research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-1-[2,2-di­bromo-1-(2-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene

crossmark logo

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, cPeoples' Friendship University of Russia, 6 Miklukho-Maklaya, Moscow, Russian Federation, dN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Av., Moscow, Russian Federation, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 January 2022; accepted 13 March 2022; online 17 March 2022)

In the title compound, C14H8Br2FN3O2, the nitro-substituted benzene ring and the 4-fluoro­phenyl ring form a dihedral angle of 65.73 (7)°. In the crystal, mol­ecules are linked into chains by C—H⋯O hydrogen bonds running parallel to the c-axis direction. The crystal packing is consolidated by C—F⋯π inter­actions and ππ stacking inter­actions, and short Br⋯O [2.9828 (13) Å] contacts are observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (17.4%), O⋯H/H⋯O (16.3%), Br⋯H/H⋯Br (15.5%), Br⋯C/C⋯Br (10.1%) and F⋯H/H⋯F (8.1%) contacts.

1. Chemical context

Azo dyes are chemical compounds with the general formula R—N=N—R′, where R and R′ can be either aryl, hetrocycle or alkyl functional groups. They find many applications such as mol­ecular switches, optical data storage, anti­microbial agent, colour-changing materials, non-linear optics, mol­ecular recognition, dye-sensitized solar cells, liquid crystals, catalysis, etc. (see, for example, Kopylovich et al., 2012[Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). J. Inorg. Biochem. 115, 72-77.]; MacLeod et al., 2012[MacLeod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439-440, 15-23.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]). Both E/Z isomerization and azo-to-hydrazo tautomerization of azo dyes is an important feature in the synthesis and design of new functional materials (Mahmudov et al., 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]). On the other hand, the attachment of non-covalent bond-donor or acceptor centres to the azo dyes can be used as a synthetic strategy for the improvement of the functional properties of this class of organic compounds (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]).

[Scheme 1]

As part of our ongoing work in this area we have attached –F, –Br and –NO2 functional groups and aryl rings to the —N=N— moiety, leading to the title compound, C14H8Br2FN3O2, and determined its crystal structure.

2. Structural commentary

As shown in Fig. 1[link], the mol­ecular conformation of the title compound is not planar, the nitro-substituted benzene ring and the 4-fluoro­phenyl ring forming a dihedral angle of 65.73 (7)°. There is a slight twist about the C1=C2 double bond with the dihedral angle between C1/Br1/Br2 and C2/C3/N2 being 3.35 (15)°, perhaps to minimize steric repulsion between Br2 and H8. Considered together, the N3/N2/C2/C1/Br1/Br2 moiety subtends dihedral angles of 70.40 (7) and 14.14 (7)° with the C3–C8 and C9–C14 rings, respectively. In the mol­ecule, the aromatic ring and olefin synthon adopt a trans-configuration with respect to the N=N double bond and are almost coplanar with a C2—N2=N3—C9 torsion angle of −178.50 (11)°. All of the other bond lengths and angles in the title compound are similar to those in the related azo compounds reported in the Database survey.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains propagating parallel to the c axis (Table 1[link]; Fig. 2[link]). The crystal packing is consolidated by weak C—F⋯π [F1⋯Cg1(x, 1 − y, − [{1\over 2}] + z) = 3.4095 (12) Å; C—F⋯Cg1 = 136.95 (9)°] inter­actions and weak aromatic ππ stacking [Cg2⋯Cg2(1 − x, y, [{1\over 2}] − z) = 3.9694 (9) Å], where Cg1 and Cg2 are the centroids of the C3–C8 and C9–C14 rings, respectively (Fig. 2[link]). In addition, short bromine–oxygen contacts [Br2⋯O2([{3\over 2}] − x, [{1\over 2}] + y, z) = 2.9828 (13) Å; van der Waals contact distance = 3.37 Å] are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.51 3.3244 (18) 144
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the C—H⋯O, C—F⋯π and ππ stacking inter­actions in the title compound.

4. Hirshfeld surface analysis

CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to calculate the Hirshfeld surfaces for the title compound and generate the two-dimensional fingerprint plots. On the dnorm surface, red, white, and blue regions indicate contacts with distances shorter, longer, and roughly equal to the van der Waals radii for the title compound (Fig. 3[link], Tables 1[link] and 2[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title salt

Contact Distance Symmetry operation
H8⋯Br1 2.99 1 − x, y, [{1\over 2}] − z
O1⋯H11 2.68 [{3\over 2}] − x, [{1\over 2}] + y, z
Br1⋯Br2 3.6164 x, 2 − y, −[{1\over 2}] + z
H7⋯Br2 3.19 1 − x, 2 − y, 1 − z
H13⋯F1 2.82 1 − x, 1 − y, −z
F1⋯H10 2.67 x, 1 − y, −[{1\over 2}] + z
O1⋯H6 2.51 [{3\over 2}] − x, [{3\over 2}] − y, −[{1\over 2}] + z
O2⋯H8 2.77 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z
H7⋯H6 2.47 1 − x, y, [{3\over 2}] − z
[Figure 3]
Figure 3
The three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.24 to 1.44 a.u.

The overall two-dimensional fingerprint plot (Fig. 4[link]a) and those delineated into H⋯H, O⋯H/H⋯O, Br⋯H/H⋯Br, Br⋯C/C⋯Br and F⋯H/H⋯F contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 4[link]bf, respectively. The most important inter­action is H⋯H, contributing 17.4% to the overall surface, which is reflected in Fig. 4[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at de = di = 1.15 Å. The reciprocal O⋯H/H⋯O inter­actions appear as two symmetrical broad wings with de + di ≃ 2.40 Å and contribute 16.3% to the Hirshfeld surface (Fig. 4[link]c). In the Br⋯H/H⋯Br fingerprint plot, there are two symmetrical wings with de + di ≃ 2.85 Å and they contribute 15.5% to the Hirshfeld surface (Fig. 4[link]d). The pair of characteristic wings in the fingerprint plot delin­eated into Br⋯C/C⋯Br contacts (Fig. 8e; 10.1% contribution to the Hirshfeld surface), have the tips at de + di ≃ 3.80 Å, while for F⋯H/H⋯F contacts (Fig. 4[link]f; 8.1% contribution to the Hirshfeld surface), they have the tips at de + di ≃ 2.60 Å. The remaining contributions from the other different inter­atomic contacts to the Hirshfeld surfaces are listed in Table 3[link]. The dominance of H-atom contacts suggest that van der Waals inter­actions play the major role in establishing the crystal packing for the title compound (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt

Contact Percentage contribution
H⋯H 17.4
O⋯H/H⋯O 16.3
Br⋯H/H⋯Br 15.5
Br.·C/C⋯Br 10.1
F⋯H/H⋯F 8.1
C⋯H/H⋯C 7.0
N⋯H/H⋯N 5.5
C⋯C 4.7
Br.·O/O⋯Br 4.2
F⋯C/C⋯F 3.5
Br⋯Br 3.1
N⋯C/C⋯N 1.4
Br⋯F/F⋯Br 1.1
N⋯N 0.9
O⋯C/C⋯O 0.1
F⋯O/O⋯F 0.6
F⋯N/N⋯F 0.5
[Figure 4]
Figure 4
The full two-dimensional fingerprint plot (a) for the title compound and those delineated into (b) H⋯H (17.4%), (c) O⋯H/H⋯O (16.3%), (d) Br⋯H/H⋯Br (15.5%), (e) Br⋯C/C⋯Br (10.1%) and (f) F⋯H/H⋯F (8.1%) inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene unit gave 26 hits. Seven compounds are closely related to the title compound, viz. CSD refcode GUPHIL (I) (Özkaraca et al., 2020[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020). Acta Cryst. E76, 1251-1254.]), HONBUK (II) (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), HONBOE (III) (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), HODQAV (IV) (Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]), XIZREG (V) (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), LEQXOX (VI) (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]) and LEQXIR (VII) (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]).

In the crystal of (I), mol­ecules are linked into inversion dimers via short halogen–halogen contacts [Cl1⋯Cl1 = 3.3763 (9) Å C16—Cl1⋯Cl1 = 141.47 (7)°] compared to the van der Waals radius sum of 3.50 Å for two chlorine atoms. No other directional contacts could be identified and the shortest aromatic-ring-centroid separation is greater than 5.25 Å. In the crystals of (II) and (III), the aromatic rings form dihedral angles of 64.1 (2) and 60.9 (2)°, respectively. Mol­ecules are linked through weak X⋯Cl contacts [X = Cl for (II) and Br for (III)], C—H⋯Cl and C—Cl⋯π inter­actions into sheets lying parallel to the ab plane. In the crystal of (IV), the planes of the benzene rings make a dihedral angle of 56.13 (13)°. Mol­ecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In (V), the benzene rings form a dihedral angle of 63.29 (8)°. Mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In the crystals of (VI) and (VII), the dihedral angles between the aromatic rings are 60.31 (14) and 56.18 (12) °, respectively. In (VI) C—H⋯N and short Cl⋯Cl contacts are observed and in (VII), C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur.

6. Synthesis and crystallization

A 20 ml screw-neck vial was charged with DMSO (10 ml), (E)-1-(4-fluoro­phen­yl)-2-(2-nitro­benzyl­idene)hydrazine (1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1–3h (until TLC analysis showed complete consumption of corresponding Schiff base) the reaction mixture was poured into a ∼0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Light-orange solid (52%); m.p. 377 K. Analysis calculated for C14H8Br2FN3O2 (M = 429.04): C 39.19, H 1.88, N 9.79; found: C 39.14, H 1.87, N 9.73%. 1H NMR (300MHz, CDCl3) δ 7.86–7.14 (8H, Ar–H). 13C NMR (75MHz, CDCl3) δ 165.02, 163.23, 163.01, 149.72, 133.01, 132.10, 129.70, 124.98, 124.87, 124.80, 124.29, 116.07, 115.91, 86.88. ESI–MS: m/z: 430.02 [M + H]+.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically [C—H = 0.95 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C14H8Br2FN3O2
Mr 429.05
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 100
a, b, c (Å) 14.8700 (4), 15.2915 (4), 13.1030 (4)
V3) 2979.42 (14)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.46
Crystal size (mm) 0.59 × 0.26 × 0.20
 
Data collection
Diffractometer Bruker AXS D8 QUEST Photon III detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.047, 0.115
No. of measured, independent and observed [I > 2σ(I)] reflections 87568, 5429, 4773
Rint 0.041
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.06
No. of reflections 5429
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.83, −0.46
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-1-[2,2-Dibromo-1-(2-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene top
Crystal data top
C14H8Br2FN3O2Dx = 1.913 Mg m3
Mr = 429.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 9970 reflections
a = 14.8700 (4) Åθ = 2.5–34.3°
b = 15.2915 (4) ŵ = 5.46 mm1
c = 13.1030 (4) ÅT = 100 K
V = 2979.42 (14) Å3Block, light orange
Z = 80.59 × 0.26 × 0.20 mm
F(000) = 1664
Data collection top
Bruker AXS D8 QUEST Photon III detector
diffractometer
5429 independent reflections
Radiation source: fine-focus sealed X-Ray tube4773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 7.31 pixels mm-1θmax = 32.6°, θmin = 2.5°
φ and ω shutterless scansh = 2222
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2323
Tmin = 0.047, Tmax = 0.115l = 1919
87568 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0274P)2 + 1.6564P]
where P = (Fo2 + 2Fc2)/3
5429 reflections(Δ/σ)max = 0.005
199 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.62265 (2)0.95963 (2)0.16792 (2)0.02193 (4)
Br20.64744 (2)1.02154 (2)0.39424 (2)0.02154 (4)
F10.61074 (8)0.42468 (7)0.03550 (8)0.0350 (2)
O10.79994 (8)0.81157 (8)0.37024 (8)0.0279 (2)
O20.82768 (8)0.70323 (8)0.47212 (9)0.0279 (2)
N10.78022 (8)0.76388 (8)0.44249 (9)0.0204 (2)
N20.61421 (8)0.77830 (8)0.26409 (9)0.0173 (2)
N30.61871 (8)0.70235 (8)0.30197 (9)0.0180 (2)
C10.62788 (9)0.92776 (9)0.30578 (10)0.0172 (2)
C20.62325 (9)0.84437 (9)0.33887 (9)0.0163 (2)
C30.62473 (9)0.82188 (9)0.44946 (10)0.0160 (2)
C40.69718 (9)0.78201 (9)0.49868 (10)0.0167 (2)
C50.69526 (10)0.75800 (9)0.60064 (10)0.0198 (2)
H50.7457610.7306100.6314660.024*
C60.61793 (10)0.77479 (10)0.65687 (10)0.0216 (3)
H60.6156050.7602570.7273090.026*
C70.54428 (10)0.81279 (10)0.60985 (10)0.0221 (3)
H70.4911190.8234340.6480920.026*
C80.54741 (10)0.83559 (9)0.50689 (10)0.0195 (2)
H80.4959920.8608450.4755440.023*
C90.61222 (9)0.63404 (9)0.22921 (10)0.0173 (2)
C100.62860 (10)0.55039 (9)0.26748 (11)0.0214 (3)
H100.6402770.5423610.3381420.026*
C110.62783 (11)0.47892 (10)0.20219 (13)0.0253 (3)
H110.6392990.4216010.2269310.030*
C120.60996 (11)0.49353 (11)0.10055 (12)0.0245 (3)
C130.59060 (10)0.57525 (10)0.06081 (11)0.0224 (3)
H130.5771050.5823640.0095650.027*
C140.59139 (10)0.64622 (9)0.12606 (10)0.0194 (2)
H140.5778510.7030110.1010020.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02940 (8)0.02164 (7)0.01475 (6)0.00253 (5)0.00260 (5)0.00271 (5)
Br20.02785 (8)0.01832 (7)0.01843 (6)0.00056 (5)0.00111 (5)0.00383 (5)
F10.0542 (7)0.0220 (5)0.0287 (5)0.0035 (5)0.0047 (4)0.0101 (4)
O10.0232 (5)0.0403 (6)0.0201 (5)0.0021 (5)0.0046 (4)0.0009 (4)
O20.0267 (5)0.0279 (6)0.0292 (6)0.0120 (5)0.0039 (4)0.0073 (4)
N10.0184 (5)0.0245 (6)0.0183 (5)0.0033 (5)0.0014 (4)0.0066 (4)
N20.0197 (5)0.0170 (5)0.0152 (5)0.0005 (4)0.0008 (4)0.0012 (4)
N30.0200 (5)0.0178 (5)0.0161 (5)0.0002 (4)0.0002 (4)0.0008 (4)
C10.0205 (6)0.0179 (6)0.0134 (5)0.0009 (5)0.0000 (4)0.0017 (4)
C20.0170 (5)0.0182 (6)0.0136 (5)0.0015 (5)0.0003 (4)0.0012 (4)
C30.0185 (6)0.0154 (5)0.0140 (5)0.0012 (5)0.0003 (4)0.0006 (4)
C40.0181 (6)0.0160 (5)0.0161 (5)0.0014 (5)0.0004 (4)0.0026 (4)
C50.0236 (6)0.0192 (6)0.0166 (5)0.0031 (5)0.0031 (5)0.0001 (4)
C60.0278 (7)0.0218 (6)0.0151 (5)0.0021 (5)0.0006 (5)0.0022 (5)
C70.0235 (7)0.0262 (7)0.0165 (6)0.0037 (5)0.0046 (5)0.0027 (5)
C80.0192 (6)0.0229 (6)0.0162 (5)0.0036 (5)0.0011 (4)0.0022 (5)
C90.0183 (6)0.0173 (6)0.0162 (5)0.0002 (5)0.0001 (4)0.0007 (4)
C100.0258 (7)0.0192 (6)0.0191 (6)0.0013 (5)0.0022 (5)0.0009 (5)
C110.0321 (8)0.0180 (6)0.0259 (7)0.0029 (6)0.0028 (6)0.0009 (5)
C120.0289 (7)0.0213 (6)0.0232 (7)0.0004 (6)0.0013 (5)0.0063 (5)
C130.0273 (7)0.0225 (7)0.0175 (6)0.0003 (6)0.0012 (5)0.0027 (5)
C140.0224 (6)0.0189 (6)0.0168 (5)0.0006 (5)0.0001 (5)0.0001 (4)
Geometric parameters (Å, º) top
Br1—C11.8725 (13)C6—C71.384 (2)
Br2—C11.8667 (13)C6—H60.9500
F1—C121.3546 (17)C7—C81.3942 (18)
O1—N11.2304 (17)C7—H70.9500
O2—N11.2284 (16)C8—H80.9500
N1—C41.4641 (18)C9—C101.3953 (19)
N2—N31.2647 (16)C9—C141.3992 (19)
N2—C21.4138 (17)C10—C111.388 (2)
N3—C91.4175 (17)C10—H100.9500
C1—C21.3486 (19)C11—C121.376 (2)
C2—C31.4895 (18)C11—H110.9500
C3—C81.3900 (19)C12—C131.384 (2)
C3—C41.3958 (18)C13—C141.382 (2)
C4—C51.3859 (18)C13—H130.9500
C5—C61.390 (2)C14—H140.9500
C5—H50.9500
O2—N1—O1123.62 (13)C6—C7—H7119.7
O2—N1—C4117.94 (13)C8—C7—H7119.7
O1—N1—C4118.41 (12)C3—C8—C7120.92 (13)
N3—N2—C2112.28 (11)C3—C8—H8119.5
N2—N3—C9114.15 (11)C7—C8—H8119.5
C2—C1—Br2122.32 (10)C10—C9—C14120.52 (13)
C2—C1—Br1123.65 (10)C10—C9—N3114.96 (12)
Br2—C1—Br1113.92 (7)C14—C9—N3124.52 (12)
C1—C2—N2117.24 (12)C11—C10—C9119.93 (14)
C1—C2—C3122.03 (12)C11—C10—H10120.0
N2—C2—C3120.71 (12)C9—C10—H10120.0
C8—C3—C4117.01 (12)C12—C11—C10118.05 (14)
C8—C3—C2118.66 (12)C12—C11—H11121.0
C4—C3—C2124.19 (12)C10—C11—H11121.0
C5—C4—C3123.04 (13)F1—C12—C11118.75 (14)
C5—C4—N1116.88 (12)F1—C12—C13117.83 (13)
C3—C4—N1120.08 (12)C11—C12—C13123.42 (14)
C4—C5—C6118.63 (13)C14—C13—C12118.34 (13)
C4—C5—H5120.7C14—C13—H13120.8
C6—C5—H5120.7C12—C13—H13120.8
C7—C6—C5119.75 (12)C13—C14—C9119.68 (13)
C7—C6—H6120.1C13—C14—H14120.2
C5—C6—H6120.1C9—C14—H14120.2
C6—C7—C8120.61 (13)
C2—N2—N3—C9178.50 (11)C3—C4—C5—C60.4 (2)
Br2—C1—C2—N2175.87 (9)N1—C4—C5—C6179.45 (13)
Br1—C1—C2—N20.19 (18)C4—C5—C6—C71.6 (2)
Br2—C1—C2—C35.92 (19)C5—C6—C7—C81.0 (2)
Br1—C1—C2—C3178.02 (10)C4—C3—C8—C72.0 (2)
N3—N2—C2—C1173.96 (13)C2—C3—C8—C7177.74 (13)
N3—N2—C2—C37.80 (18)C6—C7—C8—C30.9 (2)
C1—C2—C3—C875.95 (18)N2—N3—C9—C10172.10 (13)
N2—C2—C3—C8102.20 (16)N2—N3—C9—C147.8 (2)
C1—C2—C3—C4108.63 (17)C14—C9—C10—C112.6 (2)
N2—C2—C3—C473.22 (18)N3—C9—C10—C11177.28 (14)
C8—C3—C4—C51.4 (2)C9—C10—C11—C120.5 (2)
C2—C3—C4—C5176.84 (13)C10—C11—C12—F1178.69 (15)
C8—C3—C4—N1178.78 (12)C10—C11—C12—C131.7 (3)
C2—C3—C4—N13.3 (2)F1—C12—C13—C14178.71 (14)
O2—N1—C4—C526.58 (18)C11—C12—C13—C141.6 (2)
O1—N1—C4—C5151.37 (13)C12—C13—C14—C90.5 (2)
O2—N1—C4—C3153.54 (13)C10—C9—C14—C132.6 (2)
O1—N1—C4—C328.51 (19)N3—C9—C14—C13177.24 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.513.3244 (18)144
Symmetry code: (i) x+3/2, y+3/2, z+1/2.
Summary of short interatomic contacts (Å) in the title salt top
ContactDistanceSymmetry operation
H8···Br12.991 - x, y, 1/2 - z
O1···H112.683/2 - x, 1/2 + y, z
Br1···Br23.6164x, 2 - y, -1/2 + z
H7···Br23.191 - x, 2 - y, 1 - z
H13···F12.821 - x, 1 - y, -z
F1···H102.67x, 1 - y, -1/2 + z
O1···H62.513/2 - x, 3/2 - y, -1/2 + z
O2···H82.771/2 + x, 3/2 - y, 1 - z
H7···H62.471 - x, y, 3/2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt top
ContactPercentage contribution
H···H17.4
O···H/H···O16.3
Br···H/H···Br15.5
Br..C/C···Br10.1
F···H/H···F8.1
C···H/H···C7.0
N···H/H···N5.5
C···C4.7
Br..O/O···Br4.2
F···C/C···F3.5
Br···Br3.1
N···C/C···N1.4
Br···F/F···Br1.1
N···N0.9
O···C/C···O0.1
F···O/O···F0.6
F···N/N···F0.5
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, NAM and GTS; X-ray analysis, STÇ, VNK and MA; writing (review and editing of the manuscript) STÇ, MA and AB; funding acquisition, NQS, NAM and GTS; supervision, NQS, MA and AB.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).

References

First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). J. Inorg. Biochem. 115, 72–77.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacLeod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.  CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020). Acta Cryst. E76, 1251–1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds