Synthesis and crystal structure of hydrated µ-oxalato-bis{bis[3-methyl-5-(pyridin-2-yl)-1H-1,2,4-triazole]iron(II)} bis(toluenesulfonate) 2.75-hydrate

Yuliia P. Petrenko,^a Yurii S. Bibik,^a Dmytro M. Khomenko,^{a,b} Roman O. Doroshchuk,^{a,b} Il'ya A. Gural'skiy,^a Sergiu Shova,^c Rostyslav D. Lampeka^a and Ilona V. Raspertova^{a,*}

^aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska, st. 64, Kyiv, Ukraine, ^bEnamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine, and ^{cu}Petru Poni^u Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania. *Correspondence e-mail: ilonabatyuk@gmail.com

In the title compound $[Fe_2(C_2O_4)(C_8H_8N_4)_4](CH_3C_6H_4SO_3)_2\cdot 2.75H_2O$, the two Fe^{II} ions have a highly distorted octahedral FeN_4O_2 environment formed by two bidentate triazole-based chelating ligands and a bis-bidentate oxalate bridging anion that connects the metal ions. Stabilization within the crystal structure is provided *via* a system of $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonding, which determines the formation of a two-dimensional architecture along the *a*-axis direction.

1. Chemical context

The study of coordination compounds based on substituted 1.2.4-triazoles and 3d and 4d transition metals allows the design of supramolecular structures that can find applications in various fields such as molecular magnetism, catalysis, electrochemistry or cluster engineering (Zhang et al., 2017; Zakharchenko et al., 2019; Chen et al., 2015; Petrenko et al., 2020, 2021). The presence of the pyridine ring in such triazole systems leads to the formation of interesting isolated metalorganic frameworks that demonstrate promising magnetic properties, making them suitable for application as moleculebased magnets (Yao et al., 2015; Han et al., 2017; Li et al., 2015; Huang et al., 2015). Moreover, a combination of $3d^4-3d^7$ metals with N-donor bridging ligands may form coordination compounds with switchable spin states (Aromí et al., 2011; Kucheriv et al., 2021). This phenomenon is called spin crossover. Changes in the external temperature, pressure, magnetic field, light radiation or the presence of a guest alters the magnetic, electrical, mechanical and optical properties significantly in these compounds (Gütlich & Goodwin, 2004). Therefore, the synthesis and crystallographic characterization of these complexes are of current interest.

On the other hand, the ability of the oxalate anion to generate homobinuclear complexes is well known (Craig *et al.*, 2010; Selmi *et al.*, 2021; Karimpour *et al.*, 2013; Paine *et al.*, 2007). The coordination chemistry of oxalato-bridged binuclear Fe^{II} complexes with pyridyl-triazole chelating ligands is less studied. A few examples with a similar type of ligand indicate that complexes of this kind possess interesting magnetic and oxidizing properties (de Ruiter *et al.*, 2008; Oliveira *et al.*, 2018). In order to continue research in this field

Received 5 July 2022 Accepted 20 July 2022

ISSN 2056-9890

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

CRYSTALLOGRAPHIC

COMMUNICATIONS

Keywords: crystal structure; iron(II) complex; 1,2,4-triazole; oxalato-bridged complex; X-ray crystallography.

CCDC reference: 2191587

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

and in the course of our studies dedicated to the investigation of triazoles and, in particular, 3-methyl-5-(pyrid-2-yl)-2*H*-1,2,4-triazole (metrzpy) (Zakharchenko *et al.*, 2017; Zakharchenko, Khomenko, Doroschuk, Raspertova, Fesych *et al.*, 2021; Zakharchenko, Khomenko, Doroshchuk, Raspertova, Shova *et al.*, 2021), we report herein the synthesis and crystal structure of a new binuclear iron(II) complex with this ligand.

2. Structural commentary

The structure of the title compound is built up from dinuclear $[Fe_2(metrzpy)_4(C_2O_4)]^{2+}$ complex cations, *p*-toluenesulfonate anions and co-crystallized water molecules in a 1:2:2.75 ratio. It crystallizes in the triclinic space group $P\overline{1}$ with two complex molecules per unit cell. Each iron(II) ion has an N₄O₂ coordination environment in a distorted octahedral geometry

Figure 1

X-ray molecular structure of the title compound with selected atom labels and displacement ellipsoids drawn at the 50% level. Some H atoms are omitted for clarity. Key: carbon, grey; nitrogen, blue; oxygen, red; sulfur, yellow; iron, light green.

Table 1		
Selected	bond lengths	s (Å).

	0 ()		
Fe1-O1	2.171 (2)	Fe2-O3	2.123 (2)
Fe1-O2	2.123 (2)	Fe2-O4	2.157 (2)
Fe1-N1	2.203 (3)	Fe2-N9	2.209 (3)
Fe1-N2	2.150 (3)	Fe2-N10	2.165 (3)
Fe1-N5	2.197 (3)	Fe2-N13	2.206 (3)
Fe1-N6	2.162 (3)	Fe2-N14	2.159 (3)

provided by two chelating metrzpy ligands in cis positions and a bidentate bridging oxalate anion (Fig. 1, Table 1). The reduced values of the angles subtended at the iron atom by the metrzpy and oxalate ligands are the main factors behind this distortion. The Fe-N and Fe-O bond lengths vary in the 2.150 (3)–2.209 (3) Å and 2.123 (2)–2.171 (2) Å, ranges respectively. The Fe1···Fe2 separation across the oxalate bridge of 5.576 (6) Å is in good agreement with previously reported values for other oxalate-bridged iron(II) complexes. The sets of coordinating atoms (O1/O2/N2/N6 for Fe1 and O3/ O4/N10/N14 for Fe2) defining the mean equatorial planes are co-planar within 0.22 and 0.20 Å, while the displacement of the metal atom from these planes is 0.015(1) and 0.037(1) Å. respectively. The dihedral angle formed by each plane and the mean plane of the oxalate atoms is of 9.74 (6) $^{\circ}$ for Fe1 and 10.04 (7)° for Fe2.

3. Supramolecular features

All the species present in the structure are interconnected *via* a system of $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (Table 2), which determines the formation of a two-dimensional architecture, as shown in Fig. 2. Further analysis has shown that the main crystal-structure motif consists of the parallel packing of 2D layers consolidated by the π - π stacking interactions observed between triazole and pyridine rings of

Figure 2 Two-dimensional supramolecular network viewed along the *a* axis.

Table 2 Hydrogen-bond geometry (Å, $^\circ).$

$D-\mathrm{H}\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3\cdots O10^{i}$	0.86	1.95	2.766 (4)	159
$N7-H7\cdots O6^{ii}$	0.86	2.34	3.064 (5)	142
$N7-H7\cdots O7^{ii}$	0.86	2.34	3.141 (6)	154
$N11-H11\cdots O9^{iii}$	0.86	1.92	2.769 (4)	170
$N15-H15\cdots O5^{iv}$	0.86	1.99	2.825 (4)	163
$C4-H4\cdots O2W^{v}$	0.93	2.48	3.383 (5)	165
$C11-H11A\cdots O5W$	0.93	2.49	3.206 (8)	134
$C28-H28\cdots O4W^{vi}$	0.93	2.54	3.421 (6)	159
$O2W-H2WA\cdots O4$	0.85	2.10	2.949 (4)	174
$O2W - H2WB \cdots O5$	0.86	1.99	2.838 (4)	172
$O4W-H4WA\cdots O1$	0.87	2.34	3.123 (5)	150
$O4W-H4WA\cdots O3$	0.87	2.25	3.037 (4)	151
$O4W-H4WB\cdots O10$	0.87	1.92	2.788 (5)	174
$O5W-H5WA\cdots O4W^{vi}$	0.86	1.98	2.810 (11)	159
$O5W - H5WB \cdot \cdot \cdot O4W$	0.86	2.28	2.850 (10)	123
$C13-H13\cdots O8^{vi}$	0.93	2.57	3.256 (5)	131
$C21-H21\cdots O7^{v}$	0.93	2.44	3.280 (6)	150

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, -z; (iii) -x + 1, -y + 2, -z + 1; (iv) -x + 1, -y + 1, -z; (v) -x, -y + 1, -z; (vi) -x + 1, -y + 1, -z + 1.

adjacent cationic entities (Fig. 3) with a centroid-to-centroid distance of 3.746 (1) Å.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, last update November 2021; Groom *et al.*, 2016) gave 189 hits for the Fe₂(μ -C₂O₄) unit, the majority of which are iron(II)-based metal–organic coordination polymers. Besides them, there are several homobimetallic structures with an [FeN₄O₂] coordination environment: AVIMUN (Spek *et al.*, 2004), LOZHOA (Oliveira *et al.*, 2018), NOLSUF and NOLTAM (Gusev *et al.*, 2019) and VIHCIZ (Paine *et al.*, 2007). It must be noted that AVIMUN is a homologue of the title compound and contains a 3-ethyl-1,2,4-triazole fragment; however, it has a different packing and the crystal structure belongs to the monoclinic system.

A search for the structures of coordination compounds based on 3-methyl-5-(pyrid-2-yl)-2*H*-1,2,4-triazole revealed ten hits. Three of these structures represent our previous studies: CAMSUI (Zakharchenko, Khomenko, Doroschuk, Raspertova, Shova *et al.*, 2021), IXIBID and IXIBOJ

Figure 3

 π -- π stacking between adjacent complex cations. Centroid-to-centroid contacts are shown as green dashed lines.

$Fe_2(C_2O_4)(C_8H_8N_4)_4]-(C_7H_7O_3S)_2\cdot 2.75H_2O$
1232.37
Friclinic, P1
293
9.9635 (4), 14.4905 (6), 20.1131 (8)
96.736 (4), 101.490 (4), 95.216 (4)
2806.5 (2)
2
Μο Κα
0.67
$0.35 \times 0.2 \times 0.15$
Rigaku Oxford Diffraction Xcalibur, Eos
Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2021)
0.923, 1.000
20140, 9886, 7117
0.031
).595
0.058, 0.132, 1.06
9886
739
H-atom parameters constrained
0.59, -0.52

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

(Petrenko *et al.*, 2021). The other structures correspond to mixed-ligand complexes with various metals, among them: NIYRAQ (Cao *et al.*, 2014), QURBIQ (Guetlich & Schollmeyer, 2015), REWSOC (Cheng *et al.*, 2007), SARQIO (Muller *et al.*, 2013) and VESZOI (Buchanan *et al.*, 1990).

5. Synthesis and crystallization

Table 3

The triazole ligand was prepared according to a synthesis described in the literature (Zakharchenko *et al.*, 2017). Single crystals of $[Fe_2(C_2O_4)(metrzpy)_4](CH_3C_6H_4SO_3)_2\cdot2.75H_2O$ were obtained by the liquid-to-liquid diffusion technique using a layering tube. The bottom was filled with $Fe(CH_3C_6H_4.SO_3)_2\cdot6H_2O$ (50.6 mg, 0.1 mmol) in 2 ml of water. The middle was filled with a solution of 2 ml methanol/water (1:1) containing ascorbic acid (35.2 mg, 0.2 mmol). Then the top was filled with a solution of metrzpy ligand (32.0 mg, 0.2 mmol) in 2 ml of methanol. Afterwards, the tube was sealed with parafilm and light brown square-plate single crystals were formed within 3 days in relative high yield (*ca* 50%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms were placed geometrically and refined as riding, with C-H = 0.96 (CH₃),

0.93 Å (C_{arom}), N-H = 0.86 Å and O-H = 0.85–0.87Å, and with $U_{iso}(H) = 1.2U_{eq}(C_{arom})$ or $1.5U_{eq}(C$ -methyl). N-bound H atoms were refined with $U_{iso}(H) = 1.2U_{eq}(N)$. The idealized OH₂ molecule was fixed using an AFIX 3, $U_{iso}(H) =$ $1.5U_{eq}(O_{water})$.

Acknowledgements

The authors acknowledge the courage of the Armed Forces of Ukraine that made the submission of this manuscript possible.

Funding information

This work was supported by grants 22BF037–06 obtained from the Ministry of Education and Science of Ukraine.

References

- Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.
- Buchanan, B. E., Vos, J. G., Kaneko, M., van der Putten, W. J. M., Kelly, J. M., Hage, R., de Graaff, R. A. G., Prins, R., Haasnoot, J. G. & Reedijk, J. (1990). J. Chem. Soc. Dalton Trans. pp. 2425–2431.
- Cao, H., Sun, H., Yin, Y., Wen, X., Shan, G., Su, Z., Zhong, R., Xie, W., Li, P. & Zhu, D. (2014). J. Mater. Chem. C. 2, 2150.
- Chen, D. M., Ma, X. Z., Zhang, X. J., Xu, N. & Cheng, P. (2015). Inorg. Chem. 54, 2976–2982.
- Cheng, L., Zhang, W.-X., Ye, B.-H., Lin, J.-B. & Chen, X.-M. (2007). Inorg. Chem. 46, 1135–1143.
- Craig, G. A., Barrios, L. A., Costa, J. S., Roubeau, O., Ruiz, E., Teat, S. J., Wilson, C. C., Thomas, L. & Aromí, G. (2010). *Dalton Trans.* 39, 4874.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guetlich, P. & Schollmeyer, D. (2015). Private Communication (CCDC 1434401). CCDC, Cambridge, England.
- Gusev, A., Nemec, I., Herchel, R., Riush, I., Titiš, J., Boča, R., Lyssenko, K., Kiskin, M., Eremenko, I. & Linert, W. (2019). *Dalton Trans.* **48**, 10526–10536.
- Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 1, 1-47.
- Han, Y., Zheng, H., Li, H., Wang, H., Wang, S. M., Geng, Y. & Wang, L. (2017). RSC Adv. 7, 5578–5582.
- Huang, F.-P., Yao, P.-F., Li, H.-Y., Yu, Q., Bian, H.-D. & Liang, H. (2015). *Chem. Commun.* **51**, 7598–7601.
- Karimpour, T., Safaei, E., Wojtczak, A. & Cotič, P. (2013). J. Mol. Struct. 1038, 230–234.

- Kucheriv, O. I., Fritsky, I. O. & Gural'skiy, I. A. (2021). *Inorg. Chim. Acta*, **521**, 120303.
- Li, H., Wang, Y., Cai, H., Xu, Z., Jia, L. & Hou, H. (2015). *RSC Adv.* 5, 89833–89838.
- Muller, K., Sun, Y., Heimermann, A., Menges, F., Niedner-Schatteburg, G., van Wüllen, C. & Thiel, W. R. (2013). *Chem. Eur. J.* 19, 7825–7834.
- Oliveira, W. X. C., Pereira, C. L. M., Pinheiro, C. B., Lloret, F. & Julve, M. (2018). *Inorg. Chem. Front.* 5, 1294–1306.
- Paine, T. K., England, J. & Que, L. (2007). Chem. Eur. J. 13, 6073–6081.
- Petrenko, Y. P., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Piasta, K., Gumienna-Kontecka, E. & Lampeka, R. D. (2020). *Inorg. Chim. Acta*, 500, 119216.
- Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). *RSC Adv.* 11, 23442–23449.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Ruiter, G. de, Costa, J. S., Lappalainen, K., Roubeau, O., Gamez, P. & Reedijk, J. (2008). *Inorg. Chem. Commun.* 11, 787–790.
- Selmi, W., Hosni, N., Marchivie, M., Maghraoui-Meherzi, H. & Zid, M. F. (2021). J. Mol. Struct. 1228, 129719.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L., van Koningsbruggen, P. J. & Haasnoot, J. G. (2004). Private Communication (CCDC 232594). CCDC, Cambridge, England.
- Yao, P. F., Tao, Y., Li, H. Y., Qin, X. H., Shi, D. W., Huang, F. P., Yu, Q., Qin, X. X. & Bian, H. D. (2015). Cryst. Growth Des. 15, 4394–4405.
- Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Fesych, I. V., Starova, V. S., Rusakova, N. V., Smola, S. S., Shova, S. & Lampeka, R. D. (2021). *Theor. Exp. Chem.* 57, 358–365.
- Zakharchenko, B. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V., Shova, S., Grebinyk, A. G., Grynyuk, I. I., Prylutska, S. V., Matyshevska, O. P., Slobodyanik, M. S., Frohme, M. & Lampeka, R. D. (2021). *Chem. Pap.* **75**, 4899–4906.
- Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). *New J. Chem.* **43**, 10973– 10984.
- Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Raspertova, I. V., Starova, V. S. & Lampeka, R. D. (2017). *Chem. Pap.* **71**, 2003–2009.
- Zhang, X., Wu, X. X., Guo, J. H., Huo, J. Z. & Ding, B. (2017). J. Mol. Struct. **1127**, 183–190.

Acta Cryst. (2022). E78, 829-832 [https://doi.org/10.1107/S2056989022007460]

Synthesis and crystal structure of hydrated *µ*-oxalato-bis{bis[3methyl-5-(pyridin-2-yl)-1*H*-1,2,4-triazole]iron(II)} bis(toluenesulfonate) 2.75hydrate

Yuliia P. Petrenko, Yurii S. Bibik, Dmytro M. Khomenko, Roman O. Doroshchuk, Il`ya A. Gural'skiy, Sergiu Shova, Rostyslav D. Lampeka and Ilona V. Raspertova

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2021); cell refinement: *CrysAlis PRO* (Rigaku OD, 2021); data reduction: *CrysAlis PRO* (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

 μ -Oxalato- $\kappa^4 O^1, O^2: O^{1'}, O^{2'}$ -bis{bis[3-methyl-5-(pyridin-2-yl)-1*H*-1,2,4-triazole- $\kappa^2 N^4, N^5$]iron(II)} bis(toluenesulfonate) 2.75-hydrate

Crystal data

-	
$[Fe_{2}(C_{2}O_{4})(C_{8}H_{8}N_{4})_{4}](C_{7}H_{7}O_{3}S)_{2} \cdot 2.75H_{2}O$ $M_{r} = 1232.37$ Triclinic, $P\overline{1}$ $a = 9.9635 (4) \text{ Å}$ $b = 14.4905 (6) \text{ Å}$ $c = 20.1131 (8) \text{ Å}$ $a = 96.736 (4)^{\circ}$ $\beta = 101.490 (4)^{\circ}$ $\gamma = 95.216 (4)^{\circ}$ $V = 2806.5 (2) \text{ Å}^{3}$	Z = 2 F(000) = 1275 $D_x = 1.458 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5996 reflections $\theta = 2.0-26.2^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 293 K Block, clear light brown $0.35 \times 0.2 \times 0.15 \text{ mm}$
Data collection	
Rigaku Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 8.0797 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021)	$T_{\min} = 0.923, T_{\max} = 1.000$ 20140 measured reflections 9886 independent reflections 7117 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{\max} = 25.0^{\circ}, \theta_{\min} = 1.7^{\circ}$ $h = -11 \rightarrow 11$ $k = -17 \rightarrow 15$ $l = -23 \rightarrow 23$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$	$wR(F^2) = 0.132$ S = 1.06 9886 reflections

739 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 1.2466P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: dual	$(\Delta/\sigma)_{\rm max} < 0.001$
Hydrogen site location: mixed	$\Delta \rho_{\rm max} = 0.59 \ { m e} \ { m \AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	0.06627 (5)	0.33384 (3)	0.24663 (2)	0.04095 (15)	
Fe2	0.46059 (5)	0.63703 (3)	0.25705 (2)	0.04295 (15)	
O1	0.1636 (2)	0.46283 (16)	0.31108 (11)	0.0477 (6)	
02	0.2035 (3)	0.38999 (16)	0.18929 (11)	0.0485 (6)	
O3	0.3255 (3)	0.58058 (16)	0.31534 (11)	0.0505 (6)	
O4	0.3654 (3)	0.50805 (16)	0.19378 (11)	0.0487 (6)	
N1	-0.1150 (3)	0.38744 (19)	0.18860 (13)	0.0445 (7)	
N2	-0.0855 (3)	0.3172 (2)	0.30813 (13)	0.0451 (7)	
N3	-0.2364 (3)	0.2948 (2)	0.36995 (14)	0.0553 (8)	
Н3	-0.271736	0.279820	0.403417	0.066*	
N4	-0.3071 (3)	0.3274 (2)	0.31482 (15)	0.0540 (8)	
N5	0.2127 (3)	0.2521 (2)	0.30396 (13)	0.0462 (7)	
N6	0.0155 (3)	0.19564 (19)	0.18814 (13)	0.0440 (7)	
N7	-0.0330 (4)	0.0583 (2)	0.13003 (17)	0.0922 (14)	
H7	-0.071277	0.014005	0.097691	0.111*	
N8	0.0632 (4)	0.0470 (2)	0.18557 (17)	0.0848 (13)	
N9	0.3081 (3)	0.7159 (2)	0.19942 (14)	0.0507 (8)	
N10	0.5106 (3)	0.77723 (19)	0.31263 (13)	0.0432 (7)	
N11	0.5722 (3)	0.9187 (2)	0.36334 (15)	0.0597 (9)	
H11	0.615093	0.965062	0.392887	0.072*	
N12	0.4736 (4)	0.9271 (2)	0.30800 (16)	0.0621 (9)	
N13	0.6489 (3)	0.58921 (19)	0.31364 (13)	0.0455 (7)	
N14	0.6070 (3)	0.65457 (19)	0.19219 (13)	0.0445 (7)	
N15	0.7518 (3)	0.6810(2)	0.12811 (14)	0.0543 (8)	
H15	0.783958	0.695836	0.093650	0.065*	
N16	0.8289 (3)	0.6538 (2)	0.18426 (14)	0.0529 (8)	
C1	0.2527 (4)	0.5063 (2)	0.28770 (16)	0.0386 (8)	
C2	0.2758 (3)	0.4641 (2)	0.21719 (16)	0.0374 (8)	
C3	-0.1234 (4)	0.4204 (3)	0.12807 (18)	0.0589 (11)	
H3A	-0.043788	0.429579	0.110984	0.071*	
C4	-0.2462 (5)	0.4407 (3)	0.0907 (2)	0.0667 (12)	
H4	-0.249256	0.462694	0.048877	0.080*	
C5	-0.3627 (5)	0.4285 (3)	0.1156 (2)	0.0702 (13)	
Н5	-0.446072	0.441986	0.090806	0.084*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C6	-0.3568 (4)	0.3958 (3)	0.17799 (19)	0.0575 (10)
H6	-0.435366	0.387506	0.196046	0.069*
C7	-0.2312 (4)	0.3760 (2)	0.21249 (16)	0.0427 (8)
C8	-0.2112 (4)	0.3405 (2)	0.27900 (16)	0.0421 (8)
C9	-0.1053 (4)	0.2887 (3)	0.36643 (17)	0.0503 (9)
C10	-0.0023 (4)	0.2548 (4)	0.4192 (2)	0.0807 (14)
H10A	0.024759	0.197175	0.400311	0.121*
H10B	-0.042144	0.244484	0.457843	0.121*
H10C	0.077127	0.300738	0.433744	0.121*
C11	0.3084 (4)	0.2830 (3)	0.36143 (18)	0.0577 (10)
H11A	0.326791	0.347058	0.375872	0.069*
C12	0.3799 (4)	0.2239 (3)	0.3996 (2)	0.0659 (12)
H12	0.446270	0.247802	0.438745	0.079*
C13	0.3528 (4)	0.1295 (3)	0.3796 (2)	0.0704 (13)
H13	0.398179	0.088386	0.405802	0.084*
C14	0.2570 (4)	0.0956 (3)	0.31978 (18)	0.0625 (11)
H14	0.237582	0.031753	0.304686	0.075*
C15	0.1912 (4)	0.1594 (3)	0.28328 (17)	0.0463 (9)
C16	0.0893 (4)	0.1317 (3)	0.21895 (17)	0.0491 (9)
C17	-0.0606 (4)	0.1457 (3)	0.13178 (19)	0.0617 (11)
C18	-0.1622 (5)	0.1779 (3)	0.0775 (2)	0.0832 (15)
H18A	-0.235851	0.200596	0.096682	0.125*
H18B	-0.198935	0.126680	0.041786	0.125*
H18C	-0.117722	0.227346	0.058849	0.125*
C19	0.2082 (4)	0.6836 (3)	0.14435 (19)	0.0642 (11)
H19	0.188657	0.619209	0.131749	0.077*
C20	0.1332 (4)	0.7406 (4)	0.1055 (2)	0.0755 (14)
H20	0.063650	0.715303	0.067988	0.091*
C21	0.1627 (5)	0.8348 (4)	0.1230 (2)	0.0803 (15)
H21	0.114664	0.874722	0.096693	0.096*
C22	0.2640 (5)	0.8712 (3)	0.17987 (19)	0.0702 (13)
H22	0.284770	0.935471	0.192785	0.084*
C23	0.3334 (4)	0.8092 (3)	0.21697 (17)	0.0501 (9)
C24	0.4396 (4)	0.8401 (3)	0.27894 (17)	0.0485 (9)
C25	0.5944 (4)	0.8301 (3)	0.36629 (17)	0.0487 (9)
C26	0.6950 (4)	0.8004 (3)	0.42185 (18)	0.0677 (12)
H26A	0.650605	0.751460	0.440960	0.102*
H26B	0.729815	0.852738	0.456919	0.102*
H26C	0.769906	0.777834	0.403759	0.102*
C27	0.6645 (4)	0.5565 (3)	0.37394 (18)	0.0592 (11)
H27	0.586820	0.544259	0.392017	0.071*
C28	0.7898 (5)	0.5401 (3)	0.4102 (2)	0.0684 (12)
H28	0.796418	0.518366	0.452334	0.082*
C29	0.9047 (5)	0.5560 (3)	0.3841 (2)	0.0702 (12)
H29	0.990504	0.545042	0.407988	0.084*
C30	0.8916 (4)	0.5886 (3)	0.32143 (19)	0.0594 (11)
H30	0.968095	0.599935	0.302321	0.071*
C31	0.7626 (4)	0.6039 (2)	0.28800 (16)	0.0436 (8)

C32	0.7366 (4)	0.6382 (2)	0.22115 (16)	0.0429 (8)	
C33	0.6205 (4)	0.6820 (3)	0.13259 (17)	0.0515 (10)	
C34	0.5110 (4)	0.7077 (3)	0.07895 (18)	0.0773 (14)	
H34A	0.486349	0.768028	0.093915	0.116*	
H34B	0.431515	0.661919	0.070729	0.116*	
H34C	0.544165	0.709851	0.037429	0.116*	
S1	0 19815 (11)	0 15158 (8)	-0.01003(5)	0.0625(3)	
05	0.1921 (3)	0 25052 (19)	-0.00942(11)	0.0669 (8)	
06	0.1921(3) 0.2457(4)	0.1123(2)	-0.06992(14)	0.1116(13)	
07	0.2137(1) 0.0732(4)	0.1123(2) 0.1004(3)	-0.0048(2)	0.1409(18)	
C35	0.3732(1) 0.3234(4)	0.1378(3)	0.0010(2)	0.0470(9)	
C36	0.3231(1) 0.3414(4)	0.1978(3)	0.12319(18)	0.0534(10)	
H36	0.287580	0.1958 (5)	0.126915	0.064*	
C37	0.4393 (4)	0.244558	0.120713 0.17913(18)	0.004	
U37	0.450062	0.1010 (3)	0.17913 (10)	0.0500 (10)	
C38	0.430002 0.5207 (4)	0.221047 0.1100(3)	0.220200 0.1753(2)	0.008°	
C30	0.5207(4)	0.1109(3)	0.1755(2) 0.1146(2)	0.0390(11)	
U39	0.5008 (5)	0.0328 (3)	0.1140(2) 0.111050	0.0840 (13)	
H39	0.334298	0.003/51	0.111059	0.101^{+}	
C40	0.4026 (5)	0.0050 (3)	0.0582 (2)	0.0755 (15)	
H40	0.390360	0.024997	0.01/55/	0.091*	
C41	0.6316 (5)	0.0972 (3)	0.2360 (2)	0.0912 (16)	
H4IA	0.718786	0.127442	0.231879	0.137*	
H41B	0.637337	0.031548	0.236750	0.137*	
H41C	0.608687	0.123984	0.277673	0.137*	
S2	0.30295 (10)	0.86078 (7)	0.49751 (4)	0.0531 (3)	
08	0.4317 (3)	0.8827 (3)	0.47784 (15)	0.0979 (12)	
09	0.2802 (3)	0.9233 (2)	0.55456 (13)	0.0826 (9)	
O10	0.2837 (3)	0.76442 (18)	0.51006 (11)	0.0620 (7)	
C42	0.1701 (4)	0.8707 (2)	0.42682 (17)	0.0451 (9)	
C43	0.0828 (4)	0.9383 (3)	0.4305 (2)	0.0641 (11)	
H43	0.092198	0.979305	0.470797	0.077*	
C44	-0.0196 (4)	0.9454 (3)	0.3740 (2)	0.0705 (12)	
H44	-0.078646	0.991101	0.376928	0.085*	
C45	-0.0353 (4)	0.8857 (3)	0.3134 (2)	0.0570 (10)	
C46	0.0549 (4)	0.8200 (3)	0.31052 (18)	0.0561 (10)	
H46	0.047203	0.779862	0.269950	0.067*	
C47	0.1565 (4)	0.8119 (3)	0.36615 (17)	0.0529 (10)	
H47	0.216238	0.766700	0.362861	0.063*	
C48	-0.1485 (5)	0.8935 (3)	0.2527 (2)	0.0843 (15)	
H48A	-0.121972	0.869788	0.211156	0.126*	
H48B	-0.163294	0.957970	0.251877	0.126*	
H48C	-0.232041	0.857815	0.256327	0.126*	
O1W	-0.018(2)	0.4596 (12)	-0.0131 (10)	0.159 (7)*	0.25
H1WA	-0.026571	0.516586	-0.000700	0.239*	0.25
H1WB	0.065089	0.453836	0.003990	0.239*	0.25
O2W	0.2693 (5)	0.4417 (2)	0.04606 (14)	0.1319 (16)	
H2WA	0.302346	0.458579	0.088428	0.198*	
H2WB	0.249386	0.382599	0.033148	0.198*	

O4W	0.2661 (6)	0.5760 (3)	0.45735 (18)	0.1135 (19)	0.75	
H4WA	0.264626	0.557925	0.414491	0.170*	0.75	
H4WB	0.272806	0.635525	0.470971	0.170*	0.75	
O5W	0.4606 (9)	0.4449 (5)	0.4825 (4)	0.136 (3)*	0.5	
H5WA	0.536786	0.439800	0.510473	0.205*	0.5	
H5WB	0.458166	0.499590	0.469693	0.205*	0.5	
O3W	0.3943 (15)	0.6210 (10)	0.4573 (6)	0.094 (4)*	0.25	
H3WA	0.376336	0.611397	0.413001	0.141*	0.25	
H3WB	0.362126	0.671997	0.469671	0.141*	0.25	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Fe1	0.0381 (3)	0.0391 (3)	0.0426 (3)	-0.0045 (2)	0.0063 (2)	0.0040 (2)
Fe2	0.0400 (3)	0.0413 (3)	0.0438 (3)	-0.0073(2)	0.0079 (2)	0.0018 (2)
01	0.0493 (16)	0.0481 (15)	0.0453 (13)	-0.0074 (12)	0.0213 (12)	-0.0037 (11)
O2	0.0551 (17)	0.0440 (15)	0.0427 (13)	-0.0099 (13)	0.0163 (12)	-0.0072 (11)
O3	0.0580 (17)	0.0450 (15)	0.0430 (13)	-0.0135 (13)	0.0169 (12)	-0.0121 (12)
O4	0.0513 (16)	0.0495 (15)	0.0445 (13)	-0.0114 (13)	0.0222 (12)	-0.0044 (12)
N1	0.052 (2)	0.0367 (17)	0.0414 (16)	0.0027 (15)	0.0042 (14)	0.0044 (13)
N2	0.0431 (19)	0.0498 (19)	0.0416 (15)	-0.0004 (15)	0.0066 (13)	0.0113 (14)
N3	0.052 (2)	0.070 (2)	0.0449 (17)	-0.0014 (18)	0.0152 (15)	0.0103 (16)
N4	0.050 (2)	0.060(2)	0.0526 (18)	0.0041 (17)	0.0121 (16)	0.0090 (16)
N5	0.0345 (18)	0.053 (2)	0.0460 (16)	-0.0007 (15)	0.0018 (13)	0.0039 (15)
N6	0.0462 (19)	0.0392 (17)	0.0406 (15)	-0.0001 (14)	-0.0013 (13)	0.0033 (14)
N7	0.129 (4)	0.044 (2)	0.071 (2)	0.015 (2)	-0.045 (2)	-0.0138 (18)
N8	0.115 (3)	0.047 (2)	0.070 (2)	0.020 (2)	-0.031 (2)	-0.0039 (18)
N9	0.0393 (19)	0.058 (2)	0.0488 (17)	-0.0012 (16)	0.0014 (14)	0.0024 (16)
N10	0.0425 (18)	0.0401 (17)	0.0431 (16)	-0.0029 (14)	0.0056 (14)	0.0018 (14)
N11	0.073 (3)	0.046 (2)	0.0486 (18)	-0.0023 (18)	-0.0015 (17)	-0.0093 (15)
N12	0.073 (3)	0.049 (2)	0.0565 (19)	0.0093 (19)	0.0003 (18)	-0.0017 (17)
N13	0.055 (2)	0.0399 (17)	0.0403 (16)	-0.0028 (15)	0.0102 (14)	0.0066 (14)
N14	0.0420 (19)	0.0462 (18)	0.0436 (16)	-0.0027 (15)	0.0077 (14)	0.0076 (14)
N15	0.053 (2)	0.068 (2)	0.0427 (17)	-0.0013 (18)	0.0145 (15)	0.0130 (16)
N16	0.050(2)	0.057 (2)	0.0520 (18)	0.0007 (16)	0.0143 (16)	0.0084 (16)
C1	0.038 (2)	0.038 (2)	0.0391 (18)	0.0007 (17)	0.0105 (16)	0.0000 (16)
C2	0.037 (2)	0.036 (2)	0.0373 (18)	0.0023 (17)	0.0074 (15)	-0.0002 (16)
C3	0.074 (3)	0.053 (3)	0.049 (2)	0.000 (2)	0.010 (2)	0.013 (2)
C4	0.092 (4)	0.048 (3)	0.053 (2)	0.008 (3)	-0.006 (2)	0.014 (2)
C5	0.072 (3)	0.059 (3)	0.069 (3)	0.014 (3)	-0.012 (2)	0.012 (2)
C6	0.048 (3)	0.053 (3)	0.066 (2)	0.009 (2)	-0.001 (2)	0.004 (2)
C7	0.046 (2)	0.034 (2)	0.0463 (19)	0.0050 (17)	0.0077 (17)	0.0026 (16)
C8	0.043 (2)	0.036 (2)	0.0445 (19)	0.0007 (17)	0.0064 (17)	0.0014 (16)
C9	0.048 (3)	0.057 (2)	0.043 (2)	-0.003 (2)	0.0067 (18)	0.0087 (18)
C10	0.067 (3)	0.119 (4)	0.062 (3)	0.008 (3)	0.012 (2)	0.038 (3)
C11	0.044 (2)	0.062 (3)	0.057 (2)	0.001 (2)	-0.0035 (19)	0.000 (2)
C12	0.046 (3)	0.086 (3)	0.056 (2)	0.008 (2)	-0.0080 (19)	0.001 (2)
C13	0.066 (3)	0.088 (4)	0.057 (2)	0.029 (3)	0.000 (2)	0.014 (3)

	0.050 (2)	0.055 (2)	0.055 (0)	0.001 (0)	0.000 (0)	0.001 (0)
C14	0.070 (3)	0.057 (3)	0.055 (2)	0.021 (2)	0.000 (2)	0.001 (2)
C15	0.043 (2)	0.049 (2)	0.0449 (19)	0.0076 (19)	0.0052 (17)	0.0060 (18)
C16	0.052 (2)	0.040 (2)	0.050 (2)	0.0036 (19)	0.0015 (18)	0.0043 (18)
C17	0.075 (3)	0.044 (2)	0.053 (2)	0.001 (2)	-0.012 (2)	0.0018 (19)
C18	0.099 (4)	0.061 (3)	0.066 (3)	0.010 (3)	-0.032(2)	-0.005 (2)
C19	0.045 (3)	0.074 (3)	0.062 (2)	-0.003(2)	-0.002(2)	-0.004 (2)
C20	0.049 (3)	0.106 (4)	0.060 (3)	0.015 (3)	-0.011 (2)	-0.001 (3)
C21	0.080 (4)	0.098 (4)	0.061 (3)	0.041 (3)	-0.002(2)	0.009 (3)
C22	0.076 (3)	0.072 (3)	0.059 (2)	0.029 (3)	0.000 (2)	0.004 (2)
C23	0.047 (2)	0.056 (3)	0.046 (2)	0.007 (2)	0.0083 (17)	0.0035 (19)
C24	0.051 (2)	0.047 (2)	0.044 (2)	0.004 (2)	0.0057 (17)	0.0004 (18)
C25	0.051 (2)	0.044 (2)	0.047 (2)	-0.0008 (19)	0.0079 (18)	0.0006 (18)
C26	0.075 (3)	0.062 (3)	0.052 (2)	0.002 (2)	-0.011 (2)	-0.002 (2)
C27	0.075 (3)	0.053 (3)	0.052 (2)	0.004 (2)	0.017 (2)	0.014 (2)
C28	0.095 (4)	0.059 (3)	0.047 (2)	0.010 (3)	0.000 (2)	0.016 (2)
C29	0.068 (3)	0.068 (3)	0.067 (3)	0.012 (3)	-0.007 (2)	0.015 (2)
C30	0.051 (3)	0.062 (3)	0.062 (2)	0.005 (2)	0.006 (2)	0.009 (2)
C31	0.048 (2)	0.034 (2)	0.0438 (19)	-0.0022 (17)	0.0052 (17)	0.0004 (16)
C32	0.043 (2)	0.038 (2)	0.0451 (19)	-0.0010 (17)	0.0081 (17)	0.0019 (16)
C33	0.052 (3)	0.057 (2)	0.044 (2)	-0.002 (2)	0.0097 (18)	0.0089 (19)
C34	0.058 (3)	0.120 (4)	0.053 (2)	0.000 (3)	0.005 (2)	0.029 (3)
S1	0.0572 (7)	0.0586 (7)	0.0618 (6)	-0.0095 (5)	-0.0082 (5)	0.0159 (6)
05	0.089 (2)	0.0629 (19)	0.0442 (14)	0.0177 (16)	0.0011 (14)	0.0063 (13)
06	0.165 (4)	0.101 (3)	0.0500 (17)	0.034 (3)	-0.011 (2)	-0.0208 (17)
O7	0.061 (2)	0.183 (4)	0.164 (3)	-0.046 (2)	-0.036 (2)	0.115 (3)
C35	0.044 (2)	0.043 (2)	0.053 (2)	0.0010 (18)	0.0101 (17)	0.0041 (18)
C36	0.049 (2)	0.047 (2)	0.059 (2)	0.0110 (19)	0.0022 (19)	-0.0021 (19)
C37	0.058 (3)	0.056 (3)	0.049 (2)	0.000 (2)	0.0037 (19)	-0.0006 (19)
C38	0.057 (3)	0.048 (2)	0.068 (3)	0.000(2)	-0.004 (2)	0.016 (2)
C39	0.081 (4)	0.065 (3)	0.102 (4)	0.038 (3)	0.001 (3)	0.004 (3)
C40	0.081 (4)	0.069 (3)	0.068 (3)	0.023 (3)	0.006 (2)	-0.017 (2)
C41	0.087 (4)	0.066 (3)	0.106 (4)	0.008 (3)	-0.022 (3)	0.029 (3)
S2	0.0474 (6)	0.0611 (7)	0.0441 (5)	-0.0079 (5)	0.0009 (4)	0.0066 (5)
08	0.0445 (19)	0.161 (3)	0.086 (2)	-0.019 (2)	0.0025 (16)	0.053 (2)
09	0.098 (3)	0.074 (2)	0.0562 (16)	0.0014 (18)	-0.0095 (16)	-0.0212 (15)
O10	0.081 (2)	0.0599 (18)	0.0435 (14)	0.0076 (15)	0.0072 (13)	0.0104 (13)
C42	0.043 (2)	0.042 (2)	0.049 (2)	-0.0022 (18)	0.0102 (17)	0.0060 (17)
C43	0.063 (3)	0.064 (3)	0.061 (2)	0.007 (2)	0.011 (2)	-0.009 (2)
C44	0.061 (3)	0.057 (3)	0.091 (3)	0.020 (2)	0.007 (3)	0.005 (3)
C45	0.053 (3)	0.051 (2)	0.062 (2)	-0.001 (2)	0.002 (2)	0.013 (2)
C46	0.058 (3)	0.059 (3)	0.045 (2)	0.005 (2)	0.0049 (19)	-0.0040 (19)
C47	0.052 (3)	0.052 (2)	0.051 (2)	0.012 (2)	0.0035 (18)	-0.0016 (19)
C48	0.074 (3)	0.082 (4)	0.088 (3)	0.012 (3)	-0.012 (3)	0.023 (3)
O2W	0.252 (5)	0.086 (3)	0.0506 (18)	0.024 (3)	0.012 (2)	0.0135 (18)
O4W	0.201 (6)	0.096 (4)	0.051 (2)	0.046 (4)	0.034 (3)	0.004 (2)

Geometric parameters (Å, °)

Fe1—01	2.171 (2)	C18—H18C	0.9600
Fe1—O2	2.123 (2)	C19—H19	0.9300
Fe1—N1	2.203 (3)	C19—C20	1.372 (5)
Fe1—N2	2.150 (3)	C20—H20	0.9300
Fe1—N5	2.197 (3)	C20—C21	1.359 (6)
Fe1—N6	2.162 (3)	C21—H21	0.9300
Fe2—O3	2.123 (2)	C21—C22	1.381 (6)
Fe2—O4	2.157 (2)	C22—H22	0.9300
Fe2—N9	2.209 (3)	C22—C23	1.381 (5)
Fe2—N10	2.165 (3)	C23—C24	1.460 (5)
Fe2—N13	2.206 (3)	C25—C26	1.478 (5)
Fe2—N14	2.159 (3)	C26—H26A	0.9600
01—C1	1.241 (4)	C26—H26B	0.9600
O2—C2	1.243 (4)	C26—H26C	0.9600
O3—C1	1.245 (4)	C27—H27	0.9300
O4—C2	1.249 (4)	C27—C28	1.371 (5)
N1—C3	1.349 (4)	C28—H28	0.9300
N1C7	1.343 (4)	C28—C29	1.364 (6)
N2-C8	1.363 (4)	С29—Н29	0.9300
N2—C9	1.333 (4)	C29—C30	1.384 (5)
N3—H3	0.8600	С30—Н30	0.9300
N3—N4	1.350 (4)	C30—C31	1.377 (5)
N3—C9	1.332 (4)	C31—C32	1.471 (4)
N4—C8	1.320 (4)	C33—C34	1.481 (5)
N5-C11	1.344 (4)	C34—H34A	0.9600
N5-C15	1.344 (4)	C34—H34B	0.9600
N6-C16	1.364 (4)	C34—H34C	0.9600
N6-C17	1.323 (4)	S1—O5	1.439 (3)
N7—H7	0.8600	S1—O6	1.454 (3)
N7—N8	1.356 (4)	S1—O7	1.419 (3)
N7—C17	1.318 (5)	S1—C35	1.758 (4)
N8—C16	1.305 (4)	C35—C36	1.375 (5)
N9—C19	1.338 (4)	C35—C40	1.371 (5)
N9—C23	1.344 (4)	C36—H36	0.9300
N10-C24	1.365 (4)	C36—C37	1.383 (5)
N10-C25	1.334 (4)	С37—Н37	0.9300
N11—H11	0.8600	C37—C38	1.368 (5)
N11—N12	1.355 (4)	C38—C39	1.368 (6)
N11—C25	1.329 (4)	C38—C41	1.520 (5)
N12-C24	1.309 (4)	С39—Н39	0.9300
N13—C27	1.339 (4)	C39—C40	1.384 (5)
N13—C31	1.345 (4)	C40—H40	0.9300
N14—C32	1.361 (4)	C41—H41A	0.9600
N14—C33	1.334 (4)	C41—H41B	0.9600
N15—H15	0.8600	C41—H41C	0.9600
N15—N16	1.354 (4)	S2—O8	1.435 (3)

N15—C33	1.331 (4)	S2—O9	1.444 (3)
N16—C32	1.312 (4)	S2—O10	1.450 (3)
C1—C2	1.546 (4)	S2—C42	1.768 (4)
С3—НЗА	0.9300	C42—C43	1.373 (5)
C3—C4	1.379 (5)	C42—C47	1.379 (5)
C4—H4	0.9300	C43—H43	0.9300
C4—C5	1.357 (6)	C43—C44	1.388 (5)
С5—Н5	0.9300	C44—H44	0.9300
C5—C6	1.385 (5)	C44—C45	1.381 (5)
С6—Н6	0.9300	C45—C46	1.372 (5)
C6—C7	1.377 (5)	C45—C48	1.512 (5)
С7—С8	1.472 (4)	C46—H46	0.9300
C9—C10	1.484 (5)	C46—C47	1.375 (5)
C10—H10A	0.9600	С47—Н47	0.9300
С10—Н10В	0.9600	C48—H48A	0.9600
C10—H10C	0.9600	C48—H48B	0.9600
С11—Н11А	0.9300	C48—H48C	0.9600
C11-C12	1 370 (5)	O1W—H1WA	0.8500
C12—H12	0.9300	O1W—H1WB	0.8499
C12 - C13	1 366 (6)	$\Omega^2 W$ —H2WA	0.8482
C13—H13	0.9300	O2W - H2WB	0.8577
C13 - C14	1 384 (5)	04W—H4WA	0.8679
C_{14} H_{14}	0.9300	O4W - H4WB	0.8665
C14 $C15$	1 378 (5)	05W H5WA	0.8651
C15 C16	1.578 (5)	OSW HSWR	0.8618
C17 - C18	1.403(5)	O_{3W} H3WA	0.8642
C18 H18A	0.0600		0.8617
	0.9000	03 w—113 w B	0.0017
	0.9000		
O1—Fe1—N1	98.95 (10)	N7-C17-C18	123.1 (4)
01—Fe1—N5	91.45 (10)	C17—C18—H18A	109.5
Ω^2 —Fe1— Ω^1	76 88 (8)	C17—C18—H18B	109.5
Ω^2 —Fe1—N1	94 10 (10)	C17 - C18 - H18C	109.5
Ω^2 —Fe1—N2	163 77 (10)	H18A - C18 - H18B	109.5
Ω^2 —Fe1—N5	96 26 (10)	H18A - C18 - H18C	109.5
Ω^2 —Fe1—N6	97.91 (10)	H18B - C18 - H18C	109.5
N_2 —Fe1—O1	91 45 (10)	N9H19	118.3
$N2$ _Fe1_N1	76 39 (10)	N9-C19-C20	123.4(4)
$N2$ _Fe1_N5	95 26 (10)	C_{20} C_{19} H_{19}	125.4 (+)
$N_2 = 101 = N_5$	95.20 (10) 95.76 (11)	$C_{10} = C_{10} = H_{10}$	120.7
N5 Fe1 N1	166 75 (11)	$C_{21} C_{20} C_{120}$	120.7 118.6 (A)
N6 = Fe1 = O1	167.01 (10)	$C_{21} = C_{20} = C_{19}$	120.7
N6 = 101 = 01	03.25(10)	$C_{21} = C_{20} = 1120$	120.7
N6 = Fe1 = N5	77 17 (10)	C_{20} C_{21} C_{121} C_{20} C_{21} C_{22}	110 0 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.01.(8)	$C_{20} = C_{21} = C_{22}$	120.0
$O_3 = 102 = 04$ $O_3 = E_2 = N0$	95.46(10)	$C_{22} = C_{21} = 1121$ $C_{21} = C_{22} = H_{22}$	120.0
$O_3 = 102 = 109$ O3 Ee2 N10	00.08 (0)	$C_{21} = C_{22} = C_{23}$	121.0 118.0 (4)
$O_3 = F_{C2} = N_{12}$	77.00 (7) 06.00 (10)	$C_{21} = C_{22} = C_{23}$	121.0
UJ-FC2-NIJ	70.07 (10)	U_{23} — U_{22} — Π_{22}	121.0

O3—Fe2—N14	164.19 (10)	N9—C23—C22	122.9 (4)
O4—Fe2—N9	90.81 (10)	N9—C23—C24	114.7 (3)
O4—Fe2—N10	166.87 (10)	C22—C23—C24	122.4 (4)
O4—Fe2—N13	100.13 (10)	N10-C24-C23	120.9 (3)
O4—Fe2—N14	90.65 (9)	N12-C24-N10	114.2 (3)
N10—Fe2—N9	76.99 (11)	N12—C24—C23	124.9 (3)
N10—Fe2—N13	92.72 (10)	N10-C25-C26	128.6 (3)
N13—Fe2—N9	165.61 (11)	N11—C25—N10	108.2 (3)
N14—Fe2—N9	94.55 (10)	N11—C25—C26	123.2 (3)
N14—Fe2—N10	95.07 (10)	C25—C26—H26A	109.5
N14—Fe2—N13	76.15 (10)	C25—C26—H26B	109.5
C1-O1-Fe1	113.9 (2)	C25—C26—H26C	109.5
$C^2 - C^2 - Fe^1$	1153(2)	H26A—C26—H26B	109.5
$C1 - O3 - Fe^2$	115.5(2) 115.4(2)	$H_{26A} - C_{26} - H_{26C}$	109.5
C_{2}^{-} C_{4}^{-} F_{e}^{2}	113.1(2) 114.1(2)	H26B_C26_H26C	109.5
$C_2 = 04 = 102$	114.1(2) 126.0(3)	N13_C27_H27	118.5
C7 N1 Eq1	120.0(3)	N13 - C27 - C28	123.0 (4)
$C_{1} = N_{1} = C_{2}$	113.9(2)	C_{28} C_{27} U_{27}	123.0 (4)
C^{2} N2 E-1	117.7(5)	$C_{20} - C_{27} - H_{27}$	110.3
$C_0 = N_2 = F_{el}$	115.0(2)	$C_2/-C_{20}-H_{20}$	120.5
C9-N2-FeI	142.8(2)	$C_{29} - C_{28} - C_{27}$	119.5 (4)
C9—N2—C8	103.6 (3)	C29—C28—H28	120.3
N4—N3—H3	124.0	C28—C29—H29	120.6
C9—N3—H3	124.0	C28—C29—C30	118.9 (4)
C9—N3—N4	112.1 (3)	C30—C29—H29	120.6
C8—N4—N3	101.7 (3)	C29—C30—H30	120.8
C11—N5—Fe1	127.1 (3)	C31—C30—C29	118.5 (4)
C15—N5—Fe1	115.0 (2)	C31—C30—H30	120.8
C15—N5—C11	117.3 (3)	N13—C31—C30	123.1 (3)
C16—N6—Fe1	111.9 (2)	N13—C31—C32	113.9 (3)
C17—N6—Fe1	144.8 (2)	C30—C31—C32	123.1 (3)
C17—N6—C16	103.3 (3)	N14—C32—C31	119.8 (3)
N8—N7—H7	124.2	N16—C32—N14	114.6 (3)
C17—N7—H7	124.2	N16-C32-C31	125.6 (3)
C17—N7—N8	111.6 (3)	N14—C33—C34	127.4 (4)
C16—N8—N7	101.8 (3)	N15-C33-N14	108.0 (3)
C19—N9—Fe2	128.0 (3)	N15—C33—C34	124.6 (3)
C19—N9—C23	117.1 (3)	C33—C34—H34A	109.5
C23—N9—Fe2	114.2 (2)	C33—C34—H34B	109.5
C24—N10—Fe2	111.8 (2)	C33—C34—H34C	109.5
C25—N10—Fe2	144.1 (2)	H34A—C34—H34B	109.5
$C_{25} N_{10} C_{24}$	103.8(3)	H34A—C34—H34C	109.5
N12—N11—H11	124.2	H34B—C34—H34C	109.5
C25—N11—H11	124.2	05-81-06	110 60 (19)
C25—N11—N12	111.6 (3)	05-81-035	106.93 (17)
C24—N12—N11	102.2(3)	06-81-035	106 78 (19)
C27—N13—Fe?	102.2(3) 1267(3)	07-81-05	114 3 (2)
$C27_{113}$ $C31$	120.7(3) 1171(3)	07 - 81 - 06	117.3(2) 110.8(3)
$C_{31}N_{13}E_{27}$	117.1(3) 115 8 (2)	07 - 81 - 035	106.06 (19)
0.51 1115 102	110.0 (2)	0, 51 055	100.20 (10)

C32—N14—Fe2	113.6 (2)	C36—C35—S1	121.8 (3)
C33—N14—Fe2	142.5 (3)	C40—C35—S1	119.4 (3)
C33—N14—C32	103.7 (3)	C40—C35—C36	118.8 (3)
N16—N15—H15	124.0	С35—С36—Н36	120.0
C33—N15—H15	124.0	C35—C36—C37	120.1(3)
C_{33} N15 N16	112.0(3)	C37—C36—H36	120.0
C_{32} N16 N15	101.7(3)	C36—C37—H37	119.3
01-C1-03	126 5 (3)	$C_{38} - C_{37} - C_{36}$	121 4 (4)
01 - C1 - C2	116.8 (3)	$C_{38} = C_{37} = H_{37}$	1193
03-C1-C2	116.6 (3)	C_{37} C_{38} C_{39}	118.1 (4)
02 - C2 - 04	126.3 (3)	$C_{37} - C_{38} - C_{41}$	1215(4)
02 - C2 - C1	1170(3)	C_{39} C_{38} C_{41}	121.3(4) 120.4(4)
$02 \ 02 \ 01$	117.0(3)	C_{38} C_{30} H_{39}	119.4
N1_C3_H3A	110.7 (3)	$C_{38} - C_{39} - C_{40}$	117.4 121 2 (4)
N1 = C3 = C4	117.0 122.1(4)	C_{40} C_{30} H_{30}	121.2 (4)
CA = C3 = H3A	110.0	$C_{40} = C_{59} = H_{59}$	119.4 120 4 (4)
C_{4} C_{3} C_{4} H_{4}	119.0	$C_{35} = C_{40} = C_{35}$	120.4 (4)
$C_{5} = C_{4} = 114$	120.3	$C_{33} = C_{40} = H_{40}$	119.0
$C_{5} = C_{4} = C_{5}$	119.4 (4)	$C_{39} = C_{40} = H_{41} \wedge C_{39} = C_{40} = H_{41} \wedge C_{40} = H_{40} \wedge C_{40} = H$	119.0
$C_3 = C_4 = H_4$	120.5	C_{36} C_{41} H_{41D}	109.5
C4 = C5 = CC	120.1	$C_{38} = C_{41} = H_{41B}$	109.5
C4 - C5 - C6	119.8 (4)		109.5
C6C5H5	120.1	H41A - C41 - H41B	109.5
C5—C6—H6	121.0	H4IA - C4I - H4IC	109.5
C7—C6—C5	118.0 (4)	H41B—C41—H41C	109.5
С/—С6—Н6	121.0	08-52-09	114.8 (2)
N1—C7—C6	123.1 (3)	08—S2—O10	111.9 (2)
N1—C7—C8	113.6 (3)	08—S2—C42	107.17 (16)
C6—C7—C8	123.4 (3)	O9—S2—O10	110.33 (16)
N2—C8—C7	120.0 (3)	O9—S2—C42	106.35 (17)
N4—C8—N2	114.5 (3)	O10—S2—C42	105.76 (17)
N4—C8—C7	125.5 (3)	C43—C42—S2	121.0 (3)
N2—C9—C10	127.2 (3)	C43—C42—C47	119.2 (3)
N3—C9—N2	108.2 (3)	C47—C42—S2	119.7 (3)
N3—C9—C10	124.5 (3)	C42—C43—H43	120.1
C9—C10—H10A	109.5	C42—C43—C44	119.9 (4)
C9—C10—H10B	109.5	C44—C43—H43	120.1
C9—C10—H10C	109.5	C43—C44—H44	119.4
H10A—C10—H10B	109.5	C45—C44—C43	121.2 (4)
H10A—C10—H10C	109.5	C45—C44—H44	119.4
H10B-C10-H10C	109.5	C44—C45—C48	120.5 (4)
N5—C11—H11A	118.7	C46—C45—C44	117.9 (4)
N5-C11-C12	122.7 (4)	C46—C45—C48	121.6 (4)
C12—C11—H11A	118.7	C45—C46—H46	119.2
C11—C12—H12	120.3	C45—C46—C47	121.6 (4)
C13—C12—C11	119.4 (4)	C47—C46—H46	119.2
C13—C12—H12	120.3	C42—C47—H47	119.9
C12—C13—H13	120.4	C46—C47—C42	120.3 (3)
C12—C13—C14	119.2 (4)	C46—C47—H47	119.9

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.4 C45—C48—H48A 109	.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.9 C45—C48—H48B 109	.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118.1 (4) C45—C48—H48C 109	.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120.9 H48A—C48—H48B 109	.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	123.2 (3) H48A—C48—H48C 109	.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114.0 (3) H48B—C48—H48C 109	.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122.8 (3) H1WA—O1W—H1WB 104	.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.1 (3) H2WA—O2W—H2WB 116	.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114.5 (3) H4WA—O4W—H4WB 117	.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	124.4 (3) H5WA—O5W—H5WB 112	.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128.1 (4) H3WA—O3W—H3WB 107	.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	108.8 (3)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.1 (3) C8—N2—C9—C10 -18	0.0 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9 (4) C9—N2—C8—N4 -0.7	7 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	178.1 (3) C9—N2—C8—C7 179	.9 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.0 (4) C9—N3—N4—C8 -0.3	3 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	171.0 (3) C11—N5—C15—C14 3.3	(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-172.4 (3) C11—N5—C15—C16 -17	7.8 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.7 (4) C11—C12—C13—C14 2.2	(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	177.6 (2) C12—C13—C14—C15 -0.9	9 (6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.8 (4) C13—C14—C15—N5 -2.0	0 (6)
Fe1-N2-C9-C102.6 (7)C14-C15-C16-N6172.9Fe1-N5-C11-C12169.2 (3)C14-C15-C16-N8 -8.9 (3)Fe1-N5-C15-C14-168.8 (3)C15-N5-C11-C12 -1.9 (3)Fe1-N5-C15-C1610.1 (4)C16-N6-C17-N7 0.1 (5)Fe1-N6-C16-N8-179.6 (3)C16-N6-C17-C18 $-180.$ Fe1-N6-C16-C15-1.2 (4)C17-N6-C16-N8 -0.1 (4)Fe1-N6-C17-C18-0.8 (8)C17-N7-N8-C16 -0.1 (5)Fe2-O3-C1-O1-177.3 (3)C19-N9-C23-C22 -1.8 (3)Fe2-O4-C2-O2177.4 (3)C19-C20-C21-C22 -1.6 (3)Fe2-N9-C19-C20 -168.9 (3)C21-C22-C23-N9 1.1 (6)Fe2-N9-C23-C24 -11.2 (4)C22-C23-C24 $-177.$ Fe2-N9-C23-C24 -11.2 (4)C22-C23-C24 $-177.$ Fe2-N9-C23-C24 -175.3 (3)C21-C22-C23-C24 $-177.$ Fe2-N10-C24-N12 -175.3 (3)C22-C23-C24-N12 4.6 (6)	-176.9 (3) C13—C14—C15—C16 179	.2 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.6 (7) C14—C15—C16—N6 172	.9 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	169.2 (3) C14—C15—C16—N8 -8.9	9 (6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-168.8 (3) C15—N5—C11—C12 -1.9	9 (5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.1 (4) C16—N6—C17—N7 0.1	(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-179.6 (3) C16—N6—C17—C18 -18	0.0 (4)
Fe1—N6—C17—N7179.3 (3)C17—N6—C16—C15178.3Fe1—N6—C17—C18 -0.8 (8)C17—N7—N8—C16 -0.1 (8)Fe2—O3—C1—O1 -177.3 (3)C19—N9—C23—C22 -1.8 (8)Fe2—O3—C1—C22.7 (4)C19—N9—C23—C24177.7Fe2—O4—C2—O2177.4 (3)C19—C20—C21—C22 -1.6 (6)Fe2—N9—C19—C20 -168.9 (3)C21—C22—C23 0.6 (7)Fe2—N9—C23—C24169.3 (3)C21—C22—C23—C24 -178.6 Fe2—N9—C23—C24 -11.2 (4)C22—C23—C24 -177.7 Fe2—N10—C24—N12 -175.3 (3)C22—C23—C24—N12 4.6 (6)Fe2 <n10< td="">C24C23$6.1$ (4)C23N9C19</n10<>	-1.2 (4) C17—N6—C16—N8 -0.1	1 (5)
Fe1—N6—C17—C18 -0.8 (8)C17—N7—N8—C16 -0.1 (8)Fe2—O3—C1—O1 -177.3 (3)C19—N9—C23—C22 -1.8 (19—N9—C23—C22Fe2—O3—C1—C22.7 (4)C19—N9—C23—C24177.7Fe2—O4—C2—O2177.4 (3)C19—C20—C21—C22 -1.6 (19—C20—C21—C22Fe2—O4—C2—C1 -2.5 (3)C20—C21—C22—C23 0.6 (7)Fe2—N9—C19—C20 -168.9 (3)C21—C22—C23—N9 1.1 (6)Fe2—N9—C23—C24 -11.2 (4)C22—C23—C24 -177.8 Fe2—N10—C24—N12 -175.3 (3)C22—C23—C24—N12 4.6 (6)Fe2 <n10—c24—n12< td="">-175.3 (3)C22—C23—C24—N12$4.6$ (6)</n10—c24—n12<>	179.3 (3) C17—N6—C16—C15 178	.3 (4)
Fe2—O3—C1—O1 -177.3 (3)C19—N9—C23—C22 -1.8 (3)Fe2—O3—C1—C22.7 (4)C19—N9—C23—C24177.7Fe2—O4—C2—O2177.4 (3)C19—C20—C21—C22 -1.6 (3)Fe2—O4—C2—C1 -2.5 (3)C20—C21—C22—C23 0.6 (7)Fe2—N9—C19—C20 -168.9 (3)C21—C22—C23—N9 1.1 (6)Fe2—N9—C23—C22169.3 (3)C21—C22—C23—C24 $-178.$ Fe2—N9—C23—C24 -11.2 (4)C22—C23—C24 $-177.$ Fe2—N10—C24—N12 -175.3 (3)C22—C23—C24—N12 4.6 (6)Fe2 <n10< td="">C24C23$6.1$ (4)C23N9C19C20</n10<>	-0.8 (8) C17—N7—N8—C16 -0.1	1 (5)
Fe2—O3—C1—C22.7 (4)C19—N9—C23—C24177.7Fe2—O4—C2—O2177.4 (3)C19—C20—C21—C22 -1.6 (3)Fe2—O4—C2—C1 -2.5 (3)C20—C21—C22—C23 0.6 (7)Fe2—N9—C19—C20 -168.9 (3)C21—C22—C23—N9 1.1 (6)Fe2—N9—C23—C22169.3 (3)C21—C22—C23—C24 $-178.$ Fe2—N9—C23—C24 -11.2 (4)C22—C23—C24 $-177.$ Fe2—N10—C24—N12 -175.3 (3)C22—C23—C24—N12 4.6 (6)Fe2 <n10< td="">C24C23$6.1$ (4)C23N9C19C20</n10<>	-177.3 (3) C19—N9—C23—C22 -1.8	8 (5)
Fe2—O4—C2—O2177.4 (3)C19—C20—C21—C22 -1.6 (3)Fe2—O4—C2—C1 -2.5 (3)C20—C21—C22—C23 0.6 (7)Fe2—N9—C19—C20 -168.9 (3)C21—C22—C23—N9 1.1 (6)Fe2—N9—C23—C22169.3 (3)C21—C22—C23—C24 -178.9 Fe2—N9—C23—C24 -11.2 (4)C22—C23—C24 -177.9 Fe2—N10—C24—N12 -175.3 (3)C22—C23—C24—N12 4.6 (6)Fe2N10—C24—C23 6.1 (4)C23N9C19C20	2.7 (4) C19—N9—C23—C24 177	.7 (3)
Fe2—O4—C2—C1 -2.5 (3)C20—C21—C22—C230.6 (7)Fe2—N9—C19—C20 -168.9 (3)C21—C22—C23—N91.1 (6)Fe2—N9—C23—C22169.3 (3)C21—C22—C23—C24 $-178.$ Fe2—N9—C23—C24 -11.2 (4)C22—C23—C24—N10 $-177.$ Fe2—N10—C24—N12 -175.3 (3)C22—C23—C24—N124.6 (6)Fe2 <n10—c24—c23< td="">$-61.(4)$C23N9C19C20</n10—c24—c23<>	177.4 (3) C19—C20—C21—C22 -1.6	5 (7)
Fe2—N9—C19—C20 $-168.9 (3)$ C21—C22—C23—N91.1 (6Fe2—N9—C23—C22169.3 (3)C21—C22—C23—C24 $-178.$ Fe2—N9—C23—C24 $-11.2 (4)$ C22—C23—C24—N10 $-177.$ Fe2—N10—C24—N12 $-175.3 (3)$ C22—C23—C24—N124.6 (6Fe2 <n10< td="">C24C236.1 (4)C23N10C24C236.1 (4)C23N9</n10<>	-2.5 (3) C20–C21–C22–C23 0.6	(7)
Fe2—N9—C23—C22169.3 (3)C21—C22—C23—C24 $-178.$ Fe2—N9—C23—C24 -11.2 (4)C22—C23—C24—N10 $-177.$ Fe2—N10—C24—N12 -175.3 (3)C22—C23—C24—N124.6 (6)Fe2N10C24C23N0C19C20	-168.9 (3) C21—C22—C23—N9 1.1	(6)
Fe2—N9—C23—C24 -11.2 (4)C22—C23—C24—N10 -177.4 Fe2—N10—C24—N12 -175.3 (3)C22—C23—C24—N124.6 (6)Fe2N10C24C23N0C19C20C23N10C24C23N10C19C20	169.3 (3) C21—C22—C23—C24 -17	'8.3 (4)
Fe2_N10_C24_N12 -175.3 (3) C22_C23_C24_N12 4.6 (6 Fe2_N10_C24_C23 61 (4) C23_N0_C10_C20 0.7 (6	-11.2 (4) C22—C23—C24—N10 -17	7.0 (3)
$E_{2} = N_{10} = C_{24} = C_{23} = C_{10} = C_$	2 –175.3 (3) C22—C23—C24—N12 4.6	(6)
102 - 110 - 024 - 023 = 0.1 (4) = 0.23 - 119 - 0.19 - 0.20 = 0.7 (0)	3 6.1 (4) C23—N9—C19—C20 0.7	(6)
Fe2—N10—C25—N11 172.5 (3) C24—N10—C25—N11 0.0 (4	1 172.5 (3) C24—N10—C25—N11 0.0	(4)
Fe2—N10—C25—C26 -8.4 (7) C24—N10—C25—C26 179.1	6 –8.4 (7) C24—N10—C25—C26 179	.1 (4)
Fe2—N13—C27—C28 -170.8 (3) C25—N10—C24—N12 -0.1 (8 –170.8 (3) C25—N10—C24—N12 –0.1	1 (4)
Fe2—N13—C31—C30 172.0 (3) C25—N10—C24—C23 -178.	0 172.0 (3) C25—N10—C24—C23 -17	8.6 (3)
Fe2—N13—C31—C32 -7.7 (4) C25—N11—N12—C24 -0.1 (4)	2 -7.7 (4) C25—N11—N12—C24 -0.1	1 (4)
Fe2—N14—C32—N16 -176.2 (2) C27—N13—C31—C30 -1.4	6 –176.2 (2) C27—N13—C31—C30 –1.4	4 (5)
Fe2—N14—C32—C31 5.1 (4) C27—N13—C31—C32 179.0	1 5.1 (4) C27—N13—C31—C32 179	.0 (3)
$\Gamma_{1,2} = 114 (2) $	5 174.8(3) C27-C28-C29-C30 02	(7)

Fe2—N14—C33—C34	-6.4 (7)	C28—C29—C30—C31	0.1 (6)
O1—C1—C2—O2	0.0 (4)	C29—C30—C31—N13	0.5 (6)
O1—C1—C2—O4	179.9 (3)	C29—C30—C31—C32	-179.9 (3)
O3—C1—C2—O2	180.0 (3)	C30-C31-C32-N14	-177.9 (3)
O3—C1—C2—O4	-0.1 (4)	C30-C31-C32-N16	3.5 (6)
N1—C3—C4—C5	0.7 (6)	C31—N13—C27—C28	1.7 (5)
N1—C7—C8—N2	-4.0 (5)	C32—N14—C33—N15	0.1 (4)
N1-C7-C8-N4	176.7 (3)	C32—N14—C33—C34	178.9 (4)
N3—N4—C8—N2	0.6 (4)	C33—N14—C32—N16	0.3 (4)
N3—N4—C8—C7	179.9 (3)	C33—N14—C32—C31	-178.4 (3)
N4—N3—C9—N2	-0.1 (4)	C33—N15—N16—C32	0.6 (4)
N4—N3—C9—C10	-179.7 (4)	S1—C35—C36—C37	178.8 (3)
N5-C11-C12-C13	-0.9 (6)	S1-C35-C40-C39	-179.3 (4)
N5-C15-C16-N6	-6.1 (5)	O5—S1—C35—C36	36.1 (4)
N5-C15-C16-N8	172.2 (4)	O5—S1—C35—C40	-146.0 (3)
N7—N8—C16—N6	0.1 (5)	O6—S1—C35—C36	154.5 (3)
N7—N8—C16—C15	-178.2 (4)	O6—S1—C35—C40	-27.6 (4)
N8—N7—C17—N6	0.0 (6)	O7—S1—C35—C36	-86.8 (4)
N8—N7—C17—C18	-179.9 (4)	O7—S1—C35—C40	91.1 (4)
N9-C19-C20-C21	1.0 (7)	C35—C36—C37—C38	0.4 (6)
N9-C23-C24-N10	3.5 (5)	C36—C35—C40—C39	-1.3 (7)
N9-C23-C24-N12	-174.8 (4)	C36—C37—C38—C39	-1.3 (6)
N11—N12—C24—N10	0.1 (4)	C36—C37—C38—C41	177.9 (4)
N11—N12—C24—C23	178.6 (3)	C37—C38—C39—C40	0.8 (7)
N12—N11—C25—N10	0.1 (4)	C38—C39—C40—C35	0.5 (8)
N12—N11—C25—C26	-179.1 (3)	C40—C35—C36—C37	0.9 (6)
N13—C27—C28—C29	-1.1 (6)	C41—C38—C39—C40	-178.4 (4)
N13—C31—C32—N14	1.8 (5)	S2—C42—C43—C44	179.2 (3)
N13-C31-C32-N16	-176.8 (3)	S2—C42—C47—C46	-179.0 (3)
N15—N16—C32—N14	-0.5 (4)	O8—S2—C42—C43	-114.5 (4)
N15—N16—C32—C31	178.1 (3)	O8—S2—C42—C47	63.3 (4)
N16—N15—C33—N14	-0.5 (4)	O9—S2—C42—C43	8.7 (4)
N16—N15—C33—C34	-179.3 (4)	O9—S2—C42—C47	-173.5 (3)
C3—N1—C7—C6	0.3 (5)	O10—S2—C42—C43	126.1 (3)
C3—N1—C7—C8	-179.6 (3)	O10—S2—C42—C47	-56.2 (3)
C3—C4—C5—C6	0.0 (6)	C42—C43—C44—C45	-0.3 (7)
C4—C5—C6—C7	-0.6 (6)	C43—C42—C47—C46	-1.2 (6)
C5—C6—C7—N1	0.4 (6)	C43—C44—C45—C46	-1.0 (7)
C5—C6—C7—C8	-179.7 (3)	C43—C44—C45—C48	179.2 (4)
C6—C7—C8—N2	176.1 (3)	C44—C45—C46—C47	1.2 (6)
C6—C7—C8—N4	-3.2 (6)	C45—C46—C47—C42	-0.1 (6)
C7—N1—C3—C4	-0.9 (5)	C47—C42—C43—C44	1.4 (6)
C8—N2—C9—N3	0.4 (4)	C48—C45—C46—C47	-179.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3…O10 ⁱ	0.86	1.95	2.766 (4)	159

N7—H7···O6 ⁱⁱ	0.86	2.34	3.064 (5)	142
N7—H7···O7 ⁱⁱ	0.86	2.34	3.141 (6)	154
N11—H11…O9 ⁱⁱⁱ	0.86	1.92	2.769 (4)	170
N15—H15…O5 ^{iv}	0.86	1.99	2.825 (4)	163
C4—H4…O2 <i>W</i> ^v	0.93	2.48	3.383 (5)	165
C11—H11A····O5W	0.93	2.49	3.206 (8)	134
C28—H28····O4 W^{vi}	0.93	2.54	3.421 (6)	159
O2 <i>W</i> —H2 <i>WA</i> ···O4	0.85	2.10	2.949 (4)	174
O2 <i>W</i> —H2 <i>WB</i> ···O5	0.86	1.99	2.838 (4)	172
O4 <i>W</i> —H4 <i>WA</i> ···O1	0.87	2.34	3.123 (5)	150
O4 <i>W</i> —H4 <i>WA</i> ···O3	0.87	2.25	3.037 (4)	151
O4 <i>W</i> —H4 <i>WB</i> ···O10	0.87	1.92	2.788 (5)	174
O5 <i>W</i> —H5 <i>WA</i> ···O4 <i>W</i> ^{vi}	0.86	1.98	2.810 (11)	159
O5 <i>W</i> —H5 <i>WB</i> ···O4 <i>W</i>	0.86	2.28	2.850 (10)	123
C13—H13…O8 ^{vi}	0.93	2.57	3.256 (5)	131
C21—H21···O7 ^v	0.93	2.44	3.280 (6)	150

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+1, -z; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z+1.