research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­kis­(3,5-di­methyl-1H-pyrazole-κN2)copper(II)]-μ2-sulfato-κ2O:O′]: crystal structure and Hirshfeld surface analysis of a CuII coordination polymer

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and b"Poni Petru" Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: igolenya@ua.fm

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 14 October 2021; accepted 15 March 2022; online 24 March 2022)

The title coordination polymer, [Cu(SO4)(C5H8N2)4]n, was synthesized using a one-pot reaction of copper powder, anhydrous copper(II) sulfate and 3,5-dimethyl-1H-pyrazole (Hdmpz) in aceto­nitrile under ambient conditions. The asymmetric unit can be described as a chain consisting of four [Cu(SO4)(Hdmpz)4] formula units that are connected to each other by a μ2-sulfato-bridged ligand. The octa­hedral coordination geometry (O2N4) of all copper atoms is realized by coordination of four pyrazole ligands and two sulfate ligands. Four pyridine-like N atoms of the pyrazole ligands occupy the equatorial positions, while two oxygen atoms of two sulfate ligands are in axial positions. As a result of the sulfate ligand rotation, there is a pairwise alternation of terminal O atoms (which are not involved in coordination to the copper atom) of the SO4 tetra­hedra. The Cu⋯Cu distances within one asymmetric unit are in the range 7.0842 (12)–7.1554 (12) Å. The crystal structure is built up from polymeric chains packed in a parallel manner along the b-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯H (74.7%), H⋯O/O⋯H (14.8%) and H⋯C/C⋯H (8.2%) inter­actions.

1. Chemical context

The synthesis, structure and properties of metal complexes, including coordination polymers, is an important area of chemical research. The nature of the anion, which is part of a coordination compound, is one of several factors that has a great influence on the final structural topology of the complexes (Mondal et al., 2009[Mondal, R., Basu, T., Sadhukhan, D., Chattopadhyay, T. & Bhunia, M. K. (2009). Cryst. Growth Des. 9, 1095-1105.]; Mahmoudi et al., 2007[Mahmoudi, G. & Morsali, A. (2007). CrystEngComm, 9, 1062-1072.]; Kwak et al., 2008[Kwak, H., Lee, S. H., Kim, S. H., Lee, Y. M., Lee, E. Y., Park, B. K., Kim, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2008). Eur. J. Inorg. Chem. pp. 408-415.]; Balić et al., 2018[Balić, T., Popović, Z. & Marković, B. (2018). Inorg. Chim. Acta, 478, 32-43.]). A large number of coordination compounds have been synthesized and studied due to the development of supra­molecular chemistry and the study of self-assembly of metal complexes with organic mol­ecules, such as pyrazoles. These mol­ecules have long been recognized as useful ligands for studying transition-metal coordination chemistry (Mihailov et al., 1974[Mihailov, M. H., Mihailova, V. T. & Khalkin, V. A. (1974). J. Inorg. Nucl. Chem. 36, 141-144.]; Nicholls et al., 1971[Nicholls, D. & Warburton, B. A. (1971). J. Inorg. Nucl. Chem. 33, 1041-1045.]; Reedijk, 1971[Reedijk, J. (1971). Recl Trav. Chim. Pays Bas, 90, 117-136.], 1970a[Reedijk, J. (1970a). Recl Trav. Chim. Pays Bas, 89, 605-618.],b[Reedijk, J. (1970b). Recl Trav. Chim. Pays Bas, 89, 993-1016.]; Reedijk & Smit, 1971[Reedijk, J. & Smit, J. A. (1971). Recl Trav. Chim. Pays Bas, 90, 1135-1140.]; Reedijk et al., 1971[Reedijk, J., Windhorst, J. C. A., van Ham, N. H. M. & Groeneveld, W. L. (1971). Recl Trav. Chim. Pays Bas, 90, 234-251.]; Singh et al., 1973[Singh, C. B., Satpathy, S. & Sahoo, B. (1973). J. Inorg. Nucl. Chem. 35, 3947-3950.]; ten Hoedt et al., 1982[Hoedt, R. W. M. ten, Hulsbergen, F. B., Verschoor, G. C. & Reedijk, J. (1982). Inorg. Chem. 21, 2369-2373.]). Pyrazole-based ligands are used to construct supra­molecular architectures due to the presence of a pyrrole NH group in the pyrazole ring, which is not necessarily coordinated by a metal atom, but may act as a donor of hydrogen bonds. In addition, substituents on the pyrazole ring can also be involved in hydrogen-bond inter­actions. These facts are very important because there is a noticeable influence of hydrogen bonding on coordination compound assembly (Di Nicola et al., 2007[Di Nicola, C., Karabach, Y. Y., Kirillov, A. M., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2007). Inorg. Chem. 46, 221-230.]; Brewer et al., 2020[Brewer, G., Butcher, R. J. & Zavalij, P. (2020). Materials, 13, 1595.]; Burrows et al., 2011[Burrows, A. D., Kelly, D. J., Haja Mohideen, M. I., Mahon, M. F., Pop, V. M. & Richardson, C. (2011). CrystEngComm, 13, 1676-1682.]). The crystal packing of coordination polymers also depends on the different solvents employed, although not necessarily incorporating the solvents as crystallization mol­ecules (Di Nicola et al., 2014[Di Nicola, C., Garau, F., Lanza, A., Monari, M., Pandolfo, L., Pettinari, C. & Zorzi, A. (2014). Inorg. Chim. Acta, 416, 186-194.]). Reaction of a metal salt with an organic ligand is a popular way for the synthesis of coordination compounds, including metal coord­ination polymers (Gogoi et al., 2019[Gogoi, A., Nashre-ul-Islam, S. M., Frontera, A. & Bhattacharyya, M. K. (2019). Inorg. Chim. Acta, 484, 133-141.]; Shen et al., 2004[Shen, W.-Z., Yi, L., Cheng, P., Yan, S.-P., Liao, D.-Z. & Jiang, Z.-H. (2004). Inorg. Chem. Commun. 7, 819-822.]), but there are many types of coordination compounds and the methods of synthesis are varied (House et al., 2016[House, J. E. & House, K. A. (2016). Synthesis and Reactions of Coordination Compounds. Descriptive Inorganic Chemistry, ch. 21, pp. 347-370. Amsterdam: Elsevier.]). In this article we report the preparation of the coordination polymer catena-poly[[tetra­kis­(3,5-dimethyl-1H-pyrazole-κN2)copper(II)]-μ2-sulfato-κ2O:O′] using the direct synthesis method, which is based on oxidative dissolution of a powdered metal in the presence of an organic ligand (Kokozay et al., 2018[Kokozay, V. N., Vassilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183-237. Amsterdam: Elsevier.]; Li et al., 2021[Li, X. & Binnemans, K. (2021). Chem. Rev. 121, 4506-4530.]).

[Scheme 1]

2. Structural commentary

The title coordination polymer crystallizes in the ortho­rhom­bic Pna21 space group. The asymmetric unit is a chain consisting of four [Cu(Hdmpz)4SO4] formula units (Fig. 1[link]) that are connected to each other by a μ2-sulfato-bridged ligand along the b-axis direction (Fig. 2[link]). Each mononuclear unit [Cu(Hdmpz)4SO4] consists of four 3,5-dimethyl-1H-pyrazole mol­ecules, which are coordinated in a monodentate way, and one sulfate ligand that is connected by one oxygen atom to the copper ion. The octa­hedral coordination environment of each copper atom consists of four pyridine-like nitro­gen atoms of Hdmpz ligands, which occupy the equatorial positions, and two oxygen atoms of two SO4 ligands, which are in axial positions. The difference in lengths of the axial Cu—O and equatorial Cu—N bonds is at least 0.235 Å. Bond lengths between the central atom and the nitro­gen atoms in the equatorial position are approximately the same [in the range 2.028 (6) to 2.054 (6) Å]. The N1, N3, N5 and N7 nitro­gen atoms slightly deviate from of the equatorial plane [by −0.088 (3) Å for N1, 0.069 (3) Å for N3, 0.067 (3) Å for N5 and −0.086 (3) Å for N7]. The Cu1 atom is out of the equatorial plane, formed by four nitro­gen atoms, by 0.038 (3) Å. The N—Cu—N angles are practically right angles, in the range of 88.0 (2)–91.2 (2)°. The inter­metallic Cu⋯Cu distances between two neighboring [Cu(Hdmpz)4SO4] fragments within one asymmetric unit are in the range 7.0842 (12)–7.1554 (12) Å while the inter­chalcogenic S⋯S distances are in the range 7.166 (2)–7.223 (2) Å. Bridging oxygen atoms of sulfate ligands, which bind [Cu(Hdmpz)4SO4] formula units, are arranged in a spiral along the b axis (Fig. 3[link]).

[Figure 1]
Figure 1
Representation of four [Cu(SO4)(Hdmpz)4] formula units in the structure of the title coordination polymer, with displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
The asymmetric unit of the title compound. Selected pyrazole ring atoms are represented as wireframes. H atoms and hydrogen bonds are omitted for clarity.
[Figure 3]
Figure 3
The spiral arrangement of the bridging oxygen atoms of the sulfate ligands, which bind [Cu(SO4)(Hdmpz)4] formula units along the b-axis direction. Bridging oxygen atoms of sulfate ligands are represented as red spheres, while all other atoms are depicted as wireframes. Hydrogen atoms are omitted for clarity.

The mol­ecular structure of the complex is stabilized by weak intra­molecular hydrogen bonds in which hydrogen donors are carbon atoms (–CH3 groups at the 3 and 5 positions of the pyrazole ring) and pyrrole-like nitro­gen atoms of NH groups, while hydrogen acceptors are pyridine-like nitro­gen atoms of the neighboring pyrazole ligands and O and S atoms of the sulfate ligands. Significant contributions to the hydrogen-bond network are made by N—H⋯O hydrogen bonds with lengths in the range of 2.022 (5) to 2.437 (4) Å. Selected intra­molecular geometric parameters of hydrogen bonds are given in Table 1[link]. The hydrogen-bond network in the asymmetric unit of the title compound is shown in Fig. 4[link]. The torsion angle Cu1—Cu2—Cu3—Cu4 is −80.2 (2)° and S1—S2—S3–S4 is −97.8 (2)° and O1—O2— O5—O6, O5—O6—O9—O10 and O9—O10—O13—O14 are 36 (4), 25 (7) and 51 (3)°, respectively.

Table 1
Geometry of intramolecular hydrogen bonds (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.86 2.08 2.792 (7) 139
N6—H6⋯O3 0.86 2.04 2.889 (7) 168
N10—H10⋯O3 0.86 2.11 2.869 (7) 146
N12—H12⋯O4 0.86 2.12 2.951 (8) 163
N14—H14⋯O8 0.86 2.10 2.835 (7) 143
N16—H16⋯O5 0.86 2.44 2.889 (7) 114
N16—H16⋯O7 0.86 2.04 2.894 (8) 173
N18—H18⋯O6 0.86 2.39 2.866 (8) 116
N18—H18⋯O8 0.86 2.14 2.988 (7) 169
N20—H20⋯O9 0.86 2.41 2.885 (9) 115
N20—H20⋯O11 0.86 2.08 2.933 (7) 171
N22—H22⋯O7 0.86 2.05 2.828 (7) 150
N24—H24⋯O12 0.86 2.16 2.840 (8) 135
N26—H26⋯O16 0.86 2.02 2.875 (7) 171
N28—H28⋯O15 0.86 2.07 2.803 (7) 143
N30—H30⋯O10 0.86 2.31 2.817 (8) 118
N30—H30⋯O12 0.86 2.24 3.083 (8) 165
N32—H32⋯O11 0.86 2.12 2.857 (7) 144
C30—H30C⋯O5 0.96 2.39 3.213 (11) 144
C50—H50A⋯O6 0.96 2.23 3.124 (9) 155
C65—H65B⋯O10 0.96 2.27 3.192 (11) 160
C70—H70B⋯O10 0.96 2.35 3.116 (10) 137
[Figure 4]
Figure 4
Intra­molecular hydrogen-bond network in the asymmetric unit of the title compound. Hydrogen bonds with the participation of oxygen atoms are indicated in red, blue for nitro­gen atoms and yellow for sulfur atoms. Hydrogen donors are carbon atoms of methyl groups and nitro­gen atoms of NH groups, while hydrogen acceptors are sulfur and oxygen atoms, and pyridine-like nitro­gen atoms of the pyrazole ring.

All pyrazole rings are oriented unsymmetrically in the mononuclear fragment. Thus, the planes of pyrazole rings N1/N2/C1/C3/C4 (pyrazole ligand near the Cu1 atom) and N9/N10/C21/C23/C24 (pyrazole ligand near the Cu2 atom) are oriented almost parallel to each other with a small deviation [plane normal to plane normal angle = 12.8 (3)°]. The plane-to-plane twist angle is 4.2 (4)°, the plane-to-plane fold angle is 13.4 (4)° and the plane-to-plane shift = 4.879 (18) Å. Within one [Cu(Hdmpz)4SO4] unit, pairs of pyrazole ring planes, for example N1/N2/C1/C3/C4, N7/N8/C16/C18/C19 and N3/N4/C6/C8/C9, N5/N6/C11/C13/C14, are placed in a non-parallel manner. The torsion angles N2—N1—N7—N8 and N4—N3—N5—N6 are 109.0 (6) and 111.3 (6)°, respectively.

3. Supra­molecular features

The crystal structure (Fig. 5[link]) is built up from polymeric chains packed parallel along the b-axis direction. The unit-cell dimensions can be explained because of the presence of four complex moieties in the asymmetric unit (Z′ = 4, Z = 16). As a result of the sulfate ligand rotation, there is a pairwise alternation of the terminal oxygen atoms (which are not involved in coordinating the copper atom) of the SO4 tetra­hedra. Within one chain the inter­metallic distance between two copper atoms, which are located at the edges of two neighboring asymmetric units, is 7.1625 (12) Å, while the inter­chalcogenic distance between the nearest sulfur atoms is 7.227 (2) Å. Polymeric chains, which are formed with the participation of bridging sulfate ligands, are stabilized by an extensive hydrogen-bond network. Neighboring chains are connected to each other by weak C—H⋯N and C—H⋯O hydrogen bonds. Geometric parameters for inter­molecular hydrogen bonds are given in Table 2[link].

Table 2
Geometric parameters of inter­molecular hydrogen bonds (Å, °)

C2—H2A⋯N16i 0.96 3.01 3.722 (10) 132
C2—H2A⋯O7i 0.96 28 3.806 (9) 146
C53—H53⋯N8ii 0.93 3.07 3.66 (1) 123
C32—H32B⋯N32iii 0.96 3.00 3.792 (10) 140
C32—H32B⋯N31iii 0.96 3.17 3.984 (10) 143
C32—H32B⋯N28iii 0.96 2.87 3.735 (11) 150
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Crystal packing of the title compound viewed along the (a) b- and (b) c-axis directions: sulfate ligands are in a polyhedral representation with red spherical oxygen atoms, copper atoms are represented as orange spheres, while pyrazole rings atoms are depicted as wireframes. Hydrogen atoms are omitted for clarity.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots generated using Crystal Explorer 17.5 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.5511 (red) to 1.8416 (blue) a.u. The red spots in Fig. 6[link]. represent short contacts and negative dnorm values on the surface corresponding to the inter­actions described above. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, Cu⋯O/O⋯Cu and H⋯N/N⋯H contacts, the overall two-dimensional fingerprint plot and the decomposed two-dimensional fingerprint plots are given in Fig. 7[link]. For the title coordination polymer, the most significant contributions to the overall crystal packing are from H⋯H (74.7%), H⋯O/O⋯H (14.8%) and H⋯C/C⋯H (8.2%) contacts. Small contributions of weak Cu⋯O/O⋯Cu (1.1%), H⋯N/N⋯H (0.9%) and N⋯O/O⋯N (0.2%) contacts have a negligible effect on the packing. The total contribution of contacts involving hydrogen atoms is 85.9%, for O atoms is 8.4%, C atoms 4.4%, N atoms 0.7% and Cu atoms 0.5%. These values were calculated using the Crystal Explorer 17.5 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). A special filter `by elements' was chosen during the calculation of the contributions of selected individual interactions to the total Hirshfeld surface. Qu­anti­tative physical properties of Hirshfeld surface for the title compound were also obtained, such as the mol­ecular volume (650.80 Å3), surface area (512.94 Å2), globularity (0.708), as well as sphericity (0.034). These properties provide significant information on the shape of the mol­ecules and may serve in the future to identify and establish correlations with other properties.

[Figure 6]
Figure 6
Two projections of Hirshfeld surfaces mapped over dnorm showing the inter­molecular inter­actions.
[Figure 7]
Figure 7
The overall two-dimensional fingerprint plot and those delineated into specified inter­actions. Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the Cu2(μ2-SO4)(Hpz)4 moiety [two Cu(Hpz)2 fragments connected through a bidentate-bridged SO4 ligand] revealed two hits: QITCAZ, a coordination compound based on 4-iodo-1H-pyrazole (Song et al., 2013[Song, G., Sun, Q., Hou, Y.-N., Zhan, R., Wei, D.-M., Shi, Zh. & Xing, Y.-H. (2013). Wuji Huaxue Xuebao, 29, 2150.]) and XACTUR, a 1H-pyrazole-containing complex (Shen et al., 2004[Shen, W.-Z., Yi, L., Cheng, P., Yan, S.-P., Liao, D.-Z. & Jiang, Z.-H. (2004). Inorg. Chem. Commun. 7, 819-822.]). These structures are similar to the title compound. Moreover there are 23 hits for the Cu(C3N2)2SO4 moiety, where C3N2 is the backbone of the pyrazole ring. Most similar to the title compound are two catena-[(μ2-sulfato)­bis­(3,5-dimethyl-1H-pyrazole)­aqua­copper(II)dihydrate] complexes: EHOMEU (Wang et al., 2010[Wang, S.-Q. & Jian, F.-F. (2010). Z. Kristallogr. New Cryst. Struct. 225, 683-684.]) and EHOMEU01 (Gogoi et al., 2019[Gogoi, A., Nashre-ul-Islam, S. M., Frontera, A. & Bhattacharyya, M. K. (2019). Inorg. Chim. Acta, 484, 133-141.]); FITCUI, a complex based on 2-thienyl-1H-pyrazole (Pettinari et al., 2014[Pettinari, C., Marchetti, F., Orbisaglia, S., Palmucci, J., Pettinari, R., Di Nicola, C., Skelton, W. B. & White, A. H. (2014). Eur. J. Inorg. Chem. pp. 546-558.]); ZZZALD01 a tetra­kis­(pyrazole)(sulfato-O)copper(II) monohydrate (Shen et al., 2004[Shen, W.-Z., Yi, L., Cheng, P., Yan, S.-P., Liao, D.-Z. & Jiang, Z.-H. (2004). Inorg. Chem. Commun. 7, 819-822.]); two monohydrated tetra­pyrazole sulfato copper(II) complexes: LUNDAB (Kumar et al., 2014[Kumar, V., Kundu, A., Singh, M., Ramanujachary, K. V. & Ramanan, A. (2014). J. Chem. Sci. 126, 1433-1442.]) and LUNDAB01 (Zerguini et al., 2019[Zerguini, A. L., Cherouana, A., Duparc, V. H. & Schaper, F. (2019). Inorg. Chem. Commun. 99, 36-39.]).

6. Synthesis and crystallization

The synthesis of [Cu(SO4)(Hdmpz)4]n was conducted at room temperature by the oxidative dissolution method as a result of the addition of a copper powder (1.56 mmol, 0.1 g) and anhydrous copper(II) sulfate (3.1 mmol, 0.5 g) mixture to an aceto­nitrile (9 ml) solution of 3,5-dimethyl-1H-pyrazole (4.68 mmol, 0.45g). The mixture was stirred without heating for three h with free air access until dissolution of the copper powder and a gray–blue precipitate of the product was obtained (the precipitate weight was 0.86 g). The precipitate was filtered off and the obtained green–blue solution was analyzed. Clear, intense blue crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the solvent at room temperature in an open vessel. The relative yield of the single-crystal portion of the product with respect to the ligand was approximately 7%. The obtained blue crystals were studied by elemental analysis (calculated for C20H32CuN8O4S: C 44.1%, H 5.9%, N 20.6%, found: C 44.5%, H 6.3%, N 21%). The elemental analysis data of the obtained grey–blue precipitate was: found C 36.8%, H 5.5%, N 17.2%. IR spectra of the starting 3,5-dimethyl-1H-pyrazole, grey–blue precipitate and clear, intense blue crystals of the title coordination polymer are given in the supporting information for this article.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Refinement of the N—H bond lengths was attempted, but this provided unrealistic values. Thus, hydrogens were placed at calculated positions and refined as riding with Uiso(H) = 1.2Ueq(N, C) or 1.5Ueq(C-meth­yl). The crystal studied was refined as a two-component inversion twin.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(SO4)(C5H8N2)4]
Mr 544.13
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 19.3656 (6), 28.4032 (6), 19.3456 (5)
V3) 10641.0 (5)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.94
Crystal size (mm) 0.35 × 0.25 × 0.25
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.907, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 119732, 22862, 14389
Rint 0.062
(sin θ/λ)max−1) 0.690
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.133, 1.03
No. of reflections 22862
No. of parameters 1234
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.19, −0.30
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.479 (15)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[tetrakis(3,5-dimethyl-1H-pyrazole-κN2)copper(II)]-µ2-sulfato-κ2O:O'] top
Crystal data top
[Cu(SO4)(C5H8N2)4]Dx = 1.359 Mg m3
Mr = 544.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 24752 reflections
a = 19.3656 (6) Åθ = 2.1–24.0°
b = 28.4032 (6) ŵ = 0.94 mm1
c = 19.3456 (5) ÅT = 293 K
V = 10641.0 (5) Å3Prism, clear intense blue
Z = 160.35 × 0.25 × 0.25 mm
F(000) = 4560
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
22862 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source14389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 16.1593 pixels mm-1θmax = 29.4°, θmin = 1.7°
ω scansh = 2626
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
k = 3936
Tmin = 0.907, Tmax = 1.000l = 2226
119732 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0546P)2 + 4.6894P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.133(Δ/σ)max = 0.001
S = 1.03Δρmax = 1.19 e Å3
22862 reflectionsΔρmin = 0.30 e Å3
1234 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.479 (15)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.32732 (4)0.08172 (3)0.47991 (5)0.0381 (2)
Cu20.35680 (4)0.33019 (3)0.49183 (4)0.0366 (2)
Cu30.34772 (4)0.57922 (3)0.51712 (5)0.0386 (2)
Cu40.31888 (4)0.83027 (3)0.50659 (4)0.0383 (2)
S10.38041 (9)0.20005 (5)0.50836 (11)0.0453 (4)
S20.33477 (9)0.45147 (5)0.54082 (11)0.0425 (5)
S30.29310 (9)0.69962 (5)0.48845 (12)0.0482 (5)
S40.34086 (9)0.94986 (5)0.45316 (11)0.0415 (4)
O10.3364 (2)0.16205 (14)0.4818 (3)0.0518 (14)
O20.3542 (2)0.24597 (13)0.4860 (3)0.0507 (13)
O30.3800 (3)0.19749 (17)0.5846 (3)0.0574 (15)
O40.4509 (2)0.19497 (15)0.4824 (3)0.0612 (15)
O50.3613 (2)0.41241 (13)0.4991 (3)0.0495 (14)
O60.3581 (2)0.49625 (14)0.5126 (3)0.0526 (14)
O70.2586 (2)0.44992 (15)0.5392 (3)0.0572 (14)
O80.3598 (3)0.44762 (16)0.6120 (3)0.0603 (16)
O90.3357 (2)0.66123 (14)0.5160 (4)0.0570 (15)
O100.3188 (3)0.74469 (14)0.5145 (3)0.0603 (15)
O110.2977 (3)0.69918 (17)0.4129 (3)0.0629 (16)
O120.2213 (3)0.69417 (17)0.5107 (4)0.0710 (16)
O130.3157 (2)0.91247 (13)0.4997 (3)0.0486 (14)
O140.3186 (2)0.99611 (14)0.4783 (3)0.0516 (14)
O150.3144 (3)0.94324 (18)0.3832 (3)0.0599 (16)
O160.4168 (2)0.94793 (16)0.4532 (3)0.0537 (14)
N10.4125 (3)0.07577 (18)0.5413 (3)0.0406 (14)
N20.4699 (3)0.10224 (17)0.5263 (3)0.0421 (13)
H20.4714690.1234440.4946240.050*
N30.3918 (3)0.07707 (17)0.3958 (3)0.0371 (13)
N40.4314 (3)0.03765 (18)0.3906 (3)0.0406 (14)
H40.4314930.0151660.4204040.049*
N50.2660 (3)0.08838 (18)0.5646 (3)0.0402 (14)
N60.2834 (3)0.12205 (18)0.6108 (3)0.0492 (15)
H60.3166910.1416890.6047790.059*
N70.2437 (3)0.07873 (18)0.4170 (3)0.0404 (15)
N80.2337 (3)0.03829 (18)0.3801 (3)0.0404 (14)
H80.2619530.0149450.3800520.048*
N90.4407 (3)0.32578 (17)0.5546 (3)0.0363 (13)
N100.4483 (3)0.28685 (18)0.5947 (3)0.0412 (14)
H100.4157300.2668510.6019780.049*
N110.4228 (3)0.32439 (18)0.4100 (3)0.0401 (14)
N120.4621 (3)0.28530 (19)0.4079 (3)0.0473 (15)
H120.4596400.2625460.4371350.057*
N130.2952 (3)0.32716 (17)0.5767 (3)0.0374 (14)
N140.3102 (3)0.35464 (17)0.6314 (3)0.0401 (14)
H140.3421570.3756860.6306560.048*
N150.2751 (3)0.33851 (18)0.4275 (3)0.0410 (15)
N160.2360 (3)0.37800 (19)0.4357 (3)0.0507 (16)
H160.2410340.3978620.4688890.061*
N170.4299 (3)0.57622 (18)0.5830 (3)0.0408 (14)
N180.4410 (3)0.53691 (18)0.6198 (3)0.0425 (14)
H180.4131430.5133450.6200480.051*
N190.4139 (3)0.58823 (18)0.4359 (3)0.0400 (14)
N200.4009 (3)0.62485 (18)0.3930 (3)0.0431 (14)
H200.3670470.6441270.3980580.052*
N210.2827 (3)0.57547 (17)0.5999 (3)0.0407 (14)
N220.2421 (3)0.53702 (18)0.6081 (3)0.0416 (15)
H220.2369050.5157740.5768720.050*
N230.2662 (3)0.57376 (18)0.4494 (3)0.0414 (14)
N240.2100 (3)0.60092 (19)0.4590 (4)0.0542 (16)
H240.2047440.6197560.4933540.065*
N250.4015 (3)0.84053 (18)0.5680 (3)0.0398 (14)
N260.4448 (3)0.87635 (17)0.5545 (3)0.0435 (14)
H260.4389450.8959190.5210620.052*
N270.3831 (3)0.82429 (18)0.4231 (3)0.0389 (14)
N280.3720 (3)0.85335 (18)0.3675 (3)0.0409 (14)
H280.3389360.8734730.3651240.049*
N290.2546 (3)0.82565 (18)0.5892 (3)0.0409 (14)
N300.2132 (3)0.78693 (19)0.5931 (3)0.0476 (15)
H300.2137890.7642590.5636710.057*
N310.2358 (3)0.82528 (17)0.4430 (3)0.0362 (13)
N320.2305 (3)0.78826 (18)0.3996 (3)0.0433 (15)
H320.2633250.7685550.3920300.052*
C10.5230 (4)0.0909 (3)0.5672 (4)0.055 (2)
C20.5895 (4)0.1169 (3)0.5600 (5)0.076 (3)
H2A0.6218930.0977510.5350500.114*
H2B0.5816030.1456610.5351000.114*
H2C0.6076630.1239910.6049300.114*
C30.5007 (4)0.0559 (3)0.6100 (5)0.064 (2)
H30.5262990.0408520.6441640.077*
C40.4319 (4)0.0468 (2)0.5924 (4)0.0472 (19)
C50.3846 (4)0.0124 (3)0.6251 (5)0.067 (2)
H5A0.3564330.0281300.6587160.100*
H5B0.3555430.0015300.5903560.100*
H5C0.4110530.0119000.6473360.100*
C60.4698 (4)0.0382 (2)0.3339 (4)0.0493 (19)
C70.5150 (4)0.0028 (3)0.3150 (5)0.074 (3)
H7A0.5417540.0121110.3545410.110*
H7B0.4867840.0287610.3003310.110*
H7C0.5455140.0060790.2781110.110*
C80.4558 (4)0.0797 (2)0.3010 (4)0.057 (2)
H8A0.4754690.0902050.2599710.069*
C90.4068 (4)0.1032 (2)0.3403 (4)0.0433 (17)
C100.3741 (5)0.1494 (2)0.3269 (4)0.064 (2)
H10A0.3707880.1542400.2778920.095*
H10B0.3286880.1500700.3468320.095*
H10C0.4016480.1739900.3469720.095*
C110.2429 (5)0.1213 (3)0.6671 (5)0.064 (2)
C120.2525 (5)0.1557 (3)0.7255 (5)0.091 (3)
H12A0.2288090.1444540.7658430.137*
H12B0.3008690.1588340.7355830.137*
H12C0.2341590.1858040.7124330.137*
C130.1985 (5)0.0846 (3)0.6565 (5)0.065 (2)
H130.1637810.0747780.6864070.078*
C140.2144 (4)0.0648 (2)0.5933 (4)0.0498 (19)
C150.1806 (4)0.0235 (2)0.5586 (5)0.065 (2)
H15A0.1648510.0327390.5135120.098*
H15B0.2132110.0017910.5542320.098*
H15C0.1419410.0131890.5857220.098*
C160.1745 (4)0.0393 (2)0.3441 (4)0.0472 (18)
C170.1537 (4)0.0010 (3)0.2990 (6)0.069 (3)
H17A0.1835020.0023950.2594730.104*
H17B0.1068200.0033000.2840580.104*
H17C0.1572350.0298760.3246440.104*
C180.1448 (4)0.0824 (3)0.3581 (5)0.058 (2)
H18A0.1033910.0938390.3406510.069*
C190.1889 (4)0.1050 (2)0.4032 (4)0.0492 (19)
C200.1813 (4)0.1533 (2)0.4351 (5)0.074 (3)
H20A0.1502870.1515290.4737820.111*
H20B0.2255770.1642190.4505220.111*
H20C0.1630770.1747490.4014020.111*
C210.5111 (4)0.2829 (2)0.6214 (4)0.0485 (18)
C220.5304 (5)0.2404 (3)0.6634 (4)0.069 (2)
H22A0.5591900.2498270.7013520.104*
H22B0.5549960.2184500.6348180.104*
H22C0.4892840.2257220.6809240.104*
C230.5467 (4)0.3217 (3)0.6007 (4)0.0514 (19)
H230.5918770.3294260.6121650.062*
C240.5018 (4)0.3476 (2)0.5585 (4)0.0426 (16)
C250.5174 (4)0.3928 (2)0.5231 (5)0.060 (2)
H25A0.5663280.3981680.5234570.090*
H25B0.4945080.4181300.5466740.090*
H25C0.5013750.3913730.4761330.090*
C260.5061 (4)0.2867 (3)0.3537 (4)0.056 (2)
C270.5556 (6)0.2466 (3)0.3427 (6)0.104 (4)
H27A0.5885530.2549030.3076650.156*
H27B0.5794030.2399430.3851450.156*
H27C0.5302730.2192730.3283550.156*
C280.4935 (5)0.3277 (3)0.3192 (4)0.064 (2)
H28A0.5155040.3382840.2793640.077*
C290.4408 (4)0.3507 (2)0.3557 (4)0.0505 (19)
C300.4076 (5)0.3971 (3)0.3412 (4)0.071 (3)
H30A0.3622960.3920720.3224930.107*
H30B0.4350850.4142490.3084440.107*
H30C0.4041230.4148090.3833130.107*
C310.2715 (4)0.3463 (2)0.6863 (4)0.0489 (18)
C320.2785 (5)0.3752 (3)0.7511 (4)0.071 (2)
H32A0.2609130.4063190.7427530.106*
H32B0.2527430.3607590.7877630.106*
H32C0.3262930.3771490.7639030.106*
C330.2287 (4)0.3101 (3)0.6676 (4)0.059 (2)
H330.1954320.2958380.6952240.070*
C340.2444 (4)0.2987 (2)0.5991 (4)0.0462 (19)
C350.2102 (4)0.2627 (3)0.5545 (5)0.067 (2)
H35A0.2274120.2320310.5661200.101*
H35B0.1611820.2636410.5620700.101*
H35C0.2198220.2693010.5068400.101*
C360.1892 (4)0.3819 (3)0.3860 (5)0.062 (2)
C370.1406 (5)0.4231 (3)0.3818 (6)0.099 (4)
H37A0.0938110.4119650.3828560.148*
H37B0.1483710.4437650.4203050.148*
H37C0.1484810.4399460.3394550.148*
C380.1967 (5)0.3428 (3)0.3447 (5)0.065 (2)
H380.1706900.3355380.3057570.078*
C390.2504 (4)0.3164 (2)0.3720 (4)0.0490 (19)
C400.2795 (5)0.2713 (3)0.3473 (5)0.073 (3)
H40A0.2561850.2618970.3057810.110*
H40B0.3278450.2752170.3380110.110*
H40C0.2733450.2476270.3821410.110*
C410.4994 (4)0.5381 (3)0.6556 (4)0.0498 (19)
C420.5231 (4)0.4972 (3)0.6985 (5)0.077 (3)
H42A0.5169800.5043590.7466210.116*
H42B0.5710740.4911730.6895280.116*
H42C0.4964940.4697860.6868750.116*
C430.5285 (4)0.5809 (3)0.6422 (4)0.056 (2)
H430.5697990.5923590.6599650.067*
C440.4843 (4)0.6040 (2)0.5965 (4)0.0471 (18)
C450.4919 (4)0.6522 (2)0.5650 (5)0.070 (2)
H45A0.5392990.6619290.5680930.104*
H45B0.4781790.6511090.5173730.104*
H45C0.4632790.6741390.5894830.104*
C460.4464 (4)0.6273 (3)0.3424 (4)0.0526 (19)
C470.4456 (5)0.6662 (3)0.2898 (4)0.078 (3)
H47A0.4529220.6532320.2445930.117*
H47B0.4016220.6818920.2910630.117*
H47C0.4815120.6884320.3000530.117*
C480.4908 (4)0.5902 (3)0.3515 (4)0.056 (2)
H480.5285110.5824950.3240450.068*
C490.4680 (4)0.5665 (2)0.4099 (4)0.0431 (18)
C500.4983 (4)0.5240 (2)0.4440 (5)0.066 (2)
H50A0.4624920.5067130.4669470.098*
H50B0.5323560.5337150.4771410.098*
H50C0.5196660.5043840.4096810.098*
C510.2114 (4)0.5354 (2)0.6688 (4)0.0495 (19)
C520.1679 (4)0.4945 (3)0.6911 (6)0.072 (3)
H52A0.1832950.4665510.6678290.108*
H52B0.1721450.4902910.7401290.108*
H52C0.1204650.5004710.6795290.108*
C530.2305 (4)0.5758 (3)0.7027 (4)0.0517 (19)
H530.2160450.5854990.7462690.062*
C540.2752 (4)0.5990 (2)0.6595 (4)0.0454 (17)
C550.3139 (5)0.6447 (3)0.6737 (5)0.072 (3)
H55A0.2935840.6697710.6473700.109*
H55B0.3614460.6410880.6607260.109*
H55C0.3110950.6520690.7220960.109*
C560.1634 (4)0.5951 (3)0.4085 (5)0.069 (3)
C570.0974 (5)0.6235 (3)0.4060 (6)0.105 (4)
H57A0.0602250.6051840.4247500.157*
H57B0.1030450.6517240.4327400.157*
H57C0.0870550.6316840.3589300.157*
C580.1910 (5)0.5612 (3)0.3649 (5)0.078 (3)
H580.1708090.5488580.3252560.094*
C590.2541 (4)0.5495 (3)0.3921 (5)0.053 (2)
C600.3040 (5)0.5152 (3)0.3616 (5)0.076 (3)
H60A0.2928850.5102940.3137980.114*
H60B0.3500550.5274940.3653180.114*
H60C0.3010450.4858840.3860080.114*
C610.4981 (4)0.8783 (3)0.5986 (4)0.059 (2)
C620.5536 (5)0.9155 (3)0.5916 (6)0.096 (4)
H62A0.5499220.9374390.6291680.143*
H62B0.5478860.9318590.5485730.143*
H62C0.5982040.9007640.5926790.143*
C630.4896 (4)0.8416 (3)0.6425 (5)0.062 (2)
H630.5185630.8336410.6790170.075*
C640.4295 (4)0.8180 (2)0.6230 (4)0.050 (2)
C650.3958 (5)0.7755 (3)0.6532 (5)0.077 (3)
H65A0.3662720.7847780.6906520.115*
H65B0.3688920.7600190.6182720.115*
H65C0.4306520.7543780.6700420.115*
C660.4183 (4)0.8468 (2)0.3178 (4)0.0473 (18)
C670.4217 (5)0.8754 (3)0.2557 (4)0.068 (2)
H67A0.4685480.8770740.2396900.102*
H67B0.3932680.8615640.2205000.102*
H67C0.4052980.9065740.2658400.102*
C680.4596 (4)0.8108 (3)0.3422 (4)0.055 (2)
H680.4965300.7973690.3185490.066*
C690.4375 (4)0.7979 (2)0.4067 (4)0.0422 (19)
C700.4662 (4)0.7622 (3)0.4553 (5)0.067 (2)
H70A0.4831030.7776730.4960450.100*
H70B0.4305730.7403030.4678850.100*
H70C0.5034030.7455430.4333650.100*
C710.2370 (4)0.8513 (2)0.6433 (4)0.0496 (19)
C720.2728 (5)0.8978 (3)0.6572 (5)0.080 (3)
H72A0.2443980.9232010.6408990.120*
H72B0.2802480.9012710.7060290.120*
H72C0.3163880.8984210.6336290.120*
C730.1851 (4)0.8299 (3)0.6812 (4)0.063 (2)
H730.1638230.8413810.7208870.076*
C740.1716 (4)0.7884 (3)0.6479 (5)0.058 (2)
C750.1211 (5)0.7494 (3)0.6620 (6)0.086 (3)
H75A0.0756260.7624640.6671020.129*
H75B0.1213660.7275040.6242920.129*
H75C0.1339460.7335040.7038520.129*
C760.1681 (4)0.7857 (2)0.3697 (4)0.052 (2)
C770.1515 (5)0.7477 (3)0.3181 (6)0.090 (3)
H77A0.1583520.7174330.3391910.135*
H77B0.1042220.7506330.3037610.135*
H77C0.1811920.7506730.2786510.135*
C780.1310 (4)0.8229 (3)0.3945 (4)0.055 (2)
H780.0856620.8304450.3833810.066*
C790.1740 (3)0.8474 (2)0.4397 (4)0.0445 (17)
C800.1588 (4)0.8913 (2)0.4792 (5)0.068 (2)
H80A0.1156200.9042450.4639070.102*
H80B0.1559500.8840950.5276470.102*
H80C0.1950000.9137150.4715270.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0354 (4)0.0381 (4)0.0408 (6)0.0023 (3)0.0030 (4)0.0003 (4)
Cu20.0354 (4)0.0365 (4)0.0380 (5)0.0001 (3)0.0027 (4)0.0004 (4)
Cu30.0340 (4)0.0375 (4)0.0443 (6)0.0002 (3)0.0000 (4)0.0033 (4)
Cu40.0361 (4)0.0427 (4)0.0363 (5)0.0003 (3)0.0013 (4)0.0022 (4)
S10.0503 (10)0.0279 (7)0.0578 (13)0.0068 (7)0.0034 (10)0.0005 (8)
S20.0462 (10)0.0256 (8)0.0556 (13)0.0035 (7)0.0002 (9)0.0013 (8)
S30.0541 (11)0.0306 (8)0.0598 (14)0.0086 (7)0.0045 (10)0.0009 (9)
S40.0467 (10)0.0276 (8)0.0502 (12)0.0015 (7)0.0062 (9)0.0039 (8)
O10.059 (3)0.030 (2)0.066 (4)0.011 (2)0.001 (3)0.001 (3)
O20.063 (3)0.028 (2)0.061 (4)0.0023 (19)0.008 (3)0.004 (3)
O30.072 (4)0.052 (3)0.049 (4)0.020 (3)0.003 (3)0.001 (3)
O40.049 (3)0.048 (3)0.086 (4)0.004 (2)0.008 (3)0.009 (3)
O50.050 (3)0.030 (2)0.069 (4)0.0009 (18)0.003 (3)0.012 (2)
O60.057 (3)0.030 (2)0.071 (4)0.0073 (19)0.003 (3)0.001 (3)
O70.045 (3)0.048 (3)0.078 (4)0.005 (2)0.003 (3)0.014 (3)
O80.077 (4)0.048 (3)0.056 (4)0.010 (3)0.008 (3)0.004 (3)
O90.070 (3)0.029 (2)0.072 (4)0.008 (2)0.002 (3)0.004 (3)
O100.087 (4)0.025 (2)0.069 (4)0.007 (2)0.001 (3)0.003 (3)
O110.076 (4)0.057 (3)0.055 (4)0.020 (3)0.003 (3)0.004 (3)
O120.057 (3)0.062 (3)0.094 (5)0.002 (2)0.016 (3)0.001 (3)
O130.051 (3)0.029 (2)0.066 (4)0.0021 (18)0.001 (3)0.007 (2)
O140.061 (3)0.029 (2)0.064 (4)0.005 (2)0.000 (3)0.001 (3)
O150.073 (4)0.060 (3)0.046 (4)0.010 (3)0.017 (3)0.002 (3)
O160.043 (3)0.050 (3)0.069 (4)0.001 (2)0.003 (3)0.017 (3)
N10.039 (3)0.038 (3)0.044 (4)0.005 (2)0.002 (3)0.004 (3)
N20.040 (3)0.037 (3)0.049 (4)0.003 (2)0.002 (3)0.001 (3)
N30.035 (3)0.032 (3)0.044 (4)0.000 (2)0.001 (3)0.002 (3)
N40.041 (3)0.040 (3)0.041 (4)0.007 (3)0.001 (3)0.005 (3)
N50.041 (3)0.032 (3)0.047 (4)0.001 (2)0.001 (3)0.004 (3)
N60.055 (4)0.039 (3)0.054 (4)0.010 (3)0.003 (3)0.007 (3)
N70.040 (3)0.035 (3)0.047 (4)0.001 (3)0.003 (3)0.003 (3)
N80.039 (3)0.036 (3)0.045 (4)0.002 (2)0.007 (3)0.000 (3)
N90.036 (3)0.030 (3)0.042 (4)0.000 (2)0.000 (3)0.004 (2)
N100.052 (4)0.034 (3)0.038 (4)0.006 (3)0.000 (3)0.004 (2)
N110.047 (4)0.028 (3)0.046 (4)0.003 (2)0.007 (3)0.002 (3)
N120.051 (4)0.042 (3)0.049 (4)0.003 (3)0.011 (3)0.005 (3)
N130.039 (3)0.036 (3)0.037 (4)0.006 (2)0.005 (3)0.003 (3)
N140.045 (3)0.034 (3)0.041 (4)0.004 (2)0.003 (3)0.003 (3)
N150.039 (3)0.034 (3)0.050 (4)0.004 (3)0.004 (3)0.006 (3)
N160.048 (4)0.044 (3)0.060 (4)0.001 (3)0.013 (3)0.001 (3)
N170.044 (4)0.034 (3)0.044 (4)0.002 (3)0.006 (3)0.004 (3)
N180.045 (3)0.038 (3)0.044 (4)0.003 (2)0.001 (3)0.006 (3)
N190.040 (3)0.030 (3)0.050 (4)0.001 (2)0.000 (3)0.004 (3)
N200.046 (3)0.039 (3)0.044 (4)0.003 (3)0.002 (3)0.001 (3)
N210.044 (3)0.029 (3)0.049 (4)0.004 (2)0.004 (3)0.001 (3)
N220.037 (3)0.032 (3)0.056 (4)0.001 (2)0.001 (3)0.004 (3)
N230.031 (3)0.043 (3)0.050 (4)0.001 (2)0.002 (3)0.004 (3)
N240.039 (3)0.048 (3)0.076 (5)0.001 (3)0.002 (3)0.004 (3)
N250.050 (4)0.036 (3)0.033 (3)0.003 (3)0.009 (3)0.004 (3)
N260.044 (3)0.037 (3)0.049 (4)0.001 (3)0.008 (3)0.004 (3)
N270.038 (3)0.040 (3)0.039 (4)0.007 (3)0.001 (3)0.000 (3)
N280.045 (3)0.039 (3)0.039 (4)0.003 (3)0.005 (3)0.002 (3)
N290.043 (3)0.037 (3)0.043 (4)0.002 (3)0.009 (3)0.002 (3)
N300.050 (4)0.042 (3)0.050 (4)0.002 (3)0.010 (3)0.001 (3)
N310.031 (3)0.037 (3)0.041 (4)0.000 (2)0.002 (3)0.005 (3)
N320.039 (3)0.036 (3)0.054 (4)0.000 (3)0.002 (3)0.003 (3)
C10.040 (4)0.064 (5)0.061 (5)0.005 (4)0.012 (4)0.017 (4)
C20.048 (5)0.103 (7)0.076 (7)0.012 (4)0.011 (5)0.011 (5)
C30.063 (5)0.063 (5)0.067 (6)0.008 (4)0.021 (5)0.002 (5)
C40.055 (5)0.037 (4)0.050 (5)0.004 (3)0.005 (4)0.001 (3)
C50.081 (6)0.062 (5)0.057 (6)0.009 (4)0.019 (5)0.009 (4)
C60.041 (4)0.051 (4)0.056 (5)0.007 (3)0.002 (4)0.005 (4)
C70.064 (6)0.063 (5)0.093 (8)0.004 (4)0.014 (5)0.016 (5)
C80.070 (5)0.056 (4)0.047 (5)0.008 (4)0.012 (4)0.008 (4)
C90.049 (4)0.043 (4)0.038 (4)0.014 (3)0.009 (3)0.001 (3)
C100.087 (6)0.043 (4)0.061 (6)0.007 (4)0.005 (5)0.016 (4)
C110.083 (6)0.055 (5)0.055 (6)0.011 (4)0.017 (5)0.010 (4)
C120.114 (8)0.092 (7)0.068 (7)0.018 (6)0.024 (6)0.033 (5)
C130.072 (6)0.062 (5)0.061 (6)0.011 (4)0.024 (5)0.005 (4)
C140.051 (5)0.039 (4)0.060 (5)0.003 (3)0.008 (4)0.002 (4)
C150.050 (5)0.057 (4)0.089 (7)0.022 (4)0.009 (5)0.013 (4)
C160.040 (4)0.054 (4)0.048 (5)0.007 (3)0.006 (4)0.003 (3)
C170.059 (6)0.082 (6)0.066 (7)0.014 (4)0.012 (5)0.018 (5)
C180.039 (4)0.066 (5)0.069 (6)0.011 (4)0.009 (4)0.008 (4)
C190.042 (4)0.037 (4)0.069 (6)0.004 (3)0.006 (4)0.007 (4)
C200.055 (5)0.041 (4)0.126 (9)0.011 (4)0.002 (5)0.004 (5)
C210.057 (5)0.047 (4)0.042 (4)0.003 (4)0.012 (4)0.004 (3)
C220.088 (6)0.062 (5)0.057 (6)0.004 (4)0.025 (5)0.014 (4)
C230.042 (4)0.061 (5)0.051 (5)0.000 (4)0.009 (4)0.002 (4)
C240.041 (4)0.039 (3)0.048 (4)0.000 (3)0.002 (3)0.005 (3)
C250.046 (4)0.059 (4)0.076 (6)0.018 (3)0.002 (4)0.016 (4)
C260.054 (5)0.063 (5)0.052 (5)0.005 (4)0.015 (4)0.016 (4)
C270.109 (9)0.095 (7)0.107 (10)0.024 (7)0.043 (8)0.019 (6)
C280.078 (6)0.071 (5)0.044 (5)0.014 (5)0.027 (5)0.009 (4)
C290.066 (5)0.045 (4)0.041 (5)0.018 (4)0.000 (4)0.004 (3)
C300.114 (8)0.050 (5)0.049 (5)0.005 (5)0.004 (5)0.010 (4)
C310.059 (5)0.045 (4)0.043 (5)0.006 (3)0.013 (4)0.004 (3)
C320.094 (7)0.073 (5)0.044 (5)0.006 (5)0.013 (5)0.007 (4)
C330.057 (5)0.060 (5)0.059 (6)0.003 (4)0.028 (4)0.008 (4)
C340.041 (4)0.038 (4)0.059 (6)0.008 (3)0.005 (4)0.003 (3)
C350.057 (5)0.062 (5)0.083 (7)0.020 (4)0.020 (5)0.013 (4)
C360.056 (5)0.052 (4)0.077 (6)0.000 (4)0.016 (5)0.017 (4)
C370.088 (7)0.077 (6)0.131 (10)0.029 (5)0.039 (7)0.015 (6)
C380.078 (6)0.065 (5)0.052 (5)0.013 (4)0.027 (5)0.007 (4)
C390.061 (5)0.043 (4)0.042 (5)0.009 (4)0.007 (4)0.007 (3)
C400.111 (8)0.050 (5)0.060 (6)0.010 (5)0.014 (6)0.010 (4)
C410.049 (5)0.060 (5)0.040 (5)0.008 (4)0.005 (4)0.004 (4)
C420.070 (6)0.090 (6)0.073 (7)0.012 (5)0.006 (5)0.030 (5)
C430.040 (4)0.072 (5)0.055 (5)0.001 (4)0.007 (4)0.001 (4)
C440.038 (4)0.047 (4)0.056 (5)0.005 (3)0.001 (4)0.001 (3)
C450.058 (5)0.051 (4)0.100 (7)0.012 (4)0.010 (5)0.004 (4)
C460.055 (5)0.054 (4)0.049 (5)0.009 (4)0.001 (4)0.007 (4)
C470.098 (7)0.086 (6)0.050 (5)0.002 (5)0.001 (5)0.026 (5)
C480.044 (4)0.063 (5)0.062 (6)0.004 (4)0.017 (4)0.002 (4)
C490.038 (4)0.032 (3)0.060 (5)0.004 (3)0.004 (4)0.002 (3)
C500.043 (4)0.050 (4)0.104 (7)0.006 (4)0.017 (5)0.004 (4)
C510.040 (4)0.043 (4)0.065 (6)0.003 (3)0.010 (4)0.009 (4)
C520.059 (6)0.073 (6)0.084 (8)0.013 (4)0.016 (5)0.019 (5)
C530.046 (4)0.061 (5)0.048 (5)0.005 (4)0.005 (4)0.000 (4)
C540.049 (4)0.037 (4)0.050 (5)0.003 (3)0.001 (4)0.004 (3)
C550.102 (7)0.047 (5)0.068 (7)0.017 (4)0.009 (5)0.014 (4)
C560.047 (5)0.061 (5)0.099 (8)0.009 (4)0.026 (5)0.032 (5)
C570.065 (6)0.100 (7)0.149 (11)0.012 (6)0.035 (7)0.023 (7)
C580.085 (7)0.069 (6)0.081 (7)0.019 (5)0.038 (6)0.001 (5)
C590.058 (5)0.046 (4)0.055 (5)0.006 (4)0.017 (4)0.003 (4)
C600.082 (6)0.074 (6)0.072 (7)0.002 (5)0.010 (5)0.016 (5)
C610.057 (5)0.058 (5)0.060 (5)0.001 (4)0.016 (4)0.013 (4)
C620.081 (7)0.097 (7)0.109 (9)0.038 (6)0.028 (6)0.012 (6)
C630.066 (5)0.055 (5)0.065 (6)0.013 (4)0.037 (5)0.008 (4)
C640.066 (5)0.042 (4)0.042 (5)0.012 (4)0.011 (4)0.001 (3)
C650.122 (8)0.053 (5)0.055 (6)0.002 (5)0.022 (6)0.016 (4)
C660.055 (5)0.041 (4)0.046 (5)0.007 (3)0.004 (4)0.011 (3)
C670.080 (6)0.076 (5)0.047 (5)0.006 (4)0.003 (4)0.004 (4)
C680.044 (4)0.064 (5)0.056 (5)0.000 (4)0.011 (4)0.014 (4)
C690.041 (4)0.036 (4)0.050 (5)0.001 (3)0.001 (4)0.005 (3)
C700.057 (5)0.057 (5)0.086 (7)0.021 (4)0.001 (5)0.005 (4)
C710.063 (5)0.046 (4)0.040 (5)0.010 (4)0.004 (4)0.002 (3)
C720.119 (8)0.054 (5)0.066 (6)0.005 (5)0.012 (6)0.009 (5)
C730.078 (6)0.069 (5)0.043 (5)0.010 (4)0.017 (5)0.003 (4)
C740.057 (5)0.056 (5)0.061 (6)0.007 (4)0.016 (4)0.011 (4)
C750.078 (7)0.084 (6)0.096 (8)0.021 (5)0.030 (6)0.017 (5)
C760.050 (5)0.048 (4)0.059 (5)0.012 (4)0.007 (4)0.004 (4)
C770.073 (7)0.072 (6)0.126 (9)0.020 (5)0.015 (6)0.033 (6)
C780.040 (4)0.059 (5)0.065 (6)0.002 (4)0.012 (4)0.003 (4)
C790.038 (4)0.041 (4)0.055 (5)0.005 (3)0.002 (4)0.005 (3)
C800.051 (5)0.058 (4)0.095 (7)0.018 (3)0.003 (5)0.012 (5)
Geometric parameters (Å, º) top
Cu1—O12.289 (4)C17—H17B0.9600
Cu1—O14i2.438 (4)C17—H17C0.9600
Cu1—N12.039 (6)C18—H18A0.9300
Cu1—N32.054 (6)C18—C191.379 (11)
Cu1—N52.033 (6)C19—C201.510 (10)
Cu1—N72.028 (6)C20—H20A0.9600
Cu2—O22.395 (4)C20—H20B0.9602
Cu2—O52.341 (4)C20—H20C0.9599
Cu2—N92.033 (6)C21—C221.504 (10)
Cu2—N112.042 (6)C21—C231.358 (10)
Cu2—N132.031 (6)C22—H22A0.9600
Cu2—N152.028 (6)C22—H22B0.9600
Cu3—O62.367 (4)C22—H22C0.9600
Cu3—O92.341 (4)C23—H230.9300
Cu3—N172.041 (6)C23—C241.401 (10)
Cu3—N192.044 (6)C24—C251.487 (9)
Cu3—N212.040 (6)C25—H25A0.9600
Cu3—N232.058 (6)C25—H25B0.9600
Cu4—O102.435 (4)C25—H25C0.9600
Cu4—O132.339 (4)C26—C271.504 (11)
Cu4—N252.014 (6)C26—C281.364 (11)
Cu4—N272.045 (6)C27—H27A0.9602
Cu4—N292.031 (6)C27—H27B0.9598
Cu4—N312.030 (6)C27—H27C0.9597
S1—O11.468 (5)C28—H28A0.9300
S1—O21.465 (4)C28—C291.403 (11)
S1—O31.477 (6)C29—C301.493 (10)
S1—O41.462 (5)C30—H30A0.9600
S2—O51.465 (5)C30—H30B0.9600
S2—O61.456 (5)C30—H30C0.9600
S2—O71.475 (5)C31—C321.504 (10)
S2—O81.463 (6)C31—C331.369 (10)
S3—O91.468 (5)C32—H32A0.9599
S3—O101.463 (5)C32—H32B0.9602
S3—O111.465 (6)C32—H32C0.9600
S3—O121.465 (5)C33—H330.9300
S4—O131.475 (5)C33—C341.398 (11)
S4—O141.466 (5)C34—C351.492 (10)
S4—O151.459 (6)C35—H35A0.9600
S4—O161.473 (5)C35—H35B0.9600
N1—N21.373 (7)C35—H35C0.9599
N1—C41.339 (9)C36—C371.506 (10)
N2—H20.8600C36—C381.374 (11)
N2—C11.338 (9)C37—H37A0.9596
N3—N41.361 (7)C37—H37B0.9601
N3—C91.338 (9)C37—H37C0.9604
N4—H40.8600C38—H380.9300
N4—C61.325 (9)C38—C391.387 (11)
N5—N61.351 (8)C39—C401.477 (11)
N5—C141.325 (9)C40—H40A0.9601
N6—H60.8600C40—H40B0.9599
N6—C111.343 (10)C40—H40C0.9598
N7—N81.365 (7)C41—C421.500 (10)
N7—C191.325 (9)C41—C431.364 (10)
N8—H80.8600C42—H42A0.9600
N8—C161.341 (9)C42—H42B0.9600
N9—N101.358 (7)C42—H42C0.9600
N9—C241.337 (8)C43—H430.9300
N10—H100.8600C43—C441.395 (10)
N10—C211.326 (9)C44—C451.505 (10)
N11—N121.347 (7)C45—H45A0.9601
N11—C291.335 (9)C45—H45B0.9600
N12—H120.8600C45—H45C0.9601
N12—C261.352 (9)C46—C471.503 (10)
N13—N141.347 (7)C46—C481.371 (10)
N13—C341.345 (8)C47—H47A0.9598
N14—H140.8600C47—H47B0.9607
N14—C311.322 (9)C47—H47C0.9599
N15—N161.362 (7)C48—H480.9300
N15—C391.333 (9)C48—C491.387 (11)
N16—H160.8600C49—C501.495 (10)
N16—C361.326 (9)C50—H50A0.9600
N17—N181.341 (7)C50—H50B0.9600
N17—C441.341 (8)C50—H50C0.9600
N18—H180.8600C51—C521.499 (10)
N18—C411.327 (9)C51—C531.372 (10)
N19—N201.355 (7)C52—H52A0.9600
N19—C491.315 (9)C52—H52B0.9599
N20—H200.8600C52—H52C0.9609
N20—C461.318 (9)C53—H530.9300
N21—N221.355 (7)C53—C541.371 (10)
N21—C541.342 (9)C54—C551.524 (10)
N22—H220.8600C55—H55A0.9600
N22—C511.316 (9)C55—H55B0.9600
N23—N241.346 (7)C55—H55C0.9600
N23—C591.324 (10)C56—C571.512 (11)
N24—H240.8600C56—C581.387 (13)
N24—C561.341 (10)C57—H57A0.9605
N25—N261.344 (7)C57—H57B0.9602
N25—C641.355 (9)C57—H57C0.9599
N26—H260.8600C58—H580.9300
N26—C611.340 (9)C58—C591.371 (11)
N27—N281.373 (7)C59—C601.494 (11)
N27—C691.331 (8)C60—H60A0.9599
N28—H280.8600C60—H60B0.9604
N28—C661.327 (9)C60—H60C0.9597
N29—N301.363 (7)C61—C621.512 (11)
N29—C711.319 (9)C61—C631.355 (11)
N30—H300.8600C62—H62A0.9600
N30—C741.332 (10)C62—H62B0.9600
N31—N321.350 (7)C62—H62C0.9600
N31—C791.354 (8)C63—H630.9300
N32—H320.8600C63—C641.396 (10)
N32—C761.341 (9)C64—C651.490 (11)
C1—C21.490 (10)C65—H65A0.9599
C1—C31.364 (11)C65—H65B0.9603
C2—H2A0.9605C65—H65C0.9604
C2—H2B0.9601C66—C671.453 (10)
C2—H2C0.9600C66—C681.382 (10)
C3—H30.9300C67—H67A0.9600
C3—C41.400 (11)C67—H67B0.9599
C4—C51.482 (10)C67—H67C0.9605
C5—H5A0.9599C68—H680.9300
C5—H5B0.9605C68—C691.369 (11)
C5—H5C0.9609C69—C701.492 (10)
C6—C71.504 (10)C70—H70A0.9603
C6—C81.366 (10)C70—H70B0.9599
C7—H7A0.9604C70—H70C0.9599
C7—H7B0.9602C71—C721.516 (11)
C7—H7C0.9599C71—C731.385 (10)
C8—H8A0.9300C72—H72A0.9603
C8—C91.386 (10)C72—H72B0.9601
C9—C101.482 (10)C72—H72C0.9600
C10—H10A0.9600C73—H730.9300
C10—H10B0.9600C73—C741.369 (11)
C10—H10C0.9600C74—C751.501 (11)
C11—C121.505 (11)C75—H75A0.9600
C11—C131.368 (11)C75—H75B0.9596
C12—H12A0.9596C75—H75C0.9600
C12—H12B0.9600C76—C771.505 (11)
C12—H12C0.9604C76—C781.365 (10)
C13—H130.9300C77—H77A0.9602
C13—C141.381 (11)C77—H77B0.9601
C14—C151.502 (10)C77—H77C0.9598
C15—H15A0.9599C78—H780.9300
C15—H15B0.9606C78—C791.393 (10)
C15—H15C0.9597C79—C801.490 (9)
C16—C171.495 (11)C80—H80A0.9599
C16—C181.378 (10)C80—H80B0.9599
C17—H17A0.9600C80—H80C0.9600
O1—Cu1—O14i179.5 (2)C16—C18—C19106.3 (6)
N1—Cu1—O190.64 (19)C19—C18—H18A126.8
N1—Cu1—O14i88.90 (19)N7—C19—C18111.0 (6)
N1—Cu1—N388.0 (2)N7—C19—C20120.5 (7)
N3—Cu1—O191.7 (2)C18—C19—C20128.5 (7)
N3—Cu1—O14i88.2 (2)C19—C20—H20A109.4
N5—Cu1—O186.5 (2)C19—C20—H20B109.5
N5—Cu1—O14i93.6 (2)C19—C20—H20C109.5
N5—Cu1—N190.6 (2)H20A—C20—H20B109.5
N5—Cu1—N3177.7 (2)H20A—C20—H20C109.5
N7—Cu1—O196.5 (2)H20B—C20—H20C109.5
N7—Cu1—O14i83.98 (19)N10—C21—C22120.4 (7)
N7—Cu1—N1172.8 (2)N10—C21—C23106.4 (6)
N7—Cu1—N390.4 (2)C23—C21—C22133.2 (7)
N7—Cu1—N591.2 (2)C21—C22—H22A109.5
O5—Cu2—O2178.8 (2)C21—C22—H22B109.5
N9—Cu2—O289.05 (19)C21—C22—H22C109.5
N9—Cu2—O589.76 (19)H22A—C22—H22B109.5
N9—Cu2—N1187.6 (2)H22A—C22—H22C109.5
N11—Cu2—O284.0 (2)H22B—C22—H22C109.5
N11—Cu2—O596.0 (2)C21—C23—H23126.8
N13—Cu2—O289.1 (2)C21—C23—C24106.4 (6)
N13—Cu2—O590.9 (2)C24—C23—H23126.8
N13—Cu2—N989.1 (2)N9—C24—C23109.7 (6)
N13—Cu2—N11172.4 (2)N9—C24—C25123.6 (6)
N15—Cu2—O294.08 (19)C23—C24—C25126.6 (7)
N15—Cu2—O587.11 (19)C24—C25—H25A109.5
N15—Cu2—N9176.5 (2)C24—C25—H25B109.5
N15—Cu2—N1191.2 (2)C24—C25—H25C109.5
N15—Cu2—N1392.4 (2)H25A—C25—H25B109.5
O9—Cu3—O6177.2 (3)H25A—C25—H25C109.5
N17—Cu3—O685.2 (2)H25B—C25—H25C109.5
N17—Cu3—O997.2 (2)N12—C26—C27119.2 (8)
N17—Cu3—N1989.8 (2)N12—C26—C28107.0 (7)
N17—Cu3—N23173.2 (2)C28—C26—C27133.8 (8)
N19—Cu3—O692.5 (2)C26—C27—H27A109.7
N19—Cu3—O986.0 (2)C26—C27—H27B109.6
N19—Cu3—N2390.1 (2)C26—C27—H27C109.1
N21—Cu3—O691.7 (2)H27A—C27—H27B109.5
N21—Cu3—O989.9 (2)H27A—C27—H27C109.5
N21—Cu3—N1789.4 (2)H27B—C27—H27C109.5
N21—Cu3—N19175.7 (2)C26—C28—H28A126.8
N21—Cu3—N2391.3 (2)C26—C28—C29106.3 (7)
N23—Cu3—O688.1 (2)C29—C28—H28A126.8
N23—Cu3—O989.6 (2)N11—C29—C28109.0 (7)
O13—Cu4—O10178.39 (17)N11—C29—C30122.0 (7)
N25—Cu4—O1096.2 (2)C28—C29—C30129.0 (7)
N25—Cu4—O1384.87 (19)C29—C30—H30A109.5
N25—Cu4—N2789.7 (2)C29—C30—H30B109.5
N25—Cu4—N2991.8 (2)C29—C30—H30C109.5
N25—Cu4—N31175.6 (2)H30A—C30—H30B109.5
N27—Cu4—O1088.1 (2)H30A—C30—H30C109.5
N27—Cu4—O1393.1 (2)H30B—C30—H30C109.5
N29—Cu4—O1083.4 (2)N14—C31—C32121.3 (7)
N29—Cu4—O1395.3 (2)N14—C31—C33105.4 (7)
N29—Cu4—N27171.5 (2)C33—C31—C32133.2 (7)
N31—Cu4—O1088.2 (2)C31—C32—H32A109.3
N31—Cu4—O1390.79 (19)C31—C32—H32B109.6
N31—Cu4—N2789.9 (2)C31—C32—H32C109.5
N31—Cu4—N2989.2 (2)H32A—C32—H32B109.5
O1—S1—O3108.0 (3)H32A—C32—H32C109.5
O2—S1—O1110.5 (3)H32B—C32—H32C109.5
O2—S1—O3109.7 (4)C31—C33—H33126.5
O4—S1—O1110.5 (3)C31—C33—C34107.0 (7)
O4—S1—O2108.0 (3)C34—C33—H33126.5
O4—S1—O3110.1 (4)N13—C34—C33109.0 (6)
O5—S2—O7108.4 (3)N13—C34—C35123.4 (7)
O6—S2—O5110.2 (3)C33—C34—C35127.6 (7)
O6—S2—O7109.1 (3)C34—C35—H35A109.4
O6—S2—O8108.4 (3)C34—C35—H35B109.4
O8—S2—O5110.2 (3)C34—C35—H35C109.6
O8—S2—O7110.4 (4)H35A—C35—H35B109.5
O10—S3—O9109.5 (3)H35A—C35—H35C109.5
O10—S3—O11109.3 (4)H35B—C35—H35C109.5
O10—S3—O12108.3 (3)N16—C36—C37122.1 (8)
O11—S3—O9108.7 (4)N16—C36—C38106.4 (7)
O11—S3—O12110.5 (4)C38—C36—C37131.5 (9)
O12—S3—O9110.4 (3)C36—C37—H37A109.4
O14—S4—O13110.2 (3)C36—C37—H37B109.6
O14—S4—O16109.1 (3)C36—C37—H37C109.5
O15—S4—O13110.9 (3)H37A—C37—H37B109.5
O15—S4—O14108.6 (3)H37A—C37—H37C109.5
O15—S4—O16110.3 (4)H37B—C37—H37C109.4
O16—S4—O13107.7 (3)C36—C38—H38126.4
S1—O1—Cu1141.5 (3)C36—C38—C39107.2 (7)
S1—O2—Cu2150.2 (3)C39—C38—H38126.4
S2—O5—Cu2140.8 (3)N15—C39—C38108.7 (7)
S2—O6—Cu3146.0 (3)N15—C39—C40122.1 (7)
S3—O9—Cu3143.0 (3)C38—C39—C40129.2 (8)
S3—O10—Cu4148.4 (4)C39—C40—H40A109.4
S4—O13—Cu4138.1 (3)C39—C40—H40B109.5
Cu1ii—O14—Cu1i175.78 (12)C39—C40—H40C109.5
S4—O14—Cu1i26.2 (2)H40A—C40—H40B109.5
S4—O14—Cu1ii151.4 (3)H40A—C40—H40C109.5
N2—N1—Cu1119.1 (4)H40B—C40—H40C109.5
C4—N1—Cu1135.0 (5)N18—C41—C42122.1 (7)
C4—N1—N2105.4 (6)N18—C41—C43105.9 (6)
N1—N2—H2124.3C43—C41—C42132.0 (8)
C1—N2—N1111.5 (6)C41—C42—H42A109.5
C1—N2—H2124.3C41—C42—H42B109.5
N4—N3—Cu1117.0 (4)C41—C42—H42C109.5
C9—N3—Cu1137.1 (5)H42A—C42—H42B109.5
C9—N3—N4105.9 (6)H42A—C42—H42C109.5
N3—N4—H4124.2H42B—C42—H42C109.5
C6—N4—N3111.6 (6)C41—C43—H43126.7
C6—N4—H4124.2C41—C43—C44106.7 (7)
N6—N5—Cu1116.9 (4)C44—C43—H43126.7
C14—N5—Cu1137.0 (5)N17—C44—C43109.1 (6)
C14—N5—N6105.7 (6)N17—C44—C45122.3 (7)
N5—N6—H6123.9C43—C44—C45128.6 (7)
C11—N6—N5112.3 (6)C44—C45—H45A109.4
C11—N6—H6123.9C44—C45—H45B109.5
N8—N7—Cu1117.5 (4)C44—C45—H45C109.5
C19—N7—Cu1137.5 (5)H45A—C45—H45B109.5
C19—N7—N8104.8 (6)H45A—C45—H45C109.5
N7—N8—H8124.0H45B—C45—H45C109.5
C16—N8—N7112.0 (6)N20—C46—C47122.3 (7)
C16—N8—H8124.0N20—C46—C48106.4 (7)
N10—N9—Cu2118.5 (4)C48—C46—C47131.2 (8)
C24—N9—Cu2135.4 (5)C46—C47—H47A109.5
C24—N9—N10104.5 (5)C46—C47—H47B109.4
N9—N10—H10123.6C46—C47—H47C109.6
C21—N10—N9112.9 (6)H47A—C47—H47B109.4
C21—N10—H10123.6H47A—C47—H47C109.5
N12—N11—Cu2116.3 (4)H47B—C47—H47C109.4
C29—N11—Cu2136.8 (5)C46—C48—H48126.9
C29—N11—N12106.9 (6)C46—C48—C49106.2 (7)
N11—N12—H12124.6C49—C48—H48126.9
N11—N12—C26110.8 (6)N19—C49—C48109.7 (6)
C26—N12—H12124.6N19—C49—C50121.5 (7)
N14—N13—Cu2118.9 (4)C48—C49—C50128.8 (7)
C34—N13—Cu2135.7 (5)C49—C50—H50A109.5
C34—N13—N14104.7 (6)C49—C50—H50B109.5
N13—N14—H14123.1C49—C50—H50C109.5
C31—N14—N13113.9 (6)H50A—C50—H50B109.5
C31—N14—H14123.1H50A—C50—H50C109.5
N16—N15—Cu2117.2 (5)H50B—C50—H50C109.5
C39—N15—Cu2136.0 (5)N22—C51—C52122.4 (7)
C39—N15—N16106.5 (6)N22—C51—C53106.0 (6)
N15—N16—H16124.4C53—C51—C52131.5 (8)
C36—N16—N15111.3 (6)C51—C52—H52A109.4
C36—N16—H16124.4C51—C52—H52B109.5
N18—N17—Cu3119.4 (4)C51—C52—H52C109.5
C44—N17—Cu3135.2 (5)H52A—C52—H52B109.5
C44—N17—N18105.1 (6)H52A—C52—H52C109.5
N17—N18—H18123.4H52B—C52—H52C109.5
C41—N18—N17113.1 (6)C51—C53—H53126.9
C41—N18—H18123.4C51—C53—C54106.3 (7)
N20—N19—Cu3116.8 (4)C54—C53—H53126.9
C49—N19—Cu3137.3 (5)N21—C54—C53110.6 (6)
C49—N19—N20105.9 (6)N21—C54—C55121.8 (7)
N19—N20—H20124.1C53—C54—C55127.6 (7)
C46—N20—N19111.8 (6)C54—C55—H55A109.5
C46—N20—H20124.1C54—C55—H55B109.5
N22—N21—Cu3119.5 (4)C54—C55—H55C109.5
C54—N21—Cu3135.7 (5)H55A—C55—H55B109.5
C54—N21—N22103.7 (6)H55A—C55—H55C109.5
N21—N22—H22123.4H55B—C55—H55C109.5
C51—N22—N21113.2 (6)N24—C56—C57121.8 (10)
C51—N22—H22123.4N24—C56—C58105.5 (7)
N24—N23—Cu3119.3 (5)C58—C56—C57132.6 (9)
C59—N23—Cu3135.0 (5)C56—C57—H57A109.4
C59—N23—N24105.7 (6)C56—C57—H57B109.4
N23—N24—H24124.0C56—C57—H57C109.7
C56—N24—N23111.9 (7)H57A—C57—H57B109.5
C56—N24—H24124.0H57A—C57—H57C109.4
N26—N25—Cu4119.4 (4)H57B—C57—H57C109.5
N26—N25—C64105.1 (6)C56—C58—H58126.9
C64—N25—Cu4135.5 (5)C59—C58—C56106.2 (8)
N25—N26—H26123.6C59—C58—H58126.9
C61—N26—N25112.8 (6)N23—C59—C58110.7 (8)
C61—N26—H26123.6N23—C59—C60123.7 (7)
N28—N27—Cu4118.3 (4)C58—C59—C60125.6 (8)
C69—N27—Cu4135.8 (5)C59—C60—H60A109.4
C69—N27—N28105.9 (6)C59—C60—H60B109.5
N27—N28—H28123.9C59—C60—H60C109.5
C66—N28—N27112.2 (6)H60A—C60—H60B109.5
C66—N28—H28123.9H60A—C60—H60C109.5
N30—N29—Cu4117.1 (4)H60B—C60—H60C109.5
C71—N29—Cu4138.3 (5)N26—C61—C62121.3 (8)
C71—N29—N30104.5 (6)N26—C61—C63105.9 (7)
N29—N30—H30124.0C63—C61—C62132.8 (8)
C74—N30—N29112.0 (6)C61—C62—H62A109.5
C74—N30—H30124.0C61—C62—H62B109.5
N32—N31—Cu4119.4 (4)C61—C62—H62C109.5
N32—N31—C79105.4 (5)H62A—C62—H62B109.5
C79—N31—Cu4134.2 (5)H62A—C62—H62C109.5
N31—N32—H32123.9H62B—C62—H62C109.5
C76—N32—N31112.3 (6)C61—C63—H63126.2
C76—N32—H32123.9C61—C63—C64107.6 (7)
N2—C1—C2119.3 (8)C64—C63—H63126.2
N2—C1—C3106.9 (7)N25—C64—C63108.6 (7)
C3—C1—C2133.8 (8)N25—C64—C65121.0 (7)
C1—C2—H2A109.3C63—C64—C65130.4 (7)
C1—C2—H2B109.4C64—C65—H65A109.6
C1—C2—H2C109.6C64—C65—H65B109.5
H2A—C2—H2B109.5C64—C65—H65C109.4
H2A—C2—H2C109.5H65A—C65—H65B109.5
H2B—C2—H2C109.5H65A—C65—H65C109.5
C1—C3—H3126.6H65B—C65—H65C109.5
C1—C3—C4106.8 (7)N28—C66—C67123.4 (7)
C4—C3—H3126.6N28—C66—C68104.4 (7)
N1—C4—C3109.5 (7)C68—C66—C67132.1 (8)
N1—C4—C5123.2 (7)C66—C67—H67A109.7
C3—C4—C5127.3 (8)C66—C67—H67B109.4
C4—C5—H5A109.4C66—C67—H67C109.4
C4—C5—H5B109.6H67A—C67—H67B109.5
C4—C5—H5C109.6H67A—C67—H67C109.5
H5A—C5—H5B109.5H67B—C67—H67C109.5
H5A—C5—H5C109.5C66—C68—H68125.5
H5B—C5—H5C109.3C69—C68—C66109.1 (7)
N4—C6—C7121.2 (7)C69—C68—H68125.5
N4—C6—C8106.6 (7)N27—C69—C68108.4 (7)
C8—C6—C7132.1 (8)N27—C69—C70121.9 (7)
C6—C7—H7A109.4C68—C69—C70129.7 (7)
C6—C7—H7B109.6C69—C70—H70A109.4
C6—C7—H7C109.5C69—C70—H70B109.4
H7A—C7—H7B109.4C69—C70—H70C109.6
H7A—C7—H7C109.5H70A—C70—H70B109.5
H7B—C7—H7C109.5H70A—C70—H70C109.5
C6—C8—H8A126.4H70B—C70—H70C109.5
C6—C8—C9107.2 (7)N29—C71—C72120.3 (7)
C9—C8—H8A126.4N29—C71—C73111.4 (7)
N3—C9—C8108.8 (6)C73—C71—C72128.3 (7)
N3—C9—C10122.6 (7)C71—C72—H72A109.5
C8—C9—C10128.6 (7)C71—C72—H72B109.5
C9—C10—H10A109.1C71—C72—H72C109.5
C9—C10—H10B109.8H72A—C72—H72B109.4
C9—C10—H10C109.6H72A—C72—H72C109.5
H10A—C10—H10B109.5H72B—C72—H72C109.5
H10A—C10—H10C109.5C71—C73—H73127.2
H10B—C10—H10C109.5C74—C73—C71105.6 (7)
N6—C11—C12121.8 (7)C74—C73—H73127.2
N6—C11—C13104.9 (7)N30—C74—C73106.6 (7)
C13—C11—C12133.3 (8)N30—C74—C75121.0 (8)
C11—C12—H12A109.6C73—C74—C75132.4 (8)
C11—C12—H12B109.4C74—C75—H75A109.4
C11—C12—H12C109.5C74—C75—H75B109.7
H12A—C12—H12B109.5C74—C75—H75C109.3
H12A—C12—H12C109.5H75A—C75—H75B109.5
H12B—C12—H12C109.4H75A—C75—H75C109.5
C11—C13—H13126.2H75B—C75—H75C109.5
C11—C13—C14107.7 (7)N32—C76—C77121.2 (7)
C14—C13—H13126.2N32—C76—C78106.2 (6)
N5—C14—C13109.4 (7)C78—C76—C77132.6 (8)
N5—C14—C15122.5 (7)C76—C77—H77A109.4
C13—C14—C15128.1 (7)C76—C77—H77B109.5
C14—C15—H15A109.3C76—C77—H77C109.6
C14—C15—H15B109.6H77A—C77—H77B109.4
C14—C15—H15C109.5H77A—C77—H77C109.5
H15A—C15—H15B109.5H77B—C77—H77C109.5
H15A—C15—H15C109.5C76—C78—H78126.4
H15B—C15—H15C109.4C76—C78—C79107.1 (7)
N8—C16—C17121.2 (7)C79—C78—H78126.4
N8—C16—C18105.8 (6)N31—C79—C78108.9 (6)
C18—C16—C17133.0 (7)N31—C79—C80122.6 (6)
C16—C17—H17A109.5C78—C79—C80128.5 (7)
C16—C17—H17B109.5C79—C80—H80A109.5
C16—C17—H17C109.5C79—C80—H80B109.5
H17A—C17—H17B109.5C79—C80—H80C109.3
H17A—C17—H17C109.5H80A—C80—H80B109.5
H17B—C17—H17C109.5H80A—C80—H80C109.5
C16—C18—H18A126.8H80B—C80—H80C109.5
Cu1—N1—N2—C1174.0 (5)N15—N16—C36—C37178.2 (8)
Cu1—N1—C4—C3172.4 (6)N15—N16—C36—C381.6 (9)
Cu1—N1—C4—C59.5 (12)N16—N15—C39—C381.3 (8)
Cu1—N3—N4—C6178.9 (5)N16—N15—C39—C40179.1 (7)
Cu1—N3—C9—C8179.3 (5)N16—C36—C38—C390.7 (9)
Cu1—N3—C9—C100.8 (11)N17—N18—C41—C42178.0 (7)
Cu1—N5—N6—C11175.4 (5)N17—N18—C41—C430.4 (9)
Cu1—N5—C14—C13173.2 (6)N18—N17—C44—C430.1 (8)
Cu1—N5—C14—C157.5 (12)N18—N17—C44—C45180.0 (7)
Cu1—N7—N8—C16175.9 (5)N18—C41—C43—C440.4 (9)
Cu1—N7—C19—C18174.7 (6)N19—N20—C46—C47176.9 (7)
Cu1—N7—C19—C205.7 (12)N19—N20—C46—C481.2 (8)
Cu2—N9—N10—C21166.0 (5)N20—N19—C49—C481.9 (8)
Cu2—N9—C24—C23164.1 (5)N20—N19—C49—C50179.4 (7)
Cu2—N9—C24—C2516.4 (11)N20—C46—C48—C490.0 (9)
Cu2—N11—N12—C26176.7 (5)N21—N22—C51—C52175.8 (7)
Cu2—N11—C29—C28176.4 (6)N21—N22—C51—C532.0 (8)
Cu2—N11—C29—C302.8 (12)N22—N21—C54—C530.7 (8)
Cu2—N13—N14—C31173.2 (5)N22—N21—C54—C55178.3 (7)
Cu2—N13—C34—C33170.5 (5)N22—C51—C53—C542.3 (8)
Cu2—N13—C34—C3511.9 (11)N23—N24—C56—C57177.0 (7)
Cu2—N15—N16—C36173.1 (5)N23—N24—C56—C581.5 (9)
Cu2—N15—C39—C38172.1 (6)N24—N23—C59—C580.4 (9)
Cu2—N15—C39—C407.4 (12)N24—N23—C59—C60179.1 (7)
Cu3—N17—N18—C41174.2 (5)N24—C56—C58—C591.2 (10)
Cu3—N17—C44—C43173.2 (5)N25—N26—C61—C62178.9 (7)
Cu3—N17—C44—C456.9 (12)N25—N26—C61—C630.8 (9)
Cu3—N19—N20—C46179.8 (5)N26—N25—C64—C631.0 (8)
Cu3—N19—C49—C48179.1 (5)N26—N25—C64—C65179.7 (7)
Cu3—N19—C49—C503.5 (12)N26—C61—C63—C640.1 (9)
Cu3—N21—N22—C51169.4 (5)N27—N28—C66—C67175.1 (7)
Cu3—N21—C54—C53168.5 (5)N27—N28—C66—C681.9 (8)
Cu3—N21—C54—C5510.6 (11)N28—N27—C69—C680.3 (8)
Cu3—N23—N24—C56176.5 (5)N28—N27—C69—C70179.0 (6)
Cu3—N23—C59—C58176.8 (6)N28—C66—C68—C691.6 (8)
Cu3—N23—C59—C601.9 (12)N29—N30—C74—C731.0 (9)
Cu4—N25—N26—C61178.7 (5)N29—N30—C74—C75179.5 (7)
Cu4—N25—C64—C63178.0 (5)N29—C71—C73—C740.9 (9)
Cu4—N25—C64—C652.7 (12)N30—N29—C71—C72179.5 (7)
Cu4—N27—N28—C66178.2 (4)N30—N29—C71—C730.3 (8)
Cu4—N27—C69—C68179.2 (5)N31—N32—C76—C77178.7 (8)
Cu4—N27—C69—C700.5 (11)N31—N32—C76—C780.2 (9)
Cu4—N29—N30—C74177.8 (5)N32—N31—C79—C780.8 (8)
Cu4—N29—C71—C724.0 (12)N32—N31—C79—C80178.5 (7)
Cu4—N29—C71—C73176.2 (6)N32—C76—C78—C790.4 (9)
Cu4—N31—N32—C76169.6 (5)C1—C3—C4—N10.8 (9)
Cu4—N31—C79—C78167.3 (5)C1—C3—C4—C5178.7 (8)
Cu4—N31—C79—C8013.3 (11)C2—C1—C3—C4178.7 (9)
O1—S1—O2—Cu2170.6 (6)C4—N1—N2—C11.0 (7)
O2—S1—O1—Cu1177.8 (5)C6—C8—C9—N30.5 (9)
O3—S1—O1—Cu162.2 (7)C6—C8—C9—C10179.6 (7)
O3—S1—O2—Cu251.6 (8)C7—C6—C8—C9176.2 (8)
O4—S1—O1—Cu158.3 (7)C9—N3—N4—C60.5 (7)
O4—S1—O2—Cu268.4 (8)C11—C13—C14—N51.0 (10)
O5—S2—O6—Cu3170.8 (5)C11—C13—C14—C15179.8 (8)
O6—S2—O5—Cu2177.9 (4)C12—C11—C13—C14178.9 (10)
O7—S2—O5—Cu258.5 (6)C14—N5—N6—C111.9 (8)
O7—S2—O6—Cu351.8 (7)C16—C18—C19—N70.6 (9)
O8—S2—O5—Cu262.5 (5)C16—C18—C19—C20179.9 (8)
O8—S2—O6—Cu368.5 (7)C17—C16—C18—C19179.0 (9)
O9—S3—O10—Cu4166.2 (6)C19—N7—N8—C160.2 (8)
O10—S3—O9—Cu3177.9 (5)C21—C23—C24—N90.9 (9)
O11—S3—O9—Cu362.7 (7)C21—C23—C24—C25179.6 (7)
O11—S3—O10—Cu447.1 (7)C22—C21—C23—C24176.1 (8)
O12—S3—O9—Cu358.7 (7)C24—N9—N10—C211.7 (8)
O12—S3—O10—Cu473.3 (8)C26—C28—C29—N110.1 (9)
O13—S4—O14—Cu1ii163.1 (6)C26—C28—C29—C30179.3 (8)
O13—S4—O14—Cu1i9.3 (4)C27—C26—C28—C29179.5 (10)
O14—S4—O13—Cu4178.2 (4)C29—N11—N12—C261.2 (8)
O15—S4—O13—Cu457.9 (5)C31—C33—C34—N130.1 (9)
O15—S4—O14—Cu1ii75.2 (8)C31—C33—C34—C35177.6 (7)
O15—S4—O14—Cu1i112.4 (6)C32—C31—C33—C34177.3 (8)
O16—S4—O13—Cu462.9 (5)C34—N13—N14—C311.5 (8)
O16—S4—O14—Cu1i127.3 (6)C36—C38—C39—N150.4 (10)
O16—S4—O14—Cu1ii45.1 (8)C36—C38—C39—C40179.9 (8)
N1—N2—C1—C2178.3 (7)C37—C36—C38—C39179.1 (9)
N1—N2—C1—C30.5 (8)C39—N15—N16—C361.8 (8)
N2—N1—C4—C31.0 (8)C41—C43—C44—N170.3 (9)
N2—N1—C4—C5179.1 (7)C41—C43—C44—C45179.8 (8)
N2—C1—C3—C40.1 (9)C42—C41—C43—C44177.7 (9)
N3—N4—C6—C7176.6 (6)C44—N17—N18—C410.2 (8)
N3—N4—C6—C80.8 (8)C46—C48—C49—N191.3 (9)
N4—N3—C9—C80.0 (8)C46—C48—C49—C50178.5 (8)
N4—N3—C9—C10179.9 (6)C47—C46—C48—C49177.9 (8)
N4—C6—C8—C90.8 (9)C49—N19—N20—C462.0 (8)
N5—N6—C11—C12179.9 (8)C51—C53—C54—N211.9 (9)
N5—N6—C11—C131.3 (9)C51—C53—C54—C55177.0 (7)
N6—N5—C14—C131.7 (8)C52—C51—C53—C54175.2 (8)
N6—N5—C14—C15179.1 (7)C54—N21—N22—C510.8 (8)
N6—C11—C13—C140.2 (10)C56—C58—C59—N230.5 (10)
N7—N8—C16—C17178.9 (7)C56—C58—C59—C60178.2 (8)
N7—N8—C16—C180.1 (8)C57—C56—C58—C59177.0 (9)
N8—N7—C19—C180.5 (8)C59—N23—N24—C561.2 (8)
N8—N7—C19—C20180.0 (7)C61—C63—C64—N250.6 (9)
N8—C16—C18—C190.4 (9)C61—C63—C64—C65179.8 (9)
N9—N10—C21—C22176.0 (6)C62—C61—C63—C64177.9 (9)
N9—N10—C21—C232.3 (9)C64—N25—N26—C611.2 (8)
N10—N9—C24—C230.4 (8)C66—C68—C69—N270.9 (9)
N10—N9—C24—C25179.1 (7)C66—C68—C69—C70177.7 (7)
N10—C21—C23—C241.9 (9)C67—C66—C68—C69174.9 (8)
N11—N12—C26—C27179.0 (8)C69—N27—N28—C661.4 (7)
N11—N12—C26—C281.1 (9)C71—N29—N30—C740.4 (8)
N12—N11—C29—C280.7 (8)C71—C73—C74—N301.1 (9)
N12—N11—C29—C30180.0 (7)C71—C73—C74—C75179.4 (9)
N12—C26—C28—C290.6 (9)C72—C71—C73—C74178.9 (8)
N13—N14—C31—C32176.9 (7)C76—C78—C79—N310.8 (9)
N13—N14—C31—C331.4 (8)C76—C78—C79—C80178.6 (8)
N14—N13—C34—C330.9 (8)C77—C76—C78—C79177.9 (9)
N14—N13—C34—C35178.5 (7)C79—N31—N32—C760.6 (8)
N14—C31—C33—C340.8 (9)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.862.082.792 (7)139
N6—H6···O30.862.042.889 (7)168
N10—H10···O30.862.112.869 (7)146
N12—H12···O40.862.122.951 (8)163
N14—H14···O80.862.102.835 (7)143
N16—H16···O50.862.442.889 (7)114
N16—H16···O70.862.042.894 (8)173
N18—H18···O60.862.392.866 (8)116
N18—H18···O80.862.142.988 (7)169
N20—H20···S30.862.763.504 (6)146
N20—H20···O90.862.412.885 (9)115
N20—H20···O110.862.082.933 (7)171
N22—H22···O70.862.052.828 (7)150
N24—H24···O120.862.162.840 (8)135
N26—H26···O160.862.022.875 (7)171
N28—H28···O150.862.072.803 (7)143
N30—H30···O100.862.312.817 (8)118
N30—H30···O120.862.243.083 (8)165
N32—H32···O110.862.122.857 (7)144
C30—H30C···O50.962.393.213 (11)144
C50—H50A···O60.962.233.124 (9)155
C65—H65B···O100.962.273.192 (11)160
C70—H70B···O100.962.353.116 (10)137
C2—H2A···N16iii0.963.013.722 (10)132
C2—H2A···O7iii0.96283.806 (9)146
C53—H53···N8iv0.933.073.66 (1)123
C32—H32B···N32v0.963.003.792 (10)140
C32—H32B···N31v0.963.173.984 (10)143
C32—H32B···N28v0.962.873.735 (11)150
Symmetry codes: (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2.
Geometric parameters of the intermolecular hydrogen bonds in the title compound top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N16i0.960 (9)3.0093.722 (10)132.2 (5)
C2—H2A···O7i0.960 (9)2.9753.806 (9)145.6 (6)
C53—H53···N8ii0.930 (8)3.0743.66 (1)122.6 (5)
C32—H32B···N32iii0.959 (8)3.0043.792 (10)140.3 (6)
C32—H32B···N31iii0.959 (8)3.1753.984 (10)143.0 (6)
C32—H32B···N28iii0.959 (8)2.8743.735 (11)149.9 (6)
Symmetry codes: (i) 1/2 + x, 1/2 - y, z; (ii) 1/2 - x, 1/2 + y, 1/2 + z; (iii) 1/2 - x, -1/2 + y, 1/2 + z.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (grant No. 22BF037-09 at Taras Shevchenko National University of Kyiv).

References

First citationBalić, T., Popović, Z. & Marković, B. (2018). Inorg. Chim. Acta, 478, 32–43.  Google Scholar
First citationBrewer, G., Butcher, R. J. & Zavalij, P. (2020). Materials, 13, 1595.  Google Scholar
First citationBurrows, A. D., Kelly, D. J., Haja Mohideen, M. I., Mahon, M. F., Pop, V. M. & Richardson, C. (2011). CrystEngComm, 13, 1676–1682.  CAS Google Scholar
First citationDi Nicola, C., Garau, F., Lanza, A., Monari, M., Pandolfo, L., Pettinari, C. & Zorzi, A. (2014). Inorg. Chim. Acta, 416, 186–194.  CAS Google Scholar
First citationDi Nicola, C., Karabach, Y. Y., Kirillov, A. M., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2007). Inorg. Chem. 46, 221–230.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGogoi, A., Nashre-ul-Islam, S. M., Frontera, A. & Bhattacharyya, M. K. (2019). Inorg. Chim. Acta, 484, 133–141.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoedt, R. W. M. ten, Hulsbergen, F. B., Verschoor, G. C. & Reedijk, J. (1982). Inorg. Chem. 21, 2369–2373.  Google Scholar
First citationHouse, J. E. & House, K. A. (2016). Synthesis and Reactions of Coordination Compounds. Descriptive Inorganic Chemistry, ch. 21, pp. 347–370. Amsterdam: Elsevier.  Google Scholar
First citationKokozay, V. N., Vassilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183–237. Amsterdam: Elsevier.  Google Scholar
First citationKumar, V., Kundu, A., Singh, M., Ramanujachary, K. V. & Ramanan, A. (2014). J. Chem. Sci. 126, 1433–1442.  CAS Google Scholar
First citationKwak, H., Lee, S. H., Kim, S. H., Lee, Y. M., Lee, E. Y., Park, B. K., Kim, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2008). Eur. J. Inorg. Chem. pp. 408–415.  Google Scholar
First citationLi, X. & Binnemans, K. (2021). Chem. Rev. 121, 4506–4530.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G. & Morsali, A. (2007). CrystEngComm, 9, 1062–1072.  Web of Science CSD CrossRef CAS Google Scholar
First citationMihailov, M. H., Mihailova, V. T. & Khalkin, V. A. (1974). J. Inorg. Nucl. Chem. 36, 141–144.  CAS Google Scholar
First citationMondal, R., Basu, T., Sadhukhan, D., Chattopadhyay, T. & Bhunia, M. K. (2009). Cryst. Growth Des. 9, 1095–1105.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicholls, D. & Warburton, B. A. (1971). J. Inorg. Nucl. Chem. 33, 1041–1045.  CrossRef CAS Web of Science Google Scholar
First citationPettinari, C., Marchetti, F., Orbisaglia, S., Palmucci, J., Pettinari, R., Di Nicola, C., Skelton, W. B. & White, A. H. (2014). Eur. J. Inorg. Chem. pp. 546–558.  Google Scholar
First citationReedijk, J. (1971). Recl Trav. Chim. Pays Bas, 90, 117–136.  CAS Google Scholar
First citationReedijk, J. (1970a). Recl Trav. Chim. Pays Bas, 89, 605–618.  CAS Google Scholar
First citationReedijk, J. (1970b). Recl Trav. Chim. Pays Bas, 89, 993–1016.  CAS Google Scholar
First citationReedijk, J. & Smit, J. A. (1971). Recl Trav. Chim. Pays Bas, 90, 1135–1140.  Google Scholar
First citationReedijk, J., Windhorst, J. C. A., van Ham, N. H. M. & Groeneveld, W. L. (1971). Recl Trav. Chim. Pays Bas, 90, 234–251.  CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, W.-Z., Yi, L., Cheng, P., Yan, S.-P., Liao, D.-Z. & Jiang, Z.-H. (2004). Inorg. Chem. Commun. 7, 819–822.  CAS Google Scholar
First citationSingh, C. B., Satpathy, S. & Sahoo, B. (1973). J. Inorg. Nucl. Chem. 35, 3947–3950.  CAS Google Scholar
First citationSong, G., Sun, Q., Hou, Y.-N., Zhan, R., Wei, D.-M., Shi, Zh. & Xing, Y.-H. (2013). Wuji Huaxue Xuebao, 29, 2150.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-Q. & Jian, F.-F. (2010). Z. Kristallogr. New Cryst. Struct. 225, 683–684.  CAS Google Scholar
First citationZerguini, A. L., Cherouana, A., Duparc, V. H. & Schaper, F. (2019). Inorg. Chem. Commun. 99, 36–39.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds