C14	0.4476 (4)	0.2132 (5)	0.92378 (17)	0.0134 (6)	
H14	0.477362	0.073859	0.948719	0.016*	
C15	0.2748 (4)	0.2952 (5)	0.91818 (18)	0.0138 (6)	
C16	0.2290 (4)	0.5014 (5)	0.88668 (18)	0.0148 (6)	
H16	0.110701	0.556801	0.885896	0.018*	
C17	0.3610 (3)	0.6267 (8)	0.85598 (15)	0.0153 (5)	
H17	0.332668	0.769940	0.834754	0.018*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.01541 (13)	0.01942 (13)	0.02254 (13)	-0.0012 (2)	0.00626 (9)	0.00283 (19)
01	0.0269 (12)	0.0140 (11)	0.0336 (13)	-0.0023 (9)	0.0145 (11)	-0.0065 (9)
N1	0.0159 (10)	0.0124 (10)	0.0136 (9)	-0.0026 (16)	0.0042 (8)	-0.0007 (16)
N2	0.0162 (11)	0.0102 (17)	0.0123 (10)	-0.0017 (9)	0.0032 (8)	-0.0013 (10)
C1	0.0258 (17)	0.0119 (14)	0.0149 (15)	-0.0002 (12)	0.0081 (13)	-0.0008 (12)
C2	0.0255 (17)	0.0119 (14)	0.0140 (15)	-0.0060 (12)	0.0050 (12)	-0.0023 (11)
C3	0.0161 (16)	0.0129 (14)	0.0159 (15)	-0.0020 (11)	0.0016 (12)	0.0001 (12)
C4	0.0141 (15)	0.0179 (15)	0.0146 (14)	-0.0037 (11)	0.0044 (12)	0.0001 (11)
C5	0.0101 (11)	0.0178 (17)	0.0136 (11)	0.0018 (15)	0.0010 (9)	0.0042 (15)
C6	0.0194 (17)	0.0190 (16)	0.0179 (16)	-0.0020 (13)	0.0030 (13)	0.0020 (12)
C7	0.0218 (18)	0.0223 (17)	0.0202 (16)	-0.0008 (13)	0.0066 (13)	0.0074 (13)
C8	0.0167 (12)	0.0307 (14)	0.0134 (11)	0.004 (2)	0.0013 (9)	0.002 (2)
C9	0.0257 (19)	0.0272 (18)	0.0167 (16)	-0.0065 (14)	0.0010 (13)	-0.0038 (13)
C10	0.0264 (19)	0.0216 (17)	0.0166 (16)	-0.0074 (13)	0.0009 (13)	0.0012 (13)
C11	0.0146 (14)	0.0155 (13)	0.0130 (13)	0.002(1)	0.0001 (11)	0.0007 (10)
C12	0.0154 (14)	0.0151 (15)	0.0097 (13)	-0.0001 (10)	0.0007 (11)	-0.0019 (9)
C13	0.0127 (14)	0.0143 (14)	0.0115 (13)	0.0026 (11)	0.0017 (11)	-0.0019 (11)
C14	0.0173 (15)	0.0132 (14)	0.0095 (13)	0.0011 (11)	0.0010 (11)	-0.0014 (11)
C15	0.0135 (14)	0.0174 (15)	0.0110 (14)	-0.0032 (11)	0.0035 (11)	-0.0015 (11)
C16	0.0122 (14)	0.0186 (15)	0.0138 (14)	0.0029 (11)	0.0029 (11)	0.0007 (12)
C17	0.0194 (12)	0.0145 (14)	0.0117 (11)	0.0030 (19)	0.0012 (9)	0.0014 (16)

Geometric parameters (Å, °)

Br1—C15	1.904 (3)	C6—C7	1.389 (4)
01—C11	1.227 (4)	С6—Н6	0.9500
N1-C11	1.356 (4)	С7—С8	1.387 (6)

supporting information

N1—C4	1.460 (4)	С7—Н7	0.9500
N1—C1	1.467 (4)	C8—C9	1.376 (6)
N2—C5	1.415 (3)	C8—H8	0.9500
N2—C2	1.461 (4)	C9—C10	1.387 (4)
N2—C3	1.466 (4)	С9—Н9	0.9500
C1—C2	1.518 (4)	C10—H10	0.9500
C1—H1A	0.9900	C11—C12	1.500 (4)
C1—H1B	0.9900	C12-C17	1 393 (4)
$C_2 = H_2 A$	0.9900	C12 $C13$	1 393 (4)
C_2 H2B	0.9900	C13 - C14	1.393 (1)
$C_2 = C_1$	1.521 (4)	C12 H12	0.0500
$C_3 = U_4$	0.0000	C13—IIIS	1.292(4)
C3—H3A	0.9900	C14 U14	1.363 (4)
С3—Н3В	0.9900	C14—H14	0.9500
C4—H4A	0.9900	C15—C16	1.379 (4)
C4—H4B	0.9900	C16—C17	1.395 (5)
C5—C6	1.397 (5)	C16—H16	0.9500
C5—C10	1.401 (5)	С17—Н17	0.9500
C11—N1—C4	119.1 (3)	С5—С6—Н6	119.5
C11—N1—C1	127.0 (3)	C8—C7—C6	121.5 (3)
C4—N1—C1	111.4 (2)	С8—С7—Н7	119.3
C5-N2-C2	1164(2)	С6—С7—Н7	119.3
$C_{5} N_{2} C_{3}$	116.1(2) 116.4(3)	C9 - C8 - C7	117.9(2)
$C_2 = N_2 = C_3$	113.2(2)	C9 - C8 - H8	121.1
$N_1 C_1 C_2$	110.2(2)	C7 C8 H8	121.1
N1 = C1 = U2	100.5	$C_{1}^{2} = C_{2}^{2} = C_{1}^{2}$	121.1 121.5(3)
NI = CI = IIIA	109.5	$C_{0} = C_{0} = C_{10}$	121.3(3)
C2—C1—HIA	109.5	C_{0} C_{0} H_{0}	119.5
	109.5	C10—C9—H9	119.5
C2—CI—HIB	109.5	C9 - C10 - C5	121.2 (3)
HIA—CI—HIB	108.1	C9—C10—H10	119.4
N2—C2—C1	112.8 (2)	С5—С10—Н10	119.4
N2—C2—H2A	109.0	O1—C11—N1	121.5 (3)
C1—C2—H2A	109.0	O1—C11—C12	119.4 (3)
N2—C2—H2B	109.0	N1-C11-C12	119.1 (3)
C1—C2—H2B	109.0	C17—C12—C13	119.1 (3)
H2A—C2—H2B	107.8	C17—C12—C11	117.3 (3)
N2—C3—C4	111.4 (2)	C13—C12—C11	123.6 (3)
N2—C3—H3A	109.3	C14—C13—C12	120.8 (3)
C4—C3—H3A	109.3	C14—C13—H13	119.6
N2—C3—H3B	109.3	C12—C13—H13	119.6
C4—C3—H3B	109.3	C15—C14—C13	118.5 (3)
НЗА—СЗ—НЗВ	108.0	C15—C14—H14	120.8
N1—C4—C3	111.3 (2)	C13—C14—H14	120.8
N1—C4—H4A	109.4	C16—C15—C14	122.4 (3)
C3—C4—H4A	109.4	C16—C15—Br1	118.6 (2)
N1—C4—H4B	109.4	C14— $C15$ — $Br1$	110.0(2)
C3-C4-H4R	109.4	C_{15} C_{16} C_{17}	118 3 (3)
H4A - C4 - H4B	108.0	C15 - C16 - H16	120.9
	100.0		120.7

0(05 010	117.0 (2)	017 016 1116	120.0
06-05-010	117.0(2)	C1/C16H16	120.9
C6—C5—N2	121.6 (3)	C12—C17—C16	120.9 (4)
C10—C5—N2	121.4 (3)	C12—C17—H17	119.6
C7—C6—C5	121.0 (3)	С16—С17—Н17	119.6
С7—С6—Н6	119.5		
C11—N1—C1—C2	105.4 (3)	C6—C5—C10—C9	0.4 (5)
C4—N1—C1—C2	-56.4 (3)	N2-C5-C10-C9	-177.2 (3)
C5—N2—C2—C1	170.4 (3)	C4—N1—C11—O1	-2.8 (4)
C3—N2—C2—C1	-50.7 (3)	C1—N1—C11—O1	-163.3 (3)
N1—C1—C2—N2	52.8 (3)	C4—N1—C11—C12	176.5 (2)
C5—N2—C3—C4	-170.3 (2)	C1—N1—C11—C12	16.0 (4)
C2—N2—C3—C4	50.8 (3)	O1—C11—C12—C17	42.2 (4)
C11—N1—C4—C3	-105.9 (3)	N1-C11-C12-C17	-137.1 (3)
C1—N1—C4—C3	57.5 (3)	O1—C11—C12—C13	-134.3 (3)
N2-C3-C4-N1	-54.1 (3)	N1-C11-C12-C13	46.4 (4)
C2—N2—C5—C6	158.2 (3)	C17—C12—C13—C14	3.2 (4)
C3—N2—C5—C6	20.7 (4)	C11—C12—C13—C14	179.6 (3)
C2-N2-C5-C10	-24.3 (4)	C12-C13-C14-C15	0.5 (4)
C3—N2—C5—C10	-161.8 (3)	C13-C14-C15-C16	-3.6 (4)
C10—C5—C6—C7	0.0 (5)	C13-C14-C15-Br1	173.6 (2)
N2-C5-C6-C7	177.6 (3)	C14—C15—C16—C17	2.9 (4)
C5—C6—C7—C8	-0.2 (5)	Br1-C15-C16-C17	-174.3 (2)
C6—C7—C8—C9	-0.1 (5)	C13—C12—C17—C16	-3.8 (4)
C7—C8—C9—C10	0.5 (5)	C11—C12—C17—C16	179.5 (3)
C8—C9—C10—C5	-0.7 (5)	C15—C16—C17—C12	0.9 (4)

Hydrogen-bond geometry (Å, °)

	D—H	Н…А	D····A	D—H···A
C13—H13…O1 ⁱ	0.95	2.60	3.018 (4)	107
C14—H14…O1 ⁱ	0.95	2.68	3.052 (4)	104

Symmetry code: (i) x, y-1, z.