

Received 21 June 2021 Accepted 6 July 2021

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; urethanes; carbamates; C—H···O hydrogen bonds.

CCDC reference: 2094771

Supporting information: this article has supporting information at journals.iucr.org/e

Viktor Martens,^a Helmar Görls^b and Wolfgang Imhof^a*

^aInstitute of Integrated Natural Sciences, University Koblenz - Landau, Universitätsstr. 1, 56070 Koblenz, Germany, and ^bInstitute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 8, 07743 Jena, Germany. *Correspondence e-mail: Imhof@uni-koblenz.de

In the molecular structure of the title compound, $C_{15}H_{21}NO_3$, the urethane function and the benzoyl group are almost perpendicular to each other [dihedral angle 88.97 (5)°]. In the crystal structure, infinite supramolecular layers in the *bc* plane are formed by weak $C-H \cdots O$ hydrogen bonds.

1. Chemical context

Phenacyl and desyl compounds have been a subject of interest for many years due to their use as photoremovable protecting groups (PPGs) (Givens *et al.*, 2012; Kammari *et al.*, 2007; Klán *et al.*, 2013; Sheehan & Umezawa, 1973). Carbamates are used for the protection of carboxylic acids and may also act as suitable protecting groups for amines (Speckmeier *et al.*, 2018). Speckmeier and co-workers synthesized several phenacyl urethanes, but the protection of diisopropylamine by a phenacyl group has not been reported so far. The title compound was synthesized according to reported routes (Speckmeier *et al.*, 2018).

2. Structural commentary

As expected, the carbamate functional moiety (N1/C3/O3/O2) is essentially planar (maximum deviation of 0.01 Å for C3). The same is true for the benzoyl group (C1/O1/C10-C15, maximum deviation of 0.05 Å for O1). These two planes subtend a dihedral angle of 88.97 (5)° and therefore an almost perpendicular arrangement (Fig. 1). Otherwise, the bond lengths and angles are of expected values with C3–N1 [1.348 (2) Å] and C3–O2 [1.368 (2) Å] being slightly shorter than a typical C–O or C–N single bond due to the partial double-bond character of the respective bonds in a carbamate.

3. Supramolecular features

The crystal structure of the title compound features weak hydrogen bonds (Desiraju & Steiner, 2001) of the C-H···O type, as shown in Table 1. The interaction C5-H5B···O3

research communications

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$		

 $D - H \cdot \cdot \cdot A$

152

167

157

Symmetry codes: (i) x, y - 1, z; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) x, y + 1, z.

0.99

0.98

0.98

links molecules of the title compound into infinite chains parallel to the *c*-axis direction. Additional C2–H2B···O1 and C9–H9B···O2 interactions link these infinite chains to a supramolecular sheet parallel to the *bc* plane (Fig. 2). The latter interaction is accompanied by a short C9–H9B···C3 contact, which makes the contact look like a non-classical hydrogen bond towards the π -system of a C=O double bond, again showing the partial double-bond character of the respective bond.

270

2.62

2.68

3.605 (2)

3.578 (2)

3.599 (2)

4. Database survey

 $C2-H2B\cdots O1^{i}$

 $C5 = H5B \cdots O3^{ii}$

 $C9 - H9B \cdots O2^{iii}$

In the CSD (ConQuest Version 2020.3.0; Groom *et al.*, 2016), only one other carbamate with a $CH_2-C(O)$ -Ph group attached to the carbamate oxygen atom is reported (NIWQUI; Jiang *et al.*, 2019). The respective compound shows a diethylamino group and a *p*-chlorophenyl substituent instead of the diisopropylamino group and the non-substituted phenyl group in the title compound. In contrast to the title compound, the carbamate plane and the benzoyl plane are almost coplanar. The carbonyl oxygen atoms show numerous short contacts towards different C—H groups of neighboring molecules, leading to a dense three-dimensional network.

5. Synthesis and crystallization

Diisopropylamine (0.05 mol, 5.05 g) and 1 equiv. of cesium carbonate (0.05 mol, 16.55 g) were placed in a Schlenk tube and dissolved in anhydrous DMSO (150 mL). The tube was sealed with a septum and two balloons filled with CO_2 were bubbled through the reaction mixture within one h while stirring. After the addition of CO_2 , 1.1 equiv. of 2-bromo-1-phenylethan-1-one (0.055 mol, 10.95 g) dissolved in a small

Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{15}H_{21}NO_3$
M _r	263.33
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	133
a, b, c (Å)	18.4574 (8), 5.7020 (2), 14.8058 (6)
β (°)	113.468 (1)
$V(Å^3)$	1429.33 (10)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.10 \times 0.10 \times 0.08$
Data collection	
Diffractometer	Nonius KappaCCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.674, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13968, 3280, 2464
R _{int}	0.040
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.113, 1.04
No. of reflections	3280
No. of parameters	177
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.27, -0.21

Computer programs: COLLECT (Nonius 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2020).

amount of DMSO was added in one portion. The consumption of 2-bromo-1-phenylethan-1-one was monitored by TLC and after 30 min the reaction mixture was poured on ice to quench the reaction. After extraction with dichloromethane (3×), the combined organic phases were washed with brine, separated and dried over Na₂SO₄. The solvent was removed *in vacuo* and the crude product was recrystallized from *n*-hexane/ethanol (4:1) to afford the title compound (12.90 g; 98%) as a colorless solid, m.p. 347.5°C. ¹H NMR (500 MHz, CDCl₃) [ppm]: δ = 7.90 (*dd*, 2H), 7.55 (*ddt*, 1H), 7.45 (*dd*, J = 8.4, 7.1 Hz, 2H), 5.33

Figure 2 Crystal structure of the title compound showing layers of molecules along the *bc* plane that are built up by $C-H \cdots O$ hydrogen bonds.

(s, 2H), 3.97 (hept, 2H), 1.25 (d, 12H); ¹³C NMR (126 MHz, CDCl₃) [ppm]: δ = 193.91 (C=O), 154.80 (NC=O), 134.69, 133.65, 128.84, 127.83 (C_{ar}), 66.36 (O=C-O), 46.32 [(H₃C)₂CH–], 20.99 [(H₃C)₂CH–].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed in idealized positions (C-H = 0.95–0.99Å) and refined using a riding model with isotropic displacement parameters calculated as $U_{iso}(H) = 1.2 \times U_{eq}(C)$ for methylene and hydrogen atoms of the phenyl group or $1.5 \times U_{eq}(C)$ for methyl groups.

Acknowledgements

Financial support of the PhD project of VM by Lohmann GmbH & Co. KG, Neuwied, Germany, is gratefully acknowledged.

References

Desiraju, G. R. & Steiner, T. (2001). *The Weak Hydrogen Bond*. Oxford Science Publications.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Givens, R. S., Rubina, M. & Wirz, J. (2012). *Photochem. Photobiol. Sci.* **11**, 472–488.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jiang, H., Zhang, H., Xiong, W., Qi, C., Wu, W., Wang, L. & Cheng, R. (2019). Org. Lett. 21, 1125–1129.
- Kammari, L., Plíštil, L., Wirz, J. & Klán, P. (2007). Photochem. Photobiol. Sci. 6, 50-56.
- Klán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., Popik, V., Kostikov, A. & Wirz, J. (2013). *Chem. Rev.* 113, 119– 191.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771–3774. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Speckmeier, E., Klimkait, M. & Zeitler, K. (2018). J. Org. Chem. 83, 3738–3745.

supporting information

Acta Cryst. (2021). E77, 785-787 [https://doi.org/10.1107/S2056989021006927]

Crystal structure of 2-oxo-2-phenylethyl diisopropylcarbamate

Viktor Martens, Helmar Görls and Wolfgang Imhof

Computing details

Data collection: *COLLECT* (Nonius 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *Mercury* (Macrae *et al.*, 2020).

2-oxo-2-phenylethyl diisopropylcarbamate

Crystal data

C₁₅H₂₁NO₃ $M_r = 263.33$ Monoclinic, $P2_1/c$ a = 18.4574 (8) Å b = 5.7020 (2) Å c = 14.8058 (6) Å $\beta = 113.468$ (1)° V = 1429.33 (10) Å³ Z = 4

Data collection

Nonius KappaCCD
diffractometer
phi + ω - scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min} = 0.674, \ T_{\max} = 0.746$
13968 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.113$ S = 1.043280 reflections 177 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 568 $D_x = 1.224 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 13968 reflections $\theta = 2.8-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 133 KPrism, colourless $0.10 \times 0.10 \times 0.08 \text{ mm}$

3280 independent reflections 2464 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -23 \rightarrow 23$ $k = -5 \rightarrow 7$ $l = -19 \rightarrow 18$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0368P)^2 + 0.6743P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³ Extinction correction: SHELXL2018/3 (Sheldrick 2015) Extinction coefficient: 0.0093 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.38605 (6)	0.7949 (2)	0.38826 (9)	0.0338 (3)	
02	0.27936 (6)	0.4581 (2)	0.32610 (8)	0.0280 (3)	
03	0.24228 (6)	0.6202 (2)	0.17458 (8)	0.0285 (3)	
N1	0.17054 (7)	0.6836 (3)	0.26709 (9)	0.0285 (3)	
C1	0.41005 (8)	0.6137 (3)	0.36687 (11)	0.0234 (3)	
C2	0.35448 (8)	0.4079 (3)	0.32488 (12)	0.0257 (3)	
H2A	0.348514	0.377390	0.256450	0.031*	
H2B	0.376866	0.265560	0.364461	0.031*	
C3	0.23136 (8)	0.5945 (3)	0.24965 (11)	0.0249 (3)	
C4	0.16762 (9)	0.6747 (4)	0.36534 (12)	0.0371 (4)	
H4	0.211633	0.570586	0.407718	0.044*	
C5	0.18152 (13)	0.9155 (5)	0.41331 (15)	0.0605 (7)	
H5A	0.228794	0.985787	0.409862	0.091*	
H5B	0.188987	0.899895	0.482386	0.091*	
H5C	0.135734	1.015930	0.378631	0.091*	
C6	0.09072 (11)	0.5665 (4)	0.36026 (15)	0.0452 (5)	
H6A	0.046572	0.670305	0.322993	0.068*	
H6B	0.093071	0.545940	0.427083	0.068*	
H6C	0.083000	0.413759	0.327431	0.068*	
C7	0.11069 (9)	0.8271 (3)	0.19039 (11)	0.0278 (4)	
H7	0.074178	0.887235	0.220031	0.033*	
C8	0.06055 (9)	0.6780 (3)	0.10240 (12)	0.0319 (4)	
H8A	0.019602	0.775918	0.054376	0.048*	
H8B	0.035643	0.551161	0.124422	0.048*	
H8C	0.094128	0.610990	0.071729	0.048*	
C9	0.14496 (11)	1.0413 (3)	0.16096 (14)	0.0405 (5)	
H9A	0.176297	0.991762	0.124230	0.061*	
H9B	0.178789	1.126741	0.220191	0.061*	
H9C	0.101940	1.143637	0.119443	0.061*	
C10	0.49370 (8)	0.5861 (3)	0.37810 (11)	0.0248 (3)	
C11	0.51983 (9)	0.3863 (3)	0.34607 (12)	0.0315 (4)	
H11	0.484354	0.260546	0.317232	0.038*	
C12	0.59781 (10)	0.3710 (4)	0.35634 (13)	0.0420 (5)	
H12	0.615586	0.234665	0.334388	0.050*	
C13	0.64925 (10)	0.5519 (4)	0.39804 (13)	0.0478 (6)	
H13	0.702529	0.540331	0.404875	0.057*	
C14	0.62389 (10)	0.7512 (4)	0.43024 (13)	0.0437 (5)	
H14	0.659736	0.876252	0.458872	0.052*	
C15	0.54637 (9)	0.7686 (3)	0.42078 (12)	0.0327 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H15	0.529143	3 0	.904967	0.443406	0.039*	
Atomic	displacement para	ameters ($Å^2$)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0316 (6)	0.0311 (6)	0.0386 (7)	0.0050 (5)	0.0140 (5)	-0.0076 (5)
O2	0.0204 (5)	0.0369 (6)	0.0260 (6)	0.0011 (5)	0.0087 (4)	0.0069 (5)
O3	0.0261 (5)	0.0375 (7)	0.0229 (6)	0.0009 (5)	0.0108 (4)	0.0031 (5)
N1	0.0201 (6)	0.0433 (8)	0.0219 (7)	0.0018 (6)	0.0081 (5)	0.0037 (6)
C1	0.0248 (7)	0.0269 (8)	0.0182 (7)	0.0041 (6)	0.0080 (6)	0.0014 (6)
C2	0.0227 (7)	0.0278 (8)	0.0264 (8)	0.0023 (6)	0.0095 (6)	0.0021 (6)
C3	0.0199 (7)	0.0310 (8)	0.0211 (7)	-0.0038 (6)	0.0055 (6)	0.0007 (6)
C4	0.0257 (8)	0.0627 (13)	0.0251 (8)	0.0034 (8)	0.0125 (7)	0.0044 (8)
C5	0.0611 (13)	0.0909 (18)	0.0325 (10)	-0.0377 (13)	0.0217 (10)	-0.0224 (11)
C6	0.0487 (11)	0.0512 (12)	0.0475 (11)	-0.0061 (9)	0.0314 (9)	0.0003 (9)
C7	0.0218 (7)	0.0317 (9)	0.0269 (8)	0.0026 (6)	0.0065 (6)	-0.0008(7)
C8	0.0251 (7)	0.0352 (9)	0.0289 (8)	-0.0006 (7)	0.0041 (7)	-0.0019 (7)
C9	0.0418 (10)	0.0327 (10)	0.0417 (10)	-0.0035 (8)	0.0108 (8)	0.0002 (8)
C10	0.0227 (7)	0.0335 (9)	0.0174 (7)	0.0036 (6)	0.0069 (6)	0.0035 (6)
C11	0.0278 (8)	0.0404 (10)	0.0257 (8)	0.0066 (7)	0.0101 (7)	0.0001 (7)
C12	0.0323 (9)	0.0672 (13)	0.0276 (9)	0.0201 (9)	0.0133 (7)	0.0047 (9)
C13	0.0209 (8)	0.0923 (17)	0.0311 (10)	0.0091 (10)	0.0111 (7)	0.0159 (10)
C14	0.0265 (8)	0.0666 (14)	0.0318 (10)	-0.0123 (9)	0.0051 (7)	0.0068 (9)
C15	0.0288 (8)	0.0404 (10)	0.0252 (8)	-0.0038 (7)	0.0068 (7)	0.0003 (7)

Geometric parameters (Å, °)

01—C1	1.2149 (19)	С7—С9	1.517 (2)	
O2—C3	1.3684 (18)	C7—C8	1.522 (2)	
O2—C2	1.4230 (17)	С7—Н7	1.0000	
O3—C3	1.2148 (18)	C8—H8A	0.9800	
N1—C3	1.348 (2)	C8—H8B	0.9800	
N1—C7	1.4764 (19)	C8—H8C	0.9800	
N1-C4	1.478 (2)	С9—Н9А	0.9800	
C1—C10	1.494 (2)	C9—H9B	0.9800	
C1—C2	1.519 (2)	С9—Н9С	0.9800	
C2—H2A	0.9900	C10—C15	1.392 (2)	
C2—H2B	0.9900	C10—C11	1.392 (2)	
C4—C5	1.520 (3)	C11—C12	1.389 (2)	
C4—C6	1.522 (2)	C11—H11	0.9500	
C4—H4	1.0000	C12—C13	1.371 (3)	
С5—Н5А	0.9800	C12—H12	0.9500	
С5—Н5В	0.9800	C13—C14	1.384 (3)	
С5—Н5С	0.9800	C13—H13	0.9500	
С6—Н6А	0.9800	C14—C15	1.385 (2)	
С6—Н6В	0.9800	C14—H14	0.9500	
С6—Н6С	0.9800	C15—H15	0.9500	

supporting information

C3—O2—C2	114.64 (12)	N1—C7—C8	111.27 (13)
C3—N1—C7	119.12 (13)	C9—C7—C8	112.63 (14)
C3—N1—C4	122.37 (13)	N1—C7—H7	106.3
C7—N1—C4	117.83 (13)	С9—С7—Н7	106.3
O1—C1—C10	121.89 (14)	С8—С7—Н7	106.3
O1—C1—C2	120.45 (14)	С7—С8—Н8А	109.5
C10—C1—C2	117.64 (13)	С7—С8—Н8В	109.5
O2—C2—C1	110.00 (13)	H8A—C8—H8B	109.5
O2—C2—H2A	109.7	С7—С8—Н8С	109.5
C1—C2—H2A	109.7	H8A—C8—H8C	109.5
O2—C2—H2B	109.7	H8B—C8—H8C	109.5
C1—C2—H2B	109.7	С7—С9—Н9А	109.5
H2A—C2—H2B	108.2	С7—С9—Н9В	109.5
O3—C3—N1	125.75 (14)	H9A—C9—H9B	109.5
O3—C3—O2	122.46 (14)	С7—С9—Н9С	109.5
N1—C3—O2	111.72 (13)	Н9А—С9—Н9С	109.5
N1-C4-C5	111.30 (16)	Н9В—С9—Н9С	109.5
N1-C4-C6	111.37 (14)	C15—C10—C11	119.50 (15)
C5—C4—C6	111.69 (16)	C15—C10—C1	118.42 (15)
N1—C4—H4	107.4	C11—C10—C1	122.07 (14)
С5—С4—Н4	107.4	C12—C11—C10	119.92 (17)
С6—С4—Н4	107.4	C12—C11—H11	120.0
C4—C5—H5A	109.5	C10—C11—H11	120.0
С4—С5—Н5В	109.5	C13—C12—C11	120.25 (18)
H5A—C5—H5B	109.5	C13—C12—H12	119.9
C4—C5—H5C	109.5	C11—C12—H12	119.9
H5A—C5—H5C	109.5	C12—C13—C14	120.29 (16)
H5B—C5—H5C	109.5	С12—С13—Н13	119.9
С4—С6—Н6А	109.5	C14—C13—H13	119.9
С4—С6—Н6В	109.5	C13—C14—C15	120.11 (18)
H6A—C6—H6B	109.5	C13—C14—H14	119.9
С4—С6—Н6С	109.5	C15—C14—H14	119.9
Н6А—С6—Н6С	109.5	C14—C15—C10	119.93 (18)
Н6В—С6—Н6С	109.5	С14—С15—Н15	120.0
N1—C7—C9	113.40 (13)	C10—C15—H15	120.0

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
$C2$ — $H2B$ ···· $O1^{i}$	0.99	2.70	3.605 (2)	152
C5—H5 <i>B</i> ···O3 ⁱⁱ	0.98	2.62	3.578 (2)	167
С9—Н9 <i>В</i> …О2 ^{ііі}	0.98	2.68	3.599 (2)	157

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*, -*y*+3/2, *z*+1/2; (iii) *x*, *y*+1, *z*.