

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 11 June 2021
Accepted 28 June 2021

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; layered structure; thermal properties; manganese thiocyanate; 3-(aminomethyl)pyridine; isotypism.

CCDC reference: 2092830

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Synthesis, crystal structure and thermal properties of poly[bis[μ-3-(aminomethyl)pyridine- $\left.\kappa^{2} N: N^{\prime}\right]$ bis-(thiocyanato- κN)manganese(II)]

Christoph Krebs,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany. *Correspondence e-mail: ckrebs@ac.uni-kiel.de

The reaction of $\mathrm{Mn}(\mathrm{NCS})_{2}$ with a stoichiometric amount of 3-(aminomethyl)pyridine in ethanol led to the formation of the title compound, $\left[\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]_{n}$, which is isotypic to its Zn , Co and Cd analogues. The manganese cation is located on a centre of inversion and is octahedrally coordinated in an all-trans configuration by two terminal N -bonded thiocyanate anions as well as four 3 -(aminomethyl)pyridine co-ligands, of which two coordinate with the pyridine N atom and two with the amino N atom. The 3 -(aminomethyl)pyridine co-ligands connect the $\mathrm{Mn}^{\mathrm{II}}$ cations into layers extending parallel to $(10 \overline{1})$. These layers are further connected into a threedimensional network by relatively strong intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding. Comparison of the experimental X-ray powder diffraction pattern with the calculated pattern on the basis of single-crystal data proves the formation of a pure crystalline phase. IR measurements showed the CN stretching vibration of the thiocyanate anions at $2067 \mathrm{~cm}^{-1}$, which is in agreement with the presence of terminally N -bonded anionic ligands. TG-DTA measurements revealed that the title compound decomposes at about 500 K .

1. Chemical context

In contrast to other small-sized ligands such as azide or cyanide anions, thiocyanate anions show many more coordination modes. Therefore, a variety of structures including discrete complexes (Prananto et al., 2017; Małecki et al., 2011; Wöhlert et al., 2014), dimers (Mautner et al., 2015; Wei \& Luo, 2010; Jochim et al., 2018), chains (Mautner et al., 2018; Rams et al., 2020), layers (Suckert et al., 2016, 2017) or in very rare cases three-dimensional networks (Suckert et al., 2017) can be observed. This structural variability is further enhanced by isomerism, because for an octahedral coordination with three pairs of identical ligands, five different isomers exist, including the all-trans, all-cis and three different cis-cis-trans configurations. These features are found in compounds with structures where the metal cations are linked by pairs of anionic ligands into chains. The majority of compounds with $\mu-1,3-$ bridging thiocyanate anions shows this behaviour. Depending on the actual metal coordination (all-trans or cis-cis-trans), linear or corrugated chains are observed (Jin et al., 2007; Rams et al., 2017; Böhme et al., 2020; Jochim et al., 2020). Moreover, even for compounds with layered thiocyanate structures, different networks are realized, in which the metal cations are linked exclusively by single anionic ligands or by both singly and doubly $\mu-1,3$-bridging thiocyanate anions. For less chalcophilic metal cations like $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}$ or $\mathrm{Ni}^{\mathrm{II}}$, the majority
of compounds consist of structures with only terminally N -bonding thiocyanate anions, because in this case this coordination is energetically favoured. With only monocoordinating ligands this usually leads to the formation of discrete metal complexes with an octahedral coordination. If bridging co-ligands are used, chain structures can be realized and networks of higher dimensionality are available if additional $\mu-1,3$-bridging thiocyanate anions are present.

Thiocyanate coordination polymers are of interest not only because of their variable structural behaviour, but also because this ligand is able to mediate reasonable magnetic exchange. We and other groups have reported many new compounds in which the metal cations are linked by $\mu-1,3-$ bridging thiocyanate anions into chains or layers (Werner et al., 2015; Bassey et al., 2020; Mekuimemba et al., 2018; PalionGazda et al., 2015; Neumann et al., 2019; Mousavi et al., 2020). In this context, we became interested in 3-(aminomethyl)pyridine, because this ligand is able to link metal cations via the pyridine and the amino N atom. Surprisingly, with $\mathrm{Co}^{\mathrm{II}}$ we always obtained only one crystalline phase in which the $\mathrm{Co}^{\mathrm{II}}$ cations are coordinated by only terminally N -bonding thiocyanate anions but linked into layers by the 3-(aminomethyl)pyridine co-ligands (Krebs et al., 2021). In contrast to the $\mathrm{Co}^{\mathrm{II}}$ cation, the $\mathrm{Mn}^{\mathrm{II}}$ cation is more chalcophilic and usually behaves like $\mathrm{Cd}^{\mathrm{II}}$, for which compounds with μ-1,3-bridging thiocyanate anions are much easier to obtain. Therefore, we used $\mathrm{Mn}(\mathrm{NCS})_{2}$ in the present study. However, irrespective of the ratio between $\mathrm{Mn}(\mathrm{NCS})_{2}$ and 3-(aminomethyl)pyridine, we always obtained only one crystalline phase with composition $\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}$. Single-crystal structure analysis revealed isotypism with the $\mathrm{Co}^{\mathrm{II}}$ analogue reported recently (Krebs et al. 2021). Comparison of the experimental X-ray powder diffraction pattern with the calculated pattern based on single-crystal data proved that a pure crystalline phase was obtained (see Fig. S1 in the supporting information); IR investigations revealed that the CN stretching vibration is observed at $2067 \mathrm{~cm}^{-1}$, in agreement with the presence of only

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{N} 1$	$2.1955(15)$	$\mathrm{Mn} 1-\mathrm{N} 11$	$2.3154(14)$
$\mathrm{Mn} 1-\mathrm{N} 12^{\mathrm{i}}$	$2.2901(14)$		
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{ii}}$	180.0	$\mathrm{~N}^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{N} 11$	$90.82(5)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 12^{\mathrm{i}}$	$91.17(6)$	$\mathrm{N}_{1} 2^{-}-\mathrm{Mn} 1-\mathrm{N} 11$	$89.52(5)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 12^{\mathrm{iii}}$	$88.83(6)$	$\mathrm{N} 12^{\mathrm{iii}}-\mathrm{Mn} 1-\mathrm{N} 11$	$90.48(5)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 11$	$89.18(5)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 11^{\mathrm{ii}}$	$90.82(5)$

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2} ; \quad$ (ii) $\quad-x,-y+1,-z ; \quad$ (iii)
terminally N -bound thiocyanate anions (Fig. S2). TG-DTA measurements showed decomposition of the compound at about 500 K , which is accompanied by an endothermic event in the DTA curve (Fig. S3). The first decomposition step might be associated with the removal of the 3-(aminomethyl)pyridine co-ligand. On further heating, an exothermic signal is observed, which indicates the decomposition of the co-ligand.

2. Structural commentary

$\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}$ is isotypic with its recently reported $\mathrm{Cd}^{\mathrm{II}}, \mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$ analogues (Neumann et al., 2017; Krebs et al., 2021). The asymmetric unit consists of one $\mathrm{Mn}^{\mathrm{II}}$ cation that is located on a centre of inversion as well as one 3-(aminomethyl)pyridine co-ligand and one thiocyanate anion (Fig. 1). The $\mathrm{Mn}^{\mathrm{II}}$ cation is octahedrally coordinated by the N atoms of four symmetry-equivalent 3-(aminomethyl)pyridine coligands and two symmetry-equivalent thiocyanate anions. Two of these co-ligands coordinate through the pyridine N atom whereas the other two coordinate with the amino N atom. Each pair of identical donor atoms is in a trans-position (Fig. 1). The $\mathrm{Mn}-\mathrm{N}$ bond length to the negatively charged thiocyanate N atom is significantly shorter than that to the

Figure 1
The coordination of the $\mathrm{Mn}^{\text {II }}$ cation in the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (A) $-x,-y+1,-z$, (B) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$, (C) $-\frac{1}{2}+x, \frac{3}{2}-y$, $-\frac{1}{2}+z$.]

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~S} 1^{\text {iii }}$	0.95	2.99	$3.7264(19)$	136
$\mathrm{~N} 12-\mathrm{H} 12 A \cdots 1^{\text {iv }}$	0.91	2.81	$3.7016(16)$	166
$\mathrm{~N} 12-\mathrm{H} 12 B \cdots \mathrm{~S}^{\mathrm{v}}$	0.91	2.66	$3.5224(15)$	159

Symmetry codes: (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iv) $x, y, z+1 ;$ (v) $x-\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$.

3-(aminomethyl)pyridine co-ligand; the $\mathrm{Mn}-\mathrm{N}$ bond length to the pyridine N atom is significantly longer than that to the amino N atom of the 3-(aminomethyl)pyridine ligand (Table 1). As expected, all $\mathrm{Mn}-\mathrm{N}$ bond lengths are significantly longer and shorter, respectively, compared to the $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Cd}^{\mathrm{II}}$ analogues. The bond angles around $\mathrm{Mn}^{\mathrm{II}}$ indicate a considerable distortion (Table 1). This is also indicated by the mean octahedral quadratic elongation of 1.0013 and the octahedral angle variance of 0.8258 (Robinson et al., 1971). The $\mathrm{Mn}^{\mathrm{II}}$ cations are connected by bridging 3-(aminomethyl)pyridine ligands into chains, which are further linked into layers extending parallel to $(10 \overline{1})$ by additional co-ligands (Fig. 2).

Figure 2
Crystal structure of the title compound in a view of a layer along the crystallographic a axis.

3. Supramolecular features

The layers are linked into a three-dimensional network by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds between the amino H atoms and the thiocyanate S atoms (Fig. 3, Table 2). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ angles indicate a relatively strong interaction and the thiocyanate S atom acts as an acceptor for two of these hydrogen bonds. There is also a $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interaction but the bonding angle is far from linearity, which points to a weak interaction (Table 2).

4. Database survey

In the Cambridge Structure Database (CSD, version 5.42, last update November 2020; Groom et al., 2016) no Mn-3(aminomethyl)pyridine compounds are reported but a few compounds based on $\mathrm{Zn}(\mathrm{NCS})_{2}$ and $\mathrm{Cd}(\mathrm{NCS})_{2}$ have been deposited. In all of the corresponding structures, the metal cations are octahedrally coordinated. This includes $M(\mathrm{NCS})_{2}[3 \text {-(aminomethyl)pyridine }]_{2}(M=\mathrm{Cd}, \mathrm{Zn}$; Neumann et al., 2017; refcodes: QEKZEO and QEKYUD), which are isotypic to the title compound, as well as $M(\mathrm{NCS})_{2}[3-$ (aminomethyl)pyridine] ($M=\mathrm{Cd}, \mathrm{Zn}$; Neumann, et al. 2017;

Figure 3
Crystal structure of the title compound in a view along the crystallographic b axis. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds are shown as dashed lines.

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta{ }^{\circ}{ }^{\circ}$)
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
387.39

Monoclinic, $P 2_{1} / n$
200
8.2157 (3), 12.2356 (5), 8.9601 (3)
99.736 (3)
887.73 (6)

2
Mo $K \alpha$
0.99
$0.03 \times 0.03 \times 0.01$

Stoe IPDS2
Numerical (X-SHAPE and X-RED
32; Stoe, 2002)
0.856, 0.980

12559, 1939, 1755
0.040
0.639
$0.031,0.073,1.14$
1939
106
H -atom parameters constrained $0.27,-0.22$

Computer programs: X-AREA (Stoe, 2002), SHELXS97 (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015), DIAMOND (Brandenburg \& Putz, 1999) and publCIF (Westrip, 2010).
refcodes: QEKZIS and QEKZAK). In the latter $\mathrm{Zn}^{\text {II }}$ compound, dimers are observed in which two $\mathrm{Zn}^{\mathrm{II}}$ cations are connected by two 3-(aminomethyl)pyridine ligands. In the $\mathrm{Cd}^{\mathrm{II}}$ compound, the metal cations are linked by $\mu-1,3$-bridging thiocyanate anions into chains that are connected into layers by the 3-(aminomethyl)pyridine ligands. This compound is the only one that contains $\mu-1,3$-bridging thiocyanate anions and which shows a cis-cis-trans coordination of the metal cations. There is also one solvate with the composition $\mathrm{Cd}(\mathrm{NCS})_{2}[3-$ (aminomethyl)pyridine] $]_{2}$-tris[3-(aminomethyl)pyridine] reported in the CSD (refcode: QEKYOX; Neumann et al., 2017). Finally, $\operatorname{Co}(\mathrm{NCS})_{2}(3-(\text { aminomethyl }) \text { pyridine })_{2}$, which is isotypic to the title compound, is also reported (Krebs et al., 2021).

5. Synthesis and crystallization

Synthesis

$\mathrm{Mn}(\mathrm{NCS})_{2}$ and 3-(aminomethyl)pyridine were purchased from Alfa Aesar and all chemicals were used without further purification. Single crystals were obtained by reacting 1 mmol of $\mathrm{Mn}(\mathrm{NCS})_{2}(175.1 \mathrm{mg})$ with 1 mmol of 3-(aminomethyl)pyridine (108.1 mg) in 4 ml of ethanol. After approximately one week, light-brown crystals were obtained, which were suitable for single crystal X-ray analysis. For the synthesis of crystalline powders, the same amounts of reactants were stirred in 2 ml of ethanol for 1 d and the precipitate was filtered off and dried in air.

Elemental analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{MnS}_{2}$: $\mathrm{C} 43.41 \%$, H 4.16\%, N 21.69\%, S 16.55\%; found: C 43.32%, H 4.11%, N 21.56, S 16.31%. IR: $v=2971(m), 2941(w), 2928(w), 2887(s)$, 2875 (w), 2067 (s), 2023 (m), 1962(vw), 1861 (vw), 1595 (m), 1583 (w), 1480 (m), 1447 (m), 1426 (m), 1379 (w), 1361 (w), 1332 (w), 1274 (wv), 1244 (w), 1229 (w), 1189 (m), 1148 (w), 1124 (m), 1089 (m), 1048 (vs), 984 (s), 961 (m), 943 (w), 931 (m), 879 (m), $846(w), 824(w), 802(m), 783(m), 712(s), 645$ (s), $620(m), 539(s) \mathrm{cm}^{-1}$.

Experimental details

The elemental analysis was performed using a EURO EA elemental analyzer fabricated by EURO VECTOR Instruments. The IR spectrum was measured using an ATI Mattson Genesis Series FTIR spectrometer, control software: WINFIRST, from ATI Mattson. The PXRD measurement was performed with $\mathrm{Cu} K \alpha_{1}$ radiation ($\lambda=1.540598 \AA$) using a Stoe Transmission Powder Diffraction System (STADI P) that is equipped with a MYTHEN 1 K detector and a Johanssontype $\mathrm{Ge}(111)$ monochromator. Thermogravimetry and differential thermoanalysis (TG-DTA) measurements were performed in a dynamic nitrogen atmosphere in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located in a difference-Fourier map but were positioned with idealized geometry ($\mathrm{N}-\mathrm{H}=0.91 \AA, \mathrm{C}-\mathrm{H}=0.95-0.99 \AA$) and were refined in a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{C})$ for amino H atoms.

Funding information

This project was supported by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (grant No. NA720/ 5-2).

References

Bassey, E. N., Paddison, J. A. M., Keyzer, E. N., Lee, J., Manuel, P., da Silva, I., Dutton, S. E., Grey, C. P. \& Cliffe, M. J. (2020). Inorg. Chem. 59, 11627-11639.
Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. \& Näther, C. (2020). Inorg. Chem. 59, 5325-5338.

Brandenburg, K. \& Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jin, Y., Che, Y. X. \& Zheng, J. M. (2007). J. Coord. Chem. 60, 20672074.

Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. \& Näther, C. (2020). Inorg. Chem. 59, 89718982.

Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. \& Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.
Krebs, C., Jess, I. \& Näther, C. (2021). Acta Cryst. E77, 428-432.

Małecki, J. G., Machura, B., Świtlicka, A., Groń, T. \& Bałanda, M. (2011). Polyhedron, 30, 746-753.

Mautner, F. A., Scherzer, M., Berger, C., Fischer, R. C., Vicente, R. \& Massoud, S. S. (2015). Polyhedron, 85, 20-26.
Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. \& Massoud, S. S. (2018). Polyhedron, 154, 436-442.
Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. \& Triki, S. (2018). Inorg. Chem. 57, 2184-2192.

Mousavi, M., Duhayon, C., Bretosh, K., Béreau, V. \& Sutter, J. P. (2020). Inorg. Chem. 59, 7603-7613.

Neumann, T., Germann, L. S., Moudrakovski, I., Dinnebier, R. E., dos Santos Cunha, C., Terraschke, H. \& Näther, C. (2017). Z. Anorg. Allg. Chem. 643, 1904-1912.
Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. \& Näther, C. (2019). Chem. Commun. 55, 2652-2655.
Palion-Gazda, J., Machura, B., Lloret, F. \& Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.
Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. \& Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.

Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. \& Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.
Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. \& Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 32323243.

Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567570.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Stoe (2002). X-AREA and X-RED32. Stoe \& Cie, Darmstadt, Germany.
Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. \& Näther, C. (2016). Dalton Trans. 45, 1819018201.

Suckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. \& Näther, C. (2017). Cryst. Growth Des. 17, 3997-4005.

Wei, R. \& Luo, F. (2010). J. Coord. Chem. 63, 610-616.
Werner, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. \& Näther, C. (2015). Dalton Trans. 44, 14149-14158.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. \& Näther, C. (2014). Cryst. Growth Des. 14, 1902-1913.

supporting information

Acta Cryst. (2021). E77, 765-769 [https://doi.org/10.1107/S2056989021006733]

Synthesis, crystal structure and thermal properties of poly[bis[μ-3-(amino-methyl)pyridine- $\left.\kappa^{2} N: N^{\prime}\right]$ bis(thiocyanato- κN)manganese(II)]

Christoph Krebs, Inke Jess and Christian Näther

Computing details

Data collection: X-AREA (Stoe, 2002); cell refinement: X-AREA (Stoe, 2002); data reduction: X-AREA (Stoe, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg \& Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[bis[μ-3-(aminomethyl)pyridine- $\left.\kappa^{2} N: N^{\prime}\right]$ bis(thiocyanato- κN)manganese(II)]

Crystal data

$\left[\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=387.39$
Monoclinic, $P 2{ }_{1} / n$
$a=8.2157$ (3) Å
$b=12.2356$ (5) \AA
$c=8.9601$ (3) \AA
$\beta=99.736$ (3) ${ }^{\circ}$
$V=887.73(6) \AA^{3}$
$Z=2$

Data collection

Stoe IPDS-2
diffractometer
ω scans
Absorption correction: numerical
(X-Shape and X-Red 32; Stoe, 2002)
$T_{\text {min }}=0.856, T_{\text {max }}=0.980$
12559 measured reflections
$F(000)=398$
$D_{\mathrm{x}}=1.449 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 12559 reflections
$\theta=2.8-27.0^{\circ}$
$\mu=0.99 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, light-brown
$0.03 \times 0.03 \times 0.01 \mathrm{~mm}$

1939 independent reflections
1755 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-10 \rightarrow 10$
$k=-15 \rightarrow 15$
$l=-11 \rightarrow 11$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0359 P)^{2}+0.2401 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Mn1	0.000000	0.500000	0.000000	$0.02622(11)$
N1	$0.20857(19)$	$0.56497(13)$	$-0.09665(18)$	$0.0358(3)$
C1	$0.3146(2)$	$0.62691(14)$	$-0.10034(19)$	$0.0313(4)$
S1	$0.46152(6)$	$0.71704(4)$	$-0.10505(6)$	$0.04157(14)$
N11	$0.14907(18)$	$0.52888(12)$	$0.24007(16)$	$0.0306(3)$
C11	$0.1329(2)$	$0.46441(15)$	$0.3576(2)$	$0.0333(4)$
H11	0.057240	0.405168	0.340862	0.040^{*}
C12	$0.2207(2)$	$0.47971(15)$	$0.5022(2)$	$0.0350(4)$
H12	0.206448	0.431458	0.582080	0.042^{*}
C13	$0.3292(2)$	$0.56627(15)$	$0.5281(2)$	$0.0339(4)$
H13	0.391568	0.577949	0.626157	0.041^{*}
C14	$0.3466(2)$	$0.63626(14)$	$0.40992(19)$	$0.0295(3)$
C15	$0.2556(2)$	$0.61299(14)$	$0.2685(2)$	$0.0316(3)$
H15	0.269345	0.659337	0.186448	0.038^{*}
C16	$0.4577(2)$	$0.73525(14)$	$0.4322(2)$	$0.0340(4)$
H16A	0.564073	0.714074	0.494763	0.041^{*}
H16B	0.480824	0.759048	0.332262	0.041^{*}
N12	$0.38812(18)$	$0.82892(11)$	$0.50551(17)$	$0.0319(3)$
H12A	0.391635	0.810986	0.604571	0.038^{*}
H12B	0.279589	0.834201	0.463345	0.038^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.02752(18)$	$0.02188(18)$	$0.02836(19)$	$-0.00181(13)$	$0.00218(13)$	$0.00086(13)$
N1	$0.0343(8)$	$0.0370(8)$	$0.0371(8)$	$-0.0054(6)$	$0.0086(6)$	$0.0015(7)$
C1	$0.0330(8)$	$0.0321(9)$	$0.0291(8)$	$0.0047(7)$	$0.0060(7)$	$-0.0012(7)$
S1	$0.0355(2)$	$0.0368(3)$	$0.0526(3)$	$-0.00815(19)$	$0.0079(2)$	$-0.0034(2)$
N11	$0.0327(7)$	$0.0273(7)$	$0.0305(7)$	$-0.0022(5)$	$0.0019(6)$	$-0.0013(5)$
C11	$0.0362(9)$	$0.0276(8)$	$0.0361(9)$	$-0.0047(7)$	$0.0063(7)$	$-0.0024(7)$
C12	$0.0424(9)$	$0.0305(9)$	$0.0326(9)$	$-0.0020(7)$	$0.0074(7)$	$0.0022(7)$
C13	$0.0396(9)$	$0.0322(9)$	$0.0291(8)$	$0.0000(7)$	$0.0039(7)$	$-0.0021(7)$
C14	$0.0302(8)$	$0.0250(8)$	$0.0333(8)$	$0.0008(6)$	$0.0054(7)$	$-0.0033(6)$
C15	$0.0359(8)$	$0.0269(8)$	$0.0313(8)$	$-0.0010(7)$	$0.0038(7)$	$0.0012(6)$
C16	$0.0348(9)$	$0.0281(9)$	$0.0389(9)$	$-0.0027(7)$	$0.0061(7)$	$-0.0043(7)$
N12	$0.0334(7)$	$0.0253(7)$	$0.0368(8)$	$-0.0023(6)$	$0.0048(6)$	$-0.0017(6)$

Geometric parameters (A, ${ }^{\circ}$)

Mn1-N1	2.1955 (15)	C12-C13	1.378 (3)
$\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	2.1955 (15)	C12-H12	0.9500
$\mathrm{Mn} 1-\mathrm{N} 12^{\text {ii }}$	2.2901 (14)	C13-C14	1.388 (2)
$\mathrm{Mn} 1-\mathrm{N} 12^{\text {iii }}$	2.2901 (14)	C13-H13	0.9500
Mn1-N11	2.3154 (14)	C14-C15	1.388 (2)
Mn1-N11 ${ }^{\text {i }}$	2.3154 (14)	C14-C16	1.509 (2)
N1-C1	1.159 (2)	C15-H15	0.9500
C1-S1	1.6406 (18)	C16-N12	1.483 (2)
N11-C11	1.340 (2)	C16-H16A	0.9900
N11-C15	1.347 (2)	C16-H16B	0.9900
C11-C12	1.385 (3)	N12-H12A	0.9100
C11-H11	0.9500	N12-H12B	0.9100
N1-Mn1-N1 ${ }^{\text {i }}$	180.0	C13-C12-H12	120.6
N1-Mn1-N12i	91.17 (6)	C11-C12-H12	120.6
N1 ${ }^{\text {i }}$-Mn1-N12ii	88.83 (6)	C12-C13-C14	119.54 (17)
N1-Mn1-N12ii	88.83 (6)	C12-C13-H13	120.2
$\mathrm{N} 1{ }^{\text {i }}$-Mn1-N12ii	91.17 (6)	C14-C13-H13	120.2
$\mathrm{N} 12^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{N} 12^{\text {iii }}$	180.0	C15-C14-C13	117.45 (16)
N1-Mn1-N11	89.18 (5)	C15-C14-C16	120.37 (16)
N1 ${ }^{\text {i }}$-Mn1- ${ }^{\text {N11 }}$	90.82 (5)	C13-C14-C16	122.17 (16)
N12i-Mn1-N11	89.52 (5)	N11-C15-C14	124.18 (16)
N12iii-Mn1-N11	90.48 (5)	N11-C15-H15	117.9
N1-Mn1-N11 ${ }^{\text {i }}$	90.82 (5)	C14-C15-H15	117.9
N1 ${ }^{\text {i }}$ - Mnl- ${ }^{\text {N1 }}{ }^{\text {i }}$	89.18 (5)	N12-C16-C14	114.17 (14)
N12i-Mn1-N11 ${ }^{\text {i }}$	90.48 (5)	N12-C16-H16A	108.7
N12 ${ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{N} 11^{\text {i }}$	89.52 (5)	C14-C16-H16A	108.7
N11-Mn1-N11 ${ }^{\text {i }}$	180.0	N12-C16-H16B	108.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1$	152.67 (14)	C14-C16-H16B	108.7
N1-C1-S1	178.57 (16)	H16A-C16-H16B	107.6
C11-N11-C15	116.67 (15)	C16-N12-Mn1 ${ }^{\text {iv }}$	120.72 (11)
C11-N11-Mn1	122.20 (11)	C16-N12-H12A	107.1
C15-N11-Mn1	121.12 (11)	$\mathrm{Mn} 1{ }^{\text {iv }}$ - $\mathrm{N} 12-\mathrm{H} 12 \mathrm{~A}$	107.1
N11-C11-C12	123.38 (16)	C16-N12-H12B	107.1
N11-C11-H11	118.3	$\mathrm{Mn} 1{ }^{\text {iv }}$ - $\mathrm{N} 12-\mathrm{H} 12 \mathrm{~B}$	107.1
C12-C11-H11	118.3	H12A-N12-H12B	106.8
C13-C12-C11	118.75 (17)		

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $x-1 / 2,-y+3 / 2, z-1 / 2$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iv) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~S} 1^{i i i}$	0.95	2.99	$3.7264(19)$	136

supporting information

$\mathrm{N} 12 — \mathrm{H} 12 A \cdots \mathrm{~S}^{\mathrm{v}}$	0.91	2.81	$3.7016(16)$	166
$\mathrm{~N} 12 — \mathrm{H} 12 B \cdots \mathrm{~S}^{\text {vi }}$	0.91	2.66	$3.5224(15)$	159

Symmetry codes: (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (v) $x, y, z+1$; (vi) $x-1 / 2,-y+3 / 2, z+1 / 2$.

