

Received 25 August 2021 Accepted 11 October 2021

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: Nickel; *α*-aminooxime; (*R*)-limonene; crystal structure.

CCDC reference: 2115017

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structure of a new chiral *α*-aminooxime nickel(II) complex

Yasmina Homrani,^a Abdelaziz Dahdouh,^a Mohamed Amin El Amrani,^a Pauline Loxq,^b Frédéric Capet,^b Isabelle Suisse^b and Mathieu Sauthier^b*

^aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences, BP 2121, Université Abdelmalek Essaadi, Tétouan, Morocco, and ^bUniv. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France. *Correspondence e-mail: mathieu.sauthier@univ-lille.fr

A dinuclear nickel complex with (*S*)-limonene based aminooxime ligand has been isolated and its crystal structure determined. The resolved structure of dichloridobis{(2S,5R)-2-methyl-5-(prop-1-en-2-yl)-2-[(pyridin-2-yl)methylamino]cyclohexan-1-one oxime}dinickel(II), [Ni₂Cl₂(C₁₆H₂₃ClN₃O)₂], at 100 K has monoclinic (*P*₂₁) symmetry. The two Ni^{II} ions in the dinuclear complex are each coordinated in a distorted octahedral environment by three nitrogen atoms, a terminal chloride and two μ bridging chlorides. Each oxime ligand is coordinated to nickel(II) by the three nitrogen atoms, leading to two fivemembered chelate rings, each displaying an envelope conformation. In the crystal, numerous intermolecular and intramolecular hydrogen bonds lead to the formation of a three-dimensional network structure.

1. Chemical context

Asymmetric synthesis allows the preparation of enantiomerically enriched compounds either by using a chiral auxiliary, which will be temporarily introduced, or by using catalytic procedures (Gawley & Aubé, 2012). This latter method is particularly attractive as it contributes to the development of green chemistry, which maximizes efficiency and minimizes hazardous effects on human health and the environment (Anastas & Zimmerman, 2013). Thus, asymmetric catalysis avoids synthetic steps and only catalytic amounts of the optically pure auxiliary are needed (Ojima, 2010). As part of the development of this chemistry, the synthesis of new chiral organometallic complexes is always challenging. The pivotal point is then the synthesis of optically pure ligands, which will be coordinated to the metal center. In terms of sustainable chemistry, using the chiral pool to develop new ligands is most interesting (Elalami et al., 2015). Coordination metal complexes containing terpenoid fragments are widely used in the pharmaceutical field and in catalysis. We have therefore developed ligands based on terpenes such as pinene and limonene (El Alami et al., 2009, 2015; Chahboun et al., 2012). In particular, the synthesis of optically pure aminooxime ligands has been performed successfully from (R)limonene (El Alami et al., 2012). These compounds possess structures with two or three nitrogen atoms as donor heteroatoms that could coordinate to the metal center. They have advantageously replaced phosphine ligands, which are generally unstable under air. Ruthenium (Benabdelouahab et al., 2015) and palladium (de la Cueva-Alique et al., 2019)

complexes have already been synthezised with these ligands. Here we report the first synthesis of a limonene-based α -aminooxime nickel complex and its crystal structure. In the dinuclear title complex, each nickel ion is coordinated by (1S,4R)-1-picolylamino-*p*-menth-8-en-2-one oxime. The ligand was first synthesized from (*R*)-limonene through the addition of nitrosyl chloride, NOCl, to a picolylamine moiety, allowing the formation of the oxime moiety.

2. Structural commentary

The title compound (Fig. 1) crystallizes in the monoclinic space group $P2_1$ with two chiral molecules per unit cell. The two Ni^{II} ions in the dinuclear complex are each coordinated by three nitrogen atoms, a terminal chloride and two μ bridging chlorides. The environment around each metal center can then be described as a distorted octahedron with N1–Ni1–N2 and Cl1–Ni1–Cl3 angles of 79.91 (13) and 91.99 (4)°, respectively, together with Cl1–Ni1–N2 and Cl2–Ni1–N1 angles of 165.04 (11) and 88.69 (10)°, respectively. A similar arrangement can be found around the Ni2 atom [N4–Ni2–N5, Cl2–Ni2–Cl4, Cl4–Ni2–N5 and Cl4–Ni2–N4 = 79.7 (2), 99.38 (4), 166.04 (12) and 93.24 (16)°, respectively].

Each aminooxime ligand is coordinated to nickel(II) by the three nitrogen atoms, leading to two five-membered chelate rings, each displaying an envelope conformation (with N2 as the flap for Ni1/N1/C5/C6/N2 and N5 for Ni2/N4/C21/C22/N5). The six-membered carbocycles of the limonene units adopt a chair conformation. The lengths of the Ni1–N1, Ni1–N2 and Ni1–N3 bonds are 2.077 (3), 2.126 (4) and

Figure 1

Displacement ellipsoid plot at the 50% probability level for $Ni_2(amino-oxime)_2Cl_4$. H atoms are omitted for clarity.

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O1-H1···Cl1	0.85 (7)	2.32 (6)	3.009 (4)	139 (6)
N2-H2···Cl4	0.77 (5)	2.46 (5)	3.209 (4)	166 (5)
$O2-H2A\cdots Cl4$	0.76 (8)	2.31 (7)	2.978 (4)	147 (7)
$C3-H3\cdots O1^{i}$	0.95	2.58	3.432 (5)	149
$C1-H1A\cdots Cl1$	0.95	2.75	3.369 (5)	124
$C6-H6A\cdots Cl2$	0.99	2.76	3.309 (5)	115
$C11 - H11B \cdot \cdot \cdot Cl3^{ii}$	0.99	2.64	3.573 (5)	156
$C17 - H17 \cdot \cdot \cdot Cl4$	0.95	2.69	3.327 (6)	125
$C26-H26\cdots O2^{iii}$	1.00	2.56	3.489 (6)	154
$C22 - H22B \cdots Cl2$	0.99	2.81	3.352 (6)	115
C19−H19···Cl1 ^{iv}	0.95	2.64	3.570 (7)	167

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, -z + 1; (ii) -x + 1, $y - \frac{1}{2}$, -z + 1; (iii) -x, $y + \frac{1}{2}$, -z; (iv) -x + 1, $y - \frac{1}{2}$, -z.

2.041 (3) Å, respectively, while Ni2–N4, Ni2–N5 and Ni2– N6 are 2.095 (4), 2.103 (4) and 2.027 (3) Å. Atoms Cl1 and Cl4 are in a *trans*-position at distances of 2.4408 (12) and 2.4077 (14) Å from the metal centers Ni1 and Ni2, respectively. The two metal centers are linked by two bridging Cl atoms with an average Ni–Cl distance of 2.42 Å, which is normal for these bond lengths. All these values compare well with literature values. The two nickel ions are separated by a distance of 3.5198 (7) Å, which is similar to average values (Zheng *et al.*, 2010; Cheng *et al.*, 2012).

3. Supramolecular features

The crystal structure is stabilized by numerous intermolecular and intramolecular hydrogen bonds (Table 1), which link the component into a three-dimensional network (Figs. 2 and 3).

Figure 2 Intermolecular and intramolecular hydrogen bonds in the structure, shown as dashed lines.

research communications

In particular, the two {Ni(aminoxime) μ -Cl}Cl units are slightly asymmetrical with the existence of a hydrogenbonding interaction between the amine N2–H2 linked to Ni1 and the chlorine atom Cl4 linked to Ni2. In addition, the two oxygen atoms O1 and O2 of the oxime groups are involved in intramolecular O1–H1···Cl1 and O2–H2A···Cl4 hydrogen bonds and in intermolecular C3–H3···O1 and C26– H26···O2 interactions.

4. Database survey

The aminooxime ligand used in this study was previously reacted with palladium and platinum precursors, generating three *N*-coordinated cationic complexes as enantiopure compounds (de la Cueva-Alique *et al.*, 2019). A heteronuclear Ti^{IV}/Pd^{II} complex has also been described. The compounds were studied to assess their potential biological activity, a high anticancer activity (de la Cueva-Alique *et al.*, 2019).

5. Synthesis and crystallization

To a solution of Ni^{II} chloride ethylene glycol dimethyl ether (0.15 g, 1.48 mmol) in MeOH (5 mL) was added (1S,4R)-1-picolylamino-*p*-menth-8-en-2-one-oxime (0.101 g, 0.36 mmol) dissolved in MeOH (3 mL). The solution turned green. The mixture was stirred overnight at room temperature during which time the mixture changed color to blue-green. The

Fable 2	
Experimental details.	
Crystal data	
Chemical formula	$[Ni_2Cl_2(C_{16}H_{22}ClN_2O)_2]$
И.	805.97
Crystal system space group	Monoclinic P2
Cemperature (K)	100
b c (Å)	13 3729 (9) 8 9363 (7)
	16 4248 (16)
3 (°)	114 014 (2)
$Z(A^3)$	1792 9 (3)
7	2
adiation type	Δο Κα
(mm^{-1})	1 39
rystal size (mm)	$0.21 \times 0.17 \times 0.12$
crystar size (mm)	0.21 × 0.17 × 0.12
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.669, 0.746
No. of measured, independent and	42747, 10769, 9436
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.037
$\sin \theta / \lambda$) _{max} (Å ⁻¹)	0.714
Refinement $P(P^2) = P(P^2)$	0.042 0.400 4.05
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.109, 1.05
No. of reflections	10/69
No. of parameters	431
No. of restraints	
1-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	1.50, -1.19
Absolute structure	Flack x determined using 3850
	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.009(4)

Computer programs: *APEX2* and *SAINT* (Bruker, 2019), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*) and *OLEX2* (Dolomanov *et al.*, 2009).

solvent was then evaporated to produce a crude solid that was washed with diethyl ether before crystallization. Single crystals were grown by slow diffusion at room temperature of diethyl ether into a dichloromethane solution. Elemental analysis calculated for $C_{32}H_{46}Cl_4N_6Ni_2O_2$: C, 46.33; H, 5.54; N, 9.65. Found: C, 46.35; H, 5.672; N, 9.77.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. N- and O-bound atoms were refined with the restraint $U_{iso}(H) = 1.2U_{eq}(N)$ or $1.5U_{eq}(O)$. H atoms were positioned geometrically(C-H = 0.95–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C$ methyl)

Acknowledgements

We would like to thank Céline Delabre for the elemental analysis.

Funding information

The authors thank the Ministère de l'Enseignement Supérieur de la Recherche et de l'Innovation (France) and the Ministère de la Recherche (Morocco) for financial support. The Chevreul Institute (FR 2638), Ministry of Higher Education, Research and Innovation, Région Hauts de France and FEDER are recognized for funding of X-ray diffractometers.

References

- Anastas, P. T. & Zimmerman, J. B. (2013). *Environ. Sci. Technol.* 37, 95A–101A.
- Benabdelouahab, Y., Muñoz-Moreno, L., Frik, M., de la Cueva-Alique, I., El Amrani, M. A., Contel, M., Bajo, A. M., Cuenca, T. & Royo, E. (2015). *Eur. J. Inorg. Chem.* pp. 2295–2307.
- Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.
- Chahboun, G., Brito, J. A., Royo, B., El Amrani, M. A., Gómez-Bengoa, E., Mosquera, M. E. G., Cuenca, T. & Royo, E. (2012). *Eur. J. Inorg. Chem.* pp. 2940–2949.
- Cheng, T.-P., Liao, B.-S., Liu, Y.-H., Peng, S.-M. & Liu, S.-T. (2012). *Dalton Trans.* **41**, 3468–3473.

- Cueva-Alique, I. de la, Muñoz-Moreno, L., de la Torre-Rubio, E., Bajo, A. M., Gude, L., Cuenca, T. & Royo, E. (2019). *Dalton Trans.* **48**, 14279–14293.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Elalami, M. S., Dahdouh, A. A., Mansour, A. I., ElAmrani, M. A., Suisse, I., Mortreux, A. & Agbossou-Niedercorn, F. (2009). C. R. Chim. 12, 1253–1258.
- El Alami, M. S. I., El Amrani, M. A., Agbossou-Niedercorn, F., Suisse, I. & Mortreux, A. (2015). *Chem. Eur. J.* 21, 1398–1413.
- Gawley, R. E. & Aubé, J. (2012). Principles and applications of asymmetric synthesis, 2nd ed. Amsterdam: Elsevier Science
- El Alami, M. S. I., El Amrani, M. A., Dahdouh, A., Roussel, P., Suisse, I. & Mortreux, A. (2012). *Chirality*, **24**, 675–682.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Ojima, I. (2010). Catalytic asymmetric synthesis, 3rd ed. Hoboken: Wiley
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Zheng, L., Zhang, S., Li, K., Chen, W., Chen, Y., Xu, B., Hu, B., Li, Y. & Li, W. (2010). J. Mol. Struct. 984, 153–156.

Acta Cryst. (2021). E77, 1116-1119 [https://doi.org/10.1107/S2056989021010537]

Synthesis and crystal structure of a new chiral α -aminooxime nickel(II) complex

Yasmina Homrani, Abdelaziz Dahdouh, Mohamed Amin El Amrani, Pauline Loxq, Frédéric Capet, Isabelle Suisse and Mathieu Sauthier

Computing details

Data collection: *APEX2* (Bruker, 2019); cell refinement: *SAINT* (Bruker, 2019); data reduction: *SAINT*(Bruker, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Dichloridobis{(2*S*,5*R*)-2-methyl-5-(prop-1-en-2-yl)-2-[(pyridin-2-yl)methylamino]cyclohexan-1-one oxime}dinickel(II)

Crystal data

[Ni ₂ Cl ₂ (C ₁₆ H ₂₃ ClN ₃ O) ₂]
$M_r = 805.97$
Monoclinic, $P2_1$
<i>a</i> = 13.3729 (9) Å
<i>b</i> = 8.9363 (7) Å
<i>c</i> = 16.4248 (16) Å
$\beta = 114.014 \ (2)^{\circ}$
V = 1792.9 (3) Å ³
Z = 2

Data collection

Bruker APEXII CCD diffractometer Radiation source: microfocus sealed X-ray tube φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.669, T_{\max} = 0.746$ 42747 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.109$ S = 1.0510769 reflections 431 parameters 13 restraints Primary atom site location: dual F(000) = 840 $D_x = 1.493 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9996 reflections $\theta = 2.7-30.0^{\circ}$ $\mu = 1.39 \text{ mm}^{-1}$ T = 100 KBlock, green $0.21 \times 0.17 \times 0.12 \text{ mm}$

10769 independent reflections 9436 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 30.5^\circ, \ \theta_{min} = 1.4^\circ$ $h = -17 \rightarrow 19$ $k = -12 \rightarrow 12$ $l = -23 \rightarrow 21$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0581P)^2 + 0.9636P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.50$ e Å⁻³

$\Delta \rho_{\rm min} = -1.18 \ {\rm e} \ {\rm \AA}^{-3}$

Absolute structure: Flack *x* determined using 3850 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.009 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.66455 (4)	0.50226 (6)	0.35327 (3)	0.01526 (11)	
Ni2	0.41917 (4)	0.48960 (6)	0.15985 (3)	0.01813 (12)	
Cl2	0.61155 (8)	0.45928 (14)	0.19208 (7)	0.0259 (2)	
C13	0.48342 (7)	0.60270 (12)	0.30567 (7)	0.0212 (2)	
Cl1	0.74487 (8)	0.75170 (12)	0.37010 (7)	0.0249 (2)	
Cl4	0.38501 (9)	0.25191 (13)	0.21270 (9)	0.0336 (3)	
01	0.7388 (3)	0.6301 (4)	0.5389 (2)	0.0244 (7)	
H1	0.740 (5)	0.705 (7)	0.507 (4)	0.037*	
N1	0.8111 (3)	0.3926 (4)	0.3786 (2)	0.0182 (7)	
N3	0.6939 (2)	0.5043 (5)	0.4853 (2)	0.0183 (6)	
N2	0.6216 (3)	0.2811 (4)	0.3745 (2)	0.0183 (7)	
H2	0.563 (4)	0.289 (6)	0.339 (3)	0.022*	
02	0.1908 (3)	0.4533 (5)	0.1497 (2)	0.0339 (9)	
H2A	0.226 (6)	0.389 (9)	0.176 (5)	0.051*	
C8	0.6846 (3)	0.3877 (5)	0.5258 (3)	0.0203 (8)	
C5	0.8008 (3)	0.2431 (5)	0.3699 (3)	0.0202 (8)	
N6	0.2619 (3)	0.5471 (4)	0.1318 (2)	0.0212 (8)	
N5	0.4081 (3)	0.6943 (5)	0.0936 (3)	0.0394 (12)	
H5	0.468 (5)	0.736 (8)	0.140 (4)	0.047*	
C12	0.7001 (3)	0.1123 (6)	0.5107 (3)	0.0250 (9)	
H12A	0.660298	0.022653	0.478112	0.030*	
H12B	0.770464	0.117488	0.504159	0.030*	
C14	0.9033 (3)	0.2356 (6)	0.6758 (3)	0.0257 (9)	
C3	0.9925 (4)	0.2136 (6)	0.4131 (3)	0.0301 (11)	
H3	1.054899	0.151943	0.425362	0.036*	
C9	0.7192 (4)	0.3765 (6)	0.6253 (3)	0.0279 (10)	
H9A	0.653362	0.378843	0.638523	0.034*	
H9B	0.764996	0.464264	0.654444	0.034*	
C1	0.9109 (3)	0.4531 (5)	0.4044 (3)	0.0220 (9)	
H1A	0.918464	0.558677	0.410777	0.026*	
C30	0.0369 (4)	0.6416 (7)	-0.1114 (4)	0.0357 (12)	
N4	0.3669 (3)	0.4143 (6)	0.0282 (3)	0.0361 (11)	
C2	1.0041 (3)	0.3660 (6)	0.4222 (3)	0.0277 (10)	
H2B	1.074096	0.411370	0.440161	0.033*	
C25	0.1029 (4)	0.7072 (7)	0.0546 (4)	0.0384 (13)	

H25A	0.095090	0.786671	0.093629	0.046*
H25B	0.059972	0.619493	0.058673	0.046*
C7	0.6314 (3)	0.2540 (5)	0.4678 (3)	0.0206 (8)
C4	0.8897 (4)	0.1499 (6)	0.3860 (3)	0.0278 (10)
H4	0.880183	0.044699	0.378533	0.033*
C24	0.2208 (4)	0.6641 (5)	0.0869 (3)	0.0258 (10)
C6	0.6855 (3)	0.1848 (5)	0.3402 (3)	0.0218 (8)
H6A	0.649955	0.182503	0.274260	0.026*
H6B	0.687313	0.081400	0.362311	0.026*
C10	0.7844 (4)	0.2319 (6)	0.6644 (3)	0.0281 (10)
H10	0 785669	0.219265	0 725250	0.034*
C23	0.2999(4)	0.7724 (5)	0.723230 0.0732(4)	0.031
C15	0.2999(1) 0.9419(4)	0.3220 (6)	0.6792(1)	0.0301(12)
H15A	1 016603	0.314817	0.638711	0.036*
H15R	0.894916	0.301186	0.587469	0.036*
C31	0.094910	0.591100	-0.0031(3)	0.030
	0.0003 (3)	0.3000 (7)	-0.140077	0.0322 (10)
	0.033020	0.430999	-0.140077	0.039*
	0.100801	0.408483 0.2204(7)	-0.032820	0.039°
	0.3139 (3)	0.2394 (7)	0.4028 (3)	0.0314 (11)
HI3A	0.4/1161	0.327732	0.433110	0.047*
HI3B	0.516636	0.231/14	0.523147	0.04/*
HI3C	0.4/93/8	0.149469	0.428806	0.04/*
CII	0.7236 (4)	0.0951 (6)	0.6094 (3)	0.0306 (11)
HIIA	0.768517	0.004325	0.633040	0.037*
H11B	0.653697	0.081821	0.615749	0.037*
C16	0.9776 (4)	0.1259 (6)	0.7427 (3)	0.0313 (11)
H16A	0.980940	0.149758	0.802043	0.047*
H16B	1.051172	0.132186	0.743621	0.047*
H16C	0.948965	0.024270	0.726130	0.047*
C18	0.2741 (6)	0.2441 (10)	-0.0937 (4)	0.0582 (18)
H18	0.234602	0.153747	-0.115022	0.070*
C17	0.3151 (5)	0.2832 (8)	-0.0055 (4)	0.0493 (16)
H17	0.306660	0.213712	0.035033	0.059*
C26	0.0565 (4)	0.7638 (7)	-0.0421 (4)	0.0423 (14)
H26	-0.016160	0.810447	-0.054167	0.051*
C21	0.3804 (4)	0.5139 (10)	-0.0254 (4)	0.0504 (17)
C28	0.2479 (5)	0.8323 (7)	-0.0237 (4)	0.0486 (16)
H28A	0.293285	0.915184	-0.030027	0.058*
H28B	0.247256	0.751483	-0.065083	0.058*
C32	-0.0176 (7)	0.6926 (9)	-0.2067 (4)	0.068 (2)
H32A	0.032890	0.756035	-0.220891	0.101*
H32B	-0.083660	0.749858	-0.215141	0.101*
H32C	-0.037751	0.605256	-0.246168	0.101*
C22	0.4373 (5)	0.6511 (10)	0.0162 (4)	0.064 (2)
H22A	0.416191	0.732765	-0.028357	0.077*
H22B	0.517365	0.635850	0.038173	0.077*
C27	0.1312 (6)	0.8883 (7)	-0.0493 (4)	0.0552 (18)
H27A	0.101814	0.926492	-0.111198	0.066*

H27B	0.132010	0.972060	-0.009604	0.066*	
C29	0.3272 (7)	0.8968 (8)	0.1403 (5)	0.068 (2)	
H29A	0.368891	0.856492	0.200143	0.102*	
H29B	0.259425	0.942465	0.137844	0.102*	
H29C	0.371164	0.972534	0.126705	0.102*	
C19	0.2927 (7)	0.3391 (10)	-0.1474 (5)	0.069 (2)	
H19	0.270015	0.312455	-0.208304	0.082*	
C20	0.3427 (6)	0.4734 (12)	-0.1196 (4)	0.070 (2)	
H20	0.353114	0.539853	-0.160608	0.084*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Ni1	0.01393 (19)	0.0171 (2)	0.0136 (2)	0.0000 (2)	0.00431 (17)	0.0017 (2)
Ni2	0.0158 (2)	0.0210 (3)	0.0153 (2)	-0.0019 (2)	0.00406 (17)	-0.0011 (2)
Cl2	0.0180 (4)	0.0431 (7)	0.0155 (4)	0.0016 (4)	0.0057 (3)	0.0037 (4)
C13	0.0178 (4)	0.0225 (5)	0.0194 (5)	0.0017 (4)	0.0034 (4)	-0.0031 (4)
Cl1	0.0240 (5)	0.0198 (5)	0.0244 (5)	-0.0048 (4)	0.0031 (4)	0.0052 (4)
Cl4	0.0301 (5)	0.0180 (5)	0.0367 (7)	-0.0042 (4)	-0.0027 (5)	0.0021 (5)
01	0.0275 (15)	0.0233 (17)	0.0205 (16)	0.0014 (13)	0.0077 (13)	-0.0051 (13)
N1	0.0159 (14)	0.0249 (19)	0.0133 (16)	0.0017 (13)	0.0054 (13)	0.0017 (14)
N3	0.0163 (13)	0.0206 (17)	0.0170 (15)	0.0001 (15)	0.0056 (12)	0.0000 (16)
N2	0.0122 (13)	0.0204 (19)	0.0200 (18)	0.0019 (13)	0.0044 (13)	0.0019 (14)
O2	0.0186 (14)	0.052 (3)	0.0312 (19)	-0.0003 (14)	0.0099 (13)	0.0128 (17)
C8	0.0184 (18)	0.026 (2)	0.020 (2)	0.0079 (16)	0.0113 (16)	0.0058 (17)
C5	0.0221 (18)	0.025 (2)	0.0146 (19)	0.0034 (17)	0.0086 (15)	0.0006 (17)
N6	0.0182 (15)	0.028 (2)	0.0163 (17)	0.0011 (13)	0.0055 (14)	-0.0007 (14)
N5	0.029 (2)	0.040 (3)	0.033 (2)	-0.0178 (19)	-0.0040 (18)	0.020 (2)
C12	0.0200 (18)	0.025 (2)	0.027 (2)	-0.0009 (17)	0.0064 (17)	0.0088 (19)
C14	0.0249 (19)	0.033 (3)	0.016 (2)	0.0063 (18)	0.0045 (16)	0.0044 (19)
C3	0.025 (2)	0.036 (3)	0.029 (3)	0.0125 (19)	0.0111 (19)	0.004 (2)
C9	0.032 (2)	0.037 (3)	0.018 (2)	0.011 (2)	0.0145 (18)	0.006 (2)
C1	0.0194 (17)	0.028 (2)	0.019 (2)	0.0006 (16)	0.0077 (15)	0.0024 (17)
C30	0.035 (2)	0.041 (3)	0.033 (3)	0.006 (2)	0.015 (2)	0.000 (2)
N4	0.0223 (18)	0.061 (3)	0.021 (2)	0.0157 (19)	0.0044 (16)	-0.005 (2)
C2	0.0149 (17)	0.041 (3)	0.028 (2)	0.0019 (18)	0.0097 (17)	0.007 (2)
C25	0.033 (2)	0.047 (3)	0.031 (3)	0.022 (2)	0.009 (2)	-0.001 (2)
C7	0.0174 (16)	0.025 (2)	0.022 (2)	0.0014 (16)	0.0105 (15)	0.0077 (18)
C4	0.025 (2)	0.032 (3)	0.027 (2)	0.0106 (18)	0.0114 (18)	0.002 (2)
C24	0.029 (2)	0.025 (2)	0.017 (2)	0.0080 (18)	0.0041 (18)	-0.0052 (18)
C6	0.0243 (19)	0.017 (2)	0.024 (2)	0.0046 (16)	0.0094 (17)	-0.0026 (17)
C10	0.030 (2)	0.034 (3)	0.024 (2)	0.007 (2)	0.0142 (18)	0.012 (2)
C23	0.048 (3)	0.015 (2)	0.032 (3)	-0.003(2)	0.001 (2)	0.006 (2)
C15	0.0204 (19)	0.036 (3)	0.028 (2)	0.0014 (18)	0.0032 (18)	0.008 (2)
C31	0.0267 (19)	0.033 (2)	0.032 (2)	-0.005 (2)	0.0058 (18)	0.001 (3)
C13	0.0198 (19)	0.040 (3)	0.034 (3)	-0.001 (2)	0.0108 (18)	0.010 (2)
C11	0.026 (2)	0.033 (3)	0.035 (3)	0.0008 (19)	0.015 (2)	0.018 (2)
C16	0.033 (2)	0.037 (3)	0.024 (2)	0.009 (2)	0.0120 (19)	0.011 (2)

C18	0.059 (4)	0.067 (4)	0.032 (3)	0.026 (4)	0.003 (3)	-0.011 (3)
C17	0.040 (3)	0.057 (4)	0.032 (3)	0.025 (3)	-0.004 (2)	-0.020 (3)
C26	0.043 (3)	0.047 (4)	0.028 (3)	0.027 (3)	0.005 (2)	0.002 (2)
C21	0.030(2)	0.091 (5)	0.031 (3)	0.024 (3)	0.013 (2)	0.016 (3)
C28	0.053 (3)	0.029 (3)	0.043 (3)	-0.005 (3)	-0.002 (3)	0.018 (3)
C32	0.115 (7)	0.050 (4)	0.026 (3)	0.028 (4)	0.016 (4)	0.002 (3)
C22	0.033 (3)	0.113 (7)	0.049 (4)	0.010 (3)	0.020 (3)	0.057 (4)
C27	0.069 (4)	0.029 (3)	0.041 (3)	0.017 (3)	-0.004 (3)	0.007 (3)
C29	0.091 (5)	0.027 (3)	0.051 (4)	0.000 (3)	-0.007 (4)	-0.001 (3)
C19	0.093 (6)	0.071 (5)	0.055 (4)	0.014 (4)	0.044 (4)	-0.020 (4)
C20	0.068 (4)	0.104 (6)	0.040 (3)	0.030 (4)	0.025 (3)	0.035 (4)

Geometric parameters (Å, °)

Ni1—Cl2	2.4762 (11)	C2—H2B	0.9500
Ni1—Cl3	2.3964 (10)	C25—H25A	0.9900
Ni1—Cl1	2.4408 (12)	C25—H25B	0.9900
Nil—N1	2.077 (3)	C25—C24	1.495 (6)
Ni1—N3	2.041 (3)	C25—C26	1.536 (8)
Ni1—N2	2.126 (4)	C7—C13	1.545 (5)
Ni2—Cl2	2.4216 (10)	C4—H4	0.9500
Ni2—Cl3	2.4128 (12)	C24—C23	1.516 (7)
Ni2—Cl4	2.4077 (14)	C6—H6A	0.9900
Ni2—N6	2.027 (3)	С6—Н6В	0.9900
Ni2—N5	2.103 (4)	C10—H10	1.0000
Ni2—N4	2.095 (4)	C10-C11	1.540 (8)
01—H1	0.85 (7)	C23—C28	1.550 (8)
01—N3	1.403 (5)	C23—C29	1.502 (9)
N1—C5	1.345 (6)	C15—H15A	0.9500
N1—C1	1.338 (5)	C15—H15B	0.9500
N3—C8	1.269 (6)	C31—H31A	0.9500
N2—H2	0.77 (5)	C31—H31B	0.9500
N2—C7	1.503 (5)	C13—H13A	0.9800
N2—C6	1.477 (5)	C13—H13B	0.9800
O2—H2A	0.76 (8)	C13—H13C	0.9800
O2—N6	1.385 (5)	C11—H11A	0.9900
С8—С9	1.509 (6)	C11—H11B	0.9900
C8—C7	1.513 (7)	C16—H16A	0.9800
C5—C4	1.385 (6)	C16—H16B	0.9800
C5—C6	1.508 (6)	C16—H16C	0.9800
N6-C24	1.269 (6)	C18—H18	0.9500
N5—H5	0.93 (7)	C18—C17	1.370 (8)
N5—C23	1.517 (7)	C18—C19	1.318 (12)
N5—C22	1.524 (9)	C17—H17	0.9500
C12—H12A	0.9900	C26—H26	1.0000
C12—H12B	0.9900	C26—C27	1.532 (10)
C12—C7	1.555 (6)	C21—C22	1.457 (12)
C12—C11	1.528 (7)	C21—C20	1.465 (10)

C14—C10	1.523 (6)	C28—H28A	0.9900
C14—C15	1.326 (7)	C28—H28B	0.9900
C14-C16	1 506 (7)	C_{28} C_{27}	1 525 (9)
С3—Н3	0.9500	C32—H32A	0.9800
$C_3 - C_2$	1 373 (8)	C32—H32R	0.9800
$C_3 - C_4$	1.375(0) 1 384(7)	C_{32} H32D	0.9800
	0.9900	C22_H22A	0.9000
C0 H0B	0.9900	C22 H22R	0.0000
C_{9}	1 545 (7)	C27_H27A	0.9900
$C_1 = H_1 \Lambda$	0.0500	$C_{27} = H_{27}R$	0.0000
C1 - C2	1 206 (6)	$C_2 = H_2 A$	0.9900
C1 - C2	1.390(0) 1.219(9)	C29—H29A	0.9800
C_{30}	1.510(0)	C29—H29B	0.9800
$C_{30} = C_{20}$	1.521 (8)	C10 H10	0.9800
$C_{30} - C_{32}$	1.503 (8)	C19—H19	0.9500
N4—C1/	1.359 (8)	C19—C20	1.360 (13)
N4—C21	1.314 (8)	C20—H20	0.9500
Cl3—Ni1—Cl2	84 13 (4)	C8—C7—C13	108.0(4)
C13— $Ni1$ — $C11$	91 99 (4)	C13 - C7 - C12	100.0(1) 110.9(4)
C11—Ni1— $C12$	100 61 (4)	C_{5} C_{4} H_{4}	120.7
N1 - Ni1 - C12	88 69 (10)	$C_3 - C_4 - C_5$	120.7 118 5 (5)
N1Ni1Cl3	171 31 (10)	$C_3 - C_4 - H_4$	120.7
N1N1C11	94 14 (11)	N6_C24_C25	120.7 124.3(5)
N1 = N1 = C11 $N1 = N11 = N2$	70.01 (13)	N6 C24 C23	124.3(3) 1167(4)
$\frac{1}{1} \frac{1}{1} \frac{1}$	79.91(13) 170 10(12)	10 - 24 - 223	110.7(4)
$N_{2} = N_{11} = C_{12}$	1/0.10(12)	$C_{23} - C_{24} - C_{23}$	110.0(4)
N3—NII—CI3	94.30 (9)	$N_2 = C_0 = C_3$	110.5 (4)
N3—N11—CII	89.21 (12)	N2 - C6 - H6A	109.6
	91.94 (13)	N2—C0—H6B	109.0
$N_3 - N_1 - N_2$	//.38(15)	С5—С6—Н6А	109.6
N2—N11—Cl2	93.02 (10)	С5—С6—Н6В	109.6
N2—N11—Cl3	95.56 (9)	Н6А—С6—Н6В	108.1
N2—N11—Cl1	165.04 (11)	C14—C10—C9	114.7 (4)
Cl3—N12—Cl2	84.97 (4)	C14—C10—H10	106.7
Cl4—Ni2—Cl2	99.38 (4)	C14—C10—C11	111.4 (4)
Cl4—Ni2—Cl3	93.14 (5)	C9—C10—H10	106.7
N6—Ni2—Cl2	171.72 (12)	C11—C10—C9	110.3 (4)
N6—Ni2—Cl3	92.13 (11)	C11—C10—H10	106.7
N6—Ni2—Cl4	88.51 (11)	N5—C23—C28	112.0 (5)
N6—Ni2—N5	79.29 (16)	C24—C23—N5	109.5 (4)
N6—Ni2—N4	88.11 (15)	C24—C23—C28	108.9 (4)
N5—Ni2—Cl2	93.15 (13)	C29—C23—N5	104.7 (5)
N5—Ni2—Cl3	94.06 (15)	C29—C23—C24	109.9 (5)
N5—Ni2—Cl4	166.04 (12)	C29—C23—C28	111.8 (5)
N4—Ni2—Cl2	93.92 (11)	C14—C15—H15A	120.0
N4—Ni2—Cl3	173.62 (15)	C14—C15—H15B	120.0
N4—Ni2—Cl4	93.24 (16)	H15A—C15—H15B	120.0
N4—Ni2—N5	79.7 (2)	C30—C31—H31A	120.0
Ni2—Cl2—Ni1	91.88 (4)	C30—C31—H31B	120.0

Ni1—Cl3—Ni2	94.09 (4)	H31A—C31—H31B	120.0
N3—O1—H1	111 (4)	С7—С13—Н13А	109.5
C5—N1—Ni1	113.6 (3)	C7—C13—H13B	109.5
C1—N1—Ni1	127.6 (3)	С7—С13—Н13С	109.5
C1—N1—C5	118.8 (4)	H13A—C13—H13B	109.5
O1—N3—Ni1	121.4 (3)	H13A—C13—H13C	109.5
C8—N3—Ni1	122.2 (3)	H13B—C13—H13C	109.5
C8—N3—O1	115.9 (3)	C12—C11—C10	112.0 (4)
Ni1—N2—H2	93 (4)	C12—C11—H11A	109.2
C7—N2—Nil	113.6 (3)	C12—C11—H11B	109.2
C7—N2—H2	116 (4)	C10—C11—H11A	109.2
C6—N2—Nil	104.0 (2)	C10—C11—H11B	109.2
C6—N2—H2	109 (4)	H11A—C11—H11B	107.9
C6—N2—C7	118.1 (3)	C14—C16—H16A	109.5
N6—O2—H2A	105 (5)	C14—C16—H16B	109.5
N3—C8—C9	124.7 (4)	C14—C16—H16C	109.5
N3—C8—C7	116.1 (4)	H16A—C16—H16B	109.5
C9—C8—C7	119.2 (4)	H16A—C16—H16C	109.5
N1-C5-C4	122.3 (4)	H16B—C16—H16C	109.5
N1-C5-C6	115.1 (4)	C17—C18—H18	121.9
C4-C5-C6	122.6 (4)	C19—C18—H18	121.9
$\Omega^2 - N6 - Ni^2$	122.4(3)	C19 - C18 - C17	116 1 (8)
$C_2 = N_0 = N_1^2$	120.3(3)	N4-C17-C18	1247(7)
$C_{24} - N_{6} - O_{2}^{2}$	1167(4)	N4—C17—H17	1177
Ni2—N5—H5	94 (4)	C18—C17—H17	117.7
C_{23} N5 Ni2	112.0 (3)	C_{30} C_{26} C_{25}	114.3 (5)
$C_{23} = N_{5} = H_{5}$	115 (4)	C30-C26-H26	107.1
$C_{23} = N_5 = C_{22}$	118 6 (4)	C_{30} C_{26} C_{27}	107.1 112.5(5)
$C_{22} = N_5 = C_{22}$	102.9 (4)	$C_{25} = C_{26} = H_{26}$	107.1
$C_{22} = N_{5} = H_{5}$	110 (4)	$C_{25} = C_{26} = C_{25}$	107.1 108.5(5)
H12A - C12 - H12B	107.8	$C_{27} = C_{26} = H_{26}$	107.1
C7-C12-H12A	109.0	N4-C21-C22	107.1 1164(5)
C7— $C12$ — $H12B$	109.0	N4 - C21 - C20	117.7(8)
$C_{11} - C_{12} - H_{12A}$	109.0	C^{22} C^{21} C^{20}	1263(7)
C11 - C12 - H12B	109.0	C23—C28—H28A	109.2
$C_{11} - C_{12} - C_{7}$	113.0 (4)	C_{23} C_{28} H_{28B}	109.2
$C_{12} = C_{12} = C_{12}$	1249(4)	$H_{28} = C_{28} = H_{28B}$	107.9
C_{15} C_{14} C_{16}	124.9(4) 120.2(4)	C_{27} C_{28} C_{23}	112.2 (6)
$C_{16} - C_{14} - C_{10}$	120.2 (4) 114.9 (4)	$C_{27} = C_{28} = C_{23}$	109.2
C_{2} C_{3} H_{3}	120.1	C_{27} C_{28} H_{28R}	109.2
$C_2 = C_3 = C_4$	120.1 110 7 (A)	$C_{27} = C_{20} = H_{20} = H_{20}$	109.2
C4_C3_H3	120.1	C_{30} C_{32} H_{32R}	109.5
$C_{4} = C_{5} = H_{5}$	109.2	C_{30} C_{32} H_{32C}	109.5
C8_C9_H9B	109.2	$H_{32} = C_{32} = H_{32} = H$	109.5
C_{8} C_{9} C_{10}	112 2 (4)	$H_{32}A = C_{32} = H_{32}C$	109.5
H9A - C9 - H9B	107.9	$H_{32}R_{-C_{32}}H_{32}C$	109.5
C10_C9_H9A	109.2	N5_C22_H22A	109.5
C10—C9—H9B	109.2	N5-C22-H22R	109.7
	10/.4	113 022 112213	10/./

N1—C1—H1A	119.0	C21—C22—N5	110.0 (4)
N1—C1—C2	122.1 (4)	C21—C22—H22A	109.7
C2—C1—H1A	119.0	C21—C22—H22B	109.7
C31—C30—C26	124.8 (5)	H22A—C22—H22B	108.2
C31—C30—C32	120.1 (5)	С26—С27—Н27А	109.3
C32—C30—C26	115.1 (5)	С26—С27—Н27В	109.3
C17—N4—Ni2	126.7 (4)	C28—C27—C26	111.5 (5)
C21—N4—Ni2	113.2 (4)	С28—С27—Н27А	109.3
C21—N4—C17	119.9 (5)	С28—С27—Н27В	109.3
C3—C2—C1	118.6 (4)	H27A—C27—H27B	108.0
C3—C2—H2B	120.7	С23—С29—Н29А	109.5
C1—C2—H2B	120.7	С23—С29—Н29В	109.5
H25A—C25—H25B	107.9	С23—С29—Н29С	109.5
С24—С25—Н25А	109.2	H29A—C29—H29B	109.5
C24—C25—H25B	109.2	H29A—C29—H29C	109.5
C24—C25—C26	112.1 (4)	H29B—C29—H29C	109.5
C26—C25—H25A	109.2	С18—С19—Н19	118.5
C26—C25—H25B	109.2	C18—C19—C20	123.0 (7)
N2—C7—C8	109.8 (3)	С20—С19—Н19	118.5
N2-C7-C12	112.5 (3)	C21—C20—H20	120.5
N2-C7-C13	107.1 (3)	C19—C20—C21	119.0 (7)
C8—C7—C12	108.5 (3)	C19—C20—H20	120.5
			12010
Ni1—N1—C5—C4	-178.5 (3)	N4—C21—C20—C19	2.4 (9)
Ni1—N1—C5—C6	2.4 (4)	C2—C3—C4—C5	-0.9 (7)
Ni1—N1—C1—C2	177.8 (3)	C25—C24—C23—N5	-168.7 (4)
Ni1—N3—C8—C9	171.5 (3)	C25—C24—C23—C28	-45.9 (6)
Ni1—N3—C8—C7	-10.6 (5)	C25—C24—C23—C29	76.9 (6)
Ni1—N2—C7—C8	-7.7 (4)	C25—C26—C27—C28	59.6 (6)
Ni1—N2—C7—C12	-128.6 (3)	C7—N2—C6—C5	-83.5 (4)
Ni1—N2—C7—C13	109.3 (4)	C7—C8—C9—C10	47.9 (5)
Ni1—N2—C6—C5	43.4 (4)	C7—C12—C11—C10	-57.9 (5)
Ni2—N6—C24—C25	173.2 (4)	C4—C5—C6—N2	148.6 (4)
Ni2—N6—C24—C23	-12.5 (6)	C4—C3—C2—C1	0.6 (7)
Ni2—N5—C23—C24	-13.2 (5)	C24—C25—C26—C30	73.6 (6)
Ni2—N5—C23—C28	-134.2 (4)	C24—C25—C26—C27	-52.8 (6)
Ni2—N5—C23—C29	104.5 (5)	C24—C23—C28—C27	49.5 (6)
Ni2—N5—C22—C21	44.6 (5)	C6—N2—C7—C8	114.5 (4)
Ni2—N4—C17—C18	174.2 (4)	C6—N2—C7—C12	-6.5 (5)
Ni2—N4—C21—C22	5.4 (6)	C6—N2—C7—C13	-128.6(4)
Ni2—N4—C21—C20	-178.0 (4)	C6—C5—C4—C3	180.0 (4)
O1—N3—C8—C9	-0.7 (6)	C23—N5—C22—C21	-79.6 (6)
O1—N3—C8—C7	177.3 (3)	C23—C28—C27—C26	-59.7 (7)
N1—C5—C4—C3	1.0 (7)	C15—C14—C10—C9	-24.5 (7)
N1—C5—C6—N2	-32.3 (5)	C15—C14—C10—C11	101.6 (6)
N1—C1—C2—C3	-0.2 (7)	C31—C30—C26—C25	-6.7 (8)
N3—C8—C9—C10	-134.2 (4)	C31—C30—C26—C27	117.5 (6)
N3—C8—C7—N2	11.5 (5)	C11—C12—C7—N2	172.3 (3)
			<- /

N3—C8—C7—C12	134.8 (4)	C11—C12—C7—C8	50.6 (4) -67 8 (5)
N3-C0-C7-C13 02-N6-C24-C25	1.3 (6)	C16—C14—C10—C9	158.2 (4)
O2—N6—C24—C23	175.6 (4)	C16—C14—C10—C11	-75.7 (5)
C8—C9—C10—C14	77.6 (5)	C18—C19—C20—C21	1.5 (12)
C8—C9—C10—C11	-49.1 (5)	C17—N4—C21—C22	-179.7 (5)
C5—N1—C1—C2	0.3 (6)	C17—N4—C21—C20	-3.0(7)
N6-C24-C23-N5	16.7 (6)	C17—C18—C19—C20	-4.4 (11)
N6-C24-C23-C28	139.5 (5)	C26—C25—C24—N6	-136.7 (5)
N6-C24-C23-C29	-97.7 (5)	C26—C25—C24—C23	49.2 (7)
N5-C23-C28-C27	170.8 (5)	C21—N4—C17—C18	0.0 (8)
C14—C10—C11—C12	-72.9 (5)	C32—C30—C26—C25	174.8 (6)
C9—C8—C7—N2	-170.4 (3)	C32—C30—C26—C27	-60.9 (7)
C9—C8—C7—C12	-47.1 (5)	C22—N5—C23—C24	106.3 (6)
C9—C8—C7—C13	73.2 (5)	C22—N5—C23—C28	-14.6 (6)
C9—C10—C11—C12	55.6 (5)	C22—N5—C23—C29	-135.9 (6)
C1—N1—C5—C4	-0.6 (6)	C22—C21—C20—C19	178.6 (6)
C1—N1—C5—C6	-179.7 (4)	C29—C23—C28—C27	-72.1 (7)
C30—C26—C27—C28	-67.9 (6)	C19—C18—C17—N4	3.8 (9)
N4-C21-C22-N5	-35.0 (7)	C20-C21-C22-N5	148.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
01—H1…Cl1	0.85 (7)	2.32 (6)	3.009 (4)	139 (6)
N2—H2…Cl4	0.77 (5)	2.46 (5)	3.209 (4)	166 (5)
O2—H2A…Cl4	0.76 (8)	2.31 (7)	2.978 (4)	147 (7)
C3—H3····O1 ⁱ	0.95	2.58	3.432 (5)	149
C1—H1A···Cl1	0.95	2.75	3.369 (5)	124
C6—H6A…Cl2	0.99	2.76	3.309 (5)	115
C11—H11 <i>B</i> ····Cl3 ⁱⁱ	0.99	2.64	3.573 (5)	156
C17—H17····Cl4	0.95	2.69	3.327 (6)	125
C26—H26…O2 ⁱⁱⁱ	1.00	2.56	3.489 (6)	154
C22—H22 <i>B</i> ···Cl2	0.99	2.81	3.352 (6)	115
C19—H19…Cl1 ^{iv}	0.95	2.64	3.570 (7)	167

Symmetry codes: (i) -x+2, y-1/2, -z+1; (ii) -x+1, y-1/2, -z+1; (iii) -x, y+1/2, -z; (iv) -x+1, y-1/2, -z.