Crystal structure and Hirshfeld surface analysis of (3aR,4S,7S,7aS)-4,5,6,7,8,8-hexachloro-2-{6-[(3aR,4R,7R,7aS)-4,5,6,7,8,8-hexachloro-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-methanoisoindol-2-yl]hexyl}-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione

Aygun I. Alikhanova,^a Zeliha Atioğlu,^b Mehmet Akkurt^c and Sixberth Mlowe^d*

^aInstitute of Polymer Materials, National Academy of Sciences of Azerbaijan, Sumgayit, 5004, Azerbaijan, ^bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania. *Correspondence e-mail: sixberth.mlowe@duce.ac.tz

The molecule of the title compound, $C_{24}H_{16}Cl_{12}N_2O_4$, is generated by a crystallographic inversion centre at the midpoint of the central C–C bond. A kink in the molecule is defined by a torsion angle of -169.86 (15)° about this central bond of the alkyl bridge. The pyrrolidine ring is essentially planar [max. deviation = 0.014(1) Å]. The cyclohexane ring has a boat conformation, while both cyclopentane rings adopt an envelope conformation. In the crystal structure, molecules are linked by intermolecular C-H···O, C-H···Cl and $C-Cl\cdots\pi$ interactions, and short intermolecular $Cl\cdots O$ and $Cl\cdots Cl$ contacts, forming a three-dimensional network.

1. Chemical context

N-heterocyclic compounds are of interest in the fields of synthetic organic chemistry, coordination chemistry and medicinal chemistry because of their important biological properties (Mahmoudi et al., 2016, 2017a,b,c, 2018a,b; 2019; Viswanathan et al., 2019). For this reason, many approaches have been developed for their efficient and versatile synthesis (Gurbanov et al., 2017, 2018a,b; Ma et al., 2017a,b). On the other hand, N-heterocycles or N-ligands can also be used as precursors in the synthesis of coordination compounds (Ma et al., 2020, 2021; Mahmudov et al., 2013), and as building blocks in the construction of supramolecular structures as they have both hydrogen-bond donor and acceptor capabilities (Gurbanov et al., 2020a; Kopylovich et al., 2011a,b; Asgarova et al., 2019). In fact, attachment of suitable functional groups to *N*-ligands can improve their solubility and the catalytic activity of the corresponding coordination compounds (Mizar et al., 2012; Gurbanov et al., 2020b; Khalilov et al., 2011, 2018a,b; Maharramov et al., 2019; Shikhaliyev et al., 2019; Shixaliyev et al., 2014). Intermolecular halogen bonds and other types of non-covalent interactions in halogenated N-heterocyclic compounds can improve their solubility and other functional properties. In order to continue our work in this perspective, we have synthesized a new halogenated N-heterocyclic (3aR,4S,7S,7aS)-4,5,6,7,8,8-hexachloro-2-{6-

Received 29 June 2021 Accepted 6 July 2021

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; pyrrolidine ring; cyclopentane ring; cyclohexane ring; Hirshfeld surface analysis.

CCDC reference: 2094787

Supporting information: this article has supporting information at journals.iucr.org/e $[(3aR,4R,7R,7aS)-4,5,6,7,8,8-hexachloro-1,3-dioxo-1,3,3a,4,7,-7a-hexahydro-2H-4,7-methanoisoindol-2-yl]hexyl}-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione, which provides multiple inermolecular non-covalent interactions.$

2. Structural commentary

The molecule of the title compound is generated by a crystallographic inversion centre at the midpoint of the central C-C bond. A kink in the molecule is defined by the C10-C11-C12-C12_a torsion angle of -169.86 (15)° about this central bond of the alkyl bridge (Fig. 1). The pyrrolidine ring (N1/C1/C2/C6/C7) is essentially planar [maximum deviation = -0.014 (1) Å for N1]. The cyclohexane ring (C2/C3/C5/C6/C8/ C9) has a boat conformation [the puckering parameters (Cremer and Pople, 1975) are $Q_{\rm T} = 0.9300$ (14) Å, $\theta =$ 89.99 (9)°, $\varphi = 59.37$ (9)°], while both the cyclopentane rings (C2-C6 and C3-C5/C8/C9) adopt an envelope conformation [Q(2) = 0.6308 (14) Å, $\varphi(2) = 252.44$ (13)° and Q(2) =0.5835 (14) Å, $\varphi(2) = 215.53$ (14)°, respectively] with the C4 atom bearing the dichloromethane group as the flap.

3. Supramolecular features and Hirshfeld surface analysis

In the crystal structure, molecules are linked by intermolecular C-H···O, C-H···Cl and C-Cl··· π interactions (Table 1), and short intermolecular contacts, listed in Table 2, forming a three-dimensional network (Figs. 2 and 3).

In order to visualize the intermolecular interactions (Table 2) in the crystal of the title compound, a Hirshfeld surface analysis was carried out using *Crystal Explorer 17.5* (Turner *et al.*, 2017). Fig. 4 shows the Hirshfeld surface plotted over d_{norm} in the range -0.1922 to 1.7149 a.u. The red spots on the Hirshfeld surface represent $C-H\cdots O$ and $C-H\cdots Cl$

Figure 1

The molecular structure of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. [Symmetry code: (a) 2 - x, 1 - y, -z].

Table 1			
Hydrogen-bond	geometry	(Å,	°).

Cg1 is the centroid of the N1/C1/C2/C6/C7 pyrrolidine ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C6 - H6 \cdots O1^{i} C10 - H10A \cdots O2^{ii} C12 - H12B \cdots C12^{iii} C3 - C11 \cdots Cg1^{iii}$	1.00 0.99 0.99 1.75 (1)	2.43 2.45 2.80 3.89 (1)	3.3867 (16) 3.4402 (17) 3.5299 (15) 4.9389 (14)	161 178 131 117 (1)

Symmetry codes: (i) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 2, -y, -z; (iii) -x + 2, -y, -z; (iii)

Figure 2

Crystal packing of the title compound viewed along the *a*-axis direction. $C-H\cdots O$, $C-H\cdots Cl$ hydrogen bonds and $C-Cl\cdots \pi$ interactions (Table 1) are represented by dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.

Crystal packing viewed along the b axis, with intermolecular interactions shown as in Fig. 2. H atoms not involved in hydrogen bonding are omitted for clarity.

research communications

Table 2 Summary of short interatomic contacts (Å) in the title compound.

Contact	Distance	Symmetry operation
Cl3···Cl2	3.4333 (5)	$1 - x, \frac{1}{2} + y, \frac{1}{2} - z$
O1···H6	2.43	$2 - x, \frac{1}{2} + y, \frac{1}{2} - z$
$Cl1 \cdot \cdot \cdot H11B$	2.99	$x, \frac{1}{2} - y, \frac{1}{2} + z$
Cl3···H10B	2.96	-1 + x, y, z
$O2 \cdot \cdot \cdot Cl4$	3.4606 (11)	1 - x, -y, -z
$H10A \cdot \cdot \cdot O2$	2.45	2 - x, -y, -z

contacts. Fig. 5 shows the full two-dimensional fingerprint plot and those delineated into the major contacts: $CI \cdots H/H \cdots CI$ (33.6%; Fig. 5*b*), $CI \cdots CI$ (29.3%; Fig. 5*c*), $O \cdots H/H \cdots O$ (13.9%; Fig. 5*d*), $CI \cdots O/O \cdots CI$ (11.4%; Fig. 5*e*) and $H \cdots H$ (7.0%; Fig. 5*f*) interactions. The remaining other weak interactions (contribution percentages) are $CI \cdots C/C \cdots CI$ (3.2%), $CI \cdots N/N \cdots CI$ (1.4%) and $C \cdots H/H \cdots C$ (0.2%).

4. Database survey

Four related compounds containing the methanoisoindole moiety were found in the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom *et al.*, 2016): 4,5,6,7,8,8-hexachloro-2-[2-(3,4-dimethoxyphenyl)eth-yl]-3a,4,7,7a-tetrahydro-1*H*-4,7-methanoisoindole-1,3(2*H*)-dione (refcode COHTUR: Manohar *et al.*, 2019), 5-hydroxy-4-

Figure 4

A view of the Hirshfeld surface for the title compound, plotted over d_{norm} in the range -0.1922 to 1.7149 a.u. together with interacting neighbouring molecules.

Figure 5

A view of the two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $\text{Cl}\cdots\text{H/H}\cdots\text{Cl}$, (c) $\text{Cl}\cdots\text{Cl}$ and (d) $\text{O}\cdots\text{H/H}\cdots\text{O}$, (e) $\text{Cl}\cdots\text{O/O}\cdots\text{Cl}$ and (f) $\text{H}\cdots\text{H}$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

(4-methylphenyl)-4-azatricyclo $[5.2.1.0^{2.6}]$ dec-8-en-3-one (QOVCAH: Aslantaş *et al.*, 2015), (3a*R*,4*S*,7*R*,7a*S*)-2-(perfluoropyridin-4-yl)-3a,4,7,7a-tetrahydro-1*H*-4,7-methanoisoindole-1,3(2*H*)-dione (MOJFUP: Peloquin *et al.*, 2019) and (3a*R*,4*S*,7*R*,7a*S*)-2-[(perfluoropyridin-4-yl)oxy]-3a,4,7,7atetrahydro-1*H*-4,7-methanoisoindole-1,3(2*H*)-dione (MOJ-GAW: Peloquin *et al.*, 2019).

In COHTUR, the six-membered ring of the norbornene moiety adopts a boat conformation and the two fivemembered rings have envelope conformations. The pyrrolidine ring makes a dihedral angle of 14.83 (12)° with the 3,4dimethoxyphenyl ring, which are attached to each other by an extended N-CH₂-CH₂-C_{ar} bridge. In the crystal of COHTUR, weak C-H···O hydrogen bonds link the molecules, forming a cyclic $R_4^4(48)$ ring motif (Bernstein *et al.*, 1995). The molecules are stacked in layers held together by offset π - π interactions, with a centroid-centroid distance of 3.564 (1) Å for the pyrrolidine and benzene rings. There is also an intermolecular C-Cl··· π interaction present.

In the crystal of QOVCAH, the cyclohexene ring adopts a boat conformation, and the five-membered rings have envelope conformations with the bridging atom as the flap. Their mean planes are oriented at a dihedral angle of 86.51 (7)°. The molecular structure is stabilized by a short intramolecular C-H···O contact. In the crystal, molecules are linked by O-H···O hydrogen bonds, forming chains propagating along [100]. The chains are linked by C-H··· π interactions, forming slabs parallel to (001).

The compound MOJFUP crystallizes in the triclinic space group $P\overline{1}$ with two molecules, A and B, in the asymmetric unit, and MOJGAW in the monoclinic space group $P2_1/n$ with one molecule per asymmetric unit. The synthesis of both compounds is conducted using endo starting materials, and the same configuration is observed in the resulting crystal structures. In MOJFUP, steric interactions between the orthofluorine atoms and the carbonyl oxygen atoms prevents free rotation about the nitrogen-ipso-carbon bond, which is evidenced by separate ¹⁹F NMR peaks in solution for the ortho-F atoms. In molecule A, the 2,3,5,6-tetrafluoropyridine plane is rotated by $58.05 (5)^{\circ}$ relative to the pyrrolidine plane and the corresponding dihedral angle for molecule B is $61.65 (7)^{\circ}$. The addition of an oxygen atom between N and C in the bridge between the ring systems in MOJGAW alleviates this steric restriction and only one ¹⁹F NMR peak in solution is observed for the ortho-F atoms; even so, the dihedral angle between the 2,3,5,6-tetrafluoropyridine and pyrrolidine planes in the crystal of MOJGAW of 84.01 (5)° is larger than that found in MOJFUP.

The main directional interactions in the crystal structures of MOJFUP and MOJGAW are of the type $C-H\cdots O$, $C-H\cdots F$, $C-O\cdots \pi$, and $C-F\cdots \pi$. In both compounds, weak hydrogen-bonding interactions are observed for the hydrogen atom(s) α to the carbonyl groups ($C-H\cdots O$ and $C-H\cdots F$ in MOJFUP; $C-H\cdots O$ in MOJGAW) and the olefinic hydrogen atoms ($C-H\cdots F$ in MOJFUP; $C-H\cdots O$ in MOJGAW). A weak interaction is also observed for a bridge hydrogen atom in MOJGAW, $C-H\cdots F$. The packing is further aided by π -interactions with the pyridine ring in MOJGAW.

5. Synthesis and crystallization

To 741 mg (2 mmol) of (3aR,4R,7R,7aS)-4,5,6,7,8,8-hexachloro-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3dione were added 0.12 mL (1 mmol) of hexane-1,6-diamine and 25 mL of dimethylformamide, and the mixture was stirred for 6 h at 373 K. Then, the reaction mixture was cooled to room temperature and poured into cold water. The obtained precipitate was filtered off, washed with water, recrystallized from chloroform and dried under vacuum. Yellow powder, yield 92%, m.p 404–405 K (decomp.). Analysis calculated for $C_{24}H_{16}Cl_{12}N_2O_4$ ($M_r = 821.80$): C 35.08, H 1.96, N 3.41%;

Table 3	
Experimental	details

Crystal data	
Chemical formula	$C_{24}H_{16}Cl_{12}N_2O_4$
Mr	821.79
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	8.9549 (3), 10.5908 (4), 16.6043 (6)
β (°)	103.499 (1)
$V(\dot{A}^3)$	1531.24 (10)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.12
Crystal size (mm)	$0.34 \times 0.32 \times 0.28$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al 2015)
T + T	0.684 0.736
No. of measured independent and	12567 3403 3141
observed $[I > 2\sigma(I)]$ reflections	12007, 0100, 0111
Rint	0.023
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.643
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.021, 0.053, 1.04
No. of reflections	3403
No. of parameters	190
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.33, -0.24

Computer programs: *APEX2* and *SAINT* (Bruker, 2007), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2020).

found: C 35.03, H 2.00, N 3.35%. ESI–MS: m/z: 822.9 [M_r + H]^{+.} ¹H NMR (300.130 MHz) in acetone- d_6 , internal TMS, δ (ppm): 1.29–3.43 (12H, 6CH₂), 3.86 (4H, CH). ¹³C[¹H] NMR (75.468 MHz, acetone- d_6). δ : 25.8 (2CH₂), 27.2 (2CH₂), 39.3 (4C–H), 52.0 (2CH₂), 79.3 (4CCl), 104.4 (2CCl₂), 130.9 (2CIC=CCl) and 170.2 (4C=O). Off-white prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform–hexane (1/1, ν/ν) mixture.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were positioned geometrically and refined using a riding model, with C-H = 0.99 (methylene) and 1.00 Å (methine), with $U_{iso}(H)$ = $1.2U_{eq}(C)$. Two reflections (100 and 002), affected by the incident beam-stop, and owing to poor agreement between observed and calculated intensities, two outliers (136 and 118) were omitted in the final cycles of refinement.

Acknowledgements

The authors' contributions are as follows. Conceptualization, AIA and MA; methodology, AIA and ZA; investigation, AIA, ZA, and SM; writing (original draft), MA and SM; writing (review and editing of the manuscript), MA and SM; visualization, AIA and ZA; funding acquisition, AIA; resources, AIA, ZA and SHM; supervision, MA and SM.

Funding information

This work was supported by the Institute of Polymer Materials, National Academy of Sciences of Azerbaijan.

References

- Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347.
- Aslantaş, M., Çelik, C., Çelik, Ö. & Karayel, A. (2015). *Acta Cryst.* E**71**, o143–o144.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
- Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). *Inorg. Chim. Acta*, **471**, 130–136.
- Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.
- Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, 01146.
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
- Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). *Inorg. Chim. Acta*, **374**, 175–180.
- Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
- Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). *Mol. Catal.* 428, 17–23.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). *Coord. Chem. Rev.* 437, 213859.

- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). *Coord. Chem. Rev.* **423**, 213482.
- Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.
- Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). *Inorg. Chim. Acta*, 461, 192–205.
- Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). *Inorg. Chem.* 56, 9698–9709.
- Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). *CrystEngComm*, **21**, 108–117.
- Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). *CrystEngComm*, 20, 2812–2821.
- Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772.
- Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
- Manohar, R., Harikrishna, M., Etti, S. H., Ramanathan, C. & Gunasekaran, K. (2019). Acta Cryst. E75, 562–564.
- Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). *Eur. J. Inorg. Chem.* pp. 2305–2313.
- Peloquin, A. J., Balaich, G. J. & Iacono, S. T. (2019). Acta Cryst. E75, 1153–1157.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). *CrystEngComm*, **21**, 5032–5038.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). *New J. Chem.* 38, 4807–4815.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17.5*. University of Western Australia.http://hirshfeldsuface.net
- Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). *Eur. J. Med. Chem.* **166**, 291–303.

supporting information

Acta Cryst. (2021). E77, 775-779 [https://doi.org/10.1107/S2056989021006952]

Crystal structure and Hirshfeld surface analysis of (3a*R*,4*S*,7*S*,7a*S*)-4,5,6,7,8,8-hexachloro-2-{6-[(3a*R*,4*R*,7*R*,7a*S*)-4,5,6,7,8,8-hexachloro-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2*H*-4,7-methanoisoindol-2-yl]hexyl}-3a,4,7,7a-tetrahydro-1*H*-4,7-methanoisoindole-1,3(2*H*)-dione

Aygun I. Alikhanova, Zeliha Atioğlu, Mehmet Akkurt and Sixberth Mlowe

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

(3a*R*,4*S*,7*S*,7a*S*)-4,5,6,7,8,8-Hexachloro-2-{6-[(3a*R*,4*R*,7*R*,7a*S*)-4,5,6,7,8,8-hexachloro-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2*H*-4,7-methanoisoindol-2-yl]hexyl}-3a,4,7,7a-tetrahydro-1*H*-4,7-methanoisoindole-1,3(2*H*)-dione

Crystal data

 $C_{24}H_{16}Cl_{12}N_{2}O_{4}$ $M_{r} = 821.79$ Monoclinic, $P2_{1}/c$ a = 8.9549 (3) Å b = 10.5908 (4) Å c = 16.6043 (6) Å $\beta = 103.499$ (1)° V = 1531.24 (10) Å³ Z = 2

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.684, T_{\max} = 0.736$ 12567 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.053$ S = 1.04 F(000) = 820 $D_x = 1.782 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7701 reflections $\theta = 2.3-27.2^{\circ}$ $\mu = 1.12 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.34 \times 0.32 \times 0.28 \text{ mm}$

3403 independent reflections 3141 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 27.2^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -21 \rightarrow 21$

3403 reflections190 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0231P)^2 + 0.7545P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.81506 (4)	0.38645 (3)	0.33748 (2)	0.02092 (8)
Cl2	0.65657 (4)	0.08552 (3)	0.31569 (2)	0.02036 (8)
C13	0.45141 (4)	0.28198 (3)	0.24334 (2)	0.01993 (8)
Cl4	0.48797 (4)	0.05628 (3)	0.10287 (2)	0.02218 (8)
Cl5	0.75019 (4)	0.52267 (3)	0.15453 (2)	0.02455 (9)
Cl6	0.55737 (5)	0.31532 (4)	0.00843 (2)	0.02966 (9)
01	1.10843 (11)	0.32935 (10)	0.22625 (6)	0.0224 (2)
O2	0.83761 (12)	0.05643 (10)	0.03360 (6)	0.0220 (2)
N1	0.99701 (12)	0.19567 (11)	0.11936 (7)	0.0156 (2)
C1	1.01234 (15)	0.25177 (13)	0.19624 (8)	0.0152 (3)
C2	0.88902 (15)	0.19800 (12)	0.23555 (8)	0.0139 (2)
H2	0.935586	0.153877	0.288724	0.017*
C3	0.76483 (15)	0.29560 (12)	0.24743 (8)	0.0142 (2)
C4	0.62421 (15)	0.20595 (12)	0.24022 (8)	0.0142 (2)
C5	0.63197 (15)	0.15971 (12)	0.15208 (8)	0.0140 (2)
C6	0.79769 (15)	0.10488 (12)	0.17088 (8)	0.0142 (2)
H6	0.801142	0.017191	0.193567	0.017*
C7	0.87382 (15)	0.11223 (12)	0.09843 (8)	0.0153 (3)
C8	0.71121 (15)	0.36779 (12)	0.16671 (8)	0.0153 (3)
C9	0.63396 (15)	0.28797 (13)	0.11034 (8)	0.0157 (3)
C10	1.09720 (16)	0.21915 (14)	0.06241 (8)	0.0200 (3)
H10A	1.112615	0.139247	0.034488	0.024*
H10B	1.198763	0.248383	0.094445	0.024*
C11	1.02959 (17)	0.31780 (14)	-0.00267 (8)	0.0213 (3)
H11A	1.081293	0.311153	-0.049094	0.026*
H11B	0.919312	0.299100	-0.024805	0.026*
C12	1.04563 (18)	0.45260 (13)	0.03013 (8)	0.0223 (3)
H12A	1.010849	0.455925	0.082477	0.027*
H12B	1.155427	0.476794	0.042781	0.027*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C11	0.02260 (17)	0.01966 (17)	0.01950 (16)	0.00008 (13)	0.00287 (13)	-0.00824 (12)

supporting information

Cl2	0.02766 (18)	0.01698 (16)	0.01742 (15)	0.00127 (13)	0.00727 (13)	0.00505 (12)
C13	0.01596 (15)	0.01944 (17)	0.02574 (17)	0.00286 (12)	0.00760 (13)	-0.00038 (12)
Cl4	0.01995 (16)	0.02252 (18)	0.02291 (16)	-0.00783 (13)	0.00266 (13)	-0.00581 (13)
C15	0.02410 (18)	0.01230 (16)	0.0374 (2)	-0.00025 (13)	0.00750 (15)	0.00650 (13)
Cl6	0.0340 (2)	0.0339 (2)	0.01635 (16)	0.00063 (16)	-0.00359 (14)	0.00900 (14)
01	0.0162 (5)	0.0248 (5)	0.0257 (5)	-0.0038 (4)	0.0037 (4)	-0.0082 (4)
O2	0.0253 (5)	0.0215 (5)	0.0197 (5)	-0.0021 (4)	0.0061 (4)	-0.0076 (4)
N1	0.0153 (5)	0.0151 (6)	0.0165 (5)	0.0019 (4)	0.0043 (4)	-0.0011 (4)
C1	0.0124 (6)	0.0151 (6)	0.0168 (6)	0.0048 (5)	0.0008 (5)	-0.0006 (5)
C2	0.0146 (6)	0.0121 (6)	0.0139 (6)	0.0031 (5)	0.0008 (5)	-0.0012 (5)
C3	0.0147 (6)	0.0129 (6)	0.0145 (6)	0.0014 (5)	0.0021 (5)	-0.0018 (5)
C4	0.0153 (6)	0.0118 (6)	0.0154 (6)	0.0020 (5)	0.0037 (5)	0.0016 (5)
C5	0.0144 (6)	0.0128 (6)	0.0138 (6)	-0.0016 (5)	0.0015 (5)	-0.0002 (5)
C6	0.0163 (6)	0.0116 (6)	0.0142 (6)	0.0007 (5)	0.0023 (5)	0.0003 (5)
C7	0.0163 (6)	0.0117 (6)	0.0177 (6)	0.0035 (5)	0.0036 (5)	0.0000 (5)
C8	0.0135 (6)	0.0129 (6)	0.0200 (6)	0.0024 (5)	0.0049 (5)	0.0037 (5)
C9	0.0146 (6)	0.0173 (6)	0.0146 (6)	0.0036 (5)	0.0021 (5)	0.0049 (5)
C10	0.0189 (7)	0.0217 (7)	0.0220 (7)	-0.0003 (6)	0.0100 (5)	-0.0032 (5)
C11	0.0262 (7)	0.0211 (7)	0.0172 (6)	-0.0055 (6)	0.0067 (6)	-0.0023 (5)
C12	0.0274 (7)	0.0209 (7)	0.0178 (6)	-0.0054 (6)	0.0037 (6)	-0.0022 (5)

Geometric parameters (Å, °)

Cl1—C3	1.7464 (13)	C3—C4	1.5592 (18)
Cl2—C4	1.7639 (13)	C4—C5	1.5599 (17)
Cl3—C4	1.7558 (13)	С5—С9	1.5269 (18)
Cl4—C5	1.7432 (13)	C5—C6	1.5559 (18)
Cl5—C8	1.6989 (14)	C6—C7	1.5168 (18)
Cl6—C9	1.6958 (13)	С6—Н6	1.0000
01—C1	1.2098 (17)	C8—C9	1.3293 (19)
O2—C7	1.2042 (16)	C10-C11	1.523 (2)
N1-C1	1.3855 (16)	C10—H10A	0.9900
N1—C7	1.3927 (17)	C10—H10B	0.9900
N1-C10	1.4686 (17)	C11—C12	1.5228 (19)
C1—C2	1.5186 (19)	C11—H11A	0.9900
C2—C6	1.5442 (17)	C11—H11B	0.9900
C2—C3	1.5642 (17)	C12-C12 ⁱ	1.515 (3)
C2—H2	1.0000	C12—H12A	0.9900
C3—C8	1.5203 (17)	C12—H12B	0.9900
C1—N1—C7	113.85 (11)	C2—C6—C5	103.10 (10)
C1-N1-C10	125.21 (11)	С7—С6—Н6	111.5
C7—N1—C10	120.94 (11)	С2—С6—Н6	111.5
01-C1-N1	125.37 (13)	С5—С6—Н6	111.5
01—C1—C2	126.60 (12)	O2—C7—N1	124.52 (13)
N1-C1-C2	108.03 (11)	O2—C7—C6	127.35 (12)
C1—C2—C6	105.12 (10)	N1—C7—C6	108.13 (11)
C1—C2—C3	114.59 (11)	C9—C8—C3	107.83 (11)

$C(C) = C^2$	102.47(10)	CO CQ $C15$	120 16 (11)
$C_0 - C_2 - C_3$	105.47 (10)	09-08-015	128.16 (11)
C1—C2—H2	111.1	C3—C8—C15	124.00 (10)
С6—С2—Н2	111.1	C8—C9—C5	107.78 (11)
C3—C2—H2	111.1	C8—C9—Cl6	128.08 (11)
C8—C3—C4	98.94 (10)	C5—C9—Cl6	124.06 (10)
C8—C3—C2	107.98 (10)	N1-C10-C11	111.81 (11)
C4—C3—C2	99.97 (10)	N1-C10-H10A	109.3
C8—C3—C11	116.29 (9)	C11—C10—H10A	109.3
C4—C3—Cl1	116.31 (9)	N1-C10-H10B	109.3
C2—C3—Cl1	115.05 (9)	C11—C10—H10B	109.3
C3—C4—C5	92.94 (9)	H10A—C10—H10B	107.9
C3-C4-C13	114.83 (9)	C12—C11—C10	113.62 (11)
C5-C4-C13	113 84 (9)	C12—C11—H11A	108.8
C_{3} C_{4} C_{12}	112.95 (9)	C10-C11-H11A	108.8
C_{5} C_{4} C_{12}	112.95(0) 113.80(0)	C_{12} C_{11} H_{11B}	108.8
$C_{12} = C_{12}$	113.00(9) 108.08(7)	C_{12} C_{11} H_{11} H	108.8
C_{13}	100.00(7)		108.8
$C_{9} = C_{5} = C_{6}$	108.14(10)	HIIA—CII—HIIB	107.7
C9—C5—C4	98.88 (10)		113.19 (14)
C6C5C4	100.27 (9)	$C12^{I}$ — $C12$ — $H12A$	108.9
C9—C5—Cl4	115.59 (9)	C11—C12—H12A	108.9
C6—C5—Cl4	115.22 (9)	C12 ⁱ —C12—H12B	108.9
C4—C5—Cl4	116.55 (9)	C11—C12—H12B	108.9
C7—C6—C2	104.81 (10)	H12A—C12—H12B	107.8
C7—C6—C5	113.96 (10)		
C7—N1—C1—O1	-178.12 (13)	C3—C2—C6—C5	0.55 (12)
C10—N1—C1—O1	1.4 (2)	C9—C5—C6—C7	-47.46 (14)
C7—N1—C1—C2	2.31 (14)	C4—C5—C6—C7	-150.44 (11)
C10—N1—C1—C2	-178.13 (11)	C14—C5—C6—C7	83.59 (12)
01 - C1 - C2 - C6	179.44 (13)	C9-C5-C6-C2	65.53 (12)
N1-C1-C2-C6	-1.01(13)	C4-C5-C6-C2	-37.45(12)
01 - C1 - C2 - C3	66 54 (17)	$C_{14}^{14} - C_{5}^{5} - C_{6}^{6} - C_{2}^{2}$	-16342(9)
N1 C1 C2 C3	-113.90(12)	$C_{1} = C_{2} = C_{1} = C_{2}$	103.42(9) 177.78(13)
11 - 21 - 22 - 23	115.90(12)	$C_1 = N_1 = C_7 = O_2$	-18(2)
$C_1 = C_2 = C_3 = C_8$	47.30(14)	C10 - N1 - C7 - C6	-1.6(2)
$C_{0} - C_{2} - C_{3} - C_{8}$	-60.37(12)	CI = NI = CI = CG	-2.03(13)
C1 = C2 = C3 = C4	150.38 (10)	C10 - N1 - C/ - C6	1//./9(11)
C6-C2-C3-C4	36.51 (11)	C2—C6—C7—O2	-178.64 (13)
C1—C2—C3—C11	-84.24 (12)	C5—C6—C7—O2	-66.68 (18)
C6—C2—C3—Cl1	161.89 (9)	C2—C6—C7—N1	1.79 (13)
C8—C3—C4—C5	52.32 (10)	C5—C6—C7—N1	113.75 (12)
C2—C3—C4—C5	-57.86 (10)	C4—C3—C8—C9	-35.34 (13)
Cl1—C3—C4—C5	177.63 (9)	C2—C3—C8—C9	68.27 (13)
			160 66 (10)
C8—C3—C4—Cl3	-65.69 (11)	Cl1—C3—C8—C9	-160.66 (10)
C8—C3—C4—Cl3 C2—C3—C4—Cl3	-65.69 (11) -175.87 (8)	Cl1—C3—C8—C9 C4—C3—C8—Cl5	-160.66(10) 145.71(10)
C8-C3-C4-Cl3 C2-C3-C4-Cl3 Cl1-C3-C4-Cl3	-65.69 (11) -175.87 (8) 59.62 (12)	Cl1—C3—C8—C9 C4—C3—C8—Cl5 C2—C3—C8—Cl5	-160.66(10) 145.71(10) -110.68(11)
C8—C3—C4—Cl3 C2—C3—C4—Cl3 Cl1—C3—C4—Cl3 C8—C3—C4—Cl2	-65.69 (11) -175.87 (8) 59.62 (12) 169.74 (9)	Cl1—C3—C8—C9 C4—C3—C8—Cl5 C2—C3—C8—Cl5 Cl1—C3—C8—Cl5	-160.66 (10) 145.71 (10) -110.68 (11) 20.39 (15)
C8-C3-C4-Cl3 C2-C3-C4-Cl3 C11-C3-C4-Cl3 C8-C3-C4-Cl2 C2-C3-C4-Cl2	-65.69 (11) -175.87 (8) 59.62 (12) 169.74 (9) 59.57 (11)	Cl1—C3—C8—C9 C4—C3—C8—Cl5 C2—C3—C8—Cl5 Cl1—C3—C8—Cl5 C3—C8—C9—C5	-160.66 (10) 145.71 (10) -110.68 (11) 20.39 (15) 0.64 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-65.69 (11) -175.87 (8) 59.62 (12) 169.74 (9) 59.57 (11) -64.95 (11)	Cl1—C3—C8—C9 C4—C3—C8—Cl5 C2—C3—C8—Cl5 Cl1—C3—C8—Cl5 C3—C8—C9—C5 Cl5—C8—C9—C5	-160.66 (10) 145.71 (10) -110.68 (11) 20.39 (15) 0.64 (14) 179.54 (10)

C3—C4—C5—C9	-51.85 (10)	C3—C8—C9—Cl6	-176.19 (10)
Cl3—C4—C5—C9	66.99 (11)	Cl5—C8—C9—Cl6	2.7 (2)
Cl2—C4—C5—C9	-168.55 (9)	C6—C5—C9—C8	-69.69 (13)
C3—C4—C5—C6	58.55 (10)	C4—C5—C9—C8	34.26 (13)
Cl3—C4—C5—C6	177.40 (9)	Cl4—C5—C9—C8	159.47 (10)
Cl2—C4—C5—C6	-58.15 (11)	C6—C5—C9—C16	107.30 (11)
C3—C4—C5—Cl4	-176.38 (9)	C4—C5—C9—Cl6	-148.75 (10)
Cl3—C4—C5—Cl4	-57.54 (12)	Cl4—C5—C9—Cl6	-23.54 (15)
Cl2—C4—C5—Cl4	66.92 (11)	C1—N1—C10—C11	-96.26 (15)
C1—C2—C6—C7	-0.47 (13)	C7—N1—C10—C11	83.27 (15)
C3—C2—C6—C7	120.07 (11)	N1-C10-C11-C12	76.43 (15)
C1—C2—C6—C5	-119.99 (10)	C10-C11-C12-C12 ⁱ	-169.86 (15)

Symmetry code: (i) -x+2, -y+1, -z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1/C2/C6/C7 pyrrolidine ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С6—Н6…О1 ^{іі}	1.00	2.43	3.3867 (16)	161
C10—H10A····O2 ⁱⁱⁱ	0.99	2.45	3.4402 (17)	178
C12—H12B····Cl2 ^{iv}	0.99	2.80	3.5299 (15)	131
C3—Cl1···· <i>Cg</i> 1 ^{iv}	1.75 (1)	3.89 (1)	4.9389 (14)	117 (1)

Symmetry codes: (ii) -x+2, y-1/2, -z+1/2; (iii) -x+2, -y, -z; (iv) -x+2, y+1/2, -z+1/2.