CRYSTALLOGRAPHIC communications

Received 7 October 2021
Accepted 14 October 2021

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: copper; copper complexes; crystal structure; pyrazole; X-ray crystallography; Hirshfeld surface analysis; one-pot reaction; direct synthesis; oxidative dissolution.

CCDC reference: 2115608

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of di- μ-chlorido-bis[(acetonitrile- κN)chlorido(ethyl 5-methyl-1H-pyrazole-3-carboxylate- $\kappa^{2} N^{2}, O$)copper(II)]

Oleksandr S. Vynohradov, ${ }^{\text {a }}$ Vadim A. Pavlenko, ${ }^{\text {a }}$ Olesia I. Kucheriv, ${ }^{\text {a }}$ Irina A. Golenya, ${ }^{\text {a }}$ Denys Petlovanyi ${ }^{\text {b }}$ and Sergiu Shova ${ }^{\text {c }}$

${ }^{\text {a D Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, } 01601 \text { Kyiv, Ukraine, }}$ ${ }^{\mathbf{b}}$ Enamine Ltd, Oleksandra Matrosova Str. 23, Kyiv 01103, Ukraine, and ${ }^{\text {c"Poni Petru" Institute of Macromolecular }}$ Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 lasi, Romania. *Correspondence e-mail: igolenya@ua.fm

The title compound, $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ or $\left[\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\left(\mathrm{CH}_{3}-\right.\right.$ $\left.\mathrm{Pz}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$], was synthesized using a one-pot reaction of copper powder, copper(II) chloride dihydrate and ethyl 5 -methyl- 1 H -pyrazole-3-carboxylate $\left(\mathrm{CH}_{3}-\mathrm{Pz}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$ in acetonitrile under ambient conditions. This complex consists of discrete binuclear molecules with a $\left\{\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\right\}$ core, in which the $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 3.8002 (7) \AA. The pyrazole-based ligands are bidentate coordinated, leading to the formation of two five-membered chelate rings. The coordination geometry of both copper atoms $\left(\mathrm{ON}_{2} \mathrm{Cl}_{3}\right)$ can be described as distorted octahedral on account of the acetonitrile coordination. A Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from $\mathrm{H} \cdots \mathrm{H}(40 \%), \mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}(24.3 \%), \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ $(11.8 \%), \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(9.2 \%)$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(8.3 \%)$ interactions.

1. Chemical context

Pyrazoles can form structures of various nuclearities, ranging from mononuclear (Mighell et al., 1975; Liu et al., 2001; Małecka et al., 2003) to polynuclear complexes (He, 2011; Contaldi et al., 2009; Chandrasekhar et al., 2008) and metallacycles (Vynohradov et al., 2020a; Surmann et al., 2016; Galassi et al., 2012) with specific molecular topologies. By performing the synthesis of metal complexes by oxidative dissolution of metals, commonly known as direct synthesis (Kokozay et al., 2018; Plyuta et al., 2020; Sirenko et al., 2020; Li et al., 2021), copper can be introduced in a zerovalent state. Copper powder can be oxidized in solution in the presence of proton-donating agents, such as pyrazoles, to form polynuclear complexes, where two copper atoms are connected by a bidentate-bridging deprotonated pyrazole (Vynohradov et al., 2020b; Davydenko et al., 2013). Many examples of copper coordination compounds have been synthesized and described in which two copper atoms are connected by halogen bridges, for example, through chlorine anions, deprotonated ligand molecules and also hydroxyl groups (Vincent et al., 2018; Wei et al., 2012; Mezei et al., 2004). Copper(II) pyrazolate complexes have attracted considerable interest for their interesting magnetic properties (Malinkin et al., 2012; Spodine et al., 1999) and abilities to bind DNA (Vafazadeh et al., 2015; Kulkarni et al., 2011). Finally, the antioxidant (Kupcewicz et al., 2013) and anticancer (Santini et al., 2014) activities of these
compounds should be noted. Relatively few unsymmetrical pyrazole-containing ligands with different chelating arms in the 3- and 5-positions and their coordination compounds have been investigated so far (Konrad et al., 2001; Dubs et al., 2006; Krämer et al., 2002; Röder et al., 2002; Penkova et al., 2010). Considering the above, we understand the importance of accumulating a theoretical information base on such coordination compounds, and therefore in this article we report the synthesis, crystal structure and Hirshfeld surface analysis of a new binuclear copper(II) complex with unsymmetrical pyrazole ethyl 5-methyl-1 H-pyrazole-3-carboxylate $-\left[\mathrm{Cu}_{2}\left(\mu_{2^{-}}\right.\right.$ $\left.\mathrm{Cl})_{2}\left(\mathrm{CH}_{3}-\mathrm{Pz}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$.

2. Structural commentary

The title compound (Fig. 1) is a binuclear cyclic copper(II) pyrazole-containing complex which crystallized in the monoclinic $P 2_{1} / c$ space group. The asymmetric unit consists of one copper ion, one ethyl 5-methyl-1H-pyrazole-3-carboxylate

Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Irrelevant hydrogen atoms were omitted for clarity.
ligand, one coordinated acetonitrile molecule and two chlorine ions. One of these chlorine ions bridges two metal centers, thus connecting two symmetry-generated fragments. The structure of this complex can be described as a dimer of formula $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]_{2}$ in which the $\mathrm{CH}_{3}-\mathrm{Pz}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}$ ligand is coordinated in a bidentate way and remains protonated. The copper atom has a distorted octahedral coordination environment formed by three chlorine atoms, one nitrogen atom of the acetonitrile molecule and two atoms of the unsymmetrical pyrazole ligand - the pyridine-like N 1 atom and atom O 1 of the ester substituent in position 3 of the pyrazole ring. The bidentate coordination of the pyrazole ligand leads to the formation of a five-membered chelate ring. The atoms in the ring deviate only slightly from planarity [the Cu 1 atom is out of the $\mathrm{Cu} 1 / \mathrm{N} 1 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{O} 1$ plane by 0.0222 (8) $\AA ; \mathrm{N} 1$ by -0.0406 (14) \AA; C4 by 0.0326 (15) \AA; C 5 by 0.0031 (18) \AA and O1 by -0.0172 (14) \AA A. Both the copper atoms and the bridging chlorine atoms lie in the same plane without deviations from planarity. The intermetallic distance in the dimer unit is 3.8002 (7) \AA while the chlorinechlorine separation in the four-membered bimetallic cycle is 3.5894 (15) Å.

An overlay of the asymmetric units of the structures of the title compound (red) and a similar complex with methyl 5-methyl-1H-pyrazole-3-carboxylate (green) is presented in Fig. 2. The structures were compared using $O L E X 2$ software (Dolomanov et al., 2009). It was found that the structure of the complex does not change regardless of the organic radical R in the COOR ester group, whether $-\mathrm{CH}_{3}$ or $-\mathrm{CH}_{2}-\mathrm{CH}_{3}$. The crystal structures of these compounds are also similar. In addition, the intermetallic distance in the above structures differs approximately by $0.1 \AA$ and the chlorine-chlorine separation in the four-membered bimetallic ring differs by $0.05 \AA[\mathrm{Cu} \cdots \mathrm{Cu}=3.7047$ (7) \AA and $\mathrm{Cl} \cdots \mathrm{Cl}=3.5364$ (11) \AA for the methyl analogue]. The molecular structure is stabilized by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 1).

3. Supramolecular features

The crystal packing of the title compound (Fig. 3) consists of discrete binuclear molecules with a $\left\{\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\right\}$ core, which

Figure 2
Overlay diagram of the asymmetric units of the structures of the title compound (red) and of a similar complex with methyl 5-methyl- 1 H -pyrazole-3-carboxylate (green) which shows the similarity of the structure regardless of the organic radical R in the COOR ester group of the substituent on the pyrazole ring.

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.80(2)$	$2.72(2)$	$3.281(2)$	$129(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Cl}^{\mathrm{i}}$	$0.80(2)$	$2.59(2)$	$3.273(2)$	$145(1)$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.96	2.79	$3.662(4)$	151

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$.
form a planar bimetallic ring. The four-membered $\mathrm{Cu} 1 / \mathrm{Cl} 1 /$ $\mathrm{Cu} 1^{\mathrm{i}} / \mathrm{Cl} 1^{\mathrm{i}}$ planes of the bimetallic rings are situated perpendicular to the b axis, while the chelate ring planes are located approximately parallel. No intermolecular hydrogen bonds were identified in the crystal structure. The minimum separation between the Cl atoms of neighbouring molecules inside one unit cell is $4.4013(13) \AA$ for $\mathrm{Cl} 1^{\mathrm{i}}$ and $\mathrm{Cl} 1^{\text {ii }}$ [symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $x, y,-1+z$] while the minimum distance between two copper atoms is 7.6498 (3) \AA for Cu 1 and $\mathrm{Cu} 1^{\mathrm{ii}}$.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis and the associated twodimensional fingerprint plots were performed using Crystal Explorer 17.5 (Turner et al., 2018), with a standard resolution of the three-dimensional $d_{\text {norm }}$ surfaces plotted over a fixed colour scale of -0.1996 (red) to 1.1926 (blue) a.u. The palered spots in Fig. 4 represent short contacts and negative $d_{\text {norm }}$ values on the surface corresponding to the interactions described above. The Hirshfeld surfaces mapped over $d_{\text {norm }}$ are shown for the $\mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$, $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ contacts, the overall twodimensional fingerprint plot and the decomposed twodimensional fingerprint plots are given in Fig. 5. Twelve short interatomic contacts in the range $2.34-2.8 \AA$ are indicated by

Figure 4
Two projections of Hirshfeld surfaces mapped over $d_{\text {norm }}$ showing the intermolecular interactions within the molecule.
the faint red spots. Two pairs of intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts between the O 1 atom of the ester substituent and the hydrogen atom of the methyl group of the coordinated acetonitrile were the shortest. Also, four intermolecular C$\mathrm{H} \cdots \mathrm{Cl}$ contacts with a length of $2.685 \AA$, which are present between the terminal chlorine atoms and the hydrogen atoms of the ethyl group (hydrogen atom near C7) of the ester substituent are also short. Finally, four intermolecular C$\mathrm{H} \cdots \mathrm{Cl}$ contacts with a length of $2.8 \AA$ are observed between the terminal chlorine atoms and the hydrogen atoms of the CH_{3} group of the acetonitrile molecule. For the title compound, the most significant contributions to the overall crystal packing are from $\mathrm{H} \cdots \mathrm{H}(40 \%), \mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ (24.3%), $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}(11.8 \%), \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(9.2 \%)$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(8.3 \%)$ contacts. The small contribution of the other weak intermolecular $\mathrm{C} \cdots \mathrm{C}(2.9 \%), \mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}$ (2.1%), $\mathrm{C} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{C}(0.8 \%), \mathrm{C} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{C}(0.3 \%), \mathrm{O} \cdots \mathrm{N} /$ $\mathrm{N} \cdots \mathrm{O}(0.3 \%)$ and $\mathrm{Cl} \cdots \mathrm{Cl}(0.1 \%)$ contacts has a negligible effect on the packing. In addition, quantitative physical properties of the Hirshfeld surface for the title compound were obtained, such as molecular volume ($657.89 \AA^{3}$), surface area ($571.56 \AA^{2}$), globularity (0.640), as well as asphericity (0.147).

Figure 3
Crystal packing of the title compound viewed along (a) the a - and (b) the b-axis directions. Selected hydrogen atoms were omitted for clarity.

Figure 5
The overall two-dimensional fingerprint plot and those delineated into specified interactions. Hirshfeld surface representations with the function $d_{\text {norm }}$ plotted onto the surface for the different interactions.

5. Database survey

Six similar structures are registered in the Cambridge Structural Database (Version 2021.1; Groom et al., 2016): two reports of complexes with methyl 5-methyl-1 H -pyrazole-3carboxylate [UMUXEI (Rheingold, 2021) and ZEQGUZ (Shakirova et al., 2012)], two reports of the free ligand ethyl 5-methyl-1 H -pyrazole-3-carboxylate [FAQSAR01 (Mague et al., 2018) and FAQSAR02 (Kusakiewicz-Dawid et al., 2019)] and two structure reports of the same ligand with a different name and cell parameters (Elguero et al., 1999) [3-ethoxy-carbonyl-5-methylpyrazole (FAQSAR) and 4-bromo-3-eth-oxycarbonyl-5-methylpyrazole (FAQTAS)].

6. Synthesis and crystallization

$\left[\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\left(\mathrm{CH}_{3}-\mathrm{Pz}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ was synthesized at room temperature by the oxidative dissolution method by the addition of a copper powder ($1.56 \mathrm{mmol}, 0.1 \mathrm{~g}$) and copper(II) chloride dihydrate ($3.1 \mathrm{mmol}, 0.53 \mathrm{~g}$) mixture to an acetonitrile (9 ml) solution of ethyl 5-methyl- 1 H -pyra-zole-3-carboxylate ($4.67 \mathrm{mmol}, 0.72 \mathrm{~g}$). The mixture was stirred without heating for three h with free air access until dissolution of the copper powder and a green precipitate of the product was obtained. The precipitate was filtered off and re-dissolved in acetonitrile. Green crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent. The IR spectra of the starting pyrazole ligand and the obtained

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }} \quad 0.029$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$0.036,0.083,1.04$

```
\(\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]\)
659.33
Monoclinic, \(P 2{ }_{1} / c\)
293
11.3934 (4), 15.9822 (5), 7.6498 (3)
106.226 (4)
1337.48 (9)
2
Mo \(K \alpha\)
2.03
\(0.45 \times 0.2 \times 0.1\)
```

Rigaku Xcalibur, Eos Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
0.839, 1.000

9132, 3062, 2380
0.666

3062
158
H atoms treated by a mixture of independent and constrained refinement
$0.30,-0.34$

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXLT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
green crystals of the title coordination compound are given in the supporting information.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.97)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{C}$-methyl). N -bound H atoms were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Funding information

This work was supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction "Mathematical sciences and natural sciences" at Taras Shevchenko National University of Kyive (grant No. 21BNN-06).

References

Chandrasekhar, V., Nagarajan, L., Clérac, R., Ghosh, S., Senapati, T. \& Verma, S. (2008). Inorg. Chem. 47, 5347-5354.
Contaldi, S., Di Nicola, C., Garau, F., Karabach, Y. Y., Martins, L. M. D. R. S., Monari, M., Pandolfo, L., Pettinari, C. \& Pombeiro, A. J. L. (2009). Dalton Trans. pp. 4928-4941.

Davydenko, Y. M., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. \& Fritsky, I. O. (2013). Z. Anorg. Allg. Chem. 639, 14721476.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Dubs, C., Yamamoto, T., Inagaki, A. \& Akita, M. (2006). Organometallics, 25, 1344-1358.
Elguero, J., Infantes, L., Foces-Foces, C. M., Claramunt, R., López, C. \& Jagerovic, N. (1999). Heterocycles, 50, 227-242.
Galassi, R., Burini, A. \& Mohamed, A. A. (2012). Eur. J. Inorg. Chem. 2012, 3257-3261.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
He, H. (2011). Acta Cryst. E67, m140.
Kokozay, V. N., Vassilyeva, O. Yu. \& Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183-237. Amsterdam: Elsevier.
Konrad, M., Wuthe, S., Meyer, F. \& Kaifer, E. (2001). Eur. J. Inorg. Chem. pp. 2233-2240.
Krämer, R., Fritsky, I. O., Pritzkow, H. \& Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307-1314..
Kulkarni, N. V., Kamath, A., Budagumpi, S. \& Revankar, V. K. (2011). J. Mol. Struct. 1006, 580-588.

Kupcewicz, B., Sobiesiak, K., Malinowska, K., Koprowska, K., Czyz, M., Keppler, B. \& Budzisz, E. (2013). Med. Chem. Res. 22, 23952402.

Kusakiewicz-Dawid, A., Porada, M., Dziuk, B. \& Siodłak, D. (2019). Molecules, 24, 2632.
Li, X. \& Binnemans, K. (2021). Chem. Rev. 121, 4506-4530.
Liu, X.-M., Kilner, C. A., Thornton-Pett, M. \& Halcrow, M. A. (2001). Acta Cryst. C57, 1253-1255.
Mague, J. \& Ramli, Y. (2018). CSD Communication (CCDC 1872098). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd. cc20v287
Małecka, M. \& Chęcińska, L. (2003). Acta Cryst. C59, m115-m117.
Malinkin, S. O., Moroz, Y. S., Penkova, L. V., Bon, V. V., GumiennaKontecka, E., Pavlenko, V. A., Pekhnyo, V. I., Meyer, F. \& Fritsky, I. O. (2012). Polyhedron, 37, 77-84.

Mezei, G. \& Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279-3288.
Mighell, A., Santoro, A., Prince, E. \& Reimann, C. (1975). Acta Cryst. B31, 2479-2482.

Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. \& Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.
Plyuta, N., Vassilyeva, O. Yu., Kokozay, V. N., Omelchenko, I. \& Petrusenko, S. (2020). Acta Cryst. E76, 423-426.
Rheingold, A. L. (2021). CSD Communication (CCDC 869805). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd. ccy 637 g .
Rigaku OD (2021). CrysAlis PRO.Rigaku Inc., Tokyo, Japan.
Röder, J. C., Meyer, F., Winter, R. F. \& Kaifer, E. (2002). J. Organomet. Chem. 641, 113-120.
Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. \& Marzano, C. (2014). Chem. Rev. 114, 815-862.

Shakirova, O. G., Lavrenova, L. G., Kuratieva, N. V., Naumov, D. Y., Bogomyakov, A. S., Sheludyakova, L. A., Mikhailovskaya, T. F. \& Vasilevsky, S. F. (2012). Russ. J. Coord. Chem. 38, 552-559.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sirenko, V. Y., Kucheriv, O. I., Rotaru, A., Fritsky, I. O. \& Gural'skiy, I. A. (2020). Eur. J. Inorg. Chem. pp. 4523-4531.

Spodine, E., Atria, A. M., Valenzuela, J., Jalocha, J., Manzur, J., García, A. M., Garland, M. T., Peña, O. \& Saillard, J.-Y. J. (1999). J. Chem. Soc. Dalton Trans. pp. 3029-3034.
Surmann, S. A. \& Mezei, G. (2016). Acta Cryst. E72, 1517-1520.
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2018). CrystalExplorer 17.5.
Vafazadeh, R. C., Willis, A., Mehdi Heidari, M. \& Hasanzade, N. (2015). Acta Chim. Slov. 2015, 62, 122-129.

Vincent, C. J., Giles, I. D. \& Deschamps, J. R. (2018). Acta Cryst. E74, 357-362.
Vynohradov, O. S., Pavlenko, V. A., Fritsky, I. O., Gural'skiy, I. A. \& Shova, S. (2020a). Russ. J. Inorg. Chem. 65, 1481-1488.
Vynohradov, O. S., Pavlenko, V. A., Naumova, D. D., Partsevska, S. V., Shova, S. \& Safarmamadov, S. M. (2020b). Acta Cryst. E76, 16411644.

Wei, W. \& Xu, Y. (2012). Acta Cryst. E68, m557.

supporting information

Acta Cryst. (2021). E77, 1153-1157 [https://doi.org/10.1107/S2056989021010653]
Crystal structure and Hirshfeld surface analysis of di- μ-chlorido-bis[(aceto-nitrile- κN) chlorido(ethyl 5-methyl-1 H -pyrazole-3-carboxylate$\left.\kappa^{2} N^{2}, O\right)$ copper(II)]

Oleksandr S. Vynohradov, Vadim A. Pavlenko, Olesia I. Kucheriv, Irina A. Golenya, Denys Petlovanyi and Sergiu Shova

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXLT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di- μ-chlorido-bis[(acetonitrile- κN)chlorido(ethyl 5-methyl-1H-pyrazole-3-carboxylate- $\left.\kappa^{2} N^{2}, O\right)$ copper(II)]

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]$
$M_{r}=659.33$
Monoclinic, $P 2_{1} / c$
$a=11.3934$ (4) \AA
$b=15.9822(5) \AA$
$c=7.6498$ (3) \AA
$\beta=106.226(4)^{\circ}$
$V=1337.48(9) \AA^{3}$
$Z=2$

Data collection

Rigaku Xcalibur, Eos diffractometer
Radiation source: fine-focus sealed X-ray tube,
Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1593 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.083$
$S=1.04$
$F(000)=668$
$D_{\mathrm{x}}=1.637 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3607 reflections
$\theta=2.3-27.2^{\circ}$
$\mu=2.03 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, green
$0.45 \times 0.2 \times 0.1 \mathrm{~mm}$
$T_{\min }=0.839, T_{\max }=1.000$
9132 measured reflections
3062 independent reflections
2380 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=-14 \rightarrow 14$
$k=-18 \rightarrow 21$
$l=-9 \rightarrow 9$

3062 reflections
158 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites

supporting information

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0338 P)^{2}+0.250 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cu 1	0.32946 (3)	0.47882 (2)	0.91290 (4)	0.03655 (12)
C11	0.45100 (6)	0.48716 (4)	1.20189 (9)	0.04438 (18)
Cl 2	0.23810 (6)	0.60138 (4)	0.93837 (10)	0.04752 (19)
O1	0.14691 (18)	0.38325 (11)	0.9411 (3)	0.0501 (5)
O2	0.12145 (16)	0.24499 (11)	0.9610 (3)	0.0471 (5)
N1	0.37558 (18)	0.35720 (12)	0.9058 (3)	0.0359 (5)
N2	0.4841 (2)	0.32429 (13)	0.9131 (3)	0.0406 (6)
H2	0.541 (2)	0.3509 (10)	0.9021 (5)	0.049*
N3	0.2412 (2)	0.47671 (13)	0.6418 (3)	0.0452 (6)
C1	0.4879 (2)	0.24100 (15)	0.9412 (4)	0.0414 (7)
C2	0.6021 (3)	0.19159 (18)	0.9591 (5)	0.0628 (10)
H2A	0.624715	0.194792	0.847440	0.094*
H2B	0.588090	0.134232	0.984660	0.094*
H2C	0.666779	0.214025	1.056683	0.094*
C3	0.3747 (2)	0.21906 (15)	0.9510 (4)	0.0417 (6)
H3	0.347635	0.165569	0.967998	0.050*
C4	0.3075 (2)	0.29279 (15)	0.9307 (3)	0.0356 (6)
C5	0.1848 (2)	0.31277 (16)	0.9433 (4)	0.0375 (6)
C6	0.0021 (2)	0.2595 (2)	0.9877 (4)	0.0567 (8)
H6A	-0.049565	0.289751	0.884815	0.068*
H6B	0.009748	0.292321	1.096964	0.068*
C7	-0.0522 (3)	0.1761 (2)	1.0052 (5)	0.0624 (9)
H7A	-0.071569	0.147755	0.890001	0.094*
H7B	-0.125387	0.183416	1.042309	0.094*
H7C	0.005383	0.143312	1.094653	0.094*
C8	0.1955 (3)	0.48097 (15)	0.4916 (4)	0.0417 (6)
C9	0.1373 (4)	0.4863 (2)	0.2988 (4)	0.0710 (10)
H9A	0.150266	0.435166	0.241128	0.107*
H9B	0.171560	0.532163	0.248413	0.107*
H9C	0.051142	0.495250	0.278268	0.107*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.0379(2)$	$0.03067(19)$	$0.0376(2)$	$0.00332(12)$	$0.00486(14)$	$-0.00063(12)$

C11	$0.0504(4)$	$0.0426(4)$	$0.0359(4)$	$0.0007(3)$	$0.0049(3)$	$0.0039(3)$
C12	$0.0448(4)$	$0.0378(4)$	$0.0559(5)$	$0.0095(3)$	$0.0074(3)$	$-0.0022(3)$
O1	$0.0491(12)$	$0.0414(11)$	$0.0637(14)$	$0.0052(9)$	$0.0224(10)$	$-0.0034(9)$
O2	$0.0351(10)$	$0.0452(11)$	$0.0642(14)$	$-0.0029(8)$	$0.0190(9)$	$0.0025(9)$
N1	$0.0305(11)$	$0.0312(11)$	$0.0449(14)$	$-0.0011(9)$	$0.0088(10)$	$-0.0021(9)$
N2	$0.0329(12)$	$0.0353(12)$	$0.0544(16)$	$-0.0048(9)$	$0.0133(11)$	$-0.0057(10)$
N3	$0.0471(14)$	$0.0425(13)$	$0.0431(15)$	$0.0053(10)$	$0.0077(12)$	$-0.0029(10)$
C1	$0.0382(15)$	$0.0301(13)$	$0.0526(18)$	$0.0006(11)$	$0.0074(13)$	$-0.0075(11)$
C2	$0.0442(17)$	$0.0463(17)$	$0.094(3)$	$0.0062(13)$	$0.0121(18)$	$-0.0150(16)$
C3	$0.0399(15)$	$0.0311(13)$	$0.0517(18)$	$-0.0041(11)$	$0.0085(13)$	$-0.0003(11)$
C4	$0.0338(13)$	$0.0329(13)$	$0.0382(16)$	$-0.0032(10)$	$0.0069(11)$	$-0.0037(10)$
C5	$0.0370(14)$	$0.0385(15)$	$0.0368(16)$	$-0.0040(11)$	$0.0101(12)$	$-0.0034(11)$
C6	$0.0422(17)$	$0.073(2)$	$0.059(2)$	$0.0066(14)$	$0.0209(16)$	$0.0057(16)$
C7	$0.0416(17)$	$0.084(2)$	$0.062(2)$	$-0.0189(15)$	$0.0156(16)$	$-0.0033(17)$
C8	$0.0464(16)$	$0.0391(15)$	$0.0406(18)$	$0.0057(11)$	$0.0136(13)$	$-0.0044(11)$
C9	$0.090(3)$	$0.083(2)$	$0.038(2)$	$0.0103(19)$	$0.0133(19)$	$-0.0022(16)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cu}-\mathrm{Cl1}{ }^{\text {i }}$	2.9242 (8)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600
$\mathrm{Cu}-\mathrm{Cl} 1$	2.2609 (7)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9600
$\mathrm{Cu}-\mathrm{Cl} 2$	2.2521 (7)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600
$\mathrm{Cu} 1-\mathrm{O} 1$	2.637 (2)	C3-H3	0.9300
$\mathrm{Cu} 1-\mathrm{N} 1$	2.0182 (19)	C3-C4	1.390 (3)
$\mathrm{Cu} 1-\mathrm{N} 3$	2.036 (2)	C4-C5	1.462 (4)
O1-C5	1.205 (3)	C6-H6A	0.9700
O2-C5	1.330 (3)	C6-H6B	0.9700
O2-C6	1.449 (3)	C6-C7	1.492 (4)
N1-N2	1.330 (3)	C7-H7A	0.9600
N1-C4	1.335 (3)	C7-H7B	0.9600
N2-H2	0.80 (3)	C7-H7C	0.9600
N2-C1	1.347 (3)	C8-C9	1.441 (4)
N3-C8	1.123 (4)	C9—H9A	0.9600
C1-C2	1.495 (4)	C9-H9B	0.9600
C1-C3	1.360 (4)	C9-H9C	0.9600
$\mathrm{Cl1}-\mathrm{Cu} 1-\mathrm{Cl1}^{\text {i }}$	86.62 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{O} 1$	103.64 (5)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	92.05 (3)	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3$	127.0
$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{Cl}^{\text {i }}$	108.61 (3)	C1-C3-C4	106.1 (2)
$\mathrm{Cl} 2-\mathrm{Cu}-\mathrm{O} 1$	95.89 (5)	C4-C3-H3	127.0
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cl1}^{\text {i }}$	153.19 (4)	N1-C4-C3	110.2 (2)
N1-Cu1-Cl1	89.44 (6)	N1-C4-C5	116.5 (2)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl1}^{\text {i }}$	85.41 (6)	C3-C4-C5	133.2 (2)
N1-Cu1-Cl2	165.96 (7)	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{O} 2$	124.1 (2)
N1-Cu1-O1	70.22 (7)	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	123.3 (2)
N1-Cu1-N3	90.84 (8)	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	112.6 (2)
N3-Cu1-Cl1	171.83 (7)	$\mathrm{O} 2-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	110.2

$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{i}}$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 2$
$\mathrm{~N} 3-\mathrm{Cu} 1-\mathrm{O} 1$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{Cu} 1$
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{C} 6$
$\mathrm{~N} 2-\mathrm{N} 1-\mathrm{Cu} 1$
$\mathrm{~N} 2-\mathrm{N} 1-\mathrm{C} 4$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Cu} 1$
$\mathrm{~N} 1-\mathrm{N} 2-\mathrm{H} 2$
$\mathrm{~N} 1-\mathrm{N} 2-\mathrm{C} 1$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2$
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{Cu} 1$
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{C} 3$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{O} 2$
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$
$\mathrm{~N} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{~N} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 3$
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$
$\mathrm{~N} 2-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$
$\mathrm{~N} 2-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$
85.27 (7)
89.66 (6)
84.12 (8)
104.76 (17)
116.2 (2)
128.73 (16)
105.05 (19)
124.95 (17)
123.6
112.7 (2)
123.6
175.2 (2)
121.7 (2)
105.9 (2)
132.4 (2)
109.5
109.5
109.5
109.5
178.2 (2)
-0.4 (3)
167.66 (19)
-168.89 (18)
7.2 (3)
-178.3 (3)
0.5 (3)
-3.7 (4)
177.6 (2)
-0.8 (3)
175.3 (2)

O2-C6-H6B	110.2
O2-C6-C7	107.4 (2)
H6A-C6-H6B	108.5
C7-C6-H6A	110.2
C7-C6-H6B	110.2
C6-C7-H7A	109.5
C6-C7-H7B	109.5
C6-C7-H7C	109.5
H7A-C7-H7B	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
N3-C8-C9	$179.8(4)$
C8-C9-H9A	109.5
C8-C9-H9B	109.5
C8-C9-H9C	109.5
H9A-C9-H9B	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5

$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4 \quad-1.0(3)$
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1 \quad 1.1$ (3)
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5 \quad-174.1$ (3)
177.7 (3)
171.4 (3)
-7.4 (4)
0.2 (3)
-179.7 (2)
-3.1 (4)
175.7 (2)

Symmetry code: (i) $-x+1,-y+1,-z+2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	$0.80(2)$	$2.72(2)$	$3.281(2)$	$129(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{Cl2} 2^{\mathrm{i}}$	$0.80(2)$	$2.59(2)$	$3.273(2)$	$145(1)$
$\mathrm{C} 7 — \mathrm{H} 7 A \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.96	2.79	$3.662(4)$	151

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x, y-1 / 2,-z+3 / 2$.

