

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 2 March 2022
Accepted 14 March 2022

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; channel structure; antimonate(V).

CCDC reference: 2158509

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS
Published under a CC BY 4.0 licence

The channel structure of trithallium pentaantimonate(V), $\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$

Paul Sicher and Berthold Stöger*

X-Ray Center, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria. *Correspondence e-mail: bstoeger@mail.tuwien.ac.at

Single crystals of $\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ were grown by solid-state reaction in a corundum crucible under air ($1273 \mathrm{~K}, 12 \mathrm{~h}$). The structure was determined by single-crystal X-ray diffraction. It is isotypic to the $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}, \mathrm{Rb}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ and $\mathrm{Cs}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ analogues with orthorhombic Pbam symmetry and cell parameters $a=$ 24.2899 (9) $\AA, b=7.1931$ (3) $\AA, c=7.4182$ (3) \AA. The Sb atoms form irregular [SbO_{6}] octahedra, which are linked via edges and corners into a triperiodic network. The Tl^{+}ions are located in distinct channels of the network extending along [010] and [001].

1. Chemical context

During an extensive study of $M\left[\mathrm{SbF}_{6}\right]$ compounds ($M=\mathrm{Li}$, $\mathrm{NH}_{4}, \mathrm{Na}, \mathrm{Tl}$), precursors in the form of MSbO_{3} were synthesized. Whereas the chosen conditions ($1273 \mathrm{~K}, 12 \mathrm{~h}$) yielded the expected product for LiSbO_{3} and NaSbO_{3}, the Tl-poor title compound $\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ was inadvertently obtained in the case of $\mathrm{Tl} . \mathrm{TlSbO}_{3}$ was later successfully synthesized at 1073 K. In fact, prior syntheses of TlSbO_{3} were performed at even lower temperatures (Bouchama \& Tournoux, 1975).

The analogues $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ (Hong, 1974), $\mathrm{Rb}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ and $\mathrm{Cs}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ (Hirschle et al., 2001) have been synthesized at 1373 K using more involved routes. The first structural characterization of $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ was published by Aurivillius (1966). However, the author gives an incorrect Sohncke space-group symmetry of type Pba2, which was later corrected to Pbam by (Hong, 1974).

Hong (1974) noted unusual enlargement of the atomic displacement parameters (ADP) of K in $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$, which are located in distinct channels, suggesting ion conductivity. In fact, the author could partially substitute K for Rb, Ag and Tl in the respective nitrate salt melts. Accordingly, it is expected that the hitherto structurally uncharacterized $\mathrm{Ag}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ likewise exists. In contrast, substitution with the smaller Na^{+} ion in an NaNO_{3} melt led to a collapse of the structure and formation of the Na-poor $\mathrm{Na}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$. The instability of $M_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ with small ions might explain the successful syntheses of $M \mathrm{SbO}_{3}(M=\mathrm{Li}, \mathrm{Na})$ at 1273 K .

2. Structural commentary

$\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ crystallizes in the space group Pbam and is isotypic to $M_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}(M=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs})$. Two different settings of the Pbam space group were used to describe the structures: $a>b$ by Hong (1974) and $a<b$ by Hirschle et al. (2001). These are equivalent descriptions, because the $\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)=(\mathbf{b},-\mathbf{a}, \mathbf{c})$ operation is an element of the affine normalizer of the Pbam

Figure 1
$\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ viewed down [010], Tl (green), Sb (gray) and O (red) atoms are represented by ellipsoids drawn at the 50% probability level.
space group. Herein we use the original setting and atom labeling of Hong (1974).

In structures of the $M_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ type, the monovalent metal atoms M are located in channels of a triperiodic network formed by $\left[\mathrm{SbO}_{6}\right]$ octahedra. There are two distinct channels parallel to [010], both with $\chi_{\mathrm{y}} b 2_{1} m$ symmetry (Fig. 1). In one channel, the $M 1$ atoms are located in zigzag chains and bridged by the $M 3$ atoms, which are located at the boundary of the channels (Fig. 2). In the second channel, the M2 atoms are likewise arranged in the form of zigzag lines (Fig. 2). All of the M atoms are located on or very close to the reflection plane of the channels. Additionally, channels with a smaller diameter extend in the [001] direction (Fig. 3). For $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$, Hong

Figure 2
Tl atoms in $\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ viewed down [001] with interatomic distances. For $\mathrm{Tl} 2 \cdots \mathrm{Tl} 2$ contacts, two interatomic distances are given since the Tl 2 atom was refined as disordered about the reflection plane parallel to (001).

Figure 3
$\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ viewed down [001]. Atom color codes as in Fig. 1.
(1974) reports excessive enlargement of the ADPs of the K1 and K2 atoms in the [010] and [001] directions of the channels, with the 'thermal motions' in these directions being 'eight times bigger' than in the [100] direction. The Tl1 and Tl2 atoms in the title compound show a much milder enlargement of the ADPs. The ratio of the mean-square displacement of the longest and shortest principal axes of the ADP tensor is 3.2 for Tl 1 and 2.9 for T 12 . Note that the value for Tl 2 is not directly comparable, since it was refined as disordered about the reflection plane. However, even when placing the atom on the reflection plane, the ratio increases to only 3.2. From these values, it appears that $\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ is not a prime candidate for ion conductivity, at least at the measurement temperature of 100 K . For $\mathrm{Rb}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ and $\mathrm{Cs}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$, similarly mild enlargement of the ADPs has been reported (Hirschle et al., 2001). In contrast to the $\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ title compound, these were derived from data collected at room temperature.

All Sb atoms are coordinated by six O atoms forming highly irregular $\left[\mathrm{SbO}_{6}\right]$ octahedra (Table 1) with $\mathrm{O}-\mathrm{Sb}-\mathrm{O}$ cis angles ranging from 73.37 (17) to 103.83 (13) ${ }^{\circ}$ and trans angles up to $150.66(16)^{\circ}$. As noted by Hirschle et al. (2001), the framework can be described as being composed of four distinct parts: two infinite octahedra chains and two edgeconnected pairs of octahedra. In general, these elements are connected via corners but there is an additional connection between a pair and a chain via an edge.

A quantitative comparison of $\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ and the alkalimetal analogues $M_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}(M=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs})$ was performed using the COMPSTRU (de la Flor et al., 2016) module of the Bilbao Crystallographic Server (Aroyo et al., 2006). The Tl2 atom was moved onto the reflection plane to make the sets of Wyckoff positions compatible. The degree of lattice distortion with respect to the Tl compound is $S=0.0042(M=\mathrm{K}), S=$ $0.0048(M=\mathrm{Rb})$ and $S=0.0262(M=\mathrm{Cs})$. This shows that the K, Rb and Tl compounds feature very similar cell parameters, with the volume increasing slightly according to $\mathrm{K}>\mathrm{Rb}>\mathrm{Tl}$ (Table 2). In contrast, the lattice of $\mathrm{Cs}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ features a pronounced distortion with a ca 11% larger unit-cell volume. The enlargement affects foremost the a and b lattice parameters, whereas c is smaller than for the Tl compound. We

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Tl1-T13 ${ }^{\text {i }}$	3.3972 (4)	Sb2-O10	1.919 (3)
Tl1- $\mathrm{Tl}^{\text {ii }}$	3.4507 (7)	$\mathrm{Sb} 2-\mathrm{O} 2^{\text {iv }}$	1.983 (4)
Tl1- $\mathrm{Tl}^{\text {iiii }}$	3.6130 (4)	$\mathrm{Sb} 2-\mathrm{O} 2^{\text {vii }}$	2.140 (4)
Tl3-Tl1 ${ }^{\text {iv }}$	3.3972 (4)	$\mathrm{Sb} 2-\mathrm{O} 4{ }^{\text {vii }}$	2.215 (4)
Tl3-Tl1 ${ }^{\text {v }}$	3.6129 (4)	Sb3-O5 ${ }^{\text {iii }}$	1.952 (4)
Tl1-O3	2.565 (4)	Sb3-O5	1.979 (4)
T12-O6	2.775 (4)	$\mathrm{Sb} 3-\mathrm{O} 9^{\text {ix }}$	1.998 (3)
Tl3-O5	2.495 (4)	Sb3-O9	1.998 (3)
$\mathrm{Sb} 1-\mathrm{O} 8^{\text {vi }}$	1.925 (3)	Sb3-O7 ${ }^{\text {ix }}$	2.002 (3)
Sb1-O8	1.925 (3)	Sb3-O7	2.002 (3)
Sb1-O6 ${ }^{\text {vii }}$	1.971 (4)	Sb4-O3	1.9233 (15)
$\mathrm{Sb} 1-\mathrm{O} 1^{\text {viii }}$	1.996 (2)	Sb4-O7	1.936 (3)
Sb1-O1	1.996 (2)	$\mathrm{Sb} 4-\mathrm{O} 9^{\mathrm{x}}$	1.954 (3)
Sb1-O2	2.081 (4)	Sb4-O8	1.975 (3)
Sb2-O6	1.911 (4)	Sb4-O4	2.0284 (11)
$\mathrm{Sb} 2-\mathrm{O} 10^{\text {vi }}$	1.919 (3)	Sb4-O10 ${ }^{\text {x }}$	2.041 (3)
$\mathrm{O} 8^{\mathrm{vi}}-\mathrm{Sb} 1-\mathrm{O} 8$	96.70 (16)	$\mathrm{O} 5 \mathrm{iii}^{\mathrm{ii}}-\mathrm{Sb} 3-\mathrm{O} 5$	171.04 (9)
$\mathrm{O} 8^{\text {vi }}-\mathrm{Sb} 1-\mathrm{O} 6^{\text {vii }}$	90.34 (11)	$\mathrm{O} 5{ }^{\text {iii }}-\mathrm{Sb} 3-\mathrm{O} 9{ }^{\text {ix }}$	99.04 (11)
$\mathrm{O} 8-\mathrm{Sb} 1-\mathrm{O}^{\text {vii }}$	90.34 (11)	$\mathrm{O} 5-\mathrm{Sb} 3-\mathrm{O} 9^{\text {ix }}$	87.50 (11)
$\mathrm{O} 8^{\text {vi }}-\mathrm{Sb} 1-\mathrm{O} 1^{\text {viii }}$	90.74 (11)	$\mathrm{O} 5{ }^{\text {iii }}-\mathrm{Sb} 3-\mathrm{O} 9$	99.03 (11)
$\mathrm{O} 8-\mathrm{Sb} 1-\mathrm{O} 1^{\text {viii }}$	171.91 (11)	$\mathrm{O} 5-\mathrm{Sb} 3-\mathrm{O} 9$	87.50 (11)
$\mathrm{O} 6^{\text {vii }}-\mathrm{Sb} 1-\mathrm{O} 1^{\text {viii }}$	92.82 (8)	$\mathrm{O} 9^{\text {ix }}-\mathrm{Sb} 3-\mathrm{O} 9$	85.66 (16)
$\mathrm{O} 8^{\text {vi }}-\mathrm{Sb} 1-\mathrm{O} 1$	171.91 (11)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Sb} 3-\mathrm{O} 7^{\text {ix }}$	87.14 (11)
$\mathrm{O} 8-\mathrm{Sb} 1-\mathrm{O} 1$	90.74 (11)	$\mathrm{O} 5-\mathrm{Sb} 3-\mathrm{O}^{\text {ix }}$	87.54 (11)
$\mathrm{O} 6^{\mathrm{vii}}-\mathrm{Sb} 1-\mathrm{O} 1$	92.82 (8)	$\mathrm{O} 9{ }^{\text {ix }}-\mathrm{Sb} 3-\mathrm{O} 7{ }^{\text {ix }}$	83.44 (11)
$\mathrm{O} 1^{\text {viii }}-\mathrm{Sb} 1-\mathrm{O} 1$	81.67 (15)	$\mathrm{O} 9-\mathrm{Sb} 3-\mathrm{O} 7^{\text {ix }}$	168.21 (11)
$\mathrm{O} 8^{\text {vi }}-\mathrm{Sb} 1-\mathrm{O} 2$	90.17 (11)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Sb} 3-\mathrm{O} 7$	87.14 (11)
$\mathrm{O} 8-\mathrm{Sb} 1-\mathrm{O} 2$	90.17 (11)	$\mathrm{O} 5-\mathrm{Sb} 3-\mathrm{O} 7$	87.54 (11)
O6 ${ }^{\text {vii }}-\mathrm{Sb} 1-\mathrm{O} 2$	179.23 (15)	$\mathrm{O} 9^{\mathrm{ix}}-\mathrm{Sb} 3-\mathrm{O} 7$	168.21 (11)
$\mathrm{O} 1^{\text {viii }}-\mathrm{Sb} 1-\mathrm{O} 2$	86.60 (8)	$\mathrm{O} 9-\mathrm{Sb} 3-\mathrm{O} 7$	83.44 (11)
$\mathrm{O} 1-\mathrm{Sb} 1-\mathrm{O} 2$	86.60 (8)	$\mathrm{O} 7^{\mathrm{ix}}-\mathrm{Sb} 3-\mathrm{O} 7$	107.02 (16)
$\mathrm{O} 6-\mathrm{Sb} 2-\mathrm{O} 10^{\text {vi }}$	96.40 (9)	$\mathrm{O} 3-\mathrm{Sb} 4-\mathrm{O} 7$	93.31 (15)
$\mathrm{O} 6-\mathrm{Sb} 2-\mathrm{O} 10$	96.40 (9)	$\mathrm{O} 3-\mathrm{Sb} 4-\mathrm{O} 9^{\text {x }}$	99.82 (14)
$\mathrm{O} 10^{\text {vi }}-\mathrm{Sb} 2-\mathrm{O} 10$	150.66 (16)	O7-Sb4-O9 ${ }^{\text {x }}$	92.53 (12)
$\mathrm{O} 6-\mathrm{Sb} 2-\mathrm{O} 2{ }^{\text {iv }}$	100.16 (16)	$\mathrm{O} 3-\mathrm{Sb} 4-\mathrm{O} 8$	83.01 (13)
$\mathrm{O} 10^{\text {vi }}-\mathrm{Sb} 2-\mathrm{O} 2^{\text {iv }}$	101.78 (8)	O7-Sb4-O8	88.19 (12)
$\mathrm{O} 10-\mathrm{Sb} 2-\mathrm{O} 2^{\text {iv }}$	101.78 (8)	$\mathrm{O} 9^{\mathrm{x}}-\mathrm{Sb} 4-\mathrm{O} 8$	177.03 (11)
$\mathrm{O} 6-\mathrm{Sb} 2-\mathrm{O} 2^{\text {vii }}$	173.53 (15)	O3-Sb4-O4	160.89 (15)
$\mathrm{O} 10^{\text {vi }}-\mathrm{Sb} 2-\mathrm{O} 2^{\text {vii }}$	85.12 (9)	$\mathrm{O} 7-\mathrm{Sb} 4-\mathrm{O} 4$	103.83 (13)
$\mathrm{O} 10-\mathrm{Sb} 2-\mathrm{O}^{\text {vii }}$	85.12 (9)	$\mathrm{O} 9^{\mathrm{x}}-\mathrm{Sb} 4-\mathrm{O} 4$	87.96 (13)
$\mathrm{O} 2^{\text {iv }}-\mathrm{Sb} 2-\mathrm{O} 2^{\text {vii }}$	73.37 (17)	O8-Sb4-O4	89.07 (13)
$\mathrm{O} 6-\mathrm{Sb} 2-\mathrm{O}^{\text {vii }}$	90.22 (16)	$\mathrm{O} 3-\mathrm{Sb} 4-\mathrm{O} 10^{\text {x }}$	84.03 (14)
$\mathrm{O} 10^{\text {vi }}-\mathrm{Sb} 2-\mathrm{O} 4^{\text {vii }}$	76.83 (8)	O7-Sb4-O10 ${ }^{\text {x }}$	177.09 (11)
$\mathrm{O} 10-\mathrm{Sb} 2-\mathrm{O}^{\text {vii }}$	76.83 (8)	$\mathrm{O} 9^{\mathrm{x}}-\mathrm{Sb} 4-\mathrm{O} 10^{\mathrm{x}}$	89.09 (11)
$\mathrm{O} 2^{\text {iv }}-\mathrm{Sb} 2-\mathrm{O} 4^{\text {vii }}$	169.63 (15)	$\mathrm{O} 8-\mathrm{Sb} 4-\mathrm{O} 10^{\mathrm{x}}$	90.31 (11)
$\mathrm{O} 2^{\text {vii }}-\mathrm{Sb} 2-\mathrm{O} 4^{\text {vii }}$	96.25 (14)	$\mathrm{O} 4-\mathrm{Sb} 4-\mathrm{O} 10^{\mathrm{x}}$	78.63 (13)

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z$; (ii) $-x,-y,-z+1$; (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+1$; (iv) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (v) $-x+\frac{1}{2}, y-\frac{1}{2},-z+1$; (vi) $x, y,-z$; (vii) $-x+\frac{1}{2}, y+\frac{1}{2},-z$; (viii) $-x,-y+1,-z$; (ix) $x, y,-z+1$; (x) $-x+\frac{1}{2}, y-\frac{1}{2}, z$.
therefore presume that the unit-cell volume for the $M=\mathrm{K}, \mathrm{Rb}$, Tl compounds is mostly determined by the triperiodic antimonate network, which cannot contract any further. The minimum size of the channels may explain the collapse of the structure when attempting to replace K by Na , as reported by Hong (1974).

The degree of similarity likewise shows a close relationship of the $M=\mathrm{K}(\Delta=0.022)$ and $M=\mathrm{Rb}(\Delta=0.035)$ compounds with $\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$, whereas the atomic positions in $\mathrm{Cs}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ differ distinctly $(\Delta=0.178)$. In particular, the positions of the O atoms that coordinate to the Tl 2 atoms feature a strong deviation ($d_{\text {max }}=0.6356 \AA$ for the O 4 atom) showing a distinct distortion of the $\left[\mathrm{SbO}_{6}\right]$ octahedra around the respective channels. Thus, it appears that the T 12 channels are responsible for the distinct enlargement of the unit cell of $\mathrm{Cs}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$.

Table 2
Comparison of unit-cell parameters $\left(\AA, \AA^{3}\right)$ of the $M 3 \mathrm{Sb}_{5} \mathrm{O}_{14}$ structures.
The setting of the $M=\mathrm{Rb}$ and $M=\mathrm{Cs}$ compounds was adjusted to the setting used in this work.

Compound	$\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$	$\mathrm{Rb}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$	$\mathrm{Cs}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$	$\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$
a	$24.247(4)$	$24.478(2)$	$26.251(5)$	$24.2899(9)$
b	$7.157(2)$	$7.1881(9)$	$7.4337(13)$	$7.1931(3)$
c	$7.334(2)$	$7.331(2)$	$7.396(3)$	$7.4182(3)$
V	$1272.7(3)$	$1289.8(4)$	$1443.3(7)$	$1296.11(9)$

3. Synthesis and crystallization

A mixture of $0.682 \mathrm{~g} \mathrm{TlNO}_{3}$ and $0.373 \mathrm{~g} \mathrm{Sb}_{2} \mathrm{O}_{3}$ (which makes for an approximate molar ratio of $1: 1$ for $\mathrm{Tl}: \mathrm{Sb}$) was heated in a corundum crucible at 1273 K for 12 h in air. From the reaction, a dark-orange powder was obtained. The single crystals formed as rectangular-prismatic plates. Crystals were isolated under a polarizing microscope and cut to an appropriate size for single crystal diffraction of a highly absorbing crystal.

4. Refinement

Crystal data, data collection and structure refinement are summarized in Table 3. A starting model was generated using the coordinates of $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ (Hong, 1974). Owing to distinct peaks in the difference-Fourier map, the Tl 2 atom was removed from the reflection plane and refined as disordered. Even though the refined distance of the atom from the reflection plane is minute, the residuals improved significantly

Table 3
Experimental details.

Crystal data	
Chemical formula	$\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$
$M_{\text {r }}$	1445.86
Crystal system, space group	Orthorhombic, Pbam
Temperature (K)	250
$a, b, c(\AA)$	24.2899 (9), 7.1931 (3), 7.4182 (3)
$V\left(\AA^{3}\right)$	1296.11 (9)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	47.48
Crystal size (mm)	$0.11 \times 0.06 \times 0.02$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	```Multi-scan (SADABS; Bruker, 2021)```
$T_{\text {min }}, T_{\text {max }}$	0.010, 0.058
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	27499, 3084, 2850
$R_{\text {int }}$	0.051
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.812
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.023, 0.055, 1.07
No. of reflections	3084
No. of parameters	121
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$2.55,-1.52$

Computer programs: APEX3 and SAINT-Plus (Bruker, 2021), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Putz \& Brandenburg, 2021) and publCIF (Westrip, 2010).
$\{R[I>2 \sigma(I)]$ from 0.028 to 0.023$\}$, which might be in part due to the increased number of anisotropic displacement parameters.

Funding information

The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.

References

Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. \& Wondratschek, H. (2006). Z. Kristallogr. 221, 15-27.

Aurivillius, B. (1966). Ark. Kemi, 25, 505-514.
Bouchama, M. \& Tournoux, M. (1975). Rev. Chim. Min. 12, 80-92.
Bruker (2021). APEX3, SAINT and SADABS. Bruker-AXS Inc. Madison, Wisconsin, USA.
Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. \& Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.

Hirschle, C., Rosstauscher, J., Emmerling, F. \& Röhr, C. (2001). Z. Naturforsch. B, 56, 169-178.
Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.
Putz, H. \& Brandenburg, K. (2021). DIAMOND - Crystal and Molecular Structure Visualization, Crystal Impact, Bonn, Germany. https://www.crystalimpact.de/diamond.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2022). E78, 414-417 [https://doi.org/10.1107/S2056989022002869]

The channel structure of trithallium pentaantimonate $(\mathrm{V}), \mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$

Paul Sicher and Berthold Stöger

Computing details

Data collection: APEX3 (Bruker, 2021); cell refinement: APEX3 (Bruker, 2021); data reduction: SAINT-Plus (Bruker, 2021); program(s) used to solve structure: undef; program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Putz \& Brandenburg, 2021); software used to prepare material for publication: publCIF (Westrip, 2010).

Trithallium pentaantimonate(V)

Crystal data

$\mathrm{Tl}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$
$M_{r}=1445.86$
Orthorhombic, Pbam
$a=24.2899$ (9) \AA
$b=7.1931$ (3) \AA
$c=7.4182$ (3) \AA
$V=1296.11(9) \AA^{3}$
$Z=4$
$F(000)=2440$

Data collection

Bruker Kappa APEXII CCD diffractometer
Graphite monochromator
ω - and φ-scans
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
$T_{\text {min }}=0.010, T_{\text {max }}=0.058$
27499 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.055$
$D_{\mathrm{x}}=7.410 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9928 reflections
$\theta=2.8-35.3^{\circ}$
$\mu=47.48 \mathrm{~mm}^{-1}$
$T=250 \mathrm{~K}$
Plate, colourless
$0.11 \times 0.06 \times 0.02 \mathrm{~mm}$
$S=1.07$
3084 reflections
121 parameters
0 restraints
Primary atom site location: isomorphous structure methods

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0199 P)^{2}+6.584 P\right]\)
    where \(P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=2.55\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-1.52 \mathrm{e} \AA^{-3}\)
Extinction correction: SHELXL-2014/7
    (Sheldrick 2015),
    \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.00075 (4)
```


Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
T11	$0.01569(2)$	$0.23393(5)$	0.5000	$0.03732(8)$	
T12	$0.29264(2)$	$0.12150(6)$	$-0.0170(5)$	$0.0353(4)$	0.5
T13	$0.38418(2)$	$0.10536(4)$	0.5000	$0.03177(7)$	
Sb1	$0.05715(2)$	$0.41738(4)$	0.0000	$0.00993(6)$	
Sb2	$0.43805(2)$	$0.40456(4)$	0.0000	$0.01042(6)$	
Sb3	$0.25558(2)$	$0.32863(4)$	0.5000	$0.00998(6)$	
Sb4	$0.14535(2)$	$0.11009(3)$	$0.26233(3)$	$0.01011(5)$	
O1	0.0000	0.5000	$0.1759(5)$	$0.0131(6)$	
O2	$0.01735(15)$	$0.1611(5)$	0.0000	$0.0130(6)$	
O3	$0.11974(15)$	$0.1728(6)$	0.5000	$0.0139(6)$	
O4	$0.14514(15)$	$0.0305(5)$	0.0000	$0.0124(6)$	
O5	$0.28203(16)$	$0.0685(5)$	0.5000	$0.0146(6)$	$0.0146(6)$
O6	$0.40613(16)$	$0.1618(5)$	0.0000	$0.0144(5)$	
O7	$0.21049(11)$	$0.2637(4)$	$0.2830(4)$	$0.0138(4)$	
O8	$0.10390(11)$	$0.3355(4)$	$0.1939(4)$	$0.0136(4)$	
O9	$0.31369(11)$	$0.3832(4)$	$0.3169(4)$	$0.0132(4)$	
O10	$0.42520(10)$	$0.4563(4)$	$0.2502(3)$		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
T11	$0.01779(11)$	$0.04162(17)$	$0.05255(18)$	$0.00612(10)$	0.000	0.000
Tl2	$0.01922(12)$	$0.04252(19)$	$0.0442(12)$	$-0.00204(11)$	$-0.0027(2)$	$0.0106(5)$
T13	$0.01232(10)$	$0.02797(13)$	$0.05504(18)$	$0.00031(8)$	0.000	0.000
Sb1	$0.00754(12)$	$0.01037(13)$	$0.01187(12)$	$0.00045(9)$	0.000	0.000
Sb2	$0.00826(12)$	$0.01106(13)$	$0.01193(12)$	$0.00000(9)$	0.000	0.000
Sb3	$0.00756(11)$	$0.01032(13)$	$0.01205(12)$	$-0.00028(9)$	0.000	0.000
Sb4	$0.00803(9)$	$0.01136(10)$	$0.01094(9)$	$0.00039(6)$	$-0.00072(6)$	$-0.00010(7)$
O1	$0.0106(14)$	$0.0163(16)$	$0.0123(13)$	$0.0028(12)$	0.000	0.000
O2	$0.0080(14)$	$0.0098(15)$	$0.0214(16)$	$-0.0005(11)$	0.000	0.000
O3	$0.0107(15)$	$0.0223(18)$	$0.0086(13)$	$0.0045(13)$	0.000	0.000
O4	$0.0119(14)$	$0.0150(16)$	$0.0101(13)$	$-0.0016(12)$	0.000	0.000
O5	$0.0114(15)$	$0.0106(15)$	$0.0217(16)$	$-0.0008(12)$	0.000	0.000
O6	$0.0113(15)$	$0.0087(15)$	$0.0238(17)$	$-0.0011(12)$	0.000	0.000
O7	$0.0123(11)$	$0.0159(12)$	$0.0150(10)$	$-0.0035(9)$	$-0.0031(9)$	$0.0011(9)$
O8	$0.0142(11)$	$0.0128(11)$	$0.0144(10)$	$0.0034(9)$	$-0.0038(9)$	$-0.0013(9)$
O9	$0.0119(10)$	$0.0125(11)$	$0.0165(10)$	$-0.0029(8)$	$0.0023(9)$	$-0.0003(9)$
O10	$0.0093(10)$	$0.0161(11)$	$0.0141(10)$	$0.0003(8)$	$0.0005(8)$	$0.0001(9)$

Geometric parameters (A, ${ }^{\circ}$)

Tl1-Tl3 ${ }^{\text {i }}$	3.3972 (4)	Sb 2 - $\mathrm{Sb}^{\text {x }}$	3.3079 (6)
Tl1-Tl1 ${ }^{\text {ii }}$	3.4507 (7)	$\mathrm{Sb} 3-\mathrm{O} 5^{\text {iii }}$	1.952 (4)
Tl1-Tl3 ${ }^{\text {iii }}$	3.6130 (4)	Sb3-O5	1.979 (4)
$\mathrm{T} 12-\mathrm{T} 12^{\text {iv }}$	0.252 (7)	Sb3-09 ${ }^{\text {xi }}$	1.998 (3)
Tl3-Tl1 ${ }^{\text {v }}$	3.3972 (4)	Sb3-O9	1.998 (3)
Tl3-Tl1 ${ }^{\text {i }}$	3.6129 (4)	Sb3-07 ${ }^{\text {xi }}$	2.002 (3)
Tl1-O3	2.565 (4)	Sb3-07	2.002 (3)
T12-O6	2.775 (4)	Sb4-O3	1.9233 (15)
T13-O5	2.495 (4)	Sb4-07	1.936 (3)
Tl3-Sb3	3.5123 (4)	Sb4-09 ${ }^{\text {xii }}$	1.954 (3)
Sb1-O8iv	1.925 (3)	Sb4-08	1.975 (3)
Sb1-08	1.925 (3)	Sb4-O4	2.0284 (11)
$\mathrm{Sb1-O6}{ }^{\text {vii }}$	1.971 (4)	$\mathrm{Sb4}$-O10xii	2.041 (3)
$\mathrm{Sb1-O1} 1^{\text {viii }}$	1.996 (2)	$\mathrm{Sb4}-\mathrm{Sb} 2^{\text {xiii }}$	3.1743 (3)
Sb1-O1	1.996 (2)	$\mathrm{O} 1-\mathrm{Sb} 1^{\text {viii }}$	1.996 (2)
$\mathrm{Sb} 1-\mathrm{O} 2$	2.081 (4)	$\mathrm{O} 2-\mathrm{Sb} 2{ }^{\text {i }}$	1.983 (4)
$\mathrm{Sb} 1-\mathrm{Sb1}{ }^{\text {viii }}$	3.0199 (6)	$\mathrm{O} 2-\mathrm{Sb} 2^{\text {xiii }}$	2.140 (4)
Sb2-O6	1.911 (4)	O3-Sb4 ${ }^{\text {xi }}$	1.9233 (15)
$\mathrm{Sb} 2-\mathrm{O} 10^{\text {iv }}$	1.919 (3)	O4-Sb4iv	2.0283 (11)
$\mathrm{Sb} 2-\mathrm{O} 10$	1.919 (3)	$\mathrm{O} 4-\mathrm{Sb} 2^{\text {xiii }}$	2.215 (4)
$\mathrm{Sb} 2-\mathrm{O} 2^{v}$	1.983 (4)	O5-Sb3 ${ }^{\text {vi }}$	1.952 (4)
$\mathrm{Sb} 2-\mathrm{O} 2{ }^{\text {vii }}$	2.140 (4)	O6-Sb1 ${ }^{\text {xiii }}$	1.971 (4)
$\mathrm{Sb} 2-\mathrm{O} 4^{\text {vii }}$	2.215 (4)	O6-T12 ${ }^{\text {iv }}$	2.775 (4)
$\mathrm{Sb2}-\mathrm{Sb4} 4^{\text {vi }}$	3.1742 (3)	O9-Sb4ix	1.954 (3)
$\mathrm{Sb} 2-\mathrm{Sb} 44^{\text {ix }}$	3.1742 (3)	$\mathrm{O} 10-\mathrm{Sb} 4^{\text {ix }}$	2.042 (3)
O3-Tl1-Tl3 ${ }^{\text {i }}$	169.98 (10)	$\mathrm{Sb4}{ }^{\text {vii }}-\mathrm{Sb} 2-\mathrm{Sb} 2^{\text {x }}$	112.786 (12)
O3-Tl1-Tl1 ${ }^{\text {ii }}$	92.89 (10)	$\mathrm{Sb} 4^{\mathrm{ix}}$ - $\mathrm{Sb} 2-\mathrm{Sb} 2^{\mathrm{x}}$	112.786 (12)
T13--T11-T11i	97.130 (13)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Sb} 3-\mathrm{O} 5$	171.04 (9)
$\mathrm{O} 3-\mathrm{Tl1}-\mathrm{Tl} 3^{\text {iii }}$	57.56 (10)	O5 $5^{\text {iii }}-\mathrm{Sb} 3-\mathrm{O}^{\text {xi }}$	99.04 (11)
T13--Tl1-T13iii	112.419 (11)	$\mathrm{O}-\mathrm{Sb3}-\mathrm{O} 9^{\text {xi }}$	87.50 (11)
$\mathrm{Tl1}{ }^{\text {ii }}-\mathrm{Tl1}-\mathrm{Tl} 3^{\text {iii }}$	150.451 (14)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Sb3}-\mathrm{O} 9$	99.03 (11)
$\mathrm{Tl2}^{\mathrm{iv}}-\mathrm{Tl2-O} 6$	87.40 (7)	O5-Sb3-O9	87.50 (11)
$\mathrm{O} 5-\mathrm{Tl3-Tl1}{ }^{\text {v }}$	166.21 (9)	O9 $9^{\text {xi- }}$ - $\mathrm{Sb} 3-\mathrm{O} 9$	85.66 (16)
$\mathrm{O} 5-\mathrm{Tl} 3-\mathrm{Sb} 3$	33.32 (9)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Sb} 3-7^{\text {xi }}$	87.14 (11)
T11 ${ }^{v}-\mathrm{Tl} 3-\mathrm{Sb} 3$	132.896 (12)	$\mathrm{O}-\mathrm{Sb3}-\mathrm{O}^{\mathrm{xi}}$	87.54 (11)
$\mathrm{O} 5-\mathrm{Tl} 3-\mathrm{Tl}^{\text {vi }}$	126.21 (9)	$\mathrm{O} 9^{\mathrm{xi}}-\mathrm{Sb} 3-\mathrm{O} 7^{\text {xi }}$	83.44 (11)
Tl1 ${ }^{v}-\mathrm{Tl3-} \mathrm{Tll}^{\text {vi }}$	67.581 (11)	O9-Sb3-O7 ${ }^{\text {xi }}$	168.21 (11)
Sb3-Tl3-Tl1 ${ }^{\text {vi }}$	159.523 (11)	O5iii-Sb3-07	87.14 (11)
$\mathrm{O8}^{\text {iv }}-\mathrm{Sb1} 1-\mathrm{O} 8$	96.70 (16)	O5-Sb3-07	87.54 (11)
$\mathrm{O} 8^{\mathrm{iv}}-\mathrm{Sb1}-\mathrm{O}^{\text {vii }}$	90.34 (11)	O9 ${ }^{\text {xi- }}-\mathrm{Sb} 3-\mathrm{O} 7$	168.21 (11)
$\mathrm{O} 8-\mathrm{Sb1} 1-\mathrm{O}^{\text {vii }}$	90.34 (11)	O9-Sb3-07	83.44 (11)
$\mathrm{O} 8^{\text {iv }}$ - $\mathrm{Sb1}-\mathrm{Ol}^{\text {viii }}$	90.74 (11)	O7 $7^{\text {xi}}-\mathrm{Sb3}-\mathrm{O} 7$	107.02 (16)
$\mathrm{O} 8-\mathrm{Sb} 1-\mathrm{Ol}^{\text {viii }}$	171.91 (11)	O 5iii-Sb3-Tl3	145.11 (12)
$\mathrm{O} 6^{\text {vii }}$-Sb1-O1 ${ }^{\text {viii }}$	92.82 (8)	$\mathrm{O} 5-\mathrm{Sb} 3-\mathrm{Tl} 3$	43.84 (11)
$\mathrm{O} 8^{\text {iv }}-\mathrm{Sb} 1-\mathrm{O} 1$	171.91 (11)	$\mathrm{O} 9{ }^{\text {xi}}-\mathrm{Sb} 3-\mathrm{Tl} 3$	57.42 (8)

O8-Sb1-O1	90.74 (11)
O6 ${ }^{\text {vii }}$ - $\mathrm{Sb} 1-\mathrm{O} 1$	92.82 (8)
$\mathrm{O} 1{ }^{\text {viii- }} \mathrm{Sb} 1-\mathrm{O} 1$	81.67 (15)
$\mathrm{O} 8^{\text {iv }}-\mathrm{Sb} 1-\mathrm{O} 2$	90.17 (11)
O8-Sb1-O2	90.17 (11)
O6 ${ }^{\text {vii }} \mathrm{Sb} 1-\mathrm{O} 2$	179.23 (15)
$\mathrm{O} 1^{\text {viii- }} \mathrm{Sb} 1-\mathrm{O} 2$	86.60 (8)
$\mathrm{O} 1-\mathrm{Sb} 1-\mathrm{O} 2$	86.60 (8)
$\mathrm{O8}^{\text {iv }}-\mathrm{Sb} 1-\mathrm{Sb1} 1^{\text {viii }}$	131.51 (8)
$\mathrm{O} 8-\mathrm{Sb} 1-\mathrm{Sb} 1^{\text {viii }}$	131.51 (8)
O6 ${ }^{\text {vii }}$ - $\mathrm{Sb} 1-\mathrm{Sb1} 1^{\text {viii }}$	93.72 (11)
O1 ${ }^{\text {viii }}$ - $\mathrm{Sb} 1-\mathrm{Sb1} 1^{\text {viii }}$	40.84 (8)
$\mathrm{O} 1-\mathrm{Sb} 1-\mathrm{Sb1}{ }^{\text {viii }}$	40.84 (8)
$\mathrm{O} 2-\mathrm{Sb} 1-\mathrm{Sb1}{ }^{\text {viii }}$	85.51 (10)
O6-Sb2-O10 ${ }^{\text {iv }}$	96.40 (9)
O6-Sb2-O10	96.40 (9)
$\mathrm{O} 10^{\text {iv }}-\mathrm{Sb} 2-\mathrm{O} 10$	150.66 (16)
$\mathrm{O} 6-\mathrm{Sb} 2-\mathrm{O} 2^{\text {v }}$	100.16 (16)
$\mathrm{O} 10^{\mathrm{iv}}-\mathrm{Sb} 2-\mathrm{O} 2^{\mathrm{v}}$	101.78 (8)
$\mathrm{O} 10-\mathrm{Sb} 2-\mathrm{O} 2^{\text {v }}$	101.78 (8)
$\mathrm{O} 6-\mathrm{Sb} 2-\mathrm{O} 2{ }^{\text {vii }}$	173.53 (15)
$\mathrm{O} 10^{\text {iv }}-\mathrm{Sb} 2-\mathrm{O} 2{ }^{\text {vii }}$	85.12 (9)
$\mathrm{O} 10-\mathrm{Sb} 2-\mathrm{O} 2{ }^{\text {vii }}$	85.12 (9)
$\mathrm{O} 2^{\mathrm{v}}-\mathrm{Sb} 2-\mathrm{O} 2^{\text {vii }}$	73.37 (17)
$\mathrm{O} 6-\mathrm{Sb} 2-\mathrm{O} 4{ }^{\text {vii }}$	90.22 (16)
$\mathrm{O} 10^{\text {iv }}-\mathrm{Sb} 2-\mathrm{O} 4{ }^{\text {vii }}$	76.83 (8)
$\mathrm{O} 10-\mathrm{Sb} 2-\mathrm{O} 4{ }^{\text {vii }}$	76.83 (8)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Sb} 2-\mathrm{O} 4{ }^{\text {vii }}$	169.63 (15)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Sb} 2-\mathrm{O} 4{ }^{\text {vii }}$	96.25 (14)
O6-Sb2-Sb4 ${ }^{\text {vii }}$	99.60 (9)
$\mathrm{O} 10^{\text {iv }}-\mathrm{Sb} 2-\mathrm{Sb} 4{ }^{\text {vii }}$	38.07 (8)
O10-Sb2-Sb4 ${ }^{\text {vii }}$	113.51 (8)
$\mathrm{O} 2{ }^{\text {v }}$ - $\mathrm{Sb} 2-\mathrm{Sb4} 4^{\text {vii }}$	136.95 (5)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Sb} 2-\mathrm{Sb} 4{ }^{\text {vii }}$	85.49 (8)
$\mathrm{O} 4{ }^{\text {vii }} \mathrm{Sb} 2-\mathrm{Sb4} 4{ }^{\text {vii }}$	39.39 (3)
$\mathrm{O} 6-\mathrm{Sb} 2-\mathrm{Sb} 4^{\text {ix }}$	99.60 (9)
$\mathrm{O} 10^{\text {iv }}-\mathrm{Sb} 2-\mathrm{Sb4} 4^{\text {ix }}$	113.51 (8)
$\mathrm{O} 10-\mathrm{Sb} 2-\mathrm{Sb} 4{ }^{\text {ix }}$	38.07 (8)
$\mathrm{O} 2{ }^{\text {v }}$ - $\mathrm{Sb} 2-\mathrm{Sb4} 4^{\text {ix }}$	136.95 (5)
$\mathrm{O} 2{ }^{\text {vii }}$ - $\mathrm{Sb} 2-\mathrm{Sb} 4^{\text {ix }}$	85.49 (8)
$\mathrm{O} 4{ }^{\text {vii }}$ - $\mathrm{Sb} 2-\mathrm{Sb} 4^{\text {ix }}$	39.39 (3)
$\mathrm{Sb4} 4{ }^{\text {vii }} \mathrm{Sb} 2-\mathrm{Sb} 4{ }^{\text {ix }}$	75.620 (11)
O6-Sb2-Sb2 ${ }^{\text {x }}$	138.46 (12)
$\mathrm{O} 10^{\text {iv }}-\mathrm{Sb} 2-\mathrm{Sb} 2^{\text {x }}$	93.86 (8)
$\mathrm{O} 10-\mathrm{Sb} 2-\mathrm{Sb} 2^{\text {x }}$	93.86 (8)
$\mathrm{O} 2^{\mathrm{v}}-\mathrm{Sb} 2-\mathrm{Sb} 2^{\text {x }}$	38.31 (11)

O9—Sb3-Tl3
O7xi- $\mathrm{Sb} 3-\mathrm{Tl} 3$
O7-Sb3-Tl3
O3-Sb4-O7
$\mathrm{O} 3-\mathrm{Sb} 4-\mathrm{O} 9^{\text {xii }}$
O7-Sb4-O9 ${ }^{\text {xii }}$
O3-Sb4-O8
O7-Sb4-O8
O9 ${ }^{\text {xii- }} \mathrm{Sb} 4-\mathrm{O} 8$
O3-Sb4-O4
O7-Sb4-O4
O9 ${ }^{\text {xii }}-\mathrm{Sb} 4-\mathrm{O} 4$
O8-Sb4-O4
$\mathrm{O} 3-\mathrm{Sb} 4-\mathrm{O} 10^{\text {xii }}$
O7-Sb4-O10 ${ }^{\text {xii }}$
O9xii- ${ }^{\text {xb }} 4-\mathrm{O} 10^{\text {xii }}$
O8-Sb4-O10xii
O4-Sb4-O10xii
$\mathrm{O} 3-\mathrm{Sb} 4-\mathrm{Sb} 2^{\text {xiii }}$
$\mathrm{O} 7-\mathrm{Sb} 4-\mathrm{Sb} 2^{\text {xiii }}$
O9xii- ${ }^{\text {xb4 }}-\mathrm{Sb} 2^{\text {xiii }}$
O8-Sb4—Sb2 ${ }^{\text {xiii }}$
$\mathrm{O} 4-\mathrm{Sb} 4-\mathrm{Sb} 2^{\text {xiii }}$
$\mathrm{O} 10^{\text {xii }}-\mathrm{Sb} 4-\mathrm{Sb} 2^{\text {xiii }}$
$\mathrm{Sb} 1{ }^{\text {viii }}-\mathrm{O} 1-\mathrm{Sb} 1$
Sb2 ${ }^{i}-\mathrm{O} 2-\mathrm{Sb} 1$
$\mathrm{Sb} 2^{\mathrm{i}}-\mathrm{O} 2-\mathrm{Sb} 2^{\text {xiii }}$
$\mathrm{Sb} 1-\mathrm{O} 2-\mathrm{Sb} 2^{\text {xiii }}$
$\mathrm{Sb} 4-\mathrm{O} 3-\mathrm{Sb} 4^{\mathrm{xi}}$
Sb4-O3-Tl1
Sb4 ${ }^{\text {xi }}-\mathrm{O} 3-\mathrm{Tl} 1$
$\mathrm{Sb} 4{ }^{\mathrm{iv}}-\mathrm{O} 4-\mathrm{Sb} 4$
$\mathrm{Sb} 4^{\mathrm{iv}}-\mathrm{O} 4-\mathrm{Sb}^{2 \mathrm{xii}}$
$\mathrm{Sb} 4-\mathrm{O} 4-\mathrm{Sb} 2^{\text {xiii }}$
$\mathrm{Sb} 3{ }^{\text {vi }}-\mathrm{O} 5-\mathrm{Sb} 3$
Sb3 ${ }^{\text {vi }}-\mathrm{O} 5-\mathrm{Tl} 3$
Sb3-O5-Tl3
$\mathrm{Sb} 2-\mathrm{O} 6-\mathrm{Sb} 1^{\text {xiii }}$
$\mathrm{Sb} 2-\mathrm{O} 6-\mathrm{Tl} 2$
$\mathrm{Sb} 1^{\text {xiii- }} \mathrm{O} 6-\mathrm{Tl} 2$
$\mathrm{Sb} 2-\mathrm{O} 6-\mathrm{Tl} 2^{\text {iv }}$
$\mathrm{Sb} 1^{\text {xiii- }}-\mathrm{O} 6-\mathrm{Tl} 2^{\mathrm{iv}}$
Tl2-O6-Tl2 ${ }^{\text {iv }}$
Sb4—O7—Sb3
$\mathrm{Sb} 1-\mathrm{O} 8-\mathrm{Sb} 4$
$\mathrm{Sb} 4{ }^{\mathrm{ix}}-\mathrm{O} 9 — \mathrm{Sb} 3$
57.42 (8)
112.32 (8)
112.32 (8)
93.31 (15)
99.82 (14)
92.53 (12)
83.01 (13)
88.19 (12)
177.03 (11)
160.89 (15)
103.83 (13)
87.96 (13)
89.07 (13)
84.03 (14)
177.09 (11)
89.09 (11)
90.31 (11)
78.63 (13)
117.70 (12)
146.72 (8)
93.61 (8)
84.23 (8)
43.86 (10)
35.42 (7)
98.33 (15)
131.46 (19)
106.63 (17)
121.92 (17)
132.9 (2)
111.03 (11)
111.03 (11)
147.2 (2)
96.76 (11)
96.76 (11)
133.2 (2)
124.01 (18)
102.84 (16)
129.2 (2)
119.90 (17)
110.88 (16)
119.90 (17)
110.88 (16)
5.21 (15)
130.09 (14)
138.08 (15)
131.67 (14)

supporting information

$\mathrm{O} 2^{\text {vii }}-\mathrm{Sb} 2 — \mathrm{Sb}^{\mathrm{x}}$	$35.07(10)$	$\mathrm{Sb} 2 — \mathrm{O} 10 — \mathrm{Sb} 4^{\mathrm{ix}}$	106.51 (12)
$\mathrm{O} 4^{\text {vii }} \mathrm{Sb} 2 — \mathrm{Sb}^{\mathrm{x}}$	$131.32(10)$		

Symmetry codes: (i) $x-1 / 2,-y+1 / 2, z$; (ii) $-x,-y,-z+1$; (iii) $-x+1 / 2, y+1 / 2,-z+1$; (iv) $x, y,-z$; (v) $x+1 / 2,-y+1 / 2, z$; (vi) $-x+1 / 2, y-1 / 2,-z+1$; (vii) $-x+1 / 2, y+1 / 2,-z$; (viii) $-x,-y+1,-z$; (ix) $-x+1 / 2, y+1 / 2, z ;$ (x) $-x+1,-y+1,-z ;$ (xi) $x, y,-z+1$; (xii) $-x+1 / 2, y-1 / 2, z$; (xiii) $-x+1 / 2, y-1 / 2,-z$.

