

Received 4 January 2022 Accepted 24 March 2022

Edited by V. Jancik, Universidad Nacional Autónoma de México, México

Keywords: crystal structure; pyridazine; pyridazinone derivative; hydrogen bonding; Hirshfeld surfaces.

CCDC reference: 2161716

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (*E*)-3-({6-[2-(4-chlorophenyl)ethenyl]-3-oxo-2,3-dihydropyridazin-4-yl}methyl)pyridin-1-ium chloride dihydrate

Said Daoui,^a Emine Berrin Çınar,^b* Necmi Dege,^b Noureddine Benchat,^a Eiad Saif^c* and Khalid Karrouchi^d

^aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, ^bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, ^cDepartment of Computer and Electronic Engineering, Sana'a Community College, Sana'a, Yemen, and ^dLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco. *Correspondence e-mail: emineberrin.cinar@omu.edu.tr, eiad.saif@scc.edu.ye

In the title compound, $C_{18}H_{15}ClN_3O^+ \cdot Cl^- \cdot 2H_2O$, three intramolecular hydrogen bonds are observed, $N-H\cdots O$, $O-H\cdots \cdot Cl$ and $O-H\cdots O$. In the crystal, molecules are connected by $C-H\cdots \cdot Cl$ and $N-H\cdots O$ hydrogen bonds. Strong $C-H\cdots Cl$, $N-H\cdots O$, $O-H\cdots \cdot Cl$ and $O-H\cdots O$ hydrogen-bonding interactions are implied by the Hirshfeld surface analysis, which indicate that $H\cdots H$ contacts make the largest contribution to the overall crystal packing at 33.0%.

1. Chemical context

Pyridazine derivatives are an important class of heterocyclic chemicals that exhibit a wide range of biological actions. For example, their biological activity and antimicrobial properties have been researched extensively (Neumann et al., 2018). As a result, the pyridazine ring can be found in a range of commercial medicinal compounds, including Cadralazine and Hydralazine, Minaprine, Pipofezine and others (Abu-Hashem et al., 2020). Pyridazine derivatives can be found also in the backbones of several organic light-emitting diodes (OLEDs) (Liu et al., 2017), organic solar cells (OSCs) (Knall et al., 2021), chemosensors (Peng et al., 2020), trifluoroacetic acid (TFA) sensors (Li et al., 2018), bioconjugates (Bahou et al., 2021), low carbon steel corrosion inhibitors (Khadiria et al., 2016), and several other materials. They have also been used as starting materials in organic synthesis (Llona-Minguez et al., 2017), acylating agents (Kung et al., 2002), precursors for N-heterocyclic carbenes (NHCs) (Liu et al., 2012) and metallocarbene precursors. An overview of arylglyoxal monohydrates-based one-pot multi-component synthesis of potentially biologically active pyridazines is given by Mousavi (2022).

2. Structural commentary

A perspective view of the title molecule is shown in Fig. 1. The pyridazine and pyridine rings subtend a dihedral angle of $57.27 (5)^{\circ}$. The other two rings, pyridazine and chlorobenzene,

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C10 H10 Cl2 ⁱ	0.03	2 72	3 6387 (10)	168
$C10 = H10 \cdots Cl2^{ii}$ $C18 = H18 \cdots Cl2^{ii}$	0.93	2.94	3.622 (2)	132
N3-H3···O2 ⁱⁱⁱ	0.80 (3)	2.35 (3)	2.965 (2)	135 (2)
N3-H3···O1 ⁱⁱⁱ	0.80(3)	2.25 (3)	2.855 (2)	133 (3)
$N2-H2C\cdots O2$	0.86(2)	1.97 (2)	2.801 (2)	161 (2)
$O2-H2A\cdots Cl2$	0.83 (2)	2.35 (2)	3.170 (2)	175 (3)
$O2-H2B\cdots O3$	0.84 (2)	1.92 (2)	2.739 (3)	167 (3)
Symmetry codes:	(i) $-x + 1, -$	-y + 1, -z + 1;	(ii) $x + \frac{1}{2}, y + \frac{1}{2}$	$-\frac{1}{2}, z + \frac{1}{2};$ (iii)

 $-x + \frac{3}{2}, y, -z + 1.$

are almost planar, making an angle of 8.54 (11)°. The lengths of the C=C [1.349 (3) Å], C=N [1.313 (2) Å], N–N [1.351 (2) Å] and C=O [1.237 (2) Å] bonds are comparable with values published for other pyridazinones (see the *Database survey* section). Three intramolecular hydrogen bonds are observed, N2–H2C···O2, O2–H2A···Cl2 and O2– H2B···O3 (Table 1).

3. Supramolecular features

The water molecules and chloride anions are located in channels between the organic cations and are connected by $O-H\cdots O$ and $O-H\cdots Cl$ hydrogen bonds (Table 1) into chains, which are further connected *via* $N-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds into a three-dimensional supramolecular architecture. Fig. 2*a* shows a view of the hydrogen bonds along the *b*-axis direction. $\pi-\pi$ interactions are present (Fig. 2*b*) between the pyridazine rings [centroid–centroid distance = 3.4902 (12) Å], and also between the pyridine and benzene rings [3.7293 (13) and 3.8488 (13) Å], forming sheets.

Figure 1

Perspective view and atom labelling of the molecule. Displacement ellipsoids are drawn at the 50% probability level.

4. Database survey

There are no direct precedents for the structure of the title compound in the crystallographic literature. A search of the Cambridge Structural Database (ConQuest version 2021.3.0; Groom et al., 2016) for the 2,3-dihydropyridazin-4-yl moiety gave various hits, four of them for similar pyridazine compounds but with different substituents on the pyridazine 5-(2-chlorobenzyl)-6-methyl-3(2H)pyridazinone ring: (ZAYJIS; Moreau et al., 1995), 2-{4-[(5-chloro- 1-benzofuran-2-yl)methyl]-3-methyl-6- oxo-1,6-dihydropyridazin-1-yl}acetate (XULSEE; Boukharsa et al., 2015), 4-[3-(trifluoromethyl)phenyl]-5,6,7,8-tetrahydrocinnolin-3(2*H*)-one (GISZAK; Wang et al., 2008) and 5-(2-Chlorobenzyl)-2-(2-hydroxyethyl)-6-methylpyridazin-3(2H)-one (IJEMOZ; Abourichaa et al., 2003). In ZAYJIS, the lengths of the C=C [1.343 (3) Å], C=N [1.301 (4) Å], N-N [1.357 (3) Å] and C=O [1.255 (3) Å] bonds in the pyridazinone ring are very similar to those in the title compound. In XULSEE, te Cl-C1 bond length is 1.742 (2) Å while in the pyridazine ring, the N1-N2 bond length is 1.365 (2) Å and O2=C2 is 1.228 (2) Å. In GISZAK, the N1-N2 bond is 1.343 (5) Å whereas the C8=O1 bond is 1.246 (5) Å. In IJEMOZ, the pyridazinone ring has a similar value for the N4–N5 bond of 1.367 (2) Å.

5. Hirshfeld surface analysis

To investigate the effect of the molecular interactions on the crystal packing, the Hirshfeld surface (Fig. 3) and fingerprint plots of the organic cation were analysed (Turner *et al.*, 2017). In Fig. 4*a*, the circular depressions (deep red) on the Hirshfeld surface imply strong hydrogen-bonding interactions of types $C-H\cdots Cl$, $N-H\cdots O$, $O-H\cdots Cl$ and $O-H\cdots O$. In the

research communications

All interactions with percentage contributions.

shape-index map (Fig. 4b), the π - π interactions are indicated by the red and blue triangles. Fig. 4c and Fig. 4d show d_i and d_e surfaces and Fig. 4e and 4f the curvedness and fragment path surfaces. Fig. 5a shows the overall two-dimensional fingerprint plot. The fingerprint plot delineated into H···H contacts (33.0% contribution, Fig. 5b) has a point with the tip at $d_e + d_i$ = 2.05 Å. The pair of wings in the fingerprint plot defined into H···C/C···H contacts (19.3 percent contribution to the HS), Fig.5c, has a pair of thin edges at $d_e + d_i \sim 2.99$ Å while the pair of wings for the H···Cl/Cl···H contacts (15.9% contribution,

Figure 4

Graphical depictions of the molecular Hirshfeld surfaces; (a) d_{norm} , (b)shape-index, (c) d_{i} , (d) d_{e} ,(e) curvedness and (f) fragment-path.

Fig. 5d) are seen as two spikes with the points at $d_e + d_i = 2.97$ Å and $d_e + d_i = 2.41$ Å. The fingerprint plot for H···O/ O···H contacts (11.5% contribution, Fig. 5e) has two spikes with the tips at $d_e + d_i = 2.11$ Å and $d_e + d_i = 1.83$ Å. As seen in Fig. 5f the C···C contacts (7.4%) have an arrow-shaped distribution of points with tips at $d_e + d_i = 3.37$ Å. The contributions of the N···H/H···N contacts to the Hirshfeld surface (5.8%) are less important (Fig. 5g). Fig. 6 shows a pie chart of all interactions with their percentage contributions.

6. Synthesis and crystallization

The title compound was synthesized according to a previously published procedure (Daoui *et al.*, 2019, 2021). To a solution of (E)-6-(4-chlorostyryl)-4,5-dihydropyridazin-3(2*H*)-one

Figure 5

Fingerprint plots of the interactions involving the organic cation. (a) All contributions and decomposed into the main contributions: (b) $H \cdots H$, (c) $H \cdots C/C \cdots H$, (d) $H \cdots C/C \cdots H$, (e) $H \cdots O/O \cdots H$, (f) $C \cdots C$ and (g) $N \cdots H/H \cdots N$ interactions

(0.23 g, 1 mmol) and nicotinaldehyde (0.107 g, 1 mmol) in 30 ml of ethanol, sodium ethanoate (0.23 g, 2.8 mmol) was added. The mixture was refluxed for 3 h. The reaction mixture was cooled, diluted with cold water and acidified with concentrated hydrochloric acid. The precipitate was filtered, washed with water, dried and recrystallized from ethanol. White single crystals were obtained by slow evaporation at room temperature, vield 86%; m.p. 453 K; FT-IR (KBr): v 3322 (NH), 1651 (C=O), 1584 cm⁻¹ (C=N); ¹H NMR $(300 \text{ MHz}, \text{DMSO-}d_6) \delta 13.20 (s, 1\text{H}, \text{H-pyridyl}), 8.98 (d, J =$ 1.8 Hz, 1H, H-pyridyl), 8.83 (*d*, *J* = 5.6 Hz, 1H, H-pyridyl), 8.57 (dt, J = 8.1, 1.8 Hz, 1H, H-pyridyl), 8.05 (s, 1H, H-pyridazinone) 8.02 (dd, J = 8.1, 5.6 Hz, 1H, H-pyridyl), 7.65 (d, J = 8.4 Hz, 2H, H1, H-Ar), 7.45 (*d*, *J* = 8.4 Hz, 2H, H4, H-Ar), 7.36 (d, J = 16.7 Hz, 1H, CH=CH), 7.08 (, d J = 16.7 Hz, 1H,CH=CH), 4.09 ppm (s, 2H, CH₂); ¹³C NMR (75 MHz, DMSO d_6) δ 160.43, 145.98, 143.89, 141.87, 140.05, 139.25, 137.97, 134.90, 132.84,130.85, 128.82, 128.62, 128.54, 126.80, 125.08, 32.33 ppm. ESI-MS: $m/z = 324.08 [M+H]^+$.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were placed in calculated positions (C-H = 0.93-0.98 Å) and thereafter treated as riding. A torsional parameter was refined for the methyl group. The positions of N- and O-bound H atoms were refined freely (distances are in Table 1). For all H atoms, $U_{iso}(H) = 1.2 U_{eq}(C,N,O)$.

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer. The authors' contributions are as follows. Conceptualization, SD, EBÇ, ND, and ES; methodology, KK, EBÇ, and ND; investigation, NB and ND; writing (original draft), EBÇ and SD; writing (review and editing of the manuscript), SD, NB, ES, KK and EBÇ; visualization, EBÇ, and KK; funding acquisition, ND; resources, ND and KK; supervision, SD and NB.

Funding information

Funding for this research was provided by: Ondokuz Mayıs University under Project No. PYO.FEN.1906.19.001 .

References

- Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). *Acta Cryst.* E**59**, 01041–01042.
- Abu-Hashem, A. A., Fathy, U. & Gouda, M. A. (2020). J. Heterocycl. Chem. 57, 3461–3474.
- Bahou, C., Szijj, P. A., Spears, R. J., Wall, A., Javid, F., Sattikar, A., Love, E. A., Baker, J. R. & Chudasama, V. (2021). *Bioconjugate Chem.* 32, 672–679.
- Boukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291-o292.

Experimental details.	
Crystal data	
Chemical formula	$C_{18}H_{15}CIN_3O^+ \cdot Cl^- \cdot 2H_2O$
M _r	396.26
Crystal system, space group	Monoclinic, I2/a
Temperature (K)	296
a, b, c (Å)	19.6562 (14), 7.5587 (3), 26.4903 (16)
β(°)	109.762 (5)
$V(Å^3)$	3704.0 (4)
Z	8
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.37
Crystal size (mm)	$0.68 \times 0.41 \times 0.16$
Data collection	
Diffractometer	Stoe IPDS 2
Absorption correction	Numerical (<i>X-RED32</i> ; Stoe & Cie, 2002)
T_{\min}, T_{\max}	0.818, 0.961
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13762, 5273, 3083
R _{int}	0.064
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.702
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.142, 0.98
No. of reflections	5273
No. of parameters	265
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.26, -0.43

Table 2

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT2018/3 (Sheldrick, 2015a), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012), SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

- Daoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1734–1737.
- Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Khadiria, A., Saddik, R., Bekkouchea, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). *J. Taiwan Inst. Chem. Eng.* **58**, 552–564.
- Knall, A. C., Rabensteiner, S., Hoefler, S. F., Reinfelds, M., Hobisch, M., Ehmann, H. M. A., Pastukhova, N., Pavlica, E., Bratina, G., Honzu, I., Wen, S., Yang, R., Trimmel, G. & Rath, T. (2021). New J. Chem. 45, 1001–1009.
- Kung, Y. J., Chung, H. A., Kim, J. J. & Yoon, Y. J. (2002). Synthesis, 6, 733–738.
- Li, M., Yuan, Y. & Chen, Y. (2018). ACS Appl. Mater. Interfaces. 10, 1237–1243.
- Liu, S., Zhang, X., Ou, C., Wang, S., Yang, X., Zhou, X., Mi, B., Cao, D. & Gao, Z. (2017). *ACS Appl. Mater. Interfaces.* 9, 26242–26251.
- Liu, X. & Chen, W. (2012). Organometallics, 31, 6614-6622.
- Llona-Minguez, S., Höglund, A., Ghassemian, A., Desroses, M., Calderón, J. M., Valerie, N. C. K., Witta, E., Almlöf, I., Koolmeister, T., Mateus, A., Cazares-Körner, C., Sanjiv, K., Homan, E., Loseva, O., Baranczewski, P., Darabi, M., Mehdizadeh, A., Fayezi, S., Jemth, A. S., Berglund, U. W., Sigmundsson, K., Lundbäck, T., Jensen,

A. J., Artursson, P., Scobie, M. & Helleday, T. J. (2017). *Med. Chem.* 60, 4279–4292.

- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Moreau, S., Metin, J., Coudert, P. & Couquelet, J. (1995). Acta Cryst. C51, 1834–1836.
- Mousavi, H. (2022). J. Mol. Struct. 1251, 131742-131771.
- Neumann, K., Gambardella, A., Lilienkampf, A. & Bradley, M. (2018). Chem. Sci. 9, 7198–7203.
- Peng, S., Lv, J., Liu, G., Fan, C. & Pu, S. (2020). Tetrahedron, 76, 131618–131627.

- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Stoe & Cie. (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
- Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer* 17.5. University of Western Australia. http:// hirshfeldsurface.net.
- Wang, W., Zou, X. M., Zhu, Y. Q., Hu, X. H. & Yang, H. Z. (2008). Acta Cryst. E64, 0464.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2022). E78, 458-462 [https://doi.org/10.1107/S2056989022003346]

Crystal structure of (*E*)-3-({6-[2-(4-chlorophenyl)ethenyl]-3-oxo-2,3-dihydropyridazin-4-yl}methyl)pyridin-1-ium chloride dihydrate

Said Daoui, Emine Berrin Çınar, Necmi Dege, Noureddine Benchat, Eiad Saif and Khalid Karrouchi

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXT2018/3* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *WinGX* (Farrugia, 2012), *SHELXL2018/3* (Sheldrick, 2015b), *PLATON* (Spek, 2020) and *publCIF* (Westrip, 2010).

(E)-3-({6-[2-(4-Chlorophenyl)ethenyl]-3-oxo-2,3-dihydropyridazin-4-yl}methyl)pyridin-1-ium chloride dihydrate

Crystal data

$C_{18}H_{15}ClN_3O^+\cdot Cl^-\cdot 2H_2O$
$M_r = 396.26$
Monoclinic, I2/a
a = 19.6562 (14) Å
b = 7.5587(3) Å
<i>c</i> = 26.4903 (16) Å
$\beta = 109.762(5)^{\circ}$
V = 3704.0 (4) Å ³
Z = 8

Data collection

Stoe IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Plane graphite monochromator Detector resolution: 6.67 pixels mm⁻¹ rotation method scans Absorption correction: numerical (X-RED32; Stoe & Cie, 2002)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.142$ S = 0.985273 reflections F(000) = 1648 $D_x = 1.421 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 18653 reflections $\theta = 1.6-30.3^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 296 KPrism, colorless $0.68 \times 0.41 \times 0.16 \text{ mm}$

 $T_{\min} = 0.818, T_{\max} = 0.961$ 13762 measured reflections
5273 independent reflections
3083 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.064$ $\theta_{\text{max}} = 29.9^{\circ}, \theta_{\text{min}} = 1.6^{\circ}$ $h = -21 \rightarrow 27$ $k = -8 \rightarrow 10$ $l = -36 \rightarrow 36$

265 parameters2 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: mixed	$w = 1/[\sigma^2(F_o^2) + (0.0709P)^2]$
H atoms treated by a mixture of independent	where $P = (F_0^2 + 2F_c^2)/3$
and constrained refinement	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Z	$U_{\rm iso}^*/U_{\rm eq}$	
Cl2	0.43892 (4)	0.44826 (8)	0.29544 (2)	0.06204 (18)	
Cl1	0.16095 (4)	0.93975 (11)	0.67565 (3)	0.0831 (2)	
O2	0.51631 (9)	0.7860 (3)	0.36086 (6)	0.0569 (4)	
01	0.63332 (8)	0.6580 (2)	0.47656 (6)	0.0603 (4)	
N2	0.52423 (9)	0.7727 (2)	0.46837 (7)	0.0440 (4)	
N1	0.46811 (9)	0.8166 (2)	0.48443 (6)	0.0437 (4)	
03	0.47043 (12)	1.0366 (3)	0.28189 (9)	0.0724 (5)	
N3	0.83161 (10)	0.6802 (3)	0.61940 (8)	0.0521 (4)	
C11	0.58620 (10)	0.6148 (3)	0.54755 (7)	0.0414 (4)	
C9	0.47235 (10)	0.7645 (3)	0.53269 (7)	0.0427 (4)	
C12	0.58492 (10)	0.6822 (3)	0.49587 (7)	0.0434 (4)	
C15	0.71539 (10)	0.5767 (3)	0.61025 (7)	0.0420 (4)	
C6	0.34431 (11)	0.8182 (3)	0.61458 (8)	0.0470 (5)	
C10	0.53148 (11)	0.6600 (3)	0.56490 (7)	0.0441 (4)	
H10	0.5323	0.6223	0.5985	0.053*	
C8	0.41189 (11)	0.8140 (3)	0.54971 (8)	0.0477 (5)	
H8	0.3747	0.8785	0.5256	0.057*	
C7	0.40518 (11)	0.7752 (3)	0.59642 (8)	0.0481 (5)	
H7	0.4434	0.7136	0.6206	0.058*	
C14	0.76951 (11)	0.6075 (3)	0.58944 (8)	0.0479 (5)	
H14	0.7626	0.5772	0.5540	0.057*	
C13	0.64570 (11)	0.4898 (3)	0.57732 (8)	0.0496 (5)	
H13A	0.6554	0.4116	0.5515	0.060*	
H13B	0.6288	0.4173	0.6009	0.060*	
C5	0.34973 (12)	0.7804 (3)	0.66698 (9)	0.0540 (5)	
Н5	0.3919	0.7288	0.6898	0.065*	
C16	0.72876 (12)	0.6223 (3)	0.66349 (8)	0.0514 (5)	
H16	0.6936	0.6025	0.6792	0.062*	
C18	0.84516 (12)	0.7257 (3)	0.67006 (9)	0.0577 (5)	
H18	0.8892	0.7768	0.6897	0.069*	
C3	0.23208 (13)	0.8927 (3)	0.65221 (9)	0.0566 (6)	
C2	0.22442 (12)	0.9330 (3)	0.60014 (9)	0.0583 (6)	
H2	0.1820	0.9840	0.5776	0.070*	
C1	0.28082 (12)	0.8966 (3)	0.58179 (9)	0.0561 (5)	

supporting information

H1	0.2762	0.9252	0.5466	0.067*	
C17	0.79392 (13)	0.6969 (3)	0.69313 (9)	0.0593 (6)	
H17	0.8029	0.7274	0.7288	0.071*	
C4	0.29405 (13)	0.8174 (3)	0.68616 (9)	0.0600 (6)	
H4	0.2986	0.7917	0.7215	0.072*	
Н3	0.8616 (16)	0.701 (4)	0.6061 (11)	0.070 (8)*	
H2C	0.5201 (13)	0.802 (3)	0.4362 (10)	0.053 (6)*	
H2A	0.4937 (17)	0.700 (3)	0.3444 (12)	0.094 (11)*	
H2B	0.5030 (16)	0.874 (3)	0.3409 (10)	0.079 (9)*	
H3A	0.495 (3)	1.018 (6)	0.2630 (17)	0.127 (16)*	
H3B	0.466 (2)	1.141 (6)	0.2847 (14)	0.095 (13)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl2	0.0694 (4)	0.0648 (4)	0.0496 (3)	0.0006 (3)	0.0170 (2)	0.0021 (2)
Cl1	0.0642 (4)	0.1042 (6)	0.0982 (5)	-0.0103 (4)	0.0502 (4)	-0.0206 (4)
O2	0.0539 (9)	0.0660 (12)	0.0463 (8)	0.0028 (9)	0.0111 (7)	0.0035 (8)
O1	0.0471 (8)	0.0848 (12)	0.0534 (8)	0.0146 (8)	0.0229 (7)	0.0071 (8)
N2	0.0415 (8)	0.0494 (10)	0.0429 (8)	0.0012 (8)	0.0168 (7)	0.0023 (7)
N1	0.0375 (8)	0.0469 (10)	0.0463 (8)	0.0001 (7)	0.0138 (7)	0.0001 (7)
O3	0.0801 (14)	0.0676 (14)	0.0748 (12)	0.0046 (11)	0.0331 (10)	0.0102 (10)
N3	0.0397 (9)	0.0596 (12)	0.0591 (10)	0.0003 (9)	0.0195 (8)	0.0078 (8)
C11	0.0363 (9)	0.0416 (10)	0.0427 (9)	-0.0032 (8)	0.0089 (7)	-0.0017 (7)
С9	0.0394 (9)	0.0448 (11)	0.0431 (9)	-0.0026 (9)	0.0128 (7)	-0.0010 (8)
C12	0.0385 (9)	0.0455 (11)	0.0454 (9)	-0.0018 (8)	0.0130 (8)	-0.0034 (8)
C15	0.0373 (9)	0.0417 (11)	0.0445 (9)	0.0049 (8)	0.0107 (7)	0.0040 (7)
C6	0.0431 (10)	0.0513 (12)	0.0468 (10)	-0.0051 (9)	0.0153 (8)	-0.0065 (8)
C10	0.0424 (10)	0.0486 (12)	0.0396 (9)	-0.0033 (9)	0.0116 (8)	0.0009 (8)
C8	0.0402 (10)	0.0529 (12)	0.0479 (10)	0.0024 (9)	0.0123 (8)	-0.0003 (8)
C7	0.0390 (10)	0.0570 (13)	0.0463 (10)	0.0018 (9)	0.0119 (8)	-0.0015 (8)
C14	0.0458 (11)	0.0560 (12)	0.0423 (9)	0.0039 (10)	0.0154 (8)	0.0037 (8)
C13	0.0397 (10)	0.0481 (12)	0.0552 (10)	0.0008 (9)	0.0085 (9)	0.0019 (9)
C5	0.0495 (11)	0.0632 (14)	0.0496 (11)	-0.0041 (11)	0.0171 (9)	-0.0003 (9)
C16	0.0483 (11)	0.0615 (13)	0.0473 (10)	0.0002 (10)	0.0200 (9)	0.0003 (9)
C18	0.0437 (11)	0.0615 (14)	0.0594 (12)	-0.0045 (10)	0.0062 (9)	0.0012 (10)
C3	0.0494 (11)	0.0620 (14)	0.0662 (13)	-0.0148 (11)	0.0297 (10)	-0.0187 (10)
C2	0.0414 (11)	0.0720 (16)	0.0589 (12)	-0.0006 (11)	0.0133 (9)	-0.0128 (11)
C1	0.0500 (11)	0.0731 (15)	0.0453 (10)	0.0025 (11)	0.0163 (9)	-0.0048 (10)
C17	0.0588 (13)	0.0703 (16)	0.0449 (10)	-0.0028 (12)	0.0125 (10)	-0.0049 (10)
C4	0.0611 (14)	0.0736 (16)	0.0527 (12)	-0.0123 (12)	0.0290 (11)	-0.0046 (10)

Geometric parameters (Å, °)

Cl1—C3	1.748 (2)	C6—C1	1.389 (3)	
O2—H2A	0.825 (18)	C6—C7	1.469 (3)	
O2—H2B	0.837 (18)	C10—H10	0.9300	
O1—C12	1.237 (2)	C8—C7	1.321 (3)	

supporting information

N2—N1	1.351 (2)	C8—H8	0.9300
N2—C12	1.354 (3)	С7—Н7	0.9300
N2—H2C	0.86 (2)	C14—H14	0.9300
N1—C9	1.313 (2)	С13—Н13А	0.9700
ОЗ—НЗА	0.81 (5)	C13—H13B	0.9700
O3—H3B	0.80 (4)	C5—C4	1.382 (3)
N3—C18	1.322 (3)	С5—Н5	0.9300
N3-C14	1.329 (3)	C16—C17	1.376 (3)
N3—H3	0.80(3)	C16—H16	0.9300
C_{11} C_{10}	1349(3)	C18 - C17	1 361 (3)
	1.57(3)	C18 H18	0.0300
$C_{11} = C_{12}$	1.503 (3)	$C_3 - C_4$	1 369 (4)
C_{1}	1.305(3) 1.426(2)	$C_3 = C_4$	1.309(4)
C_{2}	1.420(3)	$C_3 = C_2$	1.370(3)
$C_{9} = C_{0}$	1.433(3)		1.360 (3)
C15 - C14	1.3/3(3)	C2—H2	0.9300
	1.388 (3)		0.9300
	1.504 (3)		0.9300
C6—C5	1.386 (3)	C4—H4	0.9300
H2A—O2—H2B	107 (3)	N3—C14—C15	120.65 (18)
N1—N2—C12	128.25 (16)	N3—C14—H14	119.7
N1—N2—H2C	116.0 (16)	C15—C14—H14	119.7
C12—N2—H2C	115.7 (16)	C11—C13—C15	115.12 (17)
C9—N1—N2	116.31 (16)	C11—C13—H13A	108.5
H3A—O3—H3B	109 (4)	С15—С13—Н13А	108.5
C18—N3—C14	122.87 (19)	C11—C13—H13B	108.5
C18—N3—H3	118 (2)	C15—C13—H13B	108.5
C14—N3—H3	119 (2)	H13A—C13—H13B	107.5
C10-C11-C12	118 06 (18)	C4-C5-C6	1216(2)
C10 - C11 - C13	123 32 (18)	C4—C5—H5	119.2
C_{12} C_{11} C_{13}	11851(17)	С6—С5—Н5	119.2
$N1_{-}C9_{-}C10$	121.28(17)	C_{17} C_{16} C_{15}	120.08 (19)
N1 - C9 - C8	121.20(17) 115 79(17)	C17 - C16 - H16	120.00 (17)
$C_{10} = C_{0} = C_{0}$	113.79(17) 122.88(17)	C_{15} C_{16} H_{16}	120.0
$C_{10} = C_{20} = C_{30}$	122.00(17) 120.86(17)	$N_{2} = C_{10} = 1110$	120.0 110.2(2)
01 - C12 - N2	120.00(17) 124.57(18)	$N_{2} = C_{10} = C_{17}$	119.2 (2)
$N_{2} = C_{12} = C_{11}$	124.37(16)	N_{3} $-C_{10}$ $-H_{10}$ H_{10}	120.4
N2 - C12 - C11	114.33(10) 117.27(10)	C1/-C10-H10	120.4
C14 - C15 - C10	117.37(19) 121.22(17)	C4 - C3 - C2	121.0(2)
	121.23(17)		119.49 (17)
	121.36 (18)		118.91 (19)
C5-C6-C1	117.58 (18)	C3—C2—C1	118.8 (2)
05-06-07	119.16 (19)	C3—C2—H2	120.6
C1—C6—C7	123.26 (18)	C1—C2—H2	120.6
C11—C10—C9	121.28 (17)	C2—C1—C6	121.6 (2)
C11—C10—H10	119.4	C2—C1—H1	119.2
C9—C10—H10	119.4	C6—C1—H1	119.2
C7—C8—C9	125.74 (19)	C18—C17—C16	119.8 (2)
С7—С8—Н8	117.1	С18—С17—Н17	120.1

C9—C8—H8 C8—C7—C6 C8—C7—H7 C6—C7—H7	117.1 127.5 (2) 116.3 116.3	C16—C17—H17 C3—C4—C5 C3—C4—H4 C5—C4—H4	120.1 118.8 (2) 120.6 120.6
C6 - C7 - H7 $C12 - N2 - N1 - C9$ $N2 - N1 - C9 - C10$ $N2 - N1 - C9 - C8$ $N1 - N2 - C12 - O1$ $N1 - N2 - C12 - O1$ $C10 - C11 - C12 - O1$ $C13 - C11 - C12 - O1$ $C13 - C11 - C12 - N2$ $C13 - C11 - C12 - N2$ $C13 - C11 - C12 - N2$ $C13 - C11 - C10 - C9$ $N1 - C9 - C10 - C11$ $C8 - C9 - C10 - C11$ $N1 - C9 - C8 - C7$ $C10 - C9 - C8 - C7$ $C9 - C8 - C7 - C6$ $C5 - C6 - C7 - C8$ $C1 - C6 - C7 - C8$ $C18 - N3 - C14 - C15$	$\begin{array}{c} -0.4 (3) \\ -3.0 (3) \\ 179.47 (17) \\ -177.03 (19) \\ 4.6 (3) \\ 176.3 (2) \\ -7.4 (3) \\ -5.4 (3) \\ 170.88 (18) \\ 2.6 (3) \\ -173.49 (19) \\ 1.8 (3) \\ 179.15 (19) \\ 179.9 (2) \\ 2.5 (3) \\ -178.2 (2) \\ -174.2 (2) \\ 5.4 (4) \\ 0.3 (3) \end{array}$	C3-C4-H4 $C13-C15-C14-N3$ $C10-C11-C13-C15$ $C12-C11-C13-C15$ $C14-C15-C13-C11$ $C16-C15-C13-C11$ $C1-C6-C5-C4$ $C7-C6-C5-C4$ $C14-C15-C16-C17$ $C13-C15-C16-C17$ $C14-N3-C18-C17$ $C4-C3-C2-C1$ $C11-C3-C2-C1$ $C3-C2-C1-C6$ $C5-C6-C1-C2$ $N3-C18-C17-C16$ $C15-C16-C17-C18$ $C2-C3-C4-C5$ $C11-C3-C4-C5$	$\begin{array}{c} -178.22 \ (19) \\ -100.2 \ (2) \\ 83.7 \ (2) \\ -92.5 \ (2) \\ 90.2 \ (2) \\ 0.5 \ (3) \\ -179.8 \ (2) \\ 0.6 \ (3) \\ 178.0 \ (2) \\ 0.3 \ (4) \\ 0.0 \ (4) \\ 179.66 \ (18) \\ 0.9 \ (4) \\ -1.1 \ (3) \\ 179.2 \ (2) \\ -0.5 \ (4) \\ 0.0 \ (4) \\ -0.5 \ (4) \\ 179.77 \ (19) \end{array}$
C16—C15—C14—N3	-0.8 (3)	C6—C5—C4—C3	0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	D—H···A
C10—H10····Cl2 ⁱ	0.93	2.72	3.6387 (19)	168
C18—H18…Cl2 ⁱⁱ	0.93	2.94	3.622 (2)	132
N3—H3…O2 ⁱⁱⁱ	0.80(3)	2.35 (3)	2.965 (2)	135 (2)
N3—H3····O1 ⁱⁱⁱ	0.80 (3)	2.25 (3)	2.855 (2)	133 (3)
N2—H2 <i>C</i> ···O2	0.86 (2)	1.97 (2)	2.801 (2)	161 (2)
O2—H2A…Cl2	0.83 (2)	2.35 (2)	3.170 (2)	175 (3)
O2—H2 <i>B</i> ···O3	0.84 (2)	1.92 (2)	2.739 (3)	167 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1/2, *y*+1/2, *z*+1/2; (iii) -*x*+3/2, *y*, -*z*+1.