research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ba3[Sn(OH)6][SeO4]2·3H2O, a hydrated 1:2 double salt of barium hexa­hydroxidostannate(IV) and barium selenate(VI)

crossmark logo

aChemistry, Osnabrück University, Barabarstr. 7, 49069 Osnabrück, Germany
*Correspondence e-mail: hreuter@uos.de

Edited by S. Parkin, University of Kentucky, USA (Received 28 June 2022; accepted 12 July 2022; online 19 July 2022)

Single crystals of tribarium hexa­hydroxidostannate(IV) bis­[selenate(VI)] trihydrate, Ba3H12O17Se2Sn or Ba3[Sn(OH)6][SeO4]2·3H2O, prepared from solid BaSnO3 and aqueous Na2[SeO4] solutions have hexa­gonal (P63) symmetry. The structure consists of four different primary building units: a hexa­hydroxidostannate(IV) ion, two different selenate(VI) ions, all three of point group symmetry C3, and a mono-capped {BaO9}-square anti­prism of point group symmetry C1. The secondary building units result from three of the barium coordination polyhedra linked together via common edges. While one of the two tetra­hedral voids formed from these trimeric units is filled by one bidentate, chelating μ2-selenate ion, the other one remains unoccupied as the corresponding second selenate ion only acts as a monodentate, μ1-ligand. SBUs are completed by hexa­hydroxidostannate(IV) ions sharing adjacent edges on the uncapped faces of the three, mono-capped square anti­prisms. These SBUs are arranged into layers via common edges on the uncapped, square faces of the {BaO9} coordination polyhedra in a way that the hexa­hydroxidostannate(IV) ions act as linkage between two neighboring layers.

1. Chemical context

The hexa­hydroxidostannate(IV) ion, [Sn(OH)6]2−, is a well established tin(IV) anion in chemistry (Scholder, 1981[Scholder, R. (1981). Hydroxosalze in Handbuch der Präparativen Anorganischen Chemie, edited by G. Brauer, p. 1771.Stuttgart: Enke.]), mineralogy (Strunz & Nickel, 1998[Strunz, H. & Nickel, E. H. (1998). Strunz Mineralogical Tables, Chemical-Structural Mineral Classification System, 9th ed., pp. 232-233. Stuttgart: Schweizerbart.]) and even archaeology (Basciano et al. 1998[Basciano, L. C., Peterson, R. C., Roeder, P. L. & Swainson, I. (1998). Can. Mineral. 36, 1203-1210.]), although the number of well defined and structurally described compounds is rather low, especially in case of two-valent cations as these compounds are only slightly soluble. In a former paper (Kamaha & Reuter, 2009[Kamaha, S. & Reuter, H. (2009). Z. Anorg. Allg. Chem. 635, 2058-2064.]), we demonstrated strategies for how to circumvent these difficulties by combining slow anion formation with slow crystallization, mimicking to some extent geochemical crystal formation processes.

Here we present our results on experiments where we offered selenate(VI) anions parallel to the slow formation of hexa­hydroxidostannate(IV) ions, as possible co-anions during crystallization. In a typical experiment we exposed BaSnO3 pellets to a Na2SeO4-solution, resulting after a long period in the formation of colorless, hexa­gonal prisms of Ba3[Sn(OH)6][SeO4]2·3H2O, a hydrated 1:2 double salt of barium hexa­hydroxidostannate(IV), Ba[Sn(OH)6], and barium selenate(VI), Ba[SeO4]. From both compounds, only the structure of the selenate has been described in the literature (Andara et al., 2005[Andara, A., Salvado, M. A., Fernández-González, Á., García-Granda, S. & Prieto, M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 5-6.]).

2. Structural commentary

The title compound crystallizes in the non-centrosymmetric, hexa­gonal space group P63 and was refined as an inversion twin, giving a Flack parameter of 0.037 (11). With two formula units in the unit cell, the asymmetric unit consists of 1/3 formula unit: a Ba2+ ion and a water mol­ecule, both in general positions, and two crystallographically independent [SeO4]2− ions and one [Sn(OH)6]2− ion, all three having the point group C3. In addition to the {BaO9}-coordination polyhedron, these complex anions represent the primary building units, PBUs.

The two crystallographically different Sn–O distances within the hexa­hydroxidostannate(IV) anion (Fig. 1[link], Table 1[link]) are identical within standard deviations [d(Sn1—O1) = 2.052 (2) Å and d(Sn1—O2) = 2.054 (2) Å]. The mean value of 2.053 (2) Å is somewhat shorter than the mean value of 2.060 (10) Å observed in other hexa­hydroxidostannates (Kamaha & Reuter, 2009[Kamaha, S. & Reuter, H. (2009). Z. Anorg. Allg. Chem. 635, 2058-2064.]), but lies in the observed range of 2.039–2.075 Å. Deviations from the geometry of a regular octa­hedron are better expressed in terms of the bond angles, best described by the non-linearity of the octa­hedron axes, which show bond angles of 178.7 (1)°. All oxygen atoms of the [Sn(OH)6]2− ion coordinate to two different Ba atoms in a μ2-coordination mode, while the hydrogen atoms are involved in hydrogen bonds (Table 2[link]) with the oxygen atoms O3 and O7 of the two different [SeO4]2− ions.

Table 1
Selected geometric parameters (Å, °)

Se1—O3 1.634 (2) Se2—O7 1.633 (2)
Se1—O4 1.654 (4) Se2—O6 1.648 (4)
       
O3i—Se1—O3 110.09 (8) O7i—Se2—O7 111.76 (9)
O3—Se1—O4 108.84 (8) O7—Se2—O6 107.07 (10)
Symmetry code: (i) [-x+y+1, -x+1, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.96 1.86 2.772 (3) 158
O2—H2⋯O7ii 0.96 1.85 2.773 (3) 160
O8—H8A⋯O4 0.96 1.82 2.775 (3) 173
O8—H8B⋯O7iii 0.96 1.98 2.923 (3) 169
Symmetry codes: (ii) [-x+2, -y+1, z-{\script{1\over 2}}]; (iii) [-y+1, x-y, z-1].
[Figure 1]
Figure 1
Ball-and-stick model of the [Sn(OH)6]2− ion with atom numbering of the asymmetric unit and orientation of the threefold rotation axis (blue). With exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn as displacement ellipsoids at the 40% level. Bonds between oxygen and barium are indicated as shortened, two-colored sticks while hydrogen bonds are visualized as dashed lines (red).

As a result of their C3 symmetry, the structural parameters (Table 3[link]) of both selenate(VI) ions are restricted to those between the two crystallographically different oxygen atoms as one (denoted apical in the following) of them is situated on the threefold rotation axis (O4 in the first selenate, O6 in the second selenate) while the others (hereafter basal) (O3/O7) are in general positions. While the mean value of 1.638 (8) Å over all eight Se—O bond lengths is in excellent agreement with the mean Se—O bond lengths in other selenates [neutron data: d(Se—O) = 1.641 Å, Mg[SeO4]·7H2O, T = 10 K (Fortes & Gutmann, 2014[Fortes, A. D. & Gutmann, M. J. (2014). Acta Cryst. E70, 134-137.]); d(Se—O) = 1.637 Å, Mg[SeO4] · 9H2O, T = 100 K (Fortes et al. 2015[Fortes, A. D., Alfè, D., Hernández, E. R. & Gutmann, M. J. (2015). Acta Cryst. B71, 313-327.]); X-ray data: d(Se—O) = 1.639 Å, Na2[SeO4]·1.5H2O and Na2[SeO4]·10H2O, T = 100 K (Weil & Bonneau, 2014[Weil, M. & Bonneau, B. (2014). Acta Cryst. E70, 54-57.]), d(Se—O) = 1.639 Å, Mg[SeO4]·6H2O, T = 293 K (Kolitsch, 2002[Kolitsch, U. (2002). Acta Cryst. E58, i3-i5.])] the individual Se—O distances differ significantly, reflecting the different functionality of both kind of oxygen atoms. Bonds to the apical oxygen atoms are considerably longer [1.654 (4), 1.648 (4) Å] than those to the basal ones [1.634 (2), 1.633 (2) Å]. In the first selenate ion, the apical oxygen atom acts as acceptor of three hydrogen bonds, while the corresponding oxygen atom of the second selenate ion coordinates to three barium ions. On the other hand, the three basal oxygen atoms act as acceptor of one hydrogen bond and also perform coordinative bonds, each to a different barium ion, in the first selenate ion while those of the second selenate ion accept two hydrogen bonds. Besides bond-length differences, deviations from the geometry of a regular tetra­hedron result in both selenate ions having bond angles widening between the basal oxygen atoms, giving them the shape of slightly flattened trigonal pyramids rather than strict tetra­hedra (Fig. 2[link]).

Table 3
Bond lengths (Å) within the mono-capped {BaO9} square anti­prism

Ba1—O3 2.715 (2) Ba1—O6 2.829 (1)
Ba1—O2 2.737 (2) Ba1—O8iv 2.880 (2)
Ba1—O1i 2.777 (2) Ba1—O8i 2.931 (2)
Ba1—O1ii 2.779 (2) Ba1—O8v 3.106 (3)
Ba1—O2iii 2.782 (2)    
Symmetry codes: (i) y, −x + y + 1, z + [{1\over 2}]; (ii) x − y + 1, x, z + [{1\over 2}]; (iii) −x + y + 1, −x + 2, z; (iv) −x + 2, −y + 1, z + [{1\over 2}]; (v) −y + 1, x − y, z.
[Figure 2]
Figure 2
Ball-and-stick models of the two crystallographically independent [SeO4]2− ions with atom numbering of the asymmetric unit and orientation of the threefold rotation axis (blue). With exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn as displacement ellipsoids at the 40% level. Coordination bonds between oxygen and barium are drawn as shortened, two-colored sticks, hydrogen bonds between oxygen and hydrogen atoms of water mol­ecules and hydroxyl groups are drawn as dashed lines (red).

The coordination sphere of the barium ion consists of nine oxygen atoms: two from water mol­ecules, four from two [Sn(OH)6]2− ions, one from the first selenate ion and two, respectively, from the second selenate ion (Fig. 3[link]). In summary, this {Ba(μ2-OH)4(H2O)2(μ2-OSe2)2(μ1-OSe1)} coord­ination sphere has the shape of a mono-capped square anti­prism. The uncapped face of this coordination polyhedron only is built up from the oxygen atoms of two hexa­hydroxidostannate ions. Its shape is almost square [maximal angle deviations from rectangular: ±0.6 (1)°, maximal deviation from planarity: ±0.0132 Å, side lengths: 2.7705 (2)–3.1720 (2) Å]. In contrast, the capped face of the square anti­prism consists of oxygen atoms from two water mol­ecules and from basal oxygen atoms of the two different selenate ions. Its shape [maximal deviation from planarity: ±0.0022 (2) Å] is much better described as an acute trapezoid with a longer/shorter base of 4.4606 (2)/3.7164 (2) Å, legs of 3.4108 (2)/3.2331 (2) Å and angles between 103.01 (1) and 78.42 (1)°. The dihedral angle between these planes is 5.64 (1)°. These deviations from a regular square anti­prism are mainly caused by coordination to the selenate ions, as the apical oxygen atom of the second one constitutes the cap of the {BaO9} coordination polyhedron, giving rise to a bidentate-chelating coordination mode of this selenate ion while the first selenate ion only acts as monodentate ligand. Ba—O bond lengths (Table 3[link]) range from 2.715 (2) to 3.106 (3) Å, mean value 2.837 Å. Bonds between the barium ion and the oxygen atoms of the hexa­hydroxidostannate ions are of comparable lengths [d(Ba-O1/O2) = 2.737 (2)–2.782 (2) Å] as are those between the barium ion and the water mol­ecules [2.880 (2)/2.931 (2) Å]. The longest bond [d(Ba—O7) = 3.106 (3) Å] is between the barium ion and the basal oxygen atom of the second selenate ion, while the shortest one [d(Ba—O3) = 2.715 (2) Å] leads to the basal atom of the first selenate ion.

[Figure 3]
Figure 3
Ball-and-stick model of the mono-capped, square-prismatic {BaO9} coordination polyhedron. Atom colors and bond design as in Fig. 2[link]. Symmetry codes: (1) y, 1 − x + y, [{1\over 2}] + z; (2) 2 − x, 1 − y, [{1\over 2}] + z; (3) 1 − y, x − y, z; (4) 1 − x + y, 2 − x, z; (5) 1 + x − y, x, [{1\over 2}] + z.

3. Supra­molecular features

The inter­action of the four different PBUs is visualized in Fig. 4[link]. The most prominent part of the resulting secondary building units, SBUs, consists of three {BaO9}-coordination polyhedra related to each other via the threefold rotation axes in Wyckoff position b. These three PBUs are linked together via common edges, each of them composed of the coordinated water mol­ecule and the apical oxygen atom of the second selenate ion. In addition, this selenate ion shares its remaining three, basal oxygen atoms with the three surrounding barium ions, thus filling the tetra­hedral void between the three {BaO9} coordination polyhedra. On the other hand, the opposite void of the trimeric {BaO9} unit is empty, as the first selenate ion only shares its three basal oxygen atoms with the three {BaO9} coordination polyhedra but not the apical one. Each SBU is completed by a hexa­hydroxidostannate(IV) ion sharing one edge with the uncapped face of the mono-capped {BaO9} anti­prisms.

[Figure 4]
Figure 4
Polyhedral model showing the inter­connection of the PBUs (selenate ions in red, {BaO9} coordination polyhedra in green, [Sn(OH)6]2− ions in gray) and their orientation with respect to the different threefold rotation axes (blue, letter = Wyckoff position) of space group P63. Oxygen atoms (red) and hydrogen atoms (gray) are drawn as spheres of arbitrary radius. Hydrogen bonds are indicated as broken red sticks, visible Ba—O coordinative bonds as shortened, two-colored sticks, and visible Sn—O bonds as shortened, brass-colored sticks. In order to show the linkage of the SBUs and to visualize the trigonal–prismatic void between the hexa­hydroxidostannate ions, one additional {BaO9} coordination polyhedron and one additional [Sn(OH)6]2− ion are also shown.

These secondary building units are linked together with three others, each via a common edge of the uncapped square of the {BaO9} coordination polyhedra. In this way, each {BaO9} coordination polyhedron shares two opposite edges of its square faces with two neighboring barium coordination polyhedra, resulting in a trigonal–prismatic void between the three inter­connected SBUs. All corners of these voids consist of hydroxyl groups from [Sn(OH)6]2− ions with the tin atoms of these PBUs situated on threefold rotation axes in Wyckoff position a.

In summary, the SBUs are arranged in layers perpendicular to the c axis direction (Fig. 5[link]). The pores within these layers are occupied by selenate ions (Se2) of adjacent layers. These selenate ions are connected with the layer via hydrogen bonds (Table 2[link]) to the water mol­ecules and hydroxyl groups of the [Sn(OH)6]2− ions, while the latter cross-link adjacent layers.

[Figure 5]
Figure 5
Polyhedral model showing the aufbau principle of the layers (top view above, side view below) as result of the inter­connection of the SBUs. Polyhedra colors according to Fig. 1[link] to 3. Isolated selenate ions (Se2) in the three-sided pores belong to adjacent layers. The corresponding hydrogen bonds are omitted for clarity.

Adjacent layers are rotated through 120° against each other, resulting in a compact crystal packing without any accessible holes, channels or pores (Fig. 6[link]). To some extent, the complex composition of the title compound expressed by the formula MII3[XIV(OH)6][YVIO4]2·3H2O has similarities to those of the mineral thaumasite, Ca3[Si(OH)6][SO4][CO3]·12H2O (Edge & Taylor, 1971[Edge, R. A. & Taylor, H. F. W. (1971). Acta Cryst. B27, 594-601.]; Effenberger et al., 1983[Effenberger, H., Kirfel, A., Will, G. & Zobetz, E. (1983). Neues Jahrb. Mineral. Monatsh. pp. 60-68.]), also crystallizing in space group P63. In contrast to the title compound, the coordination polyhedron of the earth metal in this mineral is reduced from nine to eight and may be described as a one-face distorted square anti­prism. While the hexa­hydroxidosilicate adopt a similar position as the hexa­hydroxidostannate ion, the two other complex anions of thaumasite are only linked via hydrogen bonds to the trimeric units of {CaO8} polyhedra as these secondary building units are not cross-linked into layers.

[Figure 6]
Figure 6
Polyhedral model showing the packing of two layers.

4. Synthesis and crystallization

Single crystals of the title compound were obtained in a long-duration experiment exposing a BaSnO3 (Celest) pellet prepared by heating equimolar amounts of SnO2 and BaO for 40 h at 1688 K to 10 ml of a solution of Na2SeO4 (Fluka) in a rolled rim glass vessel closed with a snap-on lid. Colorless, hexa­gonal prisms occurred after several months in the sludge of the mouldered BaSnO3 pellet.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were clearly identified in difference Fourier syntheses. Their positions were modeled with respect to a common O—H distance of 0.96 Å and a bond angle of 104.9° in case of the water mol­ecule before they were fixed and allowed to ride on the corresponding oxygen atoms. Refinement of two common isotropic temperature factors, one for the hydrogen atoms of the hydroxyl groups and one for the hydrogen atoms of the water mol­ecule, allowed us to check the reliability of their positions.

Table 4
Experimental details

Crystal data
Chemical formula Ba3[Sn(OH)6][SeO4]2·3H2O
Mr 972.73
Crystal system, space group Hexagonal, P63
Temperature (K) 100
a, c (Å) 9.2550 (6), 11.4441 (8)
V3) 848.92 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 12.68
Crystal size (mm) 0.21 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.314, 0.741
No. of measured, independent and observed [I > 2σ(I)] reflections 112431, 1659, 1653
Rint 0.040
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.008, 0.018, 1.13
No. of reflections 1659
No. of parameters 74
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.38
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.037 (11)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al. (2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF(Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006), Mercury (Macrae et al. (2020); software used to prepare material for publication: publCIF(Westrip, 2010).

Tribarium hexahydroxidostannate(IV) bis[selenate(VI)] trihydrate top
Crystal data top
Ba3[Sn(OH)6][SeO4]2·3H2ODx = 3.805 Mg m3
Mr = 972.73Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 9633 reflections
a = 9.2550 (6) Åθ = 2.5–30.6°
c = 11.4441 (8) ŵ = 12.68 mm1
V = 848.92 (13) Å3T = 100 K
Z = 2Needle, colourless
F(000) = 8680.21 × 0.14 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
1653 reflections with I > 2σ(I)
φ and ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.0°, θmin = 2.5°
Tmin = 0.314, Tmax = 0.741h = 1313
112431 measured reflectionsk = 1313
1659 independent reflectionsl = 1616
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0035P)2 + 1.0003P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.008(Δ/σ)max = 0.001
wR(F2) = 0.018Δρmax = 0.54 e Å3
S = 1.13Δρmin = 0.37 e Å3
1659 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2015, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
74 parametersExtinction coefficient: 0.00210 (7)
1 restraintAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.037 (11)
Hydrogen site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.85513 (2)0.67674 (2)0.76533 (2)0.00444 (4)
Sn11.00001.00000.51521 (5)0.00320 (5)
O10.9097 (3)0.7983 (3)0.4052 (2)0.0057 (4)
H10.87360.69140.44030.030 (7)*
O21.1069 (3)0.9077 (3)0.6279 (2)0.0056 (4)
H21.15480.85860.57870.030 (7)*
Se10.66670.33330.50722 (5)0.00388 (9)
Se20.66670.33330.96470 (5)0.00512 (9)
O60.66670.33330.8207 (3)0.0072 (7)
O40.66670.33330.3627 (4)0.0076 (6)
O30.7824 (3)0.5248 (3)0.55332 (19)0.0108 (4)
O70.6848 (3)0.1745 (3)1.0066 (2)0.0106 (4)
O80.9600 (3)0.4949 (2)0.23440 (18)0.0095 (4)
H8A0.86280.43610.28270.054 (11)*
H8B0.91750.48750.15680.054 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00500 (6)0.00347 (6)0.00436 (6)0.00175 (5)0.00001 (8)0.00006 (8)
Sn10.00351 (7)0.00351 (7)0.00258 (10)0.00175 (3)0.0000.000
O10.0070 (11)0.0036 (11)0.0054 (10)0.0018 (9)0.0002 (8)0.0001 (8)
O20.0062 (11)0.0066 (11)0.0057 (10)0.0044 (10)0.0001 (8)0.0009 (8)
Se10.00407 (14)0.00407 (14)0.0035 (2)0.00204 (7)0.0000.000
Se20.00486 (14)0.00486 (14)0.0057 (2)0.00243 (7)0.0000.000
O60.0085 (10)0.0085 (10)0.0046 (17)0.0043 (5)0.0000.000
O40.0103 (10)0.0103 (10)0.0023 (13)0.0051 (5)0.0000.000
O30.0137 (11)0.0049 (10)0.0087 (9)0.0008 (8)0.0013 (8)0.0022 (8)
O70.0133 (11)0.0089 (10)0.0125 (9)0.0077 (9)0.0017 (9)0.0024 (8)
O80.0071 (8)0.0113 (9)0.0096 (10)0.0041 (7)0.0001 (7)0.0006 (7)
Geometric parameters (Å, º) top
Ba1—O32.715 (2)O1—Ba1ix2.777 (2)
Ba1—O22.737 (2)O1—Ba1viii2.779 (2)
Ba1—O1i2.777 (2)O1—H10.9600
Ba1—O1ii2.779 (2)O2—Ba1vii2.782 (2)
Ba1—O2iii2.782 (2)O2—H20.9600
Ba1—O62.829 (1)Se1—O3xi1.633 (2)
Ba1—O8iv2.880 (2)Se1—O31.634 (2)
Ba1—O8i2.931 (2)Se1—O3v1.634 (2)
Ba1—O7v3.106 (3)Se1—O41.654 (4)
Ba1—Se23.5786 (4)Se2—O7xi1.633 (2)
Ba1—Sn1vi3.8620 (5)Se2—O7v1.633 (2)
Ba1—Sn13.8639 (5)Se2—O71.633 (2)
Sn1—O1iii2.052 (2)Se2—O61.648 (4)
Sn1—O12.052 (2)Se2—Ba1xi3.5786 (4)
Sn1—O1vii2.052 (2)Se2—Ba1v3.5786 (4)
Sn1—O22.054 (2)O6—Ba1xi2.8288 (8)
Sn1—O2vii2.054 (2)O6—Ba1v2.8288 (8)
Sn1—O2iii2.054 (2)O7—Ba1xi3.106 (3)
Sn1—Ba1viii3.8620 (5)O8—Ba1xii2.880 (2)
Sn1—Ba1ix3.8620 (5)O8—Ba1ix2.931 (2)
Sn1—Ba1x3.8620 (5)O8—H8A0.9600
Sn1—Ba1vii3.8639 (5)O8—H8B0.9600
Sn1—Ba1iii3.8639 (5)
O3—Ba1—O277.58 (7)Ba1viii—Sn1—Ba1ix71.188 (11)
O3—Ba1—O1i142.66 (7)O1iii—Sn1—Ba1x43.99 (7)
O2—Ba1—O1i99.65 (6)O1—Sn1—Ba1x94.36 (7)
O3—Ba1—O1ii144.19 (7)O1vii—Sn1—Ba1x43.93 (7)
O2—Ba1—O1ii70.22 (5)O2—Sn1—Ba1x137.27 (7)
O1i—Ba1—O1ii60.66 (10)O2vii—Sn1—Ba1x86.69 (7)
O3—Ba1—O2iii77.32 (7)O2iii—Sn1—Ba1x135.94 (6)
O2—Ba1—O2iii60.20 (10)Ba1viii—Sn1—Ba1x71.188 (11)
O1i—Ba1—O2iii69.60 (5)Ba1ix—Sn1—Ba1x71.188 (11)
O1ii—Ba1—O2iii99.11 (6)O1iii—Sn1—Ba1136.01 (7)
O3—Ba1—O676.38 (9)O1—Sn1—Ba185.66 (7)
O2—Ba1—O6144.30 (7)O1vii—Sn1—Ba1136.07 (7)
O1i—Ba1—O6115.84 (7)O2—Sn1—Ba142.73 (7)
O1ii—Ba1—O6123.39 (8)O2vii—Sn1—Ba193.29 (7)
O2iii—Ba1—O6134.70 (7)O2iii—Sn1—Ba144.06 (6)
O3—Ba1—O8iv70.52 (6)Ba1viii—Sn1—Ba1108.832 (5)
O2—Ba1—O8iv81.46 (7)Ba1ix—Sn1—Ba1108.833 (5)
O1i—Ba1—O8iv146.58 (6)Ba1x—Sn1—Ba1179.974 (12)
O1ii—Ba1—O8iv89.23 (6)O1iii—Sn1—Ba1vii136.08 (7)
O2iii—Ba1—O8iv134.31 (6)O1—Sn1—Ba1vii136.01 (7)
O6—Ba1—O8iv67.08 (4)O1vii—Sn1—Ba1vii85.66 (7)
O3—Ba1—O8i74.22 (6)O2—Sn1—Ba1vii44.06 (6)
O2—Ba1—O8i127.90 (6)O2vii—Sn1—Ba1vii42.73 (7)
O1i—Ba1—O8i79.11 (7)O2iii—Sn1—Ba1vii93.29 (7)
O1ii—Ba1—O8i139.10 (6)Ba1viii—Sn1—Ba1vii179.974 (12)
O2iii—Ba1—O8i71.31 (7)Ba1ix—Sn1—Ba1vii108.832 (5)
O6—Ba1—O8i66.39 (4)Ba1x—Sn1—Ba1vii108.832 (5)
O8iv—Ba1—O8i126.49 (7)Ba1—Sn1—Ba1vii71.147 (11)
O3—Ba1—O7v126.88 (6)O1iii—Sn1—Ba1iii85.66 (7)
O2—Ba1—O7v136.68 (7)O1—Sn1—Ba1iii136.07 (7)
O1i—Ba1—O7v80.61 (7)O1vii—Sn1—Ba1iii136.01 (7)
O1ii—Ba1—O7v72.68 (6)O2—Sn1—Ba1iii93.29 (7)
O2iii—Ba1—O7v148.89 (7)O2vii—Sn1—Ba1iii44.06 (6)
O6—Ba1—O7v52.54 (8)O2iii—Sn1—Ba1iii42.73 (7)
O8iv—Ba1—O7v76.42 (6)Ba1viii—Sn1—Ba1iii108.832 (5)
O8i—Ba1—O7v94.97 (6)Ba1ix—Sn1—Ba1iii179.974 (12)
O3—Ba1—Se2103.02 (5)Ba1x—Sn1—Ba1iii108.832 (5)
O2—Ba1—Se2155.03 (5)Ba1—Sn1—Ba1iii71.147 (11)
O1i—Ba1—Se294.54 (5)Ba1vii—Sn1—Ba1iii71.147 (11)
O1ii—Ba1—Se299.78 (5)Sn1—O1—Ba1ix105.23 (9)
O2iii—Ba1—Se2144.71 (5)Sn1—O1—Ba1viii105.15 (10)
O6—Ba1—Se226.66 (7)Ba1ix—O1—Ba1viii108.03 (8)
O8iv—Ba1—Se275.44 (4)Sn1—O1—H1117.0
O8i—Ba1—Se274.87 (4)Ba1ix—O1—H1104.7
O7v—Ba1—Se227.11 (4)Ba1viii—O1—H1115.9
O3—Ba1—Sn1vi164.39 (5)Sn1—O2—Ba1106.66 (10)
O2—Ba1—Sn1vi89.44 (5)Sn1—O2—Ba1vii105.06 (9)
O1i—Ba1—Sn1vi30.84 (5)Ba1—O2—Ba1vii109.09 (8)
O1ii—Ba1—Sn1vi30.85 (5)Sn1—O2—H2105.1
O2iii—Ba1—Sn1vi88.77 (5)Ba1—O2—H2112.5
O6—Ba1—Sn1vi118.99 (7)Ba1vii—O2—H2117.6
O8iv—Ba1—Sn1vi116.51 (4)O3xi—Se1—O3110.09 (8)
O8i—Ba1—Sn1vi108.24 (4)O3xi—Se1—O3v110.09 (8)
O7v—Ba1—Sn1vi68.67 (4)O3—Se1—O3v110.09 (8)
Se2—Ba1—Sn1vi92.415 (12)O3xi—Se1—O4108.84 (8)
O3—Ba1—Sn168.85 (5)O3—Se1—O4108.84 (8)
O2—Ba1—Sn130.61 (5)O3v—Se1—O4108.84 (8)
O1i—Ba1—Sn189.73 (5)O7xi—Se2—O7v111.76 (9)
O1ii—Ba1—Sn189.69 (5)O7xi—Se2—O7111.76 (9)
O2iii—Ba1—Sn130.89 (5)O7v—Se2—O7111.76 (9)
O6—Ba1—Sn1144.71 (7)O7xi—Se2—O6107.07 (10)
O8iv—Ba1—Sn1105.32 (4)O7v—Se2—O6107.07 (10)
O8i—Ba1—Sn197.70 (4)O7—Se2—O6107.07 (10)
O7v—Ba1—Sn1162.33 (4)O7xi—Se2—Ba1xi139.72 (9)
Se2—Ba1—Sn1170.516 (10)O7v—Se2—Ba1xi107.28 (9)
Sn1vi—Ba1—Sn195.571 (6)O7—Se2—Ba1xi60.11 (9)
O1iii—Sn1—O186.27 (10)O6—Se2—Ba1xi50.387 (8)
O1iii—Sn1—O1vii86.27 (10)O7xi—Se2—Ba1v60.11 (9)
O1—Sn1—O1vii86.27 (10)O7v—Se2—Ba1v139.72 (9)
O1iii—Sn1—O2178.66 (12)O7—Se2—Ba1v107.28 (9)
O1—Sn1—O293.93 (9)O6—Se2—Ba1v50.387 (8)
O1vii—Sn1—O295.06 (9)Ba1xi—Se2—Ba1v83.696 (12)
O1iii—Sn1—O2vii95.07 (9)O7xi—Se2—Ba1107.28 (9)
O1—Sn1—O2vii178.66 (12)O7v—Se2—Ba160.11 (9)
O1vii—Sn1—O2vii93.93 (9)O7—Se2—Ba1139.72 (9)
O2—Sn1—O2vii84.73 (10)O6—Se2—Ba150.387 (8)
O1iii—Sn1—O2iii93.93 (9)Ba1xi—Se2—Ba183.697 (12)
O1—Sn1—O2iii95.06 (9)Ba1v—Se2—Ba183.696 (12)
O1vii—Sn1—O2iii178.66 (12)Se2—O6—Ba1xi102.95 (7)
O2—Sn1—O2iii84.73 (10)Se2—O6—Ba1v102.95 (7)
O2vii—Sn1—O2iii84.73 (10)Ba1xi—O6—Ba1v115.13 (5)
O1iii—Sn1—Ba1viii43.93 (7)Se2—O6—Ba1102.95 (7)
O1—Sn1—Ba1viii44.00 (7)Ba1xi—O6—Ba1115.13 (5)
O1vii—Sn1—Ba1viii94.36 (7)Ba1v—O6—Ba1115.13 (5)
O2—Sn1—Ba1viii135.94 (6)Se1—O3—Ba1135.14 (12)
O2vii—Sn1—Ba1viii137.27 (7)Se2—O7—Ba1xi92.78 (11)
O2iii—Sn1—Ba1viii86.69 (7)Ba1xii—O8—Ba1ix110.53 (7)
O1iii—Sn1—Ba1ix94.36 (7)Ba1xii—O8—H8A105.3
O1—Sn1—Ba1ix43.93 (7)Ba1ix—O8—H8A119.5
O1vii—Sn1—Ba1ix43.99 (7)Ba1xii—O8—H8B114.2
O2—Sn1—Ba1ix86.69 (7)Ba1ix—O8—H8B102.6
O2vii—Sn1—Ba1ix135.94 (6)H8A—O8—H8B105.0
O2iii—Sn1—Ba1ix137.27 (7)
Symmetry codes: (i) y, x+y+1, z+1/2; (ii) xy+1, x, z+1/2; (iii) x+y+1, x+2, z; (iv) x+2, y+1, z+1/2; (v) y+1, xy, z; (vi) x+2, y+2, z+1/2; (vii) y+2, xy+1, z; (viii) y, x+y+1, z1/2; (ix) xy+1, x, z1/2; (x) x+2, y+2, z1/2; (xi) x+y+1, x+1, z; (xii) x+2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.961.862.772 (3)158
O2—H2···O7xii0.961.852.773 (3)160
O8—H8A···O40.961.822.775 (3)173
O8—H8B···O7xiii0.961.982.923 (3)169
Symmetry codes: (xii) x+2, y+1, z1/2; (xiii) y+1, xy, z1.
Bond lengths (Å) within the mono-capped {BaO9} square antiprism top
Ba1—O32.715 (2)Ba1—O62.829 (1)
Ba1—O22.737 (2)Ba1—O8iv2.880 (2)
Ba1—O1i2.777 (2)Ba1—O8i2.931 (2)
Ba1—O1ii2.779 (2)Ba1—O8v3.106 (3)
Ba1—O2iii2.782 (2)
Symmetry codes: (i) y, -x + y + 1, z + 1/2; (ii) x - y + 1, x, z + 1/2; (iii) -x + y + 1, -x + 2, z; (iv) -x + 2, -y + 1, z + 1/2; (v) -y + 1, x - y, z.
 

Funding information

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and Open Access Publishing Fund of Osnabrück University.

References

First citationAndara, A., Salvado, M. A., Fernández-González, Á., García-Granda, S. & Prieto, M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 5–6.  CrossRef CAS Google Scholar
First citationBasciano, L. C., Peterson, R. C., Roeder, P. L. & Swainson, I. (1998). Can. Mineral. 36, 1203–1210.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdge, R. A. & Taylor, H. F. W. (1971). Acta Cryst. B27, 594–601.  CrossRef ICSD IUCr Journals Google Scholar
First citationEffenberger, H., Kirfel, A., Will, G. & Zobetz, E. (1983). Neues Jahrb. Mineral. Monatsh. pp. 60–68.  Google Scholar
First citationFortes, A. D., Alfè, D., Hernández, E. R. & Gutmann, M. J. (2015). Acta Cryst. B71, 313–327.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFortes, A. D. & Gutmann, M. J. (2014). Acta Cryst. E70, 134–137.  CrossRef IUCr Journals Google Scholar
First citationKamaha, S. & Reuter, H. (2009). Z. Anorg. Allg. Chem. 635, 2058–2064.  CrossRef ICSD CAS Google Scholar
First citationKolitsch, U. (2002). Acta Cryst. E58, i3–i5.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationScholder, R. (1981). Hydroxosalze in Handbuch der Präparativen Anorganischen Chemie, edited by G. Brauer, p. 1771.Stuttgart: Enke.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrunz, H. & Nickel, E. H. (1998). Strunz Mineralogical Tables, Chemical–Structural Mineral Classification System, 9th ed., pp. 232–233. Stuttgart: Schweizerbart.  Google Scholar
First citationWeil, M. & Bonneau, B. (2014). Acta Cryst. E70, 54–57.  CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds