Crystal structures of 6-nitroguinazolin-4(3H)-one, 6-aminoguinazolin-4(3H)-one and 4-aminoquinazoline hemihydrochloride dihydrate

Kambarali Turgunov,^{a,b}* Mirjalol Ziyadullaev,^a Farkhod Khoshimov,^c Rikhsiboy Karimov^a and Burkhon Elmuradov^a

^aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str., 77. Tashkent 100170, Uzbekistan, ^bTurin Polytechnic University in Tashkent, Kichik Khalka Yuli Str. 17, Tashkent 100095, Uzbekistan, and ^cNamangan Institute of Engineering and Technology, Kosonsoy Str., 7, Namangan 160115, Uzbekistan. *Correspondence e-mail: kk turgunov@rambler.ru

The title compounds, 6-nitroquinazolin-4(3H)-one ($C_8H_5N_3O_3$; I), 6-aminoquinazolin-4(3*H*)-one ($C_8H_7N_3O$; II) and 4-aminoquinazolin-1-ium chloride-4aminoquinazoline-water (1/1/2), (C₈H₈N₃⁺·Cl⁻·C₈H₇N₃·2H₂O; III) were synthesized and their structures were determined by single-crystal X-ray analysis. In the crystals of I and II, the quinazoline molecules form hydrogen-bonded dimers via N-H···O interactions. The dimers are connected by weak intermolecular $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds, forming a layered structure in the case of **I**. In the crystal of **II**, $N-H \cdots N$ and $C-H \cdots O$ interactions link the dimers into a three-dimensional network structure. The asymmetric unit of III consists of two quinazoline molecules, one of which is protonated, a chloride ion, and two water molecules. The chloride anion and the water molecules form hydrogen-bonded chains consisting of fused five-membered rings. The protonated and unprotonated quinazolin molecules are linked to the chloride ions and water molecules of the chain by their amino groups.

1. Chemical context

T

Heterocyclic compounds play an important role in the lives of plant and living organisms because of their properties, including anti-inflammatory (Azab et al., 2016), antitumor (Ishikawa et al., 2009), antiviral (De Clercq & Field, 2006) and other activities (Ding et al., 1999). Quinazoline derivatives occupy a distinct position among nitrogen-containing heterocycles because of their wide spectrum of pharmaceutical and biopharmaceutical properties, amongst them anticancer (Chandregowda et al., 2009), antibacterial (Antipenko et al., 2009), anti-inflammatory (Alagarsamy et al., 2007), antituberculosis (Nandy et al., 2006), antihypertension (Hess et al., 1968) and antidiabetic (Paneersalvam et al., 2010) activities.

п

0.5 HCl · H2O

ш

ISSN 2056-9890

Received 15 June 2021 Accepted 23 August 2021

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela

Keywords: crystal structure; 4-aminoquinazoline; 6-aminoquinazolin-4(3H)-one; 6nitroquinazolin-4(3H)-one; hemihydrochloride.

CCDC references: 2104939; 2104938; 2104937

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Table 1 Selected bond	lengths (Å) for I .	
N1-C2	1.287 (3)	N3-0

C2-N3	1.354 (3)	C6-N9	1.464 (3)
N1-C2	1.287 (3)	N3-C4	1.366 (3)

Table 2

Selected bond lengths (Å) for II.

N1A - C2A	1.291 (5)	N1B-C2B	1.290 (5)
C2A - N3A	1.369 (4)	C2B-N3B	1.364 (4)
N3A - C4A	1.376 (4)	N3B-C4B	1.366 (4)
C6A-N9A	1.374 (4)	C6B-N9B	1.392 (5)

Table 3

Selected bond lengths (Å) for III.

1.315 (4)	N1B-C2B	1.309 (4)
1.328 (4)	C2B-N3B	1.340 (4)
1.363 (4)	N3B-C4B	1.347 (4)
1.293 (4)	C4B - N9B	1.323 (4)
	1.315 (4) 1.328 (4) 1.363 (4) 1.293 (4)	

various branches of science, ranging from biology to nanodevice fabrication and to pharmaceuticals (Perumalla *et al.*, 2013).

2. Structural commentary

Compound I crystallizes in the triclinic space group $P\overline{1}$ with one molecule in the asymmetric unit. As a whole, the molecule is nearly planar. The nitro group is rotated slightly with respect to the quinazoline ring system, the C5–C6–N9–O3 and C7–C6–N9–O2 torsion angles being 6.0 (3) and 4.9 (4)°, respectively. All bond lengths and angles are normal and in good agreement with those reported previously (Liao *et al.*, 2018; Yong *et al.*, 2008). Fig. 1 shows the molecular structure of I in the solid state. Selected geometric parameters are listed in Table 1.

Compound II crystallizes in the orthorhombic space group $Pca2_1$ with two crystallographically independent molecules, A

Figure 1

The molecular structure of 6-nitroquinazolin-4(3H)-one (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The molecular structure of 6-aminoquinazolin-4(3H)-one (II), showing the two independent molecules, with displacement ellipsoids drawn at the 50% probability level.

and *B*, in the asymmetric unit (Fig. 2). All the atoms of the molecule (except the amino-group hydrogens) lie in the same plane. The nitrogen atom of the amino group is somewhere between the sp^2 and sp^3 hybridized states, the sum of the valence angles at the nitrogen atom being 349 and 342° in molecules *A* and *B*, respectively. All bond lengths and angles

Figure 3

The asymmetric unit of compound **III** with displacement ellipsoids drawn at the 50% probability level.

Table 4		_			
Hydrogen-bond	geometry	(Å,	°)	for 1	[.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N3-H3\cdots O1^{i}$	0.80 (3)	2.02 (3)	2.814 (2)	178 (4)
$C8-H8\cdots N1^{ii}$	0.93	2.53	3.450 (3)	172
$C2-H2\cdots O2^{iii}$	0.93	2.57	3.466 (4)	163
$C7-H7\cdots O2^{iv}$	0.93	2.56	3.437 (3)	158

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x, -y + 1, -z + 2; (iii) x - 1, y - 1, z; (iv) -x + 1, -y + 2, -z + 2.

are normal. Selected geometric parameters are listed in Table 2.

In the case of compound **III**, there are protonated (A) and unprotonated (B) 4-aminoquinazoline molecules (Fig. 3) in the asymmetric unit and they both have a planar structure. Molecule A is protonated at the N1 nitrogen atom and this leads to an elongation of the N1-C2 and N3-C4 bonds and a shortening of the C2-N3 and C4-N9 bonds with respect to the unprotonated molecule B. In both A and B, the nitrogen atom of the amino group is in an sp^2 hybridized state. The sum of the valence angles around the nitrogen atoms in molecules A and B are 360 and 359°, respectively, and the carbon-toamino group nitrogen bond lengths C4-N9 are shorter than the bond lengths observed in compound **II** (Table 3).

3. Supramolecular features

In the crystal of **I**, intermolecular N-H···O hydrogen bonds link the molecules into centrosymmetric dimers, forming $R_2^2(8)$ motifs. Other head-to-head $R_2^2(10)$ and $R_2^2(8)$ motifs are formed by weak intermolecular C-H···O and C-H···N hydrogen bonds, producing layers parallel to the (112) plane (Table 4, Fig. 4). In addition, an $R_3^2(8)$ ring motif is formed by the interactions between three adjacent molecules. The layers are linked though π - π stacking interactions with centroidcentroid distances of 3.8264 (13) and 3.9600 (14) Å into a three-dimensional network.

Figure 4

Hydrogen bonding in the crystal of 6-nitroquinazolin-4(3H)-one (I). Colour code: C grey, H green, N blue, O red.

Table 5	
Hydrogen-bond geometry (Å, °) for II .	

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N9A - H9AA \cdots N9B^{i}$	0.93 (4)	2.55 (4)	3.435 (5)	160 (4)
$N9A - H9AB \cdots N1A^{ii}$	0.81(4)	2.34 (4)	3.144 (5)	170 (4)
$N9B - H9BB \cdots N1B^{iii}$	0.91 (4)	2.19 (4)	3.092 (5)	174 (4)
$N3A - H3A \cdots O1B^{iv}$	0.95 (3)	1.89 (3)	2.832 (4)	175 (3)
$N3B - H3B \cdots O1A^{v}$	0.92 (4)	1.93 (4)	2.847 (3)	173 (4)

Symmetry codes: (i) $-x + 1, -y + 1, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + 1, z$; (iii) $x + \frac{1}{2}, -y, z$; (iv) x, y - 1, z; (v) x, y + 1, z.

The two independent molecules of compound **II** are related by a pseudo-center of symmetry and are linked by two N– $H \cdots O$ hydrogen bonds, forming an $R_2^2(8)$ motif. An N– $H \cdots N$ hydrogen bond generates a three-dimensional network (Table 5, Fig. 5).

The packing analysis of III shows that the protonated and unprotonated 4-aminoquinazoline molecules are linked by intermolecular N-H···N hydrogen bonds, forming pseudocentrosymmetric dimers characterized by a donor-acceptor distance of 2.786 (3) Å. Other $N-H\cdots N$ hydrogen bonds form centrosymmetric $R_2^2(8)$ ring motifs. The chloride anion and water molecules form hydrogen-bonded chains consisting of fused five-membered rings with the participation of two chloride anions and three water molecules. A chain of rings runs through the twofold screw axis parallel to the [010] direction (Fig. 6). The protonated and unprotonated quinazoline molecules link to the chain via N-H···Cl and N- $H \cdots Ow$ hydrogen bonds from the lower and upper side (Table 6, Fig. 6). The chain direction corresponds to the smallest unit-cell edge and such self-assembly of molecules has also been observed in other quinazoline hydrochloride crystals

research communications

Table 6					
Hydrogen-bond	geometry	(Å,	°)	for	III.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1A - H1A \cdots N1B^{i}$	1.03 (3)	1.76 (3)	2.786 (3)	173 (3)
$N9A - H9AA \cdots N3B^{ii}$	0.91 (4)	2.00 (4)	2.907 (4)	175 (3)
$N9A - H9AB \cdots Cl1$	0.94 (5)	2.34 (5)	3.206 (2)	153 (5)
$N9B - H9BA \cdots N3A^{ii}$	0.96 (4)	2.12 (4)	3.074 (4)	174 (3)
$N9B - H9BB \cdots O1W$	0.79 (4)	2.22 (3)	2.999 (4)	167 (4)
$O1W - H1W1 \cdots Cl1$	0.90 (3)	2.25 (3)	3.157 (4)	178 (6)
$O1W-H2W1\cdots Cl1^{iii}$	0.89 (4)	2.37 (4)	3.183 (3)	151 (7)
$O2W - H1W2 \cdots O1W$	0.91(7)	1.96 (7)	2.857 (5)	169 (6)
$O2W - H2W2 \cdot \cdot \cdot Cl1^{iv}$	0.89 (5)	2.40(5)	3.215 (4)	153 (5)

 $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) x, y - 1, z.

(Tashkhodzhaev *et al.*, 1995; Turgunov *et al.*, 1998, 2003). The above mentioned N—H···N hydrogen bonds link the molecules into a three-dimensional network. The crystal structure of **III** is stabilized by π - π interactions [centroid–centroid distances in the range 3.4113 (16)–3.9080 (18) Å].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.41, including the update of January 2020; Groom *et al.*, 2016) confirmed that three related compounds had been structurally characterized in which the benzene ring of the quinazolin-4(*3H*)-ones contains a nitro group [refcodes GAPPUK (Yu *et al.*, 2012), GISXOW (Yong *et al.*, 2008) and RUGKEK (Wu *et al.*, 2009)].

The crystal structures of quinazolin-4(3H)-one and its first metal coordination compound have also been reported [BIHJIO (Liao *et al.*, 2018) and NALFEN (Turgunov & Englert, 2010)].

Figure 6

Part of the crystal structure of **III** showing the hydrogen-bonding scheme. Colour code: C grey, H light green, Cl bright green, N blue, O red.

5. Synthesis and crystallization

Compound I: In a three-necked flask equipped with a mechanical stirrer and reflux condenser, quinazolin-4(3H)one (22.5 g, 0.15 mol) was dissolved in 78 ml of concentrated sulfuric acid at 303 K for 1 h. Then a nitrating mixture (21 ml of nitric acid and 18 ml of concentrated sulfuric acid) was added to the flask under vigorous stirring of the mixture. The reaction mixture was stirred for another hour, maintaining a temperature not higher than 303 K, and then for another hour at room temperature. At room temperature, 45 ml of nitric acid were added dropwise to the reaction mixture over a period of 1 h. The reaction mixture was left at room temperature for 10 h. The contents of the flask were poured into a dish containing ice, the resulting precipitate was filtered off, washed with water and dried and recrystallized from ethanol to obtain 25.7 g of pure compound I as single crystals in 87.4% yield, m.p. 560-562 K.

Compound II: In a three-necked flask equipped with a mechanical stirrer and reflux condenser, 12.6 g (56 mmol) of tin (II) chloride dihydrate ($SnCl_2 \cdot 2H_2O$) were cooled in an ice bath and 16.98 ml of concentrated (36%) HCl were added, then 3 g (16 mmol) of quinazolin-4-one as a suspension in 20 ml of ethanol and 7 ml of HCl (36%) were added portionwise with stirring of the mixture. The reaction was carried out for 10-15 minutes at ~273 K, 30 min at room temperature and 2 h in a water bath (\sim 363 K). The reaction mixture was left overnight at room temperature, diluted with water, and brought to a strongly alkaline medium (pH = 10-11) with 10% of sodium hydroxide, in which the expected 6amino-3N-quinazoline-4-one was dissolved, so that the chloride was brought to a neutral medium in the presence of acid, and precipitated when converted to an alkaline medium with ammonia. The precipitate was filtered, washed with water until it reached a neutral medium, and dried at room temperature. The precipitate was recrystallized from ethanol and 6.67 g of pure compound II were obtained representing an 88.1% yield, m.p. 589-591 K.

Compound III: Crystals of compound **III** were obtained as a minor additional product in the reaction of 4-chloroquinazoline with ammonia.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7. C-bound H atoms were placed in calculated positions and refined to ride on their parent atoms: C-H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}(C)$. Hydrogen atoms of the water molecules and those bonded to nitrogen atoms were located in electron density difference maps and were freely refined.

Acknowledgements

X-ray diffraction studies were performed at the Centre of Collective Usage of Equipment of the Institute of Bioorganic Chemistry of the Uzbekistan Academy of Sciences. Professor Bakhtiyar Ibragimov is acknowledged for support with the diffraction measurements.

Table 7Experimental details.

	I	П	Ш
Crystal data			
Chemical formula	$C_8H_5N_3O_3$	$C_8H_7N_3O$	$C_8H_8N_3^+ \cdot Cl^- \cdot C_8H_7N_3 \cdot 2H_2O$
M _r	191.15	161.17	362.82
Crystal system, space group	Triclinic, $P\overline{1}$	Orthorhombic, $Pca2_1$	Monoclinic, $P2_1/n$
Temperature (K)	293	293	298
a, b, c (Å)	5.5587 (9), 8.6673 (13), 8.7649 (12)	13.4535 (5), 4.9510 (2), 21.6188 (8)	14.3512 (12), 7.5867 (6), 16.2282 (9)
$lpha,eta,\gamma(^\circ)$	105.654 (12), 98.560 (13), 90.784 (13)	90, 90, 90	90, 93.544 (7), 90
$V(Å^3)$	401.45 (11)	1439.99 (10)	1763.5 (2)
Z	2	8	4
Radiation type	Cu Ka	Cu Ka	Cu Ka
$\mu (\text{mm}^{-1})$	1.07	0.86	2.12
Crystal size (mm)	$0.45 \times 0.30 \times 0.25$	$0.60 \times 0.45 \times 0.35$	$0.50\times0.08\times0.05$
Data collection			
Diffractometer	Rigaku Xcalibur, Ruby	Rigaku Xcalibur, Ruby	Rigaku Xcalibur, Ruby
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.742, 1.000	0.720, 1.000	0.934, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	2652, 1598, 1124	22195, 2976, 2489	6703, 3563, 2207
R _{int}	0.024	0.070	0.052
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.630	0.630	0.629
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.145, 1.02	0.036, 0.098, 1.02	0.054, 0.151, 1.01
No. of reflections	1598	2976	3563
No. of parameters	132	242	261
No. of restraints	0	2	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.18, -0.17	0.17, -0.15	0.23, -0.22
Absolute structure	_	Flack x determined using 1053 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	_
Absolute structure parameter	_	0.2 (2)	_

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), XP in SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

References

- Alagarsamy, V., Solomon, V. R. & Dhanabal, K. (2007). *Bioorg. Med. Chem.* **15**, 235–241.
- Antipenko, L., Karpenko, A., Kovalenko, S., Katsev, A., Komarovska-Porokhnyavets, E., Novikov, V. & Chekotilo, A. (2009). *Chem. Pharm. Bull.* 57, 580–585.
- Azab, A., Nassar, A. & Azab, A. N. (2016). Molecules, 21, 1321-1340.
- Chandregowda, V., Kush, A. K. & Chandrasekara Reddy, G. (2009). *Eur. J. Med. Chem.* **44**, 3046–3055.
- De Clercq, E. & Field, H. J. (2006). Br. J. Pharmacol. 147, 1-11.
- Ding, Q., Chichak, K. & Lown, J. W. (1999). Curr. Med. Chem. 6, 1-27.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hess, H. J., Cronin, T. H. & Scriabine, A. (1968). J. Med. Chem. 11, 130–136.
- Ishikawa, H., Colby, D. A., Seto, S., Va, P., Tam, A., Kakei, H., Rayl, T. J., Hwang, I. & Boger, D. L. (2009). J. Am. Chem. Soc. 131, 4904–4916.
- Liao, B.-L., Pan, Y.-J., Zhang, W. & Pan, L.-W. (2018). Chem. Biodivers. 15, e1800152.
- Nandy, P., Vishalakshi, M. T. & Bhat, A. R. (2006). Indian J. Heterocycl. Chem. 15, 293–294.
- Paneersalvam, P., Raj, T., Ishar, M. P. S., Singh, B., Sharma, V. & Rather, B. A. (2010). *Indian J. Pharm. Sci.* 72, 375–378.

- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013). Cryst. Growth Des. 13, 429–432.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tashkhodzhaev, B., Molchanov, L. V., Turgunov, K. K., Makhmudov, M. K. & Aripov, Kh. N. (1995). *Chem. Nat. Compd.* 31, 349–352.
- Turgunov, K. & Englert, U. (2010). Acta Cryst. E66, m1457.
- Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V., Musaeva, G. V. & Aripov, Kh. N. (1998). Chem. Nat. Compd. 34, 300–303.
- Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). *Chem. Nat. Compd.* **39**, 379–382.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, Y., Ji, A., Zhang, A. & Shen, Y. (2009). Acta Cryst. E65, 03075.
- Yong, J.-P., Yu, G.-P., Li, J.-M., Hou, X.-L. & Aisa, H. A. (2008). Acta Cryst. E64, 0427.
- Yu, Y. (2012). Acta Cryst. E68, o304.

Acta Cryst. (2021). E77, 989-993 [https://doi.org/10.1107/S2056989021008823]

Crystal structures of 6-nitroquinazolin-4(3*H*)-one, 6-aminoquinazolin-4(3*H*)one and 4-aminoquinazoline hemihydrochloride dihydrate

Kambarali Turgunov, Mirjalol Ziyadullaev, Farkhod Khoshimov, Rikhsiboy Karimov and Burkhon Elmuradov

Computing details

For all structures, data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: *SHELXT2018/2* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015b); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

6-Nitroquinazolin-4(3H)-one (I)

Crystal data

 $C_8H_5N_3O_3$ $M_r = 191.15$ Triclinic, $P\overline{1}$ a = 5.5587 (9) Å b = 8.6673 (13) Å c = 8.7649 (12) Å $a = 105.654 (12)^{\circ}$ $\beta = 98.560 (13)^{\circ}$ $\gamma = 90.784 (13)^{\circ}$ $V = 401.45 (11) Å^3$ Z = 2

Data collection

Rigaku Xcalibur, Ruby diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.2576 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) $T_{\min} = 0.742, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.145$ S = 1.021598 reflections F(000) = 196 $D_x = 1.581 \text{ Mg m}^{-3}$ Melting point: 560(2) K Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 950 reflections $\theta = 5.3-74.5^{\circ}$ $\mu = 1.07 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.45 \times 0.30 \times 0.25 \text{ mm}$

2652 measured reflections 1598 independent reflections 1124 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 76.3^{\circ}, \ \theta_{min} = 5.3^{\circ}$ $h = -6 \rightarrow 7$ $k = -7 \rightarrow 10$ $l = -10 \rightarrow 9$

132 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsHydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0615P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$

Special details

$$\begin{split} &\Delta \rho_{\min} = -0.17 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL2014/7} \\ &\text{(Sheldrick, 2015b),} \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ &\text{Extinction coefficient: } 0.012 \text{ (3)} \end{split}$$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.6353 (3)	0.19086 (17)	0.52777 (19)	0.0644 (5)	
02	0.7328 (5)	0.9420 (2)	0.8525 (3)	0.0988 (8)	
03	0.8935 (3)	0.7763 (2)	0.6717 (2)	0.0739 (5)	
N1	0.1305 (3)	0.3183 (2)	0.8279 (2)	0.0587 (5)	
C2	0.1601 (4)	0.1736 (3)	0.7482 (3)	0.0585 (5)	
H2	0.0576	0.0929	0.7592	0.070*	
N3	0.3277 (4)	0.1287 (2)	0.6497 (2)	0.0566 (5)	
C4	0.4881 (4)	0.2343 (2)	0.6209 (2)	0.0517 (5)	
C4A	0.4645 (4)	0.4012 (2)	0.7094 (2)	0.0476 (5)	
C5	0.6197 (4)	0.5228 (2)	0.6955 (3)	0.0519 (5)	
Н5	0.7399	0.4998	0.6306	0.062*	
C6	0.5897 (4)	0.6775 (2)	0.7807 (3)	0.0529 (5)	
C7	0.4120 (4)	0.7162 (2)	0.8796 (3)	0.0569 (5)	
H7	0.3956	0.8224	0.9349	0.068*	
C8	0.2626 (4)	0.5968 (2)	0.8944 (3)	0.0567 (5)	
H8	0.1446	0.6214	0.9607	0.068*	
C8A	0.2866 (4)	0.4359 (2)	0.8092 (2)	0.0507 (5)	
N9	0.7504 (4)	0.8071 (2)	0.7678 (3)	0.0635 (5)	
H3	0.334 (5)	0.038 (3)	0.598 (3)	0.057 (6)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
01	0.0731 (10)	0.0452 (8)	0.0736 (11)	0.0019 (7)	0.0352 (9)	0.0014 (7)	
O2	0.1272 (18)	0.0417 (9)	0.1230 (17)	-0.0165 (10)	0.0525 (15)	-0.0014 (9)	
O3	0.0730 (11)	0.0618 (10)	0.0918 (13)	-0.0050 (8)	0.0287 (10)	0.0215 (9)	
N1	0.0605 (10)	0.0490 (9)	0.0681 (11)	-0.0004 (7)	0.0260 (9)	0.0102 (8)	
C2	0.0621 (12)	0.0457 (11)	0.0690 (14)	-0.0031 (9)	0.0213 (11)	0.0126 (9)	
N3	0.0674 (11)	0.0368 (8)	0.0646 (11)	0.0004 (7)	0.0226 (9)	0.0058 (8)	
C4	0.0553 (11)	0.0431 (10)	0.0557 (11)	0.0035 (8)	0.0169 (9)	0.0073 (8)	
C4A	0.0534 (10)	0.0398 (9)	0.0486 (10)	0.0030 (8)	0.0129 (8)	0.0082 (8)	
C5	0.0549 (11)	0.0478 (11)	0.0542 (11)	0.0042 (8)	0.0154 (9)	0.0122 (8)	
C6	0.0571 (11)	0.0430 (10)	0.0579 (11)	-0.0013 (8)	0.0111 (9)	0.0118 (8)	
C7	0.0674 (13)	0.0396 (10)	0.0600 (12)	0.0067 (9)	0.0143 (10)	0.0052 (8)	

C8	0.0617 (12)	0.0464 (11)	0.0606 (12)	0.0070 (9)	0.0211 (10)	0.0061 (9)
C8A	0.0535 (11)	0.0436 (10)	0.0542 (11)	0.0027 (8)	0.0135 (9)	0.0092 (8)
N9	0.0694 (12)	0.0453 (10)	0.0744 (12)	-0.0043 (8)	0.0133 (10)	0.0138 (8)

Ocoment i parameters (21,)	Geometric	parameters	(Å,	°)	
-----------------------------	-----------	------------	-----	----	--

01—C4	1.233 (2)	C4A—C5	1.395 (3)
O2—N9	1.218 (2)	C4A—C8A	1.399 (3)
O3—N9	1.223 (2)	C5—C6	1.374 (3)
N1—C2	1.287 (3)	С5—Н5	0.9300
N1—C8A	1.388 (3)	C6—C7	1.395 (3)
C2—N3	1.354 (3)	C6—N9	1.464 (3)
C2—H2	0.9300	C7—C8	1.363 (3)
N3—C4	1.366 (3)	С7—Н7	0.9300
N3—H3	0.80 (3)	C8—C8A	1.412 (3)
C4—C4A	1.463 (3)	С8—Н8	0.9300
C2—N1—C8A	115.80 (17)	C5—C6—C7	122.54 (19)
N1—C2—N3	125.57 (19)	C5—C6—N9	118.89 (18)
N1—C2—H2	117.2	C7—C6—N9	118.57 (18)
N3—C2—H2	117.2	C8—C7—C6	119.31 (18)
C2—N3—C4	123.57 (17)	C8—C7—H7	120.3
C2—N3—H3	122.0 (18)	C6—C7—H7	120.3
C4—N3—H3	114.3 (18)	C7—C8—C8A	120.21 (19)
O1—C4—N3	122.34 (17)	C7—C8—H8	119.9
O1—C4—C4A	124.23 (18)	C8A—C8—H8	119.9
N3—C4—C4A	113.43 (16)	N1C8AC4A	122.73 (18)
C5—C4A—C8A	120.89 (18)	N1—C8A—C8	118.18 (18)
C5—C4A—C4	120.21 (17)	C4A—C8A—C8	119.09 (19)
C8A—C4A—C4	118.90 (18)	O2—N9—O3	122.9 (2)
C6—C5—C4A	117.95 (18)	O2—N9—C6	118.0 (2)
С6—С5—Н5	121.0	O3—N9—C6	119.03 (18)
C4A—C5—H5	121.0		
C8A—N1—C2—N3	-0.1 (4)	C6—C7—C8—C8A	-0.5 (4)
N1-C2-N3-C4	-0.7 (4)	C2—N1—C8A—C4A	0.5 (3)
C2—N3—C4—O1	-178.3 (2)	C2—N1—C8A—C8	-179.8 (2)
C2—N3—C4—C4A	1.0 (3)	C5—C4A—C8A—N1	-179.2 (2)
O1—C4—C4A—C5	-2.2 (3)	C4—C4A—C8A—N1	0.0 (3)
N3—C4—C4A—C5	178.5 (2)	C5—C4A—C8A—C8	1.1 (3)
O1—C4—C4A—C8A	178.6 (2)	C4—C4A—C8A—C8	-179.8 (2)
N3—C4—C4A—C8A	-0.7 (3)	C7—C8—C8A—N1	180.0 (2)
C8A—C4A—C5—C6	-1.0 (3)	C7—C8—C8A—C4A	-0.2 (3)
C4—C4A—C5—C6	179.8 (2)	C5—C6—N9—O2	-175.0 (2)
C4A—C5—C6—C7	0.3 (3)	C7—C6—N9—O2	4.9 (4)
C4A-C5-C6-N9	-179.9 (2)	C5—C6—N9—O3	6.0 (3)
С5—С6—С7—С8	0.5 (4)	C7—C6—N9—O3	-174.2 (2)
N9—C6—C7—C8	-179.3 (2)		

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N3—H3···O1 ⁱ	0.80 (3)	2.02 (3)	2.814 (2)	178 (4)
C8—H8…N1 ⁱⁱ	0.93	2.53	3.450 (3)	172
C2—H2···O2 ⁱⁱⁱ	0.93	2.57	3.466 (4)	163
C7—H7····O2 ^{iv}	0.93	2.56	3.437 (3)	158

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+2; (iii) x-1, y-1, z; (iv) -x+1, -y+2, -z+2.

6-Aminoquinazolin-4(3H)-one (II)

Crystal data

C₈H₇N₃O $M_r = 161.17$ Orthorhombic, *Pca2*₁ a = 13.4535 (5) Å b = 4.9510 (2) Å c = 21.6188 (8) Å V = 1439.99 (10) Å³ Z = 8F(000) = 672

Data collection

Rigaku Xcalibur, Ruby
diffractometer
Radiation source: Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 10.2576 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
$T_{\min} = 0.720, \ T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.098$ S = 1.022976 reflections 242 parameters 2 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $D_x = 1.487 \text{ Mg m}^{-3}$ Melting point: 589(2) K Cu *Ka* radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 5076 reflections $\theta = 4.1-75.8^{\circ}$ $\mu = 0.86 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.60 \times 0.45 \times 0.35 \text{ mm}$

22195 measured reflections 2976 independent reflections 2489 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 76.1^\circ, \theta_{min} = 4.1^\circ$ $h = -16 \rightarrow 16$ $k = -6 \rightarrow 6$ $l = -26 \rightarrow 27$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0516P)^{2} + 0.144P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.17 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.14 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc²\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0034 (4) Absolute structure: Flack *x* determined using 1053 quotients [(*I*⁺)-(*I*⁻)]/[(*I*⁺)+(*I*⁻)] (Parsons *et al.*, 2013) Absolute structure parameter: 0.2 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01A	0.40087 (16)	0.0190 (4)	0.46170 (11)	0.0394 (5)
N1A	0.6791 (2)	0.2101 (6)	0.39888 (13)	0.0427 (7)
C2A	0.6607 (2)	0.0205 (7)	0.43824 (16)	0.0408 (8)
H2A	0.7142	-0.0786	0.4532	0.049*
N3A	0.5680 (2)	-0.0455 (6)	0.45958 (13)	0.0373 (6)
C4A	0.4828 (2)	0.0850 (6)	0.44094 (14)	0.0337 (7)
C4AA	0.4994 (2)	0.3010 (6)	0.39636 (14)	0.0338 (7)
C5A	0.4197 (2)	0.4509 (6)	0.37325 (14)	0.0361 (7)
H5A	0.3555	0.4132	0.3867	0.043*
C6A	0.4353 (2)	0.6566 (7)	0.33025 (15)	0.0368 (7)
C7A	0.5343 (3)	0.7079 (7)	0.31113 (15)	0.0394 (8)
H7A	0.5464	0.8449	0.2827	0.047*
C8A	0.6122 (3)	0.5608 (7)	0.33352 (16)	0.0412 (8)
H8A	0.6763	0.5982	0.3198	0.049*
C8AA	0.5971 (3)	0.3541 (6)	0.37691 (15)	0.0364 (7)
N9A	0.3578 (3)	0.8001 (6)	0.30523 (15)	0.0469 (8)
O1B	0.53939 (17)	0.5050 (4)	0.53859 (12)	0.0403 (6)
N1B	0.2624 (2)	0.3084 (6)	0.60178 (14)	0.0451 (7)
C2B	0.2799 (2)	0.4952 (7)	0.56163 (16)	0.0430 (8)
H2B	0.2257	0.5891	0.5458	0.052*
N3B	0.3720 (2)	0.5655 (5)	0.54065 (13)	0.0385 (6)
C4B	0.4570 (3)	0.4384 (6)	0.55929 (14)	0.0332 (7)
C4AB	0.4421 (2)	0.2222 (6)	0.60434 (15)	0.0332 (7)
C5B	0.5223 (3)	0.0742 (6)	0.62695 (14)	0.0367 (7)
H5B	0.5863	0.1136	0.6134	0.044*
C6B	0.5075 (3)	-0.1315 (6)	0.66954 (15)	0.0371 (7)
C7B	0.4094 (3)	-0.1838 (7)	0.68957 (15)	0.0409 (8)
H7B	0.3983	-0.3203	0.7183	0.049*
C8B	0.3303 (3)	-0.0383 (7)	0.66766 (15)	0.0415 (8)
H8B	0.2666	-0.0768	0.6818	0.050*
C8AB	0.3444 (2)	0.1679 (6)	0.62419 (15)	0.0373 (7)
N9B	0.5875 (3)	-0.2736 (7)	0.69421 (15)	0.0470 (8)
H3A	0.560 (2)	-0.190 (7)	0.4877 (16)	0.039 (10)*
H3B	0.383 (3)	0.702 (7)	0.5125 (17)	0.059 (12)*
H9AA	0.373 (3)	0.957 (9)	0.2838 (19)	0.054 (12)*
H9BB	0.638 (3)	-0.297 (10)	0.667 (2)	0.071 (14)*
H9BA	0.571 (3)	-0.431 (9)	0.715 (2)	0.062 (12)*
H9AB	0.307 (3)	0.804 (8)	0.3255 (19)	0.050 (12)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0381 (13)	0.0371 (12)	0.0429 (11)	-0.0020 (9)	0.0049 (10)	0.0039 (10)
N1A	0.0368 (15)	0.0409 (16)	0.0505 (18)	-0.0034 (13)	0.0035 (13)	0.0010 (13)
C2A	0.0340 (18)	0.0394 (19)	0.0491 (19)	0.0022 (14)	0.0003 (15)	0.0011 (16)

N3A	0.0399 (15)	0.0334 (14)	0.0385 (15)	-0.0004 (11)	0.0010 (13)	0.0035 (13)
C4A	0.0358 (17)	0.0317 (15)	0.0337 (16)	-0.0019 (12)	0.0017 (13)	-0.0064 (13)
C4AA	0.0376 (17)	0.0307 (15)	0.0332 (16)	-0.0035 (13)	0.0013 (12)	-0.0058 (12)
C5A	0.0375 (17)	0.0344 (16)	0.0363 (17)	-0.0031 (13)	0.0016 (14)	-0.0022 (14)
C6A	0.0446 (19)	0.0337 (16)	0.0322 (16)	0.0004 (14)	0.0007 (14)	-0.0045 (13)
C7A	0.053 (2)	0.0329 (17)	0.0320 (18)	-0.0053 (14)	0.0051 (14)	0.0019 (14)
C8A	0.043 (2)	0.0395 (18)	0.0409 (18)	-0.0083 (14)	0.0084 (15)	-0.0016 (14)
C8AA	0.0383 (17)	0.0338 (17)	0.0371 (17)	-0.0015 (14)	0.0043 (14)	-0.0029 (14)
N9A	0.049 (2)	0.0437 (17)	0.0482 (18)	0.0016 (14)	-0.0013 (15)	0.0106 (15)
O1B	0.0384 (13)	0.0388 (12)	0.0437 (12)	-0.0036 (10)	0.0049 (11)	0.0058 (10)
N1B	0.0365 (15)	0.0463 (17)	0.0525 (17)	-0.0017 (12)	0.0019 (13)	0.0057 (13)
C2B	0.0386 (19)	0.0428 (18)	0.0475 (19)	0.0008 (14)	-0.0012 (15)	0.0015 (16)
N3B	0.0422 (16)	0.0333 (15)	0.0399 (15)	-0.0017 (11)	0.0032 (13)	0.0033 (12)
C4B	0.0393 (19)	0.0291 (16)	0.0313 (16)	-0.0029 (12)	0.0016 (13)	-0.0014 (13)
C4AB	0.0384 (18)	0.0299 (15)	0.0314 (16)	-0.0033 (13)	0.0040 (13)	-0.0031 (13)
C5B	0.0389 (19)	0.0350 (16)	0.0361 (17)	-0.0041 (14)	0.0047 (14)	-0.0041 (13)
C6B	0.0457 (19)	0.0323 (16)	0.0332 (17)	-0.0005 (14)	-0.0009 (14)	-0.0015 (14)
C7B	0.051 (2)	0.0362 (18)	0.0350 (17)	-0.0071 (15)	0.0032 (15)	0.0027 (14)
C8B	0.0396 (19)	0.0450 (19)	0.0399 (18)	-0.0070 (14)	0.0101 (14)	-0.0022 (15)
C8AB	0.0391 (17)	0.0335 (16)	0.0392 (17)	-0.0032 (13)	0.0018 (14)	-0.0020 (14)
N9B	0.0504 (19)	0.0457 (18)	0.0448 (18)	0.0022 (14)	0.0025 (15)	0.0079 (14)

Geometric parameters (Å, °)

O1A—C4A	1.235 (4)	O1B—C4B	1.239 (4)
N1A—C2A	1.291 (5)	N1B—C2B	1.290 (5)
N1A—C8AA	1.397 (4)	N1B—C8AB	1.391 (4)
C2A—N3A	1.369 (4)	C2B—N3B	1.364 (4)
C2A—H2A	0.9300	C2B—H2B	0.9300
N3A—C4A	1.376 (4)	N3B—C4B	1.366 (4)
N3A—H3A	0.94 (3)	N3B—H3B	0.92 (2)
C4A—C4AA	1.457 (4)	C4B—C4AB	1.461 (5)
C4AA—C5A	1.397 (4)	C4AB—C5B	1.393 (5)
C4AA—C8AA	1.405 (4)	C4AB—C8AB	1.408 (4)
C5A—C6A	1.395 (5)	C5B—C6B	1.387 (5)
C5A—H5A	0.9300	C5B—H5B	0.9300
C6A—N9A	1.374 (4)	C6B—N9B	1.392 (5)
C6A—C7A	1.417 (5)	C6B—C7B	1.413 (5)
C7A—C8A	1.365 (5)	C7B—C8B	1.370 (5)
C7A—H7A	0.9300	C7B—H7B	0.9300
C8A—C8AA	1.403 (5)	C8B—C8AB	1.400 (5)
C8A—H8A	0.9300	C8B—H8B	0.9300
N9A—H9AA	0.93 (4)	N9B—H9BB	0.90 (5)
N9A—H9AB	0.81 (4)	N9B—H9BA	0.93 (5)
C2A—N1A—C8AA	116.3 (3)	C2B—N1B—C8AB	116.6 (3)
N1A—C2A—N3A	124.8 (3)	N1B—C2B—N3B	124.9 (3)
N1A—C2A—H2A	117.6	N1B—C2B—H2B	117.6

N3A—C2A—H2A	117.6	N3B—C2B—H2B	117.6
C2A—N3A—C4A	123.2 (3)	C2B—N3B—C4B	123.0 (3)
C2A—N3A—H3A	120 (2)	C2B—N3B—H3B	123 (2)
C4A—N3A—H3A	117 (2)	C4B—N3B—H3B	114 (2)
O1A—C4A—N3A	120.9(3)	O1B-C4B-N3B	121.3(3)
01A - C4A - C4AA	120.9(3) 124.9(3)	O1B - C4B - C4AB	121.9(3) 123.9(3)
N3A - C4A - C4AA	121.9(3) 1143(3)	N3B-C4B-C4AB	123.5(3) 114.7(3)
C_{5A} C_{4A} A C_{8A} A	120.8(3)	C5B-C4AB-C8AB	121.0(3)
C_{5A} C_{4A} A C_{4A}	120.6(3)	C5B-C4AB-C4B	121.0(3) 120.9(3)
	120.0(3)	CAR CAAR CAR	120.9(3)
C6A $C5A$ $C4AA$	110.0(3) 120.7(3)	C6R $C5R$ $C4AR$	110.1(3) 120.6(3)
C6A C5A H5A	120.7 (3)	C6D - C5D - C4AD	120.0(3)
	119.0	COD-CSD-IISD	119.7
C4AA - C5A - H5A	119.0	C4AB—C5B—H5B	119.7
N9A - C6A - C5A	121.7(3)	CSB—C6B—N9B	121.0 (3)
N9A—C6A—C/A	120.4 (3)		118.1 (3)
C5A - C6A - C/A	117.8 (3)	N9B—C6B—C7B	120.8 (3)
C8A—C7A—C6A	121.5 (3)	C8B—C7B—C6B	121.6 (3)
С8А—С7А—Н7А	119.3	C8B—C7B—H7B	119.2
С6А—С7А—Н7А	119.3	С6В—С7В—Н7В	119.2
C7A—C8A—C8AA	121.0 (3)	C7B—C8B—C8AB	120.7 (3)
С7А—С8А—Н8А	119.5	C7B—C8B—H8B	119.7
C8AA—C8A—H8A	119.5	C8AB—C8B—H8B	119.7
N1A—C8AA—C8A	119.0 (3)	N1B—C8AB—C8B	119.4 (3)
N1A—C8AA—C4AA	122.8 (3)	N1B—C8AB—C4AB	122.6 (3)
C8A—C8AA—C4AA	118.2 (3)	C8B—C8AB—C4AB	118.0 (3)
C6A—N9A—H9AA	117 (3)	C6B—N9B—H9BB	113 (3)
C6A—N9A—H9AB	116 (3)	C6B—N9B—H9BA	116 (3)
H9AA—N9A—H9AB	116 (4)	H9BB—N9B—H9BA	113 (4)
C8AA—N1A—C2A—N3A	-0.4 (5)	C8AB—N1B—C2B—N3B	-0.9(5)
N1A—C2A—N3A—C4A	0.2 (5)	N1B—C2B—N3B—C4B	1.6 (5)
C2A—N3A—C4A—O1A	-179.7 (3)	C2B—N3B—C4B—O1B	178.9 (3)
C2A—N3A—C4A—C4AA	-0.1 (4)	C2B—N3B—C4B—C4AB	-0.8(4)
O1A—C4A—C4AA—C5A	-0.5(5)	O1B—C4B—C4AB—C5B	-0.2(5)
N3A—C4A—C4AA—C5A	179.9 (3)	N3B—C4B—C4AB—C5B	179.5 (3)
01A—C4A—C4AA—C8AA	179.8 (3)	O1B—C4B—C4AB—C8AB	179.8 (3)
N3A—C4A—C4AA—C8AA	0.2 (4)	N3B—C4B—C4AB—C8AB	-0.5(4)
C8AA - C4AA - C5A - C6A	0.1(5)	C8AB - C4AB - C5B - C6B	0.2(5)
C4A - C4AA - C5A - C6A	-1796(3)	C4B-C4AB-C5B-C6B	-179.8(3)
C4AA = C5A = C6A = N9A	177.6 (3)	C4AB - C5B - C6B - N9B	-177.5(3)
$C_{4AA} = C_{5A} = C_{6A} = C_{7A}$	-0.1(5)	$C_{4AB} = C_{5B} = C_{6B} = C_{7B}$	-0.6(5)
C4AA - C5A - C0A - C7A	-177 A (3)	$C_{AB} = C_{B} = C_{B} = C_{B}$	0.0(3)
$N_{A} = C_{A} = C_{A} = C_{A} = C_{A}$	1/7.4(3)	$\frac{C_{0}}{C_{0}} = \frac{C_{0}}{C_{0}} = \frac{C_{0}}{C$	0.4(3)
$C_{A} = C_{A} = C_{A} = C_{A}$	-0.6(5)	C6P C7P C9P C9AP	177.3(3)
$C_{A} = C_{A} = C_{A} = C_{A}$	-170.2(2)	$C_{D} = C_{D} = C_{O} = C_{O$	-170.7(2)
C_{A} NIA C_{A} C_{A}	-1/9.3(3)	C2D = N1D = C0AD = C0AD	-1/9.7(3)
C_{A} C_{A	0.0(3)	C2D NIB $C3AB$ $C4AB$	-0.3(3)
$C/A - C\delta A - C\delta A - NIA$	-1/9.6(3)	$C/B = C\delta B = C\delta AB = NIB$	1/8.0 (3)
C/A - C8A - C8AA - C4AA	0.5 (5)	С/В—С8В—С8АВ—С4АВ	-0.6 (5)

C5A—C4AA—C8AA—N1A	179.8 (3)	C5B—C4AB—C8AB—N1B	-178.8 (3)
C4A—C4AA—C8AA—N1A	-0.5 (4)	C4B—C4AB—C8AB—N1B	1.2 (5)
C5A—C4AA—C8AA—C8A	-0.3 (4)	C5B—C4AB—C8AB—C8B	0.4 (4)
C4A—C4AA—C8AA—C8A	179.4 (3)	C4B—C4AB—C8AB—C8B	-179.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N9A—H9AA····N9B ⁱ	0.93 (4)	2.55 (4)	3.435 (5)	160 (4)
N9A—H9AB····N1A ⁱⁱ	0.81 (4)	2.34 (4)	3.144 (5)	170 (4)
N9 <i>B</i> —H9 <i>BB</i> ····N1 <i>B</i> ⁱⁱⁱ	0.91 (4)	2.19 (4)	3.092 (5)	174 (4)
$N3A$ — $H3A$ ····O1 B^{iv}	0.95 (3)	1.89 (3)	2.832 (4)	175 (3)
N3B—H3B····O1 A^{v}	0.92 (4)	1.93 (4)	2.847 (3)	173 (4)

Symmetry codes: (i) -x+1, -y+1, z-1/2; (ii) x-1/2, -y+1, z; (iii) x+1/2, -y, z; (iv) x, y-1, z; (v) x, y+1, z.

4-Aminoquinazolin-1-ium chloride-4-aminoquinazoline-water (1/1/2) (III)

Crystal data

$C_8H_8N_3{}^+{\cdot}Cl{}^-{\cdot}C_8H_7N_3{\cdot}2H_2O$
$M_r = 362.82$
Monoclinic, $P2_1/n$
a = 14.3512 (12) Å
b = 7.5867 (6) Å
c = 16.2282 (9) Å
$\beta = 93.544 \ (7)^{\circ}$
V = 1763.5 (2) Å ³
Z = 4

Data collection

Rigaku Xcalibur, Ruby
diffractometer
Radiation source: Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 10.2576 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
$T_{\min} = 0.934, \ T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.151$ S = 1.003563 reflections 261 parameters 4 restraints F(000) = 760 $D_x = 1.367 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54184 \mathbf{Å} Cell parameters from 1071 reflections $\theta = 4.0-71.2^{\circ}$ $\mu = 2.12 \text{ mm}^{-1}$ T = 298 KNeedle, colourless $0.50 \times 0.08 \times 0.05 \text{ mm}$

6703 measured reflections 3563 independent reflections 2207 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 75.8^{\circ}, \theta_{min} = 4.0^{\circ}$ $h = -17 \rightarrow 15$ $k = -9 \rightarrow 9$ $l = -15 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0514P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.38300 (8)	0.88404 (15)	0.76044 (5)	0.0719 (3)
O1W	0.3293 (2)	0.4885 (5)	0.72013 (16)	0.0732 (8)
O2W	0.4789 (2)	0.2659 (6)	0.7806 (2)	0.0896 (10)
N1A	0.28852 (17)	0.9176 (4)	0.34296 (12)	0.0423 (6)
C2A	0.3708 (2)	0.8430 (4)	0.35562 (16)	0.0440 (7)
H2AA	0.4007	0.8052	0.3095	0.053*
N3A	0.41460 (17)	0.8174 (4)	0.42915 (13)	0.0408 (5)
C4A	0.3713 (2)	0.8717 (4)	0.49712 (16)	0.0396 (6)
C4AA	0.28014 (19)	0.9559 (4)	0.48907 (16)	0.0389 (6)
C5A	0.2313 (2)	1.0135 (5)	0.55595 (17)	0.0484 (7)
H5AA	0.2578	1.0010	0.6094	0.058*
C6A	0.1456 (2)	1.0874 (5)	0.5433 (2)	0.0551 (8)
H6AA	0.1133	1.1248	0.5881	0.066*
C7A	0.1056 (2)	1.1074 (5)	0.4628 (2)	0.0527 (7)
H7AA	0.0468	1.1584	0.4546	0.063*
C8A	0.1520 (2)	1.0528 (4)	0.39587 (17)	0.0469 (7)
H8AA	0.1253	1.0664	0.3426	0.056*
C8AA	0.23995 (19)	0.9765 (4)	0.40943 (16)	0.0385 (6)
N9A	0.41535 (19)	0.8422 (4)	0.56770 (14)	0.0505 (7)
N1B	0.28423 (18)	0.4265 (4)	0.32016 (12)	0.0435 (6)
C2B	0.3657 (2)	0.3578 (4)	0.34201 (16)	0.0447 (7)
H2BA	0.4010	0.3203	0.2991	0.054*
N3B	0.40470 (17)	0.3348 (4)	0.41844 (14)	0.0431 (6)
C4B	0.35638 (19)	0.3916 (4)	0.48186 (15)	0.0382 (6)
C4AB	0.26521 (19)	0.4695 (4)	0.46662 (15)	0.0359 (5)
C5B	0.2086 (2)	0.5269 (4)	0.52924 (16)	0.0426 (6)
H5BA	0.2304	0.5181	0.5843	0.051*
C6B	0.1221 (2)	0.5954 (4)	0.50991 (19)	0.0486 (7)
H6BA	0.0856	0.6345	0.5516	0.058*
C7B	0.0883 (2)	0.6069 (4)	0.42737 (19)	0.0481 (7)
H7BA	0.0290	0.6522	0.4146	0.058*
C8B	0.1419 (2)	0.5522 (4)	0.36512 (16)	0.0439 (7)
H8BA	0.1189	0.5615	0.3104	0.053*
C8AB	0.23112 (19)	0.4821 (4)	0.38354 (15)	0.0383 (6)
N9B	0.39542 (19)	0.3709 (4)	0.55724 (14)	0.0493 (7)
H1A	0.259 (3)	0.929 (5)	0.284 (2)	0.060 (10)*
H9AA	0.472 (3)	0.789 (5)	0.569 (2)	0.062 (11)*
H9AB	0.390 (4)	0.880 (7)	0.617 (3)	0.103 (17)*
H9BA	0.453 (3)	0.308 (5)	0.565 (2)	0.057 (10)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H9BB	0.370 (3)	0.406 (5)	0.596 (2)	0.047 (9)*
H1W1	0.345 (4)	0.601 (4)	0.733 (3)	0.11 (2)*
H2W1	0.271 (2)	0.497 (11)	0.736 (4)	0.19 (4)*
H1W2	0.437 (5)	0.346 (8)	0.759 (5)	0.190*
H2W2	0.437 (4)	0.183 (7)	0.766 (4)	0.15 (3)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0881 (7)	0.0841 (7)	0.0431 (4)	-0.0031 (6)	0.0015 (4)	-0.0039 (4)
O1W	0.082 (2)	0.081 (2)	0.0566 (13)	0.0059 (17)	0.0021 (13)	-0.0063 (14)
O2W	0.0612 (18)	0.097 (3)	0.109 (2)	0.0033 (19)	-0.0051 (17)	-0.011 (2)
N1A	0.0404 (13)	0.0530 (16)	0.0329 (10)	-0.0007 (11)	-0.0021 (9)	0.0007 (10)
C2A	0.0400 (15)	0.0517 (18)	0.0409 (12)	-0.0035 (13)	0.0075 (11)	-0.0031 (12)
N3A	0.0333 (11)	0.0498 (15)	0.0396 (10)	0.0055 (10)	0.0051 (9)	0.0006 (10)
C4A	0.0392 (14)	0.0415 (15)	0.0382 (12)	-0.0001 (12)	0.0038 (10)	-0.0021 (11)
C4AA	0.0346 (14)	0.0380 (15)	0.0439 (13)	0.0001 (12)	0.0013 (10)	0.0021 (11)
C5A	0.0524 (18)	0.0528 (19)	0.0399 (13)	0.0034 (15)	0.0030 (12)	0.0010 (12)
C6A	0.0546 (19)	0.055 (2)	0.0569 (16)	0.0085 (16)	0.0165 (14)	-0.0047 (15)
C7A	0.0345 (15)	0.0489 (18)	0.0751 (19)	0.0105 (14)	0.0058 (13)	0.0000 (16)
C8A	0.0469 (17)	0.0473 (18)	0.0453 (13)	-0.0030 (14)	-0.0075 (12)	0.0040 (12)
C8AA	0.0377 (14)	0.0373 (14)	0.0409 (12)	-0.0032 (12)	0.0068 (10)	0.0018 (11)
N9A	0.0406 (14)	0.072 (2)	0.0390 (11)	0.0133 (13)	0.0009 (10)	-0.0045 (11)
N1B	0.0443 (13)	0.0537 (16)	0.0320 (9)	0.0025 (12)	-0.0013 (9)	-0.0011 (10)
C2B	0.0423 (15)	0.0527 (18)	0.0397 (12)	0.0029 (13)	0.0060 (11)	-0.0032 (12)
N3B	0.0338 (12)	0.0563 (16)	0.0391 (10)	0.0066 (11)	0.0010 (9)	-0.0042 (10)
C4B	0.0340 (13)	0.0436 (15)	0.0368 (11)	-0.0008 (12)	0.0008 (10)	-0.0041 (11)
C4AB	0.0337 (13)	0.0346 (14)	0.0392 (12)	-0.0010 (11)	0.0011 (10)	0.0001 (10)
C5B	0.0418 (15)	0.0499 (17)	0.0367 (12)	0.0016 (13)	0.0065 (10)	0.0000 (12)
C6B	0.0420 (16)	0.0505 (18)	0.0546 (15)	0.0029 (14)	0.0138 (12)	-0.0033 (14)
C7B	0.0314 (14)	0.0487 (18)	0.0643 (16)	0.0060 (13)	0.0031 (12)	0.0073 (15)
C8B	0.0398 (15)	0.0471 (17)	0.0441 (13)	0.0003 (13)	-0.0042 (11)	0.0064 (12)
C8AB	0.0360 (14)	0.0402 (15)	0.0388 (12)	-0.0019 (12)	0.0028 (10)	-0.0012 (11)
N9B	0.0391 (14)	0.072 (2)	0.0366 (11)	0.0112 (13)	-0.0015 (10)	-0.0058 (12)

Geometric parameters (Å, °)

O1W—H1W1	0.91 (2)	N9A—H9AA	0.91 (4)	
O1W—H2W1	0.89 (2)	N9A—H9AB	0.94 (5)	
O2W—H1W2	0.91 (2)	N1B—C2B	1.309 (4)	
O2W—H2W2	0.89 (2)	N1B—C8AB	1.383 (4)	
N1A—C2A	1.315 (4)	C2B—N3B	1.340 (4)	
N1A—C8AA	1.393 (4)	C2B—H2BA	0.9300	
N1A—H1A	1.03 (4)	N3B—C4B	1.347 (4)	
C2A—N3A	1.328 (4)	C4B—N9B	1.323 (4)	
C2A—H2AA	0.9300	C4B—C4AB	1.443 (4)	
N3A—C4A	1.363 (4)	C4AB—C5B	1.408 (4)	
C4A—N9A	1.293 (4)	C4AB—C8AB	1.409 (4)	

C4A—C4AA	1.455 (4)	C5B—C6B	1.364 (4)
C4AA—C8AA	1.391 (4)	C5B—H5BA	0.9300
C4AA—C5A	1.397 (4)	C6B—C7B	1.399 (4)
C5A—C6A	1.356 (5)	C6B—H6BA	0.9300
С5А—Н5АА	0.9300	C7B—C8B	1.371 (4)
C6A—C7A	1.403 (5)	C7B—H7BA	0.9300
С6А—Н6АА	0.9300	C8B—C8AB	1.402 (4)
C7A - C8A	1 372 (5)	C8B—H8BA	0.9300
C7A—H7AA	0.9300	N9B—H9BA	0.95(4)
C8A - C8AA	1.394(4)	N9B—H9BB	0.90(1)
	0.9300		0.00(1)
	0.9500		
H1W1—O1W—H2W1	95 (6)	C4A—N9A—H9AB	120 (3)
H1W2—O2W—H2W2	87 (6)	H9AA—N9A—H9AB	120 (4)
C2A—N1A—C8AA	120.3 (2)	C2B—N1B—C8AB	116.4 (2)
C2A—N1A—H1A	119 (2)	N1B—C2B—N3B	128.1 (3)
C8AA = N1A = H1A	120(2)	N1B—C2B—H2BA	115.9
N1A = C2A = N3A	125(2)	N3B—C2B—H2BA	115.9
N1A - C2A - H2AA	117 5	C2B = N3B = C4B	113.9 117.4(2)
N3A = C2A = H2AA	117.5	N9B_C4B_N3B	117.1(2) 117.4(3)
C_{2A} N3A C_{4A}	117.5 118.0 (2)	N9B_C4B_C4AB	117.4(3) 122.3(3)
N94 - C44 - N34	116.0(2)	N3B_C4B_C4AB	122.3(3) 120.3(2)
N9A C4A C4AA	110.2(3) 122.0(3)	C5B C4AB C8AB	120.3(2) 110.2(3)
$N_{A} = C_{A} = C_{A} = C_{A}$	122.9(3) 120.8(2)	$C_{3}D - C_{4}AD - C_{6}AD$	119.2(3) 124.1(2)
NJA - C + A - C + A A	120.0(2)	$C_{A}D = C_{A}D = C_{A}D$	124.1(2)
$C_{AA} = C_{AA} = C_{AA}$	119.2(3)	$C\delta AD - C4AD - C4D$	110.7(2)
$C_{AA} = C_{AA} = C_{AA}$	110.8(2)	COB-CSB-C4AB	120.6 (2)
$C_{A} = C_{A} = C_{A}$	124.0(2)	COB-COB-HOBA	119.7
C6A—C5A—C4AA	120.4 (3)	C4AB—C5B—H5BA	119.7
C6A—C5A—H5AA	119.8	$C_{2}B = C_{2}B = C_{2}B$	120.1 (3)
С4АА—С5А—Н5АА	119.8	C5B—C6B—H6BA	120.0
C5A—C6A—C/A	120.0 (3)	С/В—С6В—Н6ВА	120.0
С5А—С6А—Н6АА	120.0	C8B—C7B—C6B	120.6 (3)
С7А—С6А—Н6АА	120.0	С8В—С7В—Н7ВА	119.7
C8A—C7A—C6A	120.9 (3)	С6В—С7В—Н7ВА	119.7
С8А—С7А—Н7АА	119.5	C7B—C8B—C8AB	120.3 (2)
С6А—С7А—Н7АА	119.5	C7B—C8B—H8BA	119.9
C7A—C8A—C8AA	118.6 (3)	C8AB—C8B—H8BA	119.9
С7А—С8А—Н8АА	120.7	N1B—C8AB—C8B	119.7 (2)
C8AA—C8A—H8AA	120.7	N1B—C8AB—C4AB	121.1 (3)
C4AA—C8AA—N1A	119.0 (3)	C8B—C8AB—C4AB	119.2 (3)
C4AA—C8AA—C8A	120.8 (3)	C4B—N9B—H9BA	119 (2)
N1A—C8AA—C8A	120.2 (2)	C4B—N9B—H9BB	120 (3)
С4А—N9А—H9АА	120 (2)	H9BA—N9B—H9BB	120 (3)
C8AA—N1A—C2A—N3A	-0.2(5)	C8AB—N1B—C2B—N3B	-0.2(5)
N1A—C2A—N3A—C4A	0.2 (5)	N1B—C2B—N3B—C4B	-1.5(5)
C_{2A} N_{3A} C_{4A} N_{9A}	179.0 (3)	C2B - N3B - C4B - N9B	-1791(3)
C2A— $N3A$ — $C4A$ — $C4AA$	-0.3(4)	C2B - N3B - C4B - C4AB	1.6 (5)
	(• /		(-)

N9A—C4A—C4AA—C8AA	-178.8 (3)	N9B—C4B—C4AB—C5B	-1.5 (5)
N3A—C4A—C4AA—C8AA	0.4 (4)	N3B—C4B—C4AB—C5B	177.8 (3)
N9A—C4A—C4AA—C5A	0.2 (5)	N9B—C4B—C4AB—C8AB	-179.3 (3)
N3A—C4A—C4AA—C5A	179.4 (3)	N3B—C4B—C4AB—C8AB	0.0 (4)
C8AA—C4AA—C5A—C6A	0.4 (5)	C8AB—C4AB—C5B—C6B	-0.6 (5)
C4A—C4AA—C5A—C6A	-178.5 (3)	C4B—C4AB—C5B—C6B	-178.4 (3)
C4AA—C5A—C6A—C7A	-0.4 (6)	C4AB—C5B—C6B—C7B	0.9 (5)
C5A—C6A—C7A—C8A	0.1 (6)	C5B—C6B—C7B—C8B	-0.9 (5)
C6A—C7A—C8A—C8AA	0.0 (5)	C6B—C7B—C8B—C8AB	0.6 (5)
C5A—C4AA—C8AA—N1A	-179.5 (3)	C2B—N1B—C8AB—C8B	-178.1 (3)
C4A—C4AA—C8AA—N1A	-0.4 (4)	C2B—N1B—C8AB—C4AB	1.9 (4)
C5A—C4AA—C8AA—C8A	-0.2 (5)	C7B—C8B—C8AB—N1B	179.7 (3)
C4A—C4AA—C8AA—C8A	178.8 (3)	C7B—C8B—C8AB—C4AB	-0.3 (5)
C2A—N1A—C8AA—C4AA	0.3 (4)	C5B—C4AB—C8AB—N1B	-179.7 (3)
C2A—N1A—C8AA—C8A	-178.9 (3)	C4B—C4AB—C8AB—N1B	-1.8 (4)
C7A—C8A—C8AA—C4AA	0.0 (5)	C5B—C4AB—C8AB—C8B	0.3 (4)
C7A—C8A—C8AA—N1A	179.2 (3)	C4B—C4AB—C8AB—C8B	178.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
$N1A$ — $H1A$ ··· $N1B^{i}$	1.03 (3)	1.76 (3)	2.786 (3)	173 (3)
N9 <i>A</i> —H9 <i>AA</i> ···N3 <i>B</i> ⁱⁱ	0.91 (4)	2.00 (4)	2.907 (4)	175 (3)
N9A—H9AB…C11	0.94 (5)	2.34 (5)	3.206 (2)	153 (5)
N9B—H9BA····N3A ⁱⁱ	0.96 (4)	2.12 (4)	3.074 (4)	174 (3)
N9 <i>B</i> —H9 <i>BB</i> ···O1 <i>W</i>	0.79 (4)	2.22 (3)	2.999 (4)	167 (4)
O1 <i>W</i> —H1 <i>W</i> 1···Cl1	0.90 (3)	2.25 (3)	3.157 (4)	178 (6)
O1 <i>W</i> —H2 <i>W</i> 1···Cl1 ⁱⁱⁱ	0.89 (4)	2.37 (4)	3.183 (3)	151 (7)
O2 <i>W</i> —H1 <i>W</i> 2···O1 <i>W</i>	0.91 (7)	1.96 (7)	2.857 (5)	169 (6)
O2W— $H2W2$ ···Cl1 ^{iv}	0.89 (5)	2.40 (5)	3.215 (4)	153 (5)

Symmetry codes: (i) -*x*+1/2, *y*+1/2, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1/2, *y*-1/2, -*z*+3/2; (iv) *x*, *y*-1, *z*.