

E CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 14 October 2021 Accepted 14 February 2022

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela

Keywords: silver(I); vanadium(V) oxofluoride; 1,2,4-triazole; Hirshfeld surface analysis; crystal structure.

CCDC reference: 2151864

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure of tetrakis(μ -4-benzyl-4*H*-1,2,4-triazole- $\kappa^2 N^1$: N^2)tetrafluoridodi- μ_2 -oxido-dioxido-disilver(I)divanadium(V)

Ganna A. Senchyk,^a* Andrey B. Lysenko,^a Eduard B. Rusanov^b and Kostiantyn V. Domasevitch^a

^aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv 01033, Ukraine, and ^bInstitute of Organic Chemistry, Murmanska Street, 5, Kyiv, 02660, Ukraine. *Correspondence e-mail: senchyk.ganna@gmail.com

The crystal structure of the title compound, $[Ag_2(VO_2F_2)_2(C_9H_9N_3)_4]$, is presented. The molecular complex is based on the heterobimetallic $Ag^I - V^V$ fragment $\{Ag_2^I(V^VO_2F_2)_2(tr)_4\}$ supported by four 1,2,4-triazole ligands [4-benzyl-(4*H*-1,2,4-triazol-4-yl)]. The triazole functional group demonstrates homo- and heterometallic connectivity (Ag-Ag and Ag-V) of the metal centers through the [-NN-] double and single bridges, respectively. The vanadium atom possesses a distorted trigonal-bipyramidal coordination environment $[VO_2F_2N]$ with the Reedijk structural parameter $\tau = 0.59$. In the crystal, $C-H\cdots O$ and $C-H\cdots F$ hydrogen bonds as well as $C-H\cdots \pi$ contacts are observed involving the organic ligands and the vanadium oxofluoride anions. A Hirshfeld surface analysis of the hydrogen-bonding interactions is also described.

1. Chemical context

There is considerable interest in the chemistry of organicinorganic hybrids, including the vanadium oxide-fluoride (VOF) matrix, which is motivated by the numerous potential applications in catalysis, magnetism, optics, etc. (Dolbecq et al., 2010; Monakhov et al., 2015). Incorporation of silver(I) in VOF solid can afford materials such as Ag₄V₂O₆F₂ (Sorensen et al., 2005; Albrecht et al., 2009) and Ag₃VO₂F₄ (Chamberlain et al., 2010), which are attractive candidates for solid-state battery technologies. The formation of AgI-VOF heterobimetallic secondary building units (SBUs) in coordination compounds remains a non-trivial challenge. The 1,2,4-triazole heterocycle, as a functional group, demonstrates a favorable coordination affinity towards Ag^I cations, connecting them into polynuclear units (Aromí et al., 2011). At the same time, it possesses a hidden capability to bind two different metal ions through a short -NN- bridge, usually Cu^{II}-tr-Mo^{VI} (Tian et al., 2011; Lysenko et al., 2016; Senchyk et al., 2017; Zhu et al., 2012) but there are some other rare examples including Cu^Itr-V^{IV} (Sharga et al., 2010) and Ag^I-tr-Mo^{VI} (Tian et al., 2017). This may be realized in the case of constructing SBUs with a terminal N^1 -triazole function that has an open site accessible to coordination. We demonstrated this principle in the self-association of AgI-VOF heterobimetallic coordination compounds based on $\{Ag_2^{I}(V^{V}O_2F_2)_2(tr)_4\}$ SBUs with bi-1,2,4-triazole ligands with different geometries (Senchyk et al., 2012). Such units seem to be very favorable and stable, and

form even in the presence of a heterobifunctional 1,2,4-triazole-carboxylate ligand (Senchyk et al., 2019). In the present contribution we extend the library of Ag^I-VOF compounds, adding the title complex $[Ag_2(VO_2F_2)_2(tr-CH_2Ph)_4]$ (I), which has the ligand 4-benzyl-(4H-1,2,4-triazol-4-yl) (tr-CH₂Ph).

Table 1 Selected geometric parameters (Å, °).

8	1	, ·	
Ag1-N5 ⁱ	2.197 (2)	V1-O2	1.660 (2)
Ag1-N1	2.233 (2)	V1-F1	1.828 (2)
Ag1-N4	2.390 (3)	V1-F2	1.8330 (18)
Ag1-01	2.562 (2)	V1-N2	2.203 (2)
V1-01	1.632 (2)		
N5 ⁱ -Ag1-N1	140.62 (9)	O1-V1-F2	117.63 (10)
N5 ⁱ -Ag1-N4	102.45 (9)	O2-V1-F2	132.25 (10)
N1-Ag1-N4	112.90 (9)	F1 - V1 - F2	86.76 (10)
N5 ⁱ -Ag1-O1	129.87 (8)	O1-V1-N2	87.14 (10)
N1-Ag1-O1	75.28 (8)	O2-V1-N2	88.78 (11)
N4-Ag1-O1	79.39 (8)	F1 - V1 - N2	167.32 (10)
O1-V1-O2	108.04 (11)	F2 - V1 - N2	80.59 (9)
O1-V1-F1	99.57 (11)	V1-O1-Ag1	128.89 (11)
O2-V1-F1	99.21 (13)	Ũ	~ /

Symmetry code: (i) -x, -y + 1, -z.

Fable	2		

Hydrogen-bond geometry (Å, °).

(v) -x + 1, -y + 1, -z; (vi) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C1 = H1 \dots O2^{ii}$	0.93	2 44	3 289 (4)	153
$C1 - H1 \cdot \cdot \cdot F2^{iii}$	0.93	2.63	3.108 (4)	113
$C2-H2\cdot\cdot\cdot F1^{iv}$	0.93	2.07	2.935 (4)	154
$C2-H2\cdots F2^{iv}$	0.93	2.60	3.304 (4)	133
$C3-H3A\cdots O1^{iii}$	0.97	2.73	3.465 (4)	133
$C3-H3B\cdots F2^{iii}$	0.97	2.37	3.006 (4)	123
C10−H10···O2	0.93	2.16	3.082 (4)	170
$C11 - H11 \cdots F1^v$	0.93	2.07	2.935 (4)	153
$C12-H12A\cdots O1^{v}$	0.97	2.65	3.388 (2)	133
$C16-H16\cdots O2^{vi}$	0.93	2.42	3.339 (9)	172
$C18-H18\cdots O1^{v}$	0.93	2.83	3.589 (15)	139

Symmetry codes: (ii) x - 1, y, z; (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z + 1;

2. Structural commentary

Compound I crystallizes in the monoclinic space group $P2_1/c$. Its asymmetric unit contains one Ag^{I} cation, one $[V^{V}O_{2}F_{2}]^{-1}$ anion and two organic ligands (tr-CH₂Ph), which, after inversion across a center of symmetry, form the molecular tetranuclear cluster { $Ag_2^{I}(V^{V}O_2F_2)_2(tr-CH_2Ph)_4$ } (Fig. 1). Two 1,2,4-triazole ligands bridge two adjacent silver atoms [the Ag···Agⁱ distance is 4.2497 (5) Å; symmetry code (i) -x, -y + 1, -z, while the other two link Ag and V centers [the

Figure 1

The molecular structure of compound I, showing the atom-labeling scheme [symmetry code: (i) -x, -y + 1, -z]. Displacement ellipsoids are drawn at the 30% probability level.

Ag···V distance is 3.8044 (6) Å]. Thus, the coordination environment of the Ag^I cation can be described as [AgN₃O] with typical Ag-N(triazole) bond lengths [in the range of 2.197 (2) – 2.390 (3) Å] and a slightly elongated Ag–O bond [2.562(2) Å] (Table 1). The V^V atom possesses a distorted trigonal-bipyramidal coordination environment [VO₂F₂N] with V-F [1.828 (2) and 1.8330 (18) Å], two short V-O [1.632 (2) and 1.660 (2) Å] and elongated V-N [2.203 (2) Å]bonds (Table 1). The geometry of the vanadium oxofluoride polyhedra is characterized by the Reedijk structural parameter τ (Addison *et al.*, 1984) of 0.59 (for a square-pyramidal geometry, $\tau = 0$ and for trigonal-bipyramidal, $\tau = 1$). A bondvalence-sum calculation for the $\{VO_2F_2N\}$ polyhedra confirms the +5 oxidation state for the vanadium atom.

3. Supramolecular features

Since the organic ligand contains a hydrophobic benzyl tail, the crystal structure of I involves no solvate water molecules. Thus, the only hydrogen bonds observed are of the type C-H···O, C-H···F and C-H··· π contacts (Figs. 2 and 3, Table 2). The central 1,2,4-triazole unit, which bridges two Ag ions, displays intramolecular C10-H10···O2 [3.082 (4) Å] and intermolecular C11-H11 \cdots F1^v [2.935 (4) Å, symmetry code (v) -x + 1, -y + 1, -z] hydrogen-bond contacts. The

Figure 2

Projection on the *bc* plane showing the crystal packing of compound **I**. Vanadium oxofluoride anions are shown as polyhedra. [Atoms are colored as follows: silver – cyan, vanadium – dark green, oxygen – red, fluorine – green, nitrogen – blue, carbon – gray, hydrogen – white.]

other triazole group, which provides the heterometallic Ag–V linkage, forms bifurcated C–H···O and C–H···F contacts with vanadium oxofluoride anions of neighboring molecular complexes. Additionally, methylene –CH₂– fragments show directed C–H···O and C–H···F contacts to the VOF fragments. The phenyl rings are here oriented towards each other in an edge-to-face C–H··· π interaction mode.

Supramolecular interactions in the title structure were studied through Hirshfeld surface analysis (Spackman & Byrom, 1997; McKinnon *et al.*, 2004; Hirshfeld, 1977; Spackman & McKinnon, 2002), performed with *Crystal*-*Explorer17* (Turner *et al.*, 2017), taking into account only the major contribution of the disordered group. The Hirshfeld

Figure 3

Hydrogen-bonding arrangement in the structure of I showing C-H···O and C-H···F contacts [symmetry codes: (ii) x - 1, y, z; (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z; (vi) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$]. Phenyl groups are omitted for clarity.

surface, mapped over d_{norm} using a fixed color scale of -0.488 (red) to 1.385 (blue) a.u. visualizes the set of shortest intermolecular contacts (Fig. 4). All of them correspond to the hydrogen-bond interactions, which fall into three categories. The strongest hydrogen bonds to F-atom acceptors are reflected by the most prominent red spots (-0.469 to -0.488 a.u.), whereas a group of medium intensity spots (-0.182 to -0.261 a.u.) identify weaker C-H···O bonds with the terminal oxide O2. However, even more distal interactions with the bridging oxide O1 are still distinguishable on the surface, in the form of very diffuse, less intense spots (-0.066 to -0.142 a.u.).

The contribution of different kinds of interatomic contacts to the Hirshfeld surface is shown in the fingerprint plots in Fig. 5. A significant fraction of the $E \cdots H/H \cdots E$ (E = C, N, O, C) F) contacts (in total 60.1%) suggests the dominant role of the hydrogen-bond interactions. The strongest ones (E = O, F)have a similar nature and they are reflected by pairs of spikes pointing to the lower left of the plot. However, the contribution from the contacts with F-atom acceptors is higher (15.6% for $F \cdots H/H \cdots F$ and 11.6% for $O \cdots H/H \cdots O$) and they are also essentially shorter, as indicated by different lengths of the spikes (the shortest contacts are $F \cdots H = 2.0$ and $O \cdots H =$ 2.2 Å). One may suppose that the preferable sites for hydrogen bonding of the vanadium oxofluoride groups are the F atoms. This is consistent with the results of Hirshfeld analysis for the $[VOF_5]^{2-}$ anion 4,4'-(propane-1,3-diyl)bis(4H-1,2,4triazol-1-ium) salt (Senchyk et al., 2020).

The plots indicate close resemblance of the $N \cdots H/H \cdots N$ (10.7%) and $C \cdots H/H \cdots C$ (22.2%) contacts, which appear as pairs of nearly identical, very diffuse and short features

Figure 4

The Hirshfeld surface of the title compound mapped over d_{norm} in the color range -0.488 (red) to 1.385 (blue) a.u., in the environment of the closest neighbor [symmetry code: -x + 1, -y + 1, -z], with the red spots indicating different kinds of intermolecular interactions.

research communications

Figure 5

Two-dimensional fingerprint plots for the title compound, and those delineated into the principal contributions of H...H, C...H/H...C, F...H/H...F, O...H/H...O, N...H/H...N, C...C, C...N/N...C and Ag···H/H···Ag contacts. Other observed contacts are N···N (0.4%), $C \cdots F/F \cdots C$ (0.1%) and $C \cdots O/O \cdots C$ (0.1%).

 $(N \cdot \cdot \cdot H = 2.9 \text{ and } C \cdot \cdot \cdot H = 2.9 \text{ Å})$. Both of them correspond to edge-to-face stacking or $C-H \cdot \cdot \pi$ interactions involving either the phenyl or triazole rings. The contribution from mutual π - π interactions of the latter delivers minor fractions of the $C \cdots C$, $N \cdots N$ and $C \cdots N/N \cdots C$ contacts, which account in total for only 2.6%. The shortest contact of this series $[C \cdot \cdot \cdot N = 3.5 \text{ Å}]$ exceeds the sum of the van der Waals radii [3.25 Å] and $\pi - \pi$ interactions are not associated with red spots of the d_{norm} surface. A comparable contribution is due to the distal anagostic contacts Ag···H/H···Ag (2.9%) with the polarized methylene H atoms. There are no mutual $\pi - \pi$ interactions involving phenyl rings, which are responsible for larger fractions of the $C \cdot \cdot C$ contacts in the case of polycyclic species (Spackman & McKinnon, 2002).

4. Database survey

A structure survey was carried out in the Cambridge Structural Database (CSD version 5.43, update of November 2021; Groom et al., 2016) for 4-benzyl-(4H-1,2,4-triazol-4-yl) and it revealed five hits for coordination compounds based on this ligand. There are no examples of Ag^I compounds, only two Fe^{II} complexes [FAYQAA (Pittala et al., 2017a) and XASVEV (Pittala et al., 2017b)] and three Cu^{II}-POM complexes [YUGLIX and YUGLOD (Tian et al., 2015) and ZUXLAI (Zhang et al., 2020)]. Moreover, there are no examples of heterometallic connection through an -NNtriazole bridge for the 4-benzyl-(4H-1,2,4-triazol-4-yl) ligand.

Crystal data	
Chemical formula	$[Ag_2V_2F_4O_4(C_9H_9N_3)_4]$
M _r	1094.39
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.5484 (2), 21.2439 (6), 12.5910 (4)
β (°)	90.910 (2)
$V(Å^3)$	2018.81 (10)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.48
Crystal size (mm)	$0.27 \times 0.14 \times 0.12$
Data collection	
Diffractometer	Bruker APEXII area-detector
Absorption correction	multi-scan (SADABS; Bruker, 2008)
T_{\min}, T_{\max}	0.657, 0.856
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22923, 5125, 3468
R _{int}	0.044
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.676
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.078, 1.02
No. of reflections	5125
No. of parameters	323
No. of restraints	65
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.58, -0.42

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

5. Synthesis and crystallization

4-Benzyl-(4H-1,2,4-triazol-4-yl) (tr-CH₂Ph) was synthesized by refluxing benzylamine (5.35 g, 50.0 mmol) and dimethylformamide azine (17.75 g, 125.0 mmol) in the presence of toluenesulfonic acid monohydrate (0.86 g, 5.0 mmol) as a catalyst in DMF (30.0 ml).

Compound I was prepared under hydrothermal conditions. A mixture of AgOAc (16.7 mg, 0.100 mmol), tr-CH₂Ph (20.7 mg, 0.130 mmol), V₂O₅ (9.1 mg, 0.050 mmol) and 5 mL of water with aqueous HF (50%, 150 µL, 4.33 mmol) was added into a Teflon vessel. Then the components were heated at 423 K for 24 h and slowly cooled to room temperature over 50 h, yielding light-yellow prisms of I (yield 33.4 mg, 61%).

6. Refinement

Table 3

Experimental details.

Crystal data, data collection and structure refinement details are summarized in Table 3. For one of the organic ligands, the benzyl linkage (C12-C18) is unequally disordered over two overlapping positions with refined partial contribution factors of 0.68 (3) and 0.32 (3). The major part of the disorder was freely refined anisotropically, while atoms of the minor contributor were refined anisotropically with a restrained geometry for the phenyl ring, rigid-bond restraints applied to the -CH₂C₆H₅ linkage and similarity restraints applied to the closely separated contributions of C12 and C12A, C13 and C13A. H atoms were positioned geometrically and refined as riding, with C–H = 0.93 Å (CH) and 0.97 Å (CH₂) and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Funding information

Funding for this research was provided by: National Research Foundation of Ukraine (Project No. 2020.20/0071).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Albrecht, T. A., Sauvage, F., Bodenez, V., Tarascon, J.-M. & Poeppelmeier, K. R. (2009). *Chem. Mater.* **21**, 3017–3020.
- Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chamberlain, J. M., Albrecht, T. A., Lesage, J., Sauvage, F., Stern, C. L. & Poeppelmeier, K. R. (2010). *Cryst. Growth Des.* **10**, 4868– 4873.
- Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.
- Lysenko, A. B., Senchyk, G. A., Lukashuk, L. V., Domasevitch, K. V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2016). *Inorg. Chem.* 55, 239–250.
- McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.
- Monakhov, K. Yu., Bensch, W. & Kögerler, P. (2015). *Chem. Soc. Rev.* 44, 8443–8483.
- Pittala, N., Thétiot, F., Charles, C., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017a). Chem. Commun. 53, 8356– 8359.

- Pittala, N., Thétiot, F., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017b). Chem. Mater. 29, 490–494.
- Senchyk, G. A., Bukhan'ko, V. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernega, A. N., Karbowiak, M. & Domasevitch, K. V. (2012). *Inorg. Chem.* **51**, 8025–8033.
- Senchyk, G. A., Lysenko, A. B., Domasevitch, K. V., Erhart, O., Henfling, S., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2017). *Inorg. Chem.* 56, 12952– 12966.
- Senchyk, G. A., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2020). Acta Cryst. E76, 780–784.
- Senchyk, G. A., Lysenko, A. B., Rusanov, E. B. & Domasevitch, K. V. (2019). Acta Cryst. E75, 808–811.
- Sharga, O. V., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2010). Acta Cryst. C66, m269–m272.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sorensen, E. M., Izumi, H. K., Vaughey, J. T., Stern, C. L. & Poeppelmeier, K. R. (2005). J. Am. Chem. Soc. 127, 6347–6352.
- Spackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215–220.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378– 392.
- Tian, A., Liu, X., Ying, J., Zhu, D., Wang, X. & Peng, J. (2011). *CrystEngComm*, **13**, 6680–6686.
- Tian, A., Ni, H., Ji, X., Tian, Y., Liu, G. & Ying, J. (2017). RSC Adv. 7, 30573–30581.
- Tian, A.-X., Ning, Y.-L., Ying, J., Liu, G.-C., Hou, X., Li, T.-J. & Wang, X.-L. (2015). *CrystEngComm*, **17**, 5569–5578.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia. http://crystalexplorer.scb.uwa.edu.au/
- Zhang, B., Ying, J., Zhang, X., Wang, C. & Tian, A. (2020). New J. Chem. 44, 18074–18083.
- Zhu, M., Su, S.-Q., Song, X.-Z., Hao, Z.-M., Song, S.-Y. & Zhang, H.-J. (2012). Dalton Trans. 41, 13267–13270.

Acta Cryst. (2022). E78, 399-403 [https://doi.org/10.1107/S2056989022001712]

Crystal structure of tetrakis(μ -4-benzyl-4*H*-1,2,4-triazole- $\kappa^2 N^1$: N^2)tetrafluoridodi- μ_2 -oxido-dioxidodisilver(I)divanadium(V)

Ganna A. Senchyk, Andrey B. Lysenko, Eduard B. Rusanov and Kostiantyn V. Domasevitch

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

 $Tetrakis(\mu-4-benzyl-4H-1,2,4-triazole-\kappa^2N^1:N^2) tetrafluoridodi-\mu_2-oxido-dioxidodisilver(I) divanadium(V)$

Crystal data	
$[Ag_2V_2F_4O_4(C_9H_9N_3)_4]$ $M_r = 1094.39$ Monoclinic, $P2_1/c$ a = 7.5484 (2) Å b = 21.2439 (6) Å c = 12.5910 (4) Å $\beta = 90.910$ (2)° V = 2018.81 (10) Å ³ Z = 2	F(000) = 1088 $D_x = 1.800 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4931 reflections $\theta = 2.5-23.8^{\circ}$ $\mu = 1.48 \text{ mm}^{-1}$ T = 296 K Block, colorless $0.27 \times 0.14 \times 0.12 \text{ mm}$
Data collection	
Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.657, T_{max} = 0.856$ 22923 measured reflections	5125 independent reflections 3468 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 28.7^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -10 \rightarrow 10$ $k = -26 \rightarrow 28$ $l = -16 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.078$ S = 1.02 5125 reflections 323 parameters 65 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0194P)^2 + 2.1764P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.58 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.42 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ag1	0.00892 (3)	0.49751 (2)	0.16871 (2)	0.04174 (9)	
V1	0.43103 (7)	0.48341 (2)	0.33615 (4)	0.03165 (13)	
F1	0.6173 (3)	0.42871 (13)	0.32820 (16)	0.0802 (8)	
F2	0.3957 (2)	0.45217 (9)	0.46985 (15)	0.0471 (5)	
O1	0.3065 (3)	0.45593 (10)	0.23966 (17)	0.0407 (5)	
O2	0.5296 (3)	0.54823 (11)	0.29314 (16)	0.0424 (6)	
N1	0.0417 (3)	0.54163 (12)	0.32878 (19)	0.0315 (6)	
N2	0.2025 (3)	0.54132 (11)	0.38181 (19)	0.0301 (6)	
N3	0.0147 (3)	0.59315 (11)	0.47783 (18)	0.0292 (6)	
N4	0.2055 (4)	0.54025 (13)	0.0405 (2)	0.0386 (6)	
N5	0.1929 (3)	0.54905 (12)	-0.06853 (19)	0.0345 (6)	
N6	0.4464 (3)	0.58619 (12)	-0.0125 (2)	0.0342 (6)	
C1	-0.0684 (4)	0.57241 (14)	0.3893 (2)	0.0337 (7)	
H1	-0.1876	0.5790	0.3732	0.040*	
C2	0.1821 (4)	0.57219 (14)	0.4702 (2)	0.0328 (7)	
H2	0.2710	0.5788	0.5209	0.039*	
C3	-0.0650 (4)	0.62351 (15)	0.5708 (2)	0.0400 (8)	
H3A	-0.0579	0.5945	0.6301	0.048*	
H3B	-0.1896	0.6308	0.5552	0.048*	
C4	0.0174 (4)	0.68457 (14)	0.6044 (2)	0.0308 (7)	
C5	0.0024 (5)	0.73774 (17)	0.5430 (3)	0.0490 (9)	
Н5	-0.0493	0.7354	0.4756	0.059*	
C6	0.0646 (6)	0.79525 (19)	0.5816 (4)	0.0696 (13)	
H6	0.0537	0.8314	0.5403	0.084*	
C7	0.1417 (6)	0.7982 (2)	0.6806 (5)	0.0775 (15)	
H7	0.1817	0.8367	0.7068	0.093*	
C8	0.1607 (6)	0.7456 (3)	0.7410 (4)	0.0752 (14)	
H8	0.2152	0.7479	0.8076	0.090*	
C9	0.0986 (5)	0.68877 (19)	0.7030 (3)	0.0517 (10)	
H9	0.1118	0.6528	0.7444	0.062*	
C10	0.3594 (4)	0.56283 (15)	0.0704 (2)	0.0385 (8)	
H10	0.4025	0.5627	0.1400	0.046*	
C11	0.3391 (4)	0.57667 (15)	-0.0972 (2)	0.0369 (7)	
H11	0.3652	0.5881	-0.1665	0.044*	
C12	0.6224 (7)	0.6171 (4)	-0.0050 (16)	0.040 (3)	0.68 (3)
H12A	0.7076	0.5936	-0.0462	0.048*	0.68 (3)
H12B	0.6633	0.6178	0.0684	0.048*	0.68 (3)
C13	0.608 (2)	0.6830 (4)	-0.0465 (10)	0.0356 (18)	0.68 (3)
C14	0.5342 (18)	0.7259 (6)	0.0216 (12)	0.049 (2)	0.68 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14	0.4990	0.7131	0.0887	0.058*	0.68 (3)
C15	0.5119 (14)	0.7881 (5)	-0.009 (2)	0.068 (4)	0.68 (3)
H15	0.4623	0.8171	0.0370	0.081*	0.68 (3)
C16	0.5640 (18)	0.8063 (5)	-0.1083 (18)	0.065 (5)	0.68 (3)
H16	0.5470	0.8478	-0.1295	0.078*	0.68 (3)
C17	0.639 (2)	0.7654 (8)	-0.1755 (12)	0.072 (4)	0.68 (3)
H17	0.6767	0.7787	-0.2417	0.086*	0.68 (3)
C18	0.660 (2)	0.7029 (7)	-0.1450 (11)	0.057 (3)	0.68 (3)
H18	0.7102	0.6743	-0.1917	0.069*	0.68 (3)
C12A	0.6197 (12)	0.6178 (8)	-0.026 (3)	0.034 (4)	0.32 (3)
H12C	0.6862	0.5951	-0.0794	0.041*	0.32 (3)
H12D	0.6862	0.6157	0.0400	0.041*	0.32 (3)
C13A	0.605 (4)	0.6853 (8)	-0.060 (2)	0.035 (4)	0.32 (3)
C14A	0.530 (3)	0.7370 (10)	-0.0096 (18)	0.038 (4)	0.32 (3)
H14A	0.4803	0.7324	0.0570	0.046*	0.32 (3)
C15A	0.530 (2)	0.7955 (8)	-0.059 (2)	0.048 (5)	0.32 (3)
H15A	0.4797	0.8300	-0.0254	0.057*	0.32 (3)
C16A	0.604 (2)	0.8023 (6)	-0.1587 (19)	0.047 (4)	0.32 (3)
H16A	0.6038	0.8415	-0.1917	0.056*	0.32 (3)
C17A	0.679 (3)	0.7507 (8)	-0.2089 (17)	0.044 (4)	0.32 (3)
H17A	0.7284	0.7553	-0.2755	0.053*	0.32 (3)
C18A	0.679 (4)	0.6922 (7)	-0.159 (2)	0.039 (5)	0.32 (3)
H18A	0.7289	0.6576	-0.1931	0.046*	0.32 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ag1	0.04650 (15)	0.04865 (17)	0.02972 (13)	-0.00637 (12)	-0.01010 (10)	-0.00375 (12)
V1	0.0375 (3)	0.0324 (3)	0.0249 (3)	0.0025 (2)	-0.0031 (2)	0.0009 (2)
F1	0.0848 (17)	0.121 (2)	0.0337 (12)	0.0688 (16)	-0.0171 (12)	-0.0150 (13)
F2	0.0453 (11)	0.0559 (13)	0.0398 (11)	-0.0063 (9)	-0.0038 (9)	0.0181 (9)
01	0.0490 (14)	0.0397 (13)	0.0330 (12)	0.0045 (10)	-0.0085 (11)	-0.0072 (10)
O2	0.0326 (12)	0.0692 (16)	0.0253 (11)	-0.0118 (11)	-0.0045 (10)	0.0048 (11)
N1	0.0264 (13)	0.0414 (16)	0.0264 (13)	-0.0014 (11)	-0.0060 (11)	-0.0052 (11)
N2	0.0282 (13)	0.0329 (14)	0.0290 (14)	0.0001 (11)	-0.0083 (11)	-0.0044 (11)
N3	0.0341 (14)	0.0300 (14)	0.0235 (14)	-0.0013 (11)	-0.0001 (11)	-0.0039 (10)
N4	0.0502 (17)	0.0411 (16)	0.0242 (14)	-0.0115 (13)	-0.0049 (12)	0.0053 (12)
N5	0.0402 (15)	0.0408 (16)	0.0223 (13)	-0.0068 (12)	-0.0028 (12)	-0.0022 (11)
N6	0.0363 (14)	0.0373 (15)	0.0287 (14)	-0.0043 (11)	-0.0056 (12)	0.0021 (11)
C1	0.0256 (16)	0.0412 (19)	0.0341 (17)	0.0004 (13)	-0.0084 (14)	-0.0044 (14)
C2	0.0309 (16)	0.0373 (18)	0.0300 (17)	0.0005 (13)	-0.0085 (14)	-0.0051 (14)
C3	0.047 (2)	0.0395 (19)	0.0337 (18)	-0.0056 (15)	0.0107 (16)	-0.0084 (15)
C4	0.0270 (16)	0.0316 (17)	0.0339 (17)	0.0017 (13)	0.0031 (13)	-0.0065 (13)
C5	0.046 (2)	0.046 (2)	0.055 (2)	-0.0040 (17)	-0.0043 (18)	0.0073 (18)
C6	0.062 (3)	0.037 (2)	0.110 (4)	-0.004 (2)	0.013 (3)	0.009 (2)
C7	0.070 (3)	0.062 (3)	0.101 (4)	-0.024 (2)	0.023 (3)	-0.043 (3)
C8	0.067 (3)	0.105 (4)	0.053 (3)	-0.028 (3)	0.001 (2)	-0.034 (3)
C9	0.054 (2)	0.062 (3)	0.039 (2)	-0.0041 (19)	-0.0045 (18)	-0.0032 (18)

C10	0.052 (2)	0.0395 (19)	0.0239 (16)	-0.0072 (16)	-0.0098 (15)	0.0055 (14)
C11	0.0428 (19)	0.046 (2)	0.0220 (16)	-0.0028 (16)	-0.0040 (14)	0.0020 (14)
C12	0.036 (3)	0.049 (3)	0.036 (8)	-0.008 (3)	-0.010 (3)	0.006 (3)
C13	0.031 (3)	0.036 (3)	0.040 (4)	-0.008 (3)	-0.008 (3)	-0.004 (3)
C14	0.046 (4)	0.049 (5)	0.052 (5)	0.001 (4)	-0.003 (4)	-0.003 (4)
C15	0.046 (4)	0.042 (5)	0.115 (12)	0.002 (3)	-0.008 (6)	-0.012 (6)
C16	0.052 (6)	0.050 (5)	0.093 (13)	-0.016 (4)	-0.022 (7)	0.033 (6)
C17	0.080 (9)	0.081 (9)	0.053 (7)	-0.027 (7)	-0.009 (5)	0.019 (6)
C18	0.066 (8)	0.054 (5)	0.052 (6)	-0.017 (5)	-0.005 (5)	-0.008 (5)
C12A	0.037 (6)	0.046 (5)	0.020 (9)	0.001 (5)	-0.009 (4)	0.003 (4)
C13A	0.035 (6)	0.032 (5)	0.037 (7)	-0.004 (5)	-0.005 (6)	-0.001 (5)
C14A	0.034 (7)	0.044 (8)	0.036 (9)	-0.004 (5)	0.001 (7)	0.004 (6)
C15A	0.061 (11)	0.035 (8)	0.048 (11)	0.005 (7)	0.004 (9)	-0.001 (7)
C16A	0.045 (9)	0.040 (7)	0.055 (10)	-0.010 (6)	0.002 (7)	0.005 (7)
C17A	0.047 (9)	0.036 (7)	0.050 (9)	-0.006 (5)	0.005 (6)	0.000 (6)
C18A	0.048 (10)	0.036 (7)	0.032 (8)	-0.010 (6)	0.004 (6)	0.002 (5)

Geometric parameters (Å, °)

Ag1—N5 ⁱ	2.197 (2)	С7—Н7	0.9300
Ag1—N1	2.233 (2)	C8—C9	1.378 (6)
Ag1—N4	2.390 (3)	C8—H8	0.9300
Ag1—01	2.562 (2)	С9—Н9	0.9300
V1-01	1.632 (2)	C10—H10	0.9300
V1—02	1.660 (2)	C11—H11	0.9300
V1—F1	1.828 (2)	C12—C13	1.497 (5)
V1—F2	1.8330 (18)	C12—H12A	0.9700
V1—N2	2.203 (2)	C12—H12B	0.9700
N1-C1	1.311 (4)	C13—C18	1.374 (9)
N1—N2	1.376 (3)	C13—C14	1.375 (8)
N2—C2	1.303 (4)	C14—C15	1.386 (11)
N3—C1	1.345 (4)	C14—H14	0.9300
N3—C2	1.345 (4)	C15—C16	1.371 (12)
N3—C3	1.473 (4)	C15—H15	0.9300
N4—C10	1.306 (4)	C16—C17	1.344 (13)
N4—N5	1.387 (3)	C16—H16	0.9300
N5-C11	1.306 (4)	C17—C18	1.390 (11)
N5—Ag1 ⁱ	2.197 (2)	C17—H17	0.9300
N6-C10	1.339 (4)	C18—H18	0.9300
N6-C11	1.344 (4)	C12A—C13A	1.497 (6)
N6-C12A	1.484 (5)	C12A—H12C	0.9700
N6-C12	1.484 (5)	C12A—H12D	0.9700
C1—H1	0.9300	C13A—C14A	1.3900
С2—Н2	0.9300	C13A—C18A	1.3900
C3—C4	1.497 (4)	C14A—C15A	1.3900
С3—НЗА	0.9700	C14A—H14A	0.9300
С3—Н3В	0.9700	C15A—C16A	1.3900
C4—C5	1.372 (5)	C15A—H15A	0.9300

C4—C9	1.378 (4)	C16A—C17A	1.3900
C5—C6	1.393 (5)	C16A—H16A	0.9300
С5—Н5	0.9300	C17A—C18A	1.3900
C6—C7	1.369 (6)	C17A—H17A	0.9300
С6—Н6	0.9300	C18A—H18A	0.9300
С7—С8	1.358 (7)		
N5 ⁱ —Ag1—N1	140.62 (9)	C7—C8—C9	119.6 (4)
N5 ⁱ —Ag1—N4	102.45 (9)	С7—С8—Н8	120.2
N1—Ag1—N4	112.90 (9)	С9—С8—Н8	120.2
N5 ⁱ —Ag1—O1	129.87 (8)	C8—C9—C4	120.9 (4)
N1—Ag1—O1	75.28 (8)	С8—С9—Н9	119.6
N4—Ag1—O1	79.39 (8)	С4—С9—Н9	119.6
O1—V1—O2	108.04 (11)	N4—C10—N6	110.8 (3)
O1—V1—F1	99.57 (11)	N4—C10—H10	124.6
O2-V1-F1	99.21 (13)	N6—C10—H10	124.6
O1—V1—F2	117.63 (10)	N5—C11—N6	110.5 (3)
O2—V1—F2	132.25 (10)	N5—C11—H11	124.8
F1—V1—F2	86.76 (10)	N6-C11-H11	124.8
O1—V1—N2	87.14 (10)	N6-C12-C13	109.3 (8)
O2—V1—N2	88.78 (11)	N6—C12—H12A	109.8
F1—V1—N2	167.32 (10)	C13—C12—H12A	109.8
F2—V1—N2	80.59 (9)	N6—C12—H12B	109.8
V1—O1—Ag1	128.89 (11)	C13—C12—H12B	109.8
C1—N1—N2	106.4 (2)	H12A—C12—H12B	108.3
C1—N1—Ag1	132.19 (19)	C18—C13—C14	118.9 (7)
N2—N1—Ag1	121.35 (18)	C18—C13—C12	125.6 (13)
C2—N2—N1	107.3 (2)	C14—C13—C12	115.5 (13)
C2—N2—V1	127.4 (2)	C13—C14—C15	120.4 (8)
N1—N2—V1	124.36 (18)	C13—C14—H14	119.8
C1—N3—C2	105.0 (2)	C15—C14—H14	119.8
C1—N3—C3	127.7 (3)	C16—C15—C14	119.2 (9)
C2—N3—C3	126.7 (3)	C16—C15—H15	120.4
C10—N4—N5	106.5 (2)	C14—C15—H15	120.4
C10—N4—Ag1	120.2 (2)	C17—C16—C15	121.4 (8)
N5—N4—Ag1	133.30 (19)	C17—C16—H16	119.3
C11—N5—N4	106.8 (2)	C15—C16—H16	119.3
C11—N5—Ag1 ⁱ	128.7 (2)	C16—C17—C18	119.4 (8)
N4—N5—Ag1 ⁱ	122.94 (19)	С16—С17—Н17	120.3
C10—N6—C11	105.4 (3)	C18—C17—H17	120.3
C10—N6—C12A	134.8 (15)	C13—C18—C17	120.7 (9)
C11—N6—C12A	119.7 (15)	C13—C18—H18	119.7
C10—N6—C12	124.3 (8)	C17—C18—H18	119.7
C11—N6—C12	130.2 (7)	N6—C12A—C13A	113.8 (16)
N1—C1—N3	110.7 (3)	N6—C12A—H12C	108.8
N1—C1—H1	124.6	C13A—C12A—H12C	108.8
N3—C1—H1	124.6	N6—C12A—H12D	108.8
N2—C2—N3	110.6 (3)	C13A—C12A—H12D	108.8

N2 C2 H2	124 7	H12C C12A H12D	1077
$N_2 = C_2 = H_2$	124.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.0
$N_{2} = C_{2} = C_{4}$	124.7	$C_{14A} = C_{13A} = C_{16A}$	120.0
$N_2 = C_2 = U_2 \Lambda$	115.5 (5)	C14A = C13A = C12A	131.1(10)
N_{3} C_{4} C_{2} U_{2} V_{3}	108.4	C12A = C12A = C12A	100.9 (19)
C4 - C3 - H3A	108.4	C12A = C14A = C15A	120.0
$N_3 - C_3 - H_3 B$	108.4	C15A - C14A - H14A	120.0
	108.4	C16A = C15A = C14A	120.0
H3A - C3 - H3B	107.5	C16A - C15A - C14A	120.0
C_{3} C_{4} C_{9}	119.0 (3)	CI6A—CI5A—HI5A	120.0
C3—C4—C3	121.6 (3)	С14А—С15А—Н15А	120.0
C9—C4—C3	119.2 (3)	C15A—C16A—C17A	120.0
C4—C5—C6	120.1 (4)	C15A—C16A—H16A	120.0
C4—C5—H5	120.0	C17A—C16A—H16A	120.0
С6—С5—Н5	120.0	C18A—C17A—C16A	120.0
C7—C6—C5	119.6 (4)	C18A—C17A—H17A	120.0
С7—С6—Н6	120.2	C16A—C17A—H17A	120.0
С5—С6—Н6	120.2	C17A—C18A—C13A	120.0
C8—C7—C6	120.8 (4)	C17A—C18A—H18A	120.0
С8—С7—Н7	119.6	C13A—C18A—H18A	120.0
С6—С7—Н7	119.6		
O2-V1-O1-Ag1	-74.41 (17)	Ag1-N4-C10-N6	-178.0(2)
F1—V1—O1—Ag1	-177.46 (15)	C11—N6—C10—N4	-0.4 (4)
F2—V1—O1—Ag1	91.19 (15)	C12A—N6—C10—N4	178.8 (12)
N2—V1—O1—Ag1	13.37 (14)	C12—N6—C10—N4	178.0 (6)
C1—N1—N2—C2	-0.7 (3)	N4—N5—C11—N6	0.1 (4)
Ag1 - N1 - N2 - C2	177.7 (2)	$Ag1^{i}$ N5 C11 N6	-165.5(2)
C1-N1-N2-V1	168.9 (2)	C10 - N6 - C11 - N5	0.2 (4)
$A\sigma 1 - N1 - N2 - V1$	-12.7(3)	C12A - N6 - C11 - N5	-179.2(10)
C10 - N4 - N5 - C11	-0.4(4)	C12-N6-C11-N5	-1781(7)
$A\sigma 1 - N4 - N5 - C11$	177.9(2)	C10 - N6 - C12 - C13	-120.7(10)
$C10 - N4 - N5 - A g1^{i}$	166 2 (2)	$C_{11} = N6 = C_{12} = C_{13}$	57 3 (15)
$\Delta g1$ NA N5 $\Delta g1^{i}$	-155(4)	N6-C12-C13-C18	-101.7(13)
$N_2 N_1 C_1 N_3$	13.3(4)	$N_{0} = C_{12} = C_{13} = C_{10}$	77.8 (15)
Λ_{g1} N1 C1 N2	-176.8(2)	$C_{12} = C_{13} = C_{14} = C_{15}$	77.8(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.4(2)	$C_{10} = C_{13} = C_{14} = C_{15}$	-170 1 (12)
$C_2 = N_3 = C_1 = N_1$	-1.4(3)	C12 - C13 - C14 - C15	-1/9.1(13)
C_{3} N_{1} N_{2} C_{2} N_{2}	-1/2.8(3)	C13 - C14 - C13 - C10	0.1(13)
N1 - N2 - C2 - N3	-0.2(3)	C14 - C15 - C16 - C17	-1.3(15)
VI - N2 - C2 - N3	-169.37 (19)	C15-C16-C17-C18	1.8 (15)
C1—N3—C2—N2	1.0 (3)	C14—C13—C18—C17	0.0 (10)
C3—N3—C2—N2	172.5 (3)	C12—C13—C18—C17	179.5 (15)
C1—N3—C3—C4	-128.2 (3)	C16—C17—C18—C13	-1.1 (13)
C2—N3—C3—C4	62.2 (4)	C10—N6—C12A—C13A	-113 (2)
N3—C3—C4—C5	68.5 (4)	C11—N6—C12A—C13A	66 (3)
N3—C3—C4—C9	-116.6 (3)	N6—C12A—C13A—C14A	62 (4)
C9—C4—C5—C6	-1.7 (5)	N6—C12A—C13A—C18A	-117 (2)
C3—C4—C5—C6	173.3 (3)	C18A—C13A—C14A—C15A	0.0
C4—C5—C6—C7	0.5 (6)	C12A—C13A—C14A—C15A	-179 (3)

C5—C6—C7—C8	0.9 (7)	C13A—C14A—C15A—C16A	0.0
C6—C7—C8—C9	-1.1 (7)	C14A—C15A—C16A—C17A	0.0
C7—C8—C9—C4	-0.1 (7)	C15A—C16A—C17A—C18A	0.0
C5—C4—C9—C8	1.5 (5)	C16A—C17A—C18A—C13A	0.0
C3—C4—C9—C8	-173.6 (4)	C14A—C13A—C18A—C17A	0.0
N5—N4—C10—N6	0.5 (4)	C12A—C13A—C18A—C17A	179 (2)

Symmetry code: (i) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С1—Н1…О2 ^{іі}	0.93	2.44	3.289 (4)	153
C1—H1···F2 ⁱⁱⁱ	0.93	2.63	3.108 (4)	113
C2— $H2$ ···F1 ^{iv}	0.93	2.07	2.935 (4)	154
C2— $H2$ ···F2 ^{iv}	0.93	2.60	3.304 (4)	133
C3—H3A···O1 ⁱⁱⁱ	0.97	2.73	3.465 (4)	133
C3—H3 <i>B</i> ···F2 ⁱⁱⁱ	0.97	2.37	3.006 (4)	123
C10—H10…O2	0.93	2.16	3.082 (4)	170
C11—H11···F1 ^v	0.93	2.07	2.935 (4)	153
C12—H12A····O1 ^v	0.97	2.65	3.388 (2)	133
C16—H16…O2 ^{vi}	0.93	2.42	3.339 (9)	172
C18—H18…O1 ^v	0.93	2.83	3.589 (15)	139

Symmetry codes: (ii) x-1, y, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+1, -z; (vi) x, -y+3/2, z-1/2.