research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(1H-indol-2-yl­methyl­­idene)-4-meth­­oxy­aniline

crossmark logo

aDepartment of Science Education, Faculty of Education, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, bDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, cOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan, and dInstitute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
*Correspondence e-mail: tane@cc.osaka-kyoiku.ac.jp

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 10 March 2022; accepted 17 March 2022; online 31 March 2022)

The mol­ecule of the title compound, C16H14N2O, contains an essentially planar indole ring system and a phenyl ring. In the crystal, the mol­ecules are linked by a weak inter­molecular C—H⋯O hydrogen bond and C—H⋯π inter­actions, forming a one-dimensional column structure along the b-axis direction. These columns are linked by other C—H⋯π inter­actions, forming a two-dimensional network structure.

1. Chemical context

Indole and its derivatives are useful starting compounds to derive pharmaceutical (Nalli et al., 2020[Nalli, M., Armijos Rivera, J. I., Masci, D., Coluccia, A., Badia, R., Riveira-Muñoz, E., Brambilla, A., Cinquina, E., Turriziani, O., Falasca, F., Catalano, M., Limatola, C., Esté, J. A., Maga, G., Silvestri, R., Crespan, E. & La Regina, G. (2020). Eur. J. Med. Chem. 208, 112696-112718.]) and biological materials (Arumugam et al., 2021[Arumugam, N., Almansour, A. I., Kumar, R. S., Yeswanthkumar, S., Padmanaban, R., Arun, Y., Kansız, S., Dege, N., Manohar, T. S. & Venketesh, S. (2021). J. Mol. Struct. 1225, 129165-129166.]). Indole can function as a hydrogen-bond donor because of the high acidity of the hydrogen atom at position 1. The introduction of a hydrogen-bond acceptor to position 2 of the indole ring forms a five-to-seven-membered intra­molecular hydrogen-bonded ring (Nosenko, et al., 2008[Nosenko, Y., Wiosna-Sałyga, G., Kunitski, M., Petkova, I., Singh, A., Buma, W. J., Thummel, R. P., Brutschy, B. & Waluk, J. (2008). Angew. Chem. Int. Ed. 47, 6037-6040.]). In this work, a Schiff base including an indole ring, N-(indol-2-yl­methyl­idene)-4-meth­oxy­aniline, was newly synthesized. Similar Schiff bases such as salicyl­idene­amines often function as bidentate ligands (Wang et al., 2018[Wang, Z., Li, T., Xing, S. & Zhu, B. (2018). Org. Biomol. Chem. 16, 5021-5026.]). Whereas salicyl­idene­amines form intra­molecular hydrogen bonds between coordination site atoms, such intra­molecular inter­actions are absent from the crystal structure of the title compound. We report herein on its mol­ecular and crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The C=N double bond adopts an E configuration. The indole moiety is almost planar with an r.m.s. deviation of 0.009 (1) Å. The bond lengths and angles in the title mol­ecule are normal and agree with those in other indole imine compounds (IWIGUS; Suresh et al., 2016[Suresh, D., Ferreira, B., Lopes, P. S., Gomes, C. S. B., Krishnamoorthy, P., Charas, A., Vila-Viçosa, D., Morgado, J., Calhorda, M. J., Maçanita, A. L. & Gomes, P. T. (2016). Dalton Trans. 45, 15603-15620.]; KEVLON; Ho et al., 2006[Ho, J. H. H., Black, D. St C., Messerle, B. A., Clegg, J. K. & Turner, P. T. (2006). Organometallics, 25, 5800-5810.]). The dihedral angle between the indole system and the benzene ring is 9.89 (5)°. In the related compound IWIGUS, the dihedral angles between the indole system and the benzene ring disordered over two sets of sites are widened to 81.8 (3) and 85.2 (3)° due to two isopropyl substituents in the benzene ring. There is no intra­molecular hydrogen bond in the title compound, because the N2—H2⋯N3 angle is as small as 94.4 (10)°; however, the N2⋯N3 distance is 2.8633 (16) Å, and the N2—C4—C12—N3 torsion angle is 3.94 (19)°. Although no intra­molecular hydrogen bond is observed, a broad peak assigned for the N—H proton is seen in the 1H NMR spectrum of the title compound in a CDCl3 medium and this suggests that the compound forms an intra­molecular hydrogen bond in solution (see Synthesis and crystallization).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

3. Supra­molecular features

The title compound contains an N—H group, which is a hydrogen-bond donor, and an imino group, which is a hydrogen-bond acceptor, but neither of them forms an inter­molecular hydrogen bond in the crystal. Compounds containing a similar indol-2-yl­methyl­idene-aniline fragment with a cis-conformation of the C—C single bond between the N atoms often form dimers by inter­molecular N—H⋯N hydrogen bonds (see Database survey). However, in the crystal the mol­ecules of the title compound are linked by a weak inter­molecular C10—H10⋯O1i hydrogen bond and C—H⋯π inter­actions [C17—H17⋯Cg1i and C19—H19CCg2i; Cg1 is the centroid of the N2/C4–C6/C11 ring and Cg2 is the centroid of the C6–C11 ring; symmetry code: (i) [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z], forming columns along the b-axis direction (Fig. 2[link], Table 1[link]). Besides this, the mol­ecules belonging to different columns are joined by other C—H⋯π inter­actions [C14—H14⋯Cg1ii and C15—H15⋯Cg2ii; symmetry code: (ii) [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z] (Fig. 3[link], Table 1[link]). As a result, the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions form a two-dimensional network structure (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N2/C4–C6/C11 and C6–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.93 2.58 3.2479 (16) 129
C14—H14⋯Cg1ii 0.93 2.81 3.6006 (14) 143
C15—H15⋯Cg2ii 0.93 2.79 3.5153 (14) 136
C17—H17⋯Cg1i 0.93 2.89 3.5718 (14) 131
C19—H19CCg2i 0.96 2.97 3.7716 (16) 142
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
One-dimensional column structure in the crystal of the title compound viewed along the a axis. The C—H⋯O hydrogen bonds and the C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in these inter­actions are omitted for clarity.
[Figure 3]
Figure 3
Part of the crystal structure of the title compound showing the formation of ribbons along the b-axis direction. The C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in these inter­actions are omitted for clarity.
[Figure 4]
Figure 4
A packing diagram of the title compound viewed along the c axis, showing the two-dimensional network. The C—H⋯O hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in these inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for indole derivatives gave 5272 hits, and for the (1H-indol-2-yl)methanimine skeleton gave 86 hits. Among these, the imino N atom bonded to an H atom gave one hit, to an N atom gave 24 hits, and to a C atom gave 61 hits. A search for the indol-2-yl­methyl­idene-aniline fragment gave 30 hits, and those containing a (1H-indol-2-yl)methyl­idene-aniline fragment with a cis-conformation of the C—C single bond gave seven hits. These seven compounds include five examples of dimers linked by complementary N—H⋯N hydrogen bonds (FORJAA; Li et al., 2019[Li, J., Wang, Z.-B., Xu, Y., Lu, X.-C., Zhu, S.-R. & Liu, L. (2019). Chem. Commun. 55, 12072-12075.]; IWIGUS; Suresh et al., 2016[Suresh, D., Ferreira, B., Lopes, P. S., Gomes, C. S. B., Krishnamoorthy, P., Charas, A., Vila-Viçosa, D., Morgado, J., Calhorda, M. J., Maçanita, A. L. & Gomes, P. T. (2016). Dalton Trans. 45, 15603-15620.]; KEZCUQ; Ariyasu et al., 2016[Ariyasu, K., Miyatake, R., Kumai, Y., Ohta, A. & Oda, M. (2016). Am. J. Org. Chem. 6, 93-101.]; VACKES; Gadekar et al., 2016[Gadekar, S. C., Reddy, B. K., Panchal, S. P. & Anand, V. G. (2016). Chem. Commun. 52, 4565-4568.]; WAGCEP; Tian et al., 2016[Tian, Y., Tian, L., Li, C., Jia, X. & Li, J. (2016). Org. Lett. 18, 840-843.]), one example of a one-dimensional-chain structure (UWUSAI; Kalalbandi & Seetharamappa, 2016[Kalalbandi, V. K. A. & Seetharamappa, J. (2016). Synth. Commun. 46, 626-635.]), and one example of a monomer protected from hydrogen bonding by steric hindrance (KEVLON; Ho et al., 2006[Ho, J. H. H., Black, D. St C., Messerle, B. A., Clegg, J. K. & Turner, P. T. (2006). Organometallics, 25, 5800-5810.]). These structures contain inter­molecular or intra­molecular hydrogen bonds involving the N—H or the imino groups. Of these structures, the compounds most closely related to the title compound are N-(2,6-diiso­propyl­phen­yl)-1-(1H-indol-2-yl)methanimine (IWIGUS; Suresh et al., 2016[Suresh, D., Ferreira, B., Lopes, P. S., Gomes, C. S. B., Krishnamoorthy, P., Charas, A., Vila-Viçosa, D., Morgado, J., Calhorda, M. J., Maçanita, A. L. & Gomes, P. T. (2016). Dalton Trans. 45, 15603-15620.]), 4,6-dimeth­oxy-3-methyl-2,7-bis­[(phenyl­imino)­meth­yl]indole (KEVLON; Ho et al., 2006[Ho, J. H. H., Black, D. St C., Messerle, B. A., Clegg, J. K. & Turner, P. T. (2006). Organometallics, 25, 5800-5810.]) and 2-(phenyl-N-oxido­imino­meth­yl)-3-phenyl­amino­indole (CIP­WED; Greci & Sgarabotto, 1984[Greci, L. & Sgarabotto, P. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1281-1284.]). In the crystal of IWIGUS, which features a large dihedral angle between the indole and benzene rings, two neighbouring mol­ecules are associated through pairs of N—H⋯N inter­molecular hydrogen bonds, forming a centrosymmetric dimer. The crystal structure of an indol-2-yl­methyl­idene-aniline compound without a hydrogen bond between the N—H and imino groups has not yet been reported. In an almost planar mol­ecule without a bulky substituent such as the tile compound, the formation of a dimer by inter­molecular N—H⋯N hydrogen bonding is probably not appropriate for the crystal packing.

5. Synthesis and crystallization

Indole-2-carbaldehyde (145 mg, 1.00 mmol) and p-anisidine (148 mg, 1.20 mmol) were dissolved in toluene (20 mL), and the solution was refluxed under inert gas for 6 h, followed by evaporation. The residue was purified by recrystallization from a solvent mixture of acetone and n-hexane (1:1), and the title compound was then obtained (212 mg, 0.848 mmol, 84.8%) as a pale-red powder. The recrystallization of the title compound from a mixture of acetone and methanol afforded single crystals suitable for X-ray structure analysis. 1H NMR (CDCl3, 400 MHz) δ = 3.84 (s, 3H, OCH3), 6.93–6.97 (m, 3H, ArH), 7.13 (td, 1H, Jortho = 7.5 Hz, Jmeta = 1.0 Hz, ArH), 7.25–7.31 (m, 3H, ArH), 7.40 (dd, 1H, Jortho = 8.3 Hz, Jmeta = 0.9 Hz, ArH), 7.66 (d, 1H, Jortho = 8.0 Hz, ArH), 8.48 (s, 1H, N=CH), 9.25 (br, 1H, NH). HR–MS (m/z): calculated for [C16H15N2O]+, m/z = 251.1179; found, 251.1192.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atom attached to N2 was located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C16H14N2O
Mr 250.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 123
a, b, c (Å) 5.87685 (19), 7.5999 (3), 28.4578 (11)
β (°) 90.604 (3)
V3) 1270.95 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Rigaku AFC10 Saturn70 area detector
Absorption correction Multi-scan CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.608, 0.992
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 11128, 2907, 2525
Rint 0.056
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.05
No. of reflections 2907
No. of parameters 178
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.29
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2019).

N-(1H-Indol-2-ylmethylidene)-4-methoxyaniline top
Crystal data top
C16H14N2OF(000) = 528.00
Mr = 250.29Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.87685 (19) ÅCell parameters from 6329 reflections
b = 7.5999 (3) Åθ = 2.8–30.8°
c = 28.4578 (11) ŵ = 0.08 mm1
β = 90.604 (3)°T = 123 K
V = 1270.95 (8) Å3Prism, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Rigaku AFC10 Saturn70 area detector
diffractometer
2907 independent reflections
Radiation source: rotating anode X-ray generator, micromax0072525 reflections with F2 > 2.0σ(F2)
Multi-layer mirror optics monochromatorRint = 0.056
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 77
Absorption correction: multi-scan
CrysAlisPro; Rigaku OD, 2018)
k = 89
Tmin = 0.608, Tmax = 0.992l = 3635
11128 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.3253P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2907 reflectionsΔρmax = 0.39 e Å3
178 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.259 (14)
Secondary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06455 (16)0.60985 (13)0.93970 (3)0.0292 (3)
N20.57779 (18)0.68608 (14)0.66418 (4)0.0237 (3)
N30.40410 (18)0.64748 (14)0.75724 (4)0.0248 (3)
C40.7005 (2)0.61479 (16)0.70151 (4)0.0240 (3)
C50.9058 (2)0.55340 (17)0.68542 (5)0.0249 (3)
H51.01990.50070.70340.030*
C60.9115 (2)0.58536 (16)0.63609 (4)0.0221 (3)
C71.0717 (2)0.55168 (17)0.60070 (5)0.0253 (3)
H71.20790.49500.60790.030*
C81.0237 (2)0.60388 (17)0.55530 (5)0.0272 (3)
H81.12870.58220.53180.033*
C90.8174 (2)0.68975 (17)0.54398 (5)0.0266 (3)
H90.78990.72500.51310.032*
C100.6548 (2)0.72278 (17)0.57776 (4)0.0253 (3)
H100.51820.77800.57010.030*
C110.7037 (2)0.67011 (16)0.62387 (4)0.0219 (3)
C120.6095 (2)0.60207 (17)0.74822 (4)0.0245 (3)
H120.70190.55990.77240.029*
C130.3193 (2)0.62794 (16)0.80344 (4)0.0231 (3)
C140.4210 (2)0.52631 (17)0.83908 (5)0.0264 (3)
H140.55110.46120.83270.032*
C150.3296 (2)0.52215 (17)0.88355 (5)0.0266 (3)
H150.39930.45480.90690.032*
C160.1332 (2)0.61828 (16)0.89388 (4)0.0233 (3)
C170.0233 (2)0.71292 (17)0.85845 (5)0.0253 (3)
H170.11110.77290.86450.030*
C180.1179 (2)0.71653 (17)0.81370 (5)0.0247 (3)
H180.04460.77980.79000.030*
C190.1427 (3)0.6969 (2)0.95149 (5)0.0367 (4)
H19A0.17930.67220.98360.044*
H19B0.26320.65540.93130.044*
H19C0.12470.82150.94740.044*
H20.438 (3)0.737 (2)0.6678 (5)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0294 (5)0.0304 (5)0.0279 (5)0.0010 (4)0.0024 (4)0.0028 (4)
N20.0196 (5)0.0258 (6)0.0258 (5)0.0019 (4)0.0007 (4)0.0004 (4)
N30.0257 (5)0.0218 (6)0.0270 (6)0.0006 (4)0.0012 (4)0.0001 (4)
C40.0223 (6)0.0226 (6)0.0270 (7)0.0032 (5)0.0028 (5)0.0007 (5)
C50.0216 (6)0.0242 (6)0.0288 (7)0.0008 (5)0.0046 (5)0.0014 (5)
C60.0194 (6)0.0180 (6)0.0289 (7)0.0027 (4)0.0030 (5)0.0015 (5)
C70.0192 (6)0.0228 (6)0.0339 (7)0.0008 (5)0.0006 (5)0.0029 (5)
C80.0247 (6)0.0259 (7)0.0310 (7)0.0034 (5)0.0029 (5)0.0056 (5)
C90.0289 (6)0.0249 (7)0.0258 (6)0.0022 (5)0.0032 (5)0.0005 (5)
C100.0235 (6)0.0238 (6)0.0283 (7)0.0021 (5)0.0040 (5)0.0000 (5)
C110.0194 (6)0.0189 (6)0.0273 (6)0.0015 (5)0.0009 (4)0.0023 (5)
C120.0237 (6)0.0239 (7)0.0259 (6)0.0032 (5)0.0042 (5)0.0007 (5)
C130.0221 (6)0.0200 (6)0.0270 (6)0.0023 (5)0.0017 (5)0.0005 (5)
C140.0216 (6)0.0242 (7)0.0335 (7)0.0047 (5)0.0029 (5)0.0042 (5)
C150.0250 (6)0.0243 (7)0.0305 (7)0.0019 (5)0.0022 (5)0.0053 (5)
C160.0239 (6)0.0192 (6)0.0266 (6)0.0043 (5)0.0009 (5)0.0025 (5)
C170.0206 (6)0.0212 (6)0.0340 (7)0.0012 (5)0.0017 (5)0.0023 (5)
C180.0227 (6)0.0222 (6)0.0289 (7)0.0009 (5)0.0054 (5)0.0016 (5)
C190.0341 (8)0.0398 (9)0.0364 (8)0.0040 (6)0.0069 (6)0.0064 (7)
Geometric parameters (Å, º) top
O1—C161.3705 (15)C9—H90.9300
O1—C191.4287 (17)C10—C111.3989 (17)
N2—C111.3769 (16)C10—H100.9300
N2—C41.3876 (16)C12—H120.9300
N2—H20.912 (17)C13—C181.3950 (17)
N3—C121.2840 (17)C13—C141.4035 (18)
N3—C131.4189 (17)C14—C151.3803 (18)
C4—C51.3768 (18)C14—H140.9300
C4—C121.4413 (18)C15—C161.4000 (18)
C5—C61.4252 (18)C15—H150.9300
C5—H50.9300C16—C171.3918 (18)
C6—C71.4094 (18)C17—C181.3950 (18)
C6—C111.4205 (17)C17—H170.9300
C7—C81.3781 (19)C18—H180.9300
C7—H70.9300C19—H19A0.9600
C8—C91.4111 (18)C19—H19B0.9600
C8—H80.9300C19—H19C0.9600
C9—C101.3852 (19)
C16—O1—C19117.50 (11)C10—C11—C6121.79 (12)
C11—N2—C4108.89 (10)N3—C12—C4121.67 (12)
C11—N2—H2128.4 (10)N3—C12—H12119.2
C4—N2—H2122.7 (10)C4—C12—H12119.2
C12—N3—C13119.83 (11)C18—C13—C14118.05 (12)
C5—C4—N2109.15 (11)C18—C13—N3116.78 (11)
C5—C4—C12128.24 (12)C14—C13—N3125.17 (12)
N2—C4—C12122.51 (11)C15—C14—C13120.54 (12)
C4—C5—C6107.42 (11)C15—C14—H14119.7
C4—C5—H5126.3C13—C14—H14119.7
C6—C5—H5126.3C14—C15—C16120.68 (12)
C7—C6—C11119.10 (12)C14—C15—H15119.7
C7—C6—C5134.07 (12)C16—C15—H15119.7
C11—C6—C5106.83 (11)O1—C16—C17125.06 (12)
C8—C7—C6119.08 (12)O1—C16—C15115.28 (11)
C8—C7—H7120.5C17—C16—C15119.65 (12)
C6—C7—H7120.5C16—C17—C18119.03 (12)
C7—C8—C9120.94 (12)C16—C17—H17120.5
C7—C8—H8119.5C18—C17—H17120.5
C9—C8—H8119.5C13—C18—C17121.91 (11)
C10—C9—C8121.49 (12)C13—C18—H18119.0
C10—C9—H9119.3C17—C18—H18119.0
C8—C9—H9119.3O1—C19—H19A109.5
C9—C10—C11117.58 (12)O1—C19—H19B109.5
C9—C10—H10121.2H19A—C19—H19B109.5
C11—C10—H10121.2O1—C19—H19C109.5
N2—C11—C10130.50 (11)H19A—C19—H19C109.5
N2—C11—C6107.71 (11)H19B—C19—H19C109.5
C11—N2—C4—C50.24 (14)C5—C6—C11—C10179.05 (11)
C11—N2—C4—C12176.34 (11)C13—N3—C12—C4178.13 (11)
N2—C4—C5—C60.69 (14)C5—C4—C12—N3171.94 (13)
C12—C4—C5—C6175.63 (12)N2—C4—C12—N33.94 (19)
C4—C5—C6—C7179.42 (14)C12—N3—C13—C18165.19 (12)
C4—C5—C6—C110.87 (14)C12—N3—C13—C1415.23 (19)
C11—C6—C7—C80.81 (18)C18—C13—C14—C153.23 (19)
C5—C6—C7—C8178.88 (13)N3—C13—C14—C15177.21 (12)
C6—C7—C8—C90.08 (19)C13—C14—C15—C160.4 (2)
C7—C8—C9—C100.8 (2)C19—O1—C16—C173.66 (18)
C8—C9—C10—C110.89 (19)C19—O1—C16—C15176.29 (12)
C4—N2—C11—C10179.44 (13)C14—C15—C16—O1177.25 (11)
C4—N2—C11—C60.32 (14)C14—C15—C16—C172.80 (19)
C9—C10—C11—N2179.59 (12)O1—C16—C17—C18177.07 (11)
C9—C10—C11—C60.14 (19)C15—C16—C17—C182.98 (18)
C7—C6—C11—N2179.51 (11)C14—C13—C18—C173.04 (19)
C5—C6—C11—N20.73 (13)N3—C13—C18—C17177.36 (11)
C7—C6—C11—C100.71 (19)C16—C17—C18—C130.05 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N2/C4–C6/C11 and C6–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.583.2479 (16)129
C14—H14···Cg1ii0.932.813.6006 (14)143
C15—H15···Cg2ii0.932.793.5153 (14)136
C17—H17···Cg1i0.932.893.5718 (14)131
C19—H19C···Cg2i0.962.973.7716 (16)142
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
 

Funding information

Funding for this research was provided by the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University) (No. 20212018). This work was supported in part by JSPS KAKENHI grant No. JP21K02520.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAriyasu, K., Miyatake, R., Kumai, Y., Ohta, A. & Oda, M. (2016). Am. J. Org. Chem. 6, 93–101.  CAS Google Scholar
First citationArumugam, N., Almansour, A. I., Kumar, R. S., Yeswanthkumar, S., Padmanaban, R., Arun, Y., Kansız, S., Dege, N., Manohar, T. S. & Venketesh, S. (2021). J. Mol. Struct. 1225, 129165–129166.  CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGadekar, S. C., Reddy, B. K., Panchal, S. P. & Anand, V. G. (2016). Chem. Commun. 52, 4565–4568.  CrossRef CAS Google Scholar
First citationGreci, L. & Sgarabotto, P. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1281–1284.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHo, J. H. H., Black, D. St C., Messerle, B. A., Clegg, J. K. & Turner, P. T. (2006). Organometallics, 25, 5800–5810.  CrossRef CAS Google Scholar
First citationKalalbandi, V. K. A. & Seetharamappa, J. (2016). Synth. Commun. 46, 626–635.  CrossRef CAS Google Scholar
First citationLi, J., Wang, Z.-B., Xu, Y., Lu, X.-C., Zhu, S.-R. & Liu, L. (2019). Chem. Commun. 55, 12072–12075.  CrossRef CAS Google Scholar
First citationNalli, M., Armijos Rivera, J. I., Masci, D., Coluccia, A., Badia, R., Riveira-Muñoz, E., Brambilla, A., Cinquina, E., Turriziani, O., Falasca, F., Catalano, M., Limatola, C., Esté, J. A., Maga, G., Silvestri, R., Crespan, E. & La Regina, G. (2020). Eur. J. Med. Chem. 208, 112696–112718.  CrossRef CAS PubMed Google Scholar
First citationNosenko, Y., Wiosna-Sałyga, G., Kunitski, M., Petkova, I., Singh, A., Buma, W. J., Thummel, R. P., Brutschy, B. & Waluk, J. (2008). Angew. Chem. Int. Ed. 47, 6037–6040.  CrossRef CAS Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuresh, D., Ferreira, B., Lopes, P. S., Gomes, C. S. B., Krishnamoorthy, P., Charas, A., Vila-Viçosa, D., Morgado, J., Calhorda, M. J., Maçanita, A. L. & Gomes, P. T. (2016). Dalton Trans. 45, 15603–15620.  CrossRef CAS PubMed Google Scholar
First citationTian, Y., Tian, L., Li, C., Jia, X. & Li, J. (2016). Org. Lett. 18, 840–843.  CrossRef CAS PubMed Google Scholar
First citationWang, Z., Li, T., Xing, S. & Zhu, B. (2018). Org. Biomol. Chem. 16, 5021–5026.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds