CRYSTALLOGRAPHIC COMMUNICATIONS

Received 14 July 2021
Accepted 18 July 2021

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: crystal structure; alkyne; dihydroquinoline; hydrogen bond; Hirshfeld surface analysis.

CCDC reference: 2097267

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure, Hirshfeld surface analysis and density functional theory study of benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate

Younos Bouzian, ${ }^{\text {a }}$ Karim Chkirate, ${ }^{\text {a }}$ Joel T. Mague, ${ }^{\text {b }}$ Fares Hezam AI-Ostoot, ${ }^{\text {c* }}$ Noureddine Hammou Ahabchane ${ }^{\mathrm{a}}$ and El Mokhtar Essassi ${ }^{\text {a }}$

${ }^{\text {a }}$ Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, ${ }^{\text {b }}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ${ }^{\text {c }}$ Department of Biochemistry, Faculty of Education \& Science, Al-Baydha University,
Yemen. *Correspondence e-mail: faresalostoot@gmail.com

The title molecule, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3}$, adopts a Z-shaped conformation with the carboxyl group nearly coplanar with the dihydroquinoline unit. In the crystal, corrugated layers are formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and are stacked by $\mathrm{C}-\mathrm{H} \cdots \pi$ (ring) interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from $\mathrm{H} \cdots \mathrm{H}(43.3 \%), \mathrm{H} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{H}(26.6 \%)$ and $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}(16.3 \%)$ interactions. The optimized structure calculated using density functional theory at the B3LYP/ 6-311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO-LUMO energy gap is 4.0319 eV .

1. Chemical context

Nitrogen-based structures have attracted increased attention in recent years because of their interesting properties in structural and inorganic chemistry (Chkirate et al., 2019, $2020 a, b, 2021$). The family of quinolines, particularly those containing the 2-oxoquinoline moiety, is important in medicinal chemistry because of their wide range of pharmacological applications including as potential anticancer agents (Fang et al., 2021), anti-proliferative agents (Banu et al., 2017) and as potent modulators of ABCB1-related drug resistance of mouse T-lymphoma cells (Filali Baba et al., 2020). In particular, 2-oxoquinoline-4-carboxylate derivatives are active antioxidants (Filali Baba et al., 2019). Given the wide range of therapeutic applications for such compounds, and in a continuation of the work already carried out on the synthesis of compounds resulting from quinolin-2-one (Bouzian et al., 2020), a similar approach gave the title compound, benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate, (I). Besides the synthesis, we also report the molecular and crystalline structures along with a Hirshfeld surface analysis and a density functional theory computational calculation carried out at the B3LYP/6-311G(d,p) level.

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 2$ and Cg3 are the centroids of the C1-C6 and C15-C20 benzene rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cg} 3{ }^{\text {i }}$	0.95	2.94	3.8206 (10)	154
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {ii }}$	0.95	2.57	3.4846 (11)	162
C5-H5 . O2	0.95	2.23	2.8917 (11)	126
C12-H12.. O1 ${ }^{\text {iii }}$	0.95	2.25	3.1463 (14)	157
C14-H14A . . Cg2 $2^{\text {iv }}$	0.99	2.65	3.4652 (9)	140
C16-H16...O1v	0.95	2.50	3.3443 (12)	148

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$; (iii)
$-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;$; (iv) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2} ;$ (v) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

2. Structural commentary

The molecule adopts a Z-shaped conformation with the propynyl and benzyl substituents projecting from opposite sides of the mean plane of the dihydroquinoline moiety. This moiety is planar to within 0.0340 (6) \AA (r.m.s. deviation $=$ 0.0164) with N 1 and C9 being, respectively, 0.0340 (6) and -0.0279 (7) \AA from the mean plane, resulting in a slight twist at this location. The carboxyl group is nearly coplanar with the dihydroquinoline as seen from the $1.04(5)^{\circ}$ dihedral angle between the plane defined by $\mathrm{C} 7 / \mathrm{C} 13 / \mathrm{O} 2 / \mathrm{O} 3$ and that of the dihydroquinoline ($\mathrm{C} 1-\mathrm{C} 9 / \mathrm{N} 1 / \mathrm{O} 1$). This is likely due, in part, to the intramolecular $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2$ interaction (Table 1 and Fig. 1). The propynyl substituent is rotated out of the mean plane of the dihydroquinoline moiety by $80.88(3)^{\circ}$. The plane of the C15-C20 ring is inclined to that of the dihydroquinoline by $68.47(2)^{\circ}$.

3. Supramolecular features

In the crystal, $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1$ and $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 1$ hydrogen bonds (Table 1) link the molecules into zigzag chains extending along the b-axis direction, which are connected by inversion-related pairs of $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$ hydrogen bonds (Table 1) into corrugated layers parallel to the (103) plane

Figure 1
The title molecule with labeling scheme and 50% probability ellipsoids. The intramolecular hydrogen bond is depicted by a dashed line.

Figure 2
A portion of one layer viewed along the c axis with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds depicted by dashed lines.
(Fig. 2). The layers are stacked along the normal to (103) with $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cg} 3$ and $\mathrm{C} 14-\mathrm{H} 14 A \cdots C g 2$ interactions (Table 1 and Fig. 3).

4. Hirshfeld surface analysis

The CrystalExplorer program (Turner et al., 2017) was used to investigate and visualize further the intermolecular interactions of (I). The Hirshfeld surface plotted over $d_{\text {norm }}$ in the range -0.3677 to 1.3896 a.u. is shown in Fig. $4 a$. The electrostatic potential using the STO-3G basis set at the HartreeFock level of theory and mapped on the Hirshfeld surface over the range of ± 0.05 a.u. clearly shows the positions of close intermolecular contacts in the compound (Fig. 4b). The posi-

Figure 3
Packing viewed parallel to (103) with the b axis horizontal and running from left to right. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ (ring) interactions are depicted, respectively, by black and green dashed lines.

Figure 4
(a) View of the three-dimensional Hirshfeld surface of the title compound, plotted over $d_{\text {norm }}$ in the range of -0.3677 to 1.3896 a.u. (b) View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range -0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree-Fock level of theory.
tive electrostatic potential (blue region) over the surface indicates hydrogen-donor potential, whereas the hydrogenbond acceptors are represented by negative electrostatic potential (red region).

The overall two-dimensional fingerprint plot (McKinnon et al., 2007) is shown in Fig. 5a, while those delineated into $\mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}, \mathrm{C} \cdots \mathrm{C}, \mathrm{O} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{O}$, $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}, \mathrm{N} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{N}$ and $\mathrm{N} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{N}$ contacts are illustrated in Fig. $5 b-i$, respectively, together with their relative contributions to the Hirshfeld surface (HS). The most important interaction is $\mathrm{H} \cdots \mathrm{H}$, contributing 43.3% to the overall crystal packing, which is reflected in Fig. $5 b$ as widely scattered points of high density due to the large hydrogen content of the molecule, with its tip at $d_{\mathrm{e}}=d_{\mathrm{i}}=1.19 \mathrm{~A}$. In the presence of $\mathrm{C}-\mathrm{H}$ interactions, the pair of characteristic wings in the fingerprint plot delineated into $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ contacts (26.6% contribution to the HS, Fig. $5 c$) has tips at $d_{\mathrm{e}}+d_{\mathrm{i}}=$ $3.07 \AA$. The pair of scattered points of spikes in the fingerprint plot delineated into $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ contacts (Fig. 5d, 16.3\%)

Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $\mathrm{H} \cdots \mathrm{H},(c) \mathrm{H} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{H},(d) \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H},(e) \mathrm{C} \cdots \mathrm{C},(f) \mathrm{O} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{O},(g) \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$, (h) $\mathrm{N} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{N}$ and (i) $\mathrm{N} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{N}$ interactions. d_{i} and d_{e} values are the closest internal and external distances (in \AA) from given points on the Hirshfeld surface.
have tips at $d_{\mathrm{e}}+d_{\mathrm{i}}=2.08 \AA$. The $\mathrm{C} \cdots \mathrm{C}$ contacts (Fig. $5 e$, 10.4%) have tips at $d_{\mathrm{e}}+d_{\mathrm{i}}=3.34 \AA$. The $\mathrm{O} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{O}$ contacts, Fig. $5 f$, contribute 1.5% to the HS and appear as a pair of scattered points of spikes with tips at $d_{\mathrm{e}}+d_{\mathrm{i}}=3.55 \AA$. The $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ contacts (Fig. $5 g, 1.3 \%$) have tips at $d_{\mathrm{e}}+d_{\mathrm{i}}$ $=3.28 \AA$. Finally, the $\mathrm{C} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{C}$ and $\mathrm{O} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{O}$ contacts, Fig. $5 h-i$, contribute only 0.5% and 0.1% respectively to the HS and have a low-density distribution of points.

5. Density Functional Theory calculations

The structure in the gas phase of the title compound was optimized by means of density functional theory. The density functional theory calculation was performed by the hybrid B3LYP method and the 6-311 G(d,p) basis-set, which is based on Becke's model (Becke, 1993) and considers a mixture of the exact (Hartree-Fock) and density functional theory exchange utilizing the B3 functional, together with the LYP correlation functional (Lee et al., 1988). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were performed with the Gaussian 09 program (Frisch et al., 2009). Theoretical and experimental results related to bond lengths and angles are in good agreement, and are summarized in Table 2. Calculated numerical values for the title compound including electronegativity (χ), hardness (η), ionization

Table 2
Comparison (X-ray and DFT) of selected bond lengths and angles ($\left(\AA,{ }^{\circ}\right.$).

	X-ray	B3LYP/6-311G(d,p)
O1-C9	$1.2355(10)$	1.223
O3-C13	$1.3375(10)$	1.3447
N1-C9	$1.3788(10)$	1.4042
N1-C10	$1.4730(10)$	1.4725
O2-C13	$1.2058(10)$	1.2092
O3-C14	$1.4588(10)$	1.4611
N1-C1	$1.3999(10)$	1.3953
C13-O3-C14	$116.87(7)$	117.1258
C9-N1-C10	$115.85(6)$	115.6313
N1-C1-C2	$119.87(7)$	120.5532
O1-C9-N1	$121.42(7)$	121.7499
N1-C9-C8	$116.04(7)$	115.2168
O2-C13-C7	$125.74(7)$	125.0357
O3-C14-C15	$112.63(7)$	111.678
C9-N1-C1	$123.16(6)$	123.4431
C1-N1-C10	$120.93(6)$	120.911
N1-C1-C6	$120.08(6)$	120.1155
O1-C9-C8	$122.54(7)$	123.0317
C11-C10-N1	$111.46(7)$	113.9875
O2-CC3-O3	$123.21(7)$	123.6586
O3-C13-C7	$111.05(6)$	111.3015

potential (I), dipole moment (μ), electron affinity (A), electrophilicity (ω) and softness (σ) are collated in Table 3. The electron transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) energy level is shown in Fig. 6. The HOMO and LUMO are localized in the plane extending over the whole benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate system. The energy band gap ($\left.\Delta E=E_{\mathrm{LUMO}}-E_{\mathrm{HOMO}}\right)$ of the molecule is 4.0319 eV , and the frontier molecular orbital energies, $E_{\text {HOMO }}$ and $E_{\text {LUMO }}$, are -6.3166 and -2.2847 eV , respectively.

6. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, updated May 2021; Groom et al., 2016) with the 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate fragment yielded multiple matches. Of these, two had an alkyl substituent on O3 comparable to (I). The first compound (refcode OKIGAT; Hayani et al., 2021) carries an ethyl group on O3, while the second one (refcode OKIGOH; Hayani et al., 2021) carries a cyclohexyl group. The ethyl carboxylate in OKIGAT forms a dihedral angle of $-8.3(7)^{\circ}$ with the dihydroquinoline unit. In OKIGOH, the dihedral angle between the mean planes of the cyclohexyl carboxylate and dihydroquinoline rings is $37.3(8)^{\circ}$. As previously mentioned, the carboxyl group in (I) is nearly coplanar with the dihydroquinoline [dihedral angle of $1.04(5)^{\circ}$, which is approximately the same as in OKIGAT, but less tilted than in OKIGOH.

7. Synthesis and crystallization

A mixture of 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylic acid ($0.7 \mathrm{~g}, 3 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.51 \mathrm{~g}, 3.6 \mathrm{mmol})$, benzyl chloride ($0.76 \mathrm{ml}, 6 \mathrm{mmol}$) and tetra n-butylammonium

Table 3
Calculated energies.

Molecular energy	Compound (I)
Total energy $T E(\mathrm{eV})$	-28621.0571
$E_{\text {HOMO }}(\mathrm{eV})$	-6.3166
$E_{\mathrm{LUMO}}(\mathrm{eV})$	-2.2847
Gap, $\Delta E(\mathrm{eV})$	4.0319
Dipole moment, μ (Debye)	1.9469
Ionization potential, $I(\mathrm{eV})$	6.3166
Electron affinity, A	2.2847
Electronegativity, χ	4.3007
Hardness, η	2.0160
Electrophilicity index, ω	4.5873
Softness, σ	0.4960
Fraction of electron transferred, ΔN	0.6695

bromide as a catalyst in DMF (30 mL) was stirred at room temperature for 48 h . After removal of the salts by filtration, the solvent was evaporated under reduced pressure and the residue obtained was dissolved in dichloromethane. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product obtained was purified by chro-

Figure 6
The energy band gap of benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydro-quinoline-4-carboxylate.

Table 4
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3}$
$M_{\text {r }}$	317.33
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	150
$a, b, c(\AA)$	8.2284 (3), 13.7693 (4), 13.9230 (4)
$\beta\left({ }^{\circ}\right.$)	96.155 (1)
$V\left(\mathrm{~A}^{3}\right)$	1568.37 (9)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.09
Crystal size (mm)	$0.44 \times 0.35 \times 0.32$
Data collection	
Diffractometer	Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction	Numerical (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.93, 0.97
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	80207, 6020, 5304
$R_{\text {int }}$	0.025
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.774
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.046, 0.133, 1.03
No. of reflections	6020
No. of parameters	217
H -atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.46,-0.21$

Computer programs: APEX3 and SAINT (Bruker, 2020), SHELXT (Sheldrick, 2015a), SHELXL2018/1 (Sheldrick, 2015b), DIAMOND (Brandenburg \& Putz, 2012) and SHELXTL (Sheldrick, 2008).
matography on a column of silica gel (eluent: hexane/ ethyl acetate: $9 / 1) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}: 3.08(t$, $1 \mathrm{H}, \mathrm{CH} \equiv) ; 4.37\left(d, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right) ; 5.12\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right) ; 7.08-$ $8.74\left(m, 10 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- $\left.d_{6}\right) \delta \mathrm{ppm}$: $34.3\left(\mathrm{CH}_{3}-\mathrm{N}\right) ; 66.2\left(\mathrm{CH}_{2}-\mathrm{O}\right) ; 72.1(-\mathrm{C} \equiv) ; 73.2(\mathrm{CH} \equiv)$; 115.6-148.7 $\left(\mathrm{CH}_{\text {arom }}\right.$ and $\left.\mathrm{C}_{\text {quat arom }}\right) ; 162.5\left(\mathrm{C}=\mathrm{O}_{\text {quinol }}\right) ; 168.2$ $\left(\mathrm{C}=\mathrm{O}_{\text {carboxyl }}\right)$. MS (ESI): $m / z=318(M+\mathrm{H})^{+}$.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms attached to carbon were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$), and were included as riding contributions with isotropic displacement parameters 1.2 or 1.5 times those of the attached atoms. Two reflections affected by the beamstop were omitted from the final refinement.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Authors' contributions are as follows. Conceptualization, YB; methodology, YB and NHA; investigation, KC ; theoretical calculations, KC ; writing (original draft), KC ; writing (review and editing of the manuscript), FHAO; supervision, EME; crystal-structure determination and validation, JTM.

References

Banu, S., Bollu, R., Bantu, R., Nagarapu, L., Polepalli, S., Jain, N., Vangala, R. \& Manga, V. (2017). Eur. J. Med. Chem. 125, 400410.

Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.
Bouzian, Y., Karrouchi, K., Sert, Y., Lai, C.-H., Mahi, L., Ahabchane, N. H., Talbaoui, A., Mague, J. T. \& Essassi, E. M. (2020). J. Mol. Struct. 1209, 127940.
Brandenburg, K. \& Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S. \& Essassi, E. M. (2021). J. Mol. Liq. 321, 114750.

Chkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. \& Garcia, Y. (2020a). J. Inorg. Biochem. 208, 21-28.
Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. \& Garcia, Y. (2019). J. Inorg. Biochem. 191, 21-28.

Chkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. \& Garcia, Y. (2020b). New J. Chem. 44, 2210-2221.

Fang, Y., Wu, Z., Xiao, M., Wei, L., Li, K., Tang, Y., Ye, J., Xiang, J. \& Hu, A. (2021). Bioorg. Chem. 106, 104469.
Filali Baba, Y., Misbahi, H., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Vincze, K., Nové, M., Gajdács, M., Molnár, J., Spengler, G. \& Mazzah, A. (2020). Chem. Data Collect. 29, 100501.
Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. \& Essassi, E. M. (2019). J. Mol. Struct. 1188, 255-268.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. \& Fox, D. J. (2009). Gaussian 09. Revision A. 02. Gaussian Inc, Wallingford, CT, US.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hayani, S., Sert, Y., Filali Baba, Y., Benhiba, F., Ouazzani Chahdi, F., Laraqui, F.-Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Kandri Rodi, Y. \& Essassi, E. M. (2021). J. Mol. Struct. 1227, 129520.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lee, C., Yang, W. \& Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Comтип. pp. 3814-3816.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.

supporting information

Crystal structure, Hirshfeld surface analysis and density functional theory study of benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate

Younos Bouzian, Karim Chkirate, Joel T. Mague, Fares Hezam Al-Ostoot, Noureddine
Hammou Ahabchane and El Mokhtar Essassi

Computing details

Data collection: APEX3 (Bruker, 2020); cell refinement: SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg \& Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3}$
$M_{r}=317.33$
Monoclinic, $P 2_{1} / n$
$a=8.2284$ (3) \AA
$b=13.7693$ (4) \AA
$c=13.9230(4) \AA$
$\beta=96.155(1)^{\circ}$
$V=1568.37(9) \AA^{3}$
$Z=4$

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 7.3910 pixels mm^{-1}
φ and ω scans
Absorption correction: numerical
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.93, T_{\text {max }}=0.97$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.133$
$S=1.03$
6020 reflections
217 parameters
0 restraints
$F(000)=664$
$D_{\mathrm{x}}=1.344 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9939 reflections
$\theta=2.5-33.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colourless
$0.44 \times 0.35 \times 0.32 \mathrm{~mm}$

80207 measured reflections
6020 independent reflections
5304 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=33.4^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-12 \rightarrow 12$
$k=-21 \rightarrow 21$
$l=-21 \rightarrow 21$

Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0739 P)^{2}+0.3685 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
(\Delta / \sigma)_{\max }=0.001
$$

$\Delta \rho_{\max }=0.46 \mathrm{e}^{-3}$

$$
\Delta \rho_{\min }=-0.21 \mathrm{e} \AA^{-3}
$$

Special details

Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in $A P E X 3$. The scan time was $7 \mathrm{sec} /$ frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger. H -atoms attached to carbon were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$). All were included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the attached atoms. Two reflections affected by the beamstop were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} U_{\mathrm{eq}}$
O1	$0.79130(8)$	$0.56932(5)$	$0.29079(6)$	$0.03386(17)$
O2	$0.15346(8)$	$0.39853(5)$	$0.36012(6)$	$0.03159(16)$
O3	$0.34027(8)$	$0.35057(5)$	$0.26450(5)$	$0.02547(14)$
N1	$0.63622(8)$	$0.63640(5)$	$0.39987(5)$	$0.01811(12)$
C1	$0.49088(9)$	$0.64053(5)$	$0.44357(5)$	$0.01656(13)$
C2	$0.46483(10)$	$0.71713(6)$	$0.50694(6)$	$0.02098(14)$
H2	0.544815	0.766658	0.518906	0.025^{*}
C3	$0.32280(11)$	$0.72050(6)$	$0.55192(6)$	$0.02469(16)$
H3	0.306866	0.771800	0.595567	0.030^{*}
C4	$0.20287(10)$	$0.64925(7)$	$0.53375(6)$	$0.02508(16)$
H4	0.106080	0.651845	0.565229	0.030^{*}
C5	$0.22538(10)$	$0.57466(6)$	$0.46961(6)$	$0.02108(14)$
H5	0.142234	0.527154	0.456509	0.025^{*}
C6	$0.36952(9)$	$0.56798(5)$	$0.42340(5)$	$0.01629(13)$
C7	$0.40167(8)$	$0.49162(5)$	$0.35579(5)$	$0.01659(13)$
C8	$0.54184(9)$	$0.49270(6)$	$0.31341(6)$	$0.02043(14)$
H8	0.560136	0.442273	0.269253	0.025^{*}
C9	$0.66584(10)$	$0.56733(6)$	$0.33219(6)$	$0.02148(15)$
C10	$0.76472(10)$	$0.71018(6)$	$0.42091(6)$	$0.02241(15)$
H10A	0.775440	0.725750	0.490720	0.027^{*}
H10B	0.870536	0.683646	0.405222	0.027^{*}
C11	$0.72727(11)$	$0.79935(6)$	$0.36498(7)$	$0.02598(17)$
C12	$0.69298(13)$	$0.87027(8)$	$0.31880(9)$	$0.0356(2)$
H12	0.665529	0.927061	0.281827	0.043^{*}
C13	$0.28317(9)$	$0.41024(5)$	$0.32886(6)$	$0.01886(14)$
C14	$0.23208(11)$	$0.27253(7)$	$0.22635(6)$	$0.02652(17)$
H14A	0.266692	0.250123	0.164117	0.032^{*}
H14B	0.119369	0.298095	0.213628	0.032^{*}

C15	$0.23223(10)$	$0.18782(6)$	$0.29404(6)$	$0.02316(15)$
C16	$0.36596(12)$	$0.12502(8)$	$0.30625(7)$	$0.0318(2)$
H16	0.457268	0.135594	0.271197	0.038^{*}
C17	$0.36579(17)$	$0.04679(9)$	$0.36979(9)$	$0.0430(3)$
H17	0.457907	0.004905	0.378888	0.052^{*}
C18	$0.2320(2)$	$0.02998(9)$	$0.41959(9)$	$0.0502(3)$
H18	0.232480	-0.023368	0.462895	0.060^{*}
C19	$0.09713(18)$	$0.09064(9)$	$0.40660(9)$	$0.0442(3)$
H19	0.004674	0.078535	0.440243	0.053^{*}
C20	$0.09774(12)$	$0.16940(7)$	$0.34402(7)$	$0.02989(19)$
H20	0.005332	0.211073	0.335298	0.036^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0257(3)$	$0.0298(3)$	$0.0496(4)$	$-0.0088(3)$	$0.0203(3)$	$-0.0130(3)$
O2	$0.0222(3)$	$0.0270(3)$	$0.0474(4)$	$-0.0083(2)$	$0.0127(3)$	$-0.0108(3)$
O3	$0.0263(3)$	$0.0234(3)$	$0.0276(3)$	$-0.0089(2)$	$0.0067(2)$	$-0.0090(2)$
N1	$0.0171(3)$	$0.0150(3)$	$0.0224(3)$	$-0.0026(2)$	$0.0026(2)$	$-0.0004(2)$
C1	$0.0176(3)$	$0.0148(3)$	$0.0171(3)$	$0.0000(2)$	$0.0009(2)$	$0.0012(2)$
C2	$0.0242(3)$	$0.0177(3)$	$0.0208(3)$	$-0.0006(3)$	$0.0015(3)$	$-0.0023(2)$
C3	$0.0270(4)$	$0.0233(4)$	$0.0240(3)$	$0.0028(3)$	$0.0041(3)$	$-0.0051(3)$
C4	$0.0219(3)$	$0.0277(4)$	$0.0265(4)$	$0.0025(3)$	$0.0070(3)$	$-0.0035(3)$
C5	$0.0182(3)$	$0.0223(3)$	$0.0232(3)$	$0.0000(2)$	$0.0040(2)$	$-0.0010(3)$
C6	$0.0160(3)$	$0.0154(3)$	$0.0174(3)$	$0.0005(2)$	$0.0011(2)$	$0.0012(2)$
C7	$0.0165(3)$	$0.0145(3)$	$0.0186(3)$	$-0.0011(2)$	$0.0013(2)$	$0.0007(2)$
C8	$0.0196(3)$	$0.0164(3)$	$0.0260(3)$	$-0.0028(2)$	$0.0059(3)$	$-0.0032(2)$
C9	$0.0191(3)$	$0.0178(3)$	$0.0284(4)$	$-0.0025(2)$	$0.0068(3)$	$-0.0027(3)$
C10	$0.0197(3)$	$0.0192(3)$	$0.0281(4)$	$-0.0051(3)$	$0.0013(3)$	$-0.0009(3)$
C11	$0.0237(3)$	$0.0219(4)$	$0.0332(4)$	$-0.0062(3)$	$0.0072(3)$	$0.0002(3)$
C12	$0.0313(4)$	$0.0291(4)$	$0.0484(6)$	$-0.0021(4)$	$0.0138(4)$	$0.0106(4)$
C13	$0.0183(3)$	$0.0167(3)$	$0.0213(3)$	$-0.0018(2)$	$0.0008(2)$	$-0.0001(2)$
C14	$0.0295(4)$	$0.0249(4)$	$0.0247(4)$	$-0.0092(3)$	$0.0008(3)$	$-0.0067(3)$
C15	$0.0230(3)$	$0.0217(3)$	$0.0250(3)$	$-0.0049(3)$	$0.0034(3)$	$-0.0082(3)$
C16	$0.0268(4)$	$0.0337(5)$	$0.0345(4)$	$0.0020(3)$	$0.0016(3)$	$-0.0126(4)$
C17	$0.0522(7)$	$0.0316(5)$	$0.0426(6)$	$0.0117(5)$	$-0.0067(5)$	$-0.0085(4)$
C18	$0.0824(10)$	$0.0299(5)$	$0.0385(6)$	$-0.0013(6)$	$0.0066(6)$	$0.0026(4)$
C19	$0.0619(7)$	$0.0333(5)$	$0.0409(6)$	$-0.0112(5)$	$0.0214(5)$	$-0.0035(4)$
C20	$0.0309(4)$	$0.0253(4)$	$0.0355(4)$	$-0.0054(3)$	$0.0123(3)$	$-0.0084(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C9	$1.2355(10)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9500
$\mathrm{O} 2-\mathrm{C} 13$	$1.2058(10)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.4687(12)$
$\mathrm{O} 3-\mathrm{C} 13$	$1.3375(10)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9900
$\mathrm{O} 3-\mathrm{C} 14$	$1.4588(10)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9900
$\mathrm{~N} 1-\mathrm{C} 9$	$1.3788(10)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.1865(14)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3999(10)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9500

N1-C10	1.4730 (10)
C1-C2	1.4062 (10)
C1-C6	1.4192 (10)
C2-C3	1.3846 (11)
C2-H2	0.9500
C3-C4	1.3953 (12)
C3-H3	0.9500
C4-C5	1.3864 (11)
C4-H4	0.9500
C5-C6	1.4116 (10)
C5-H5	0.9500
C6-C7	1.4543 (10)
C7-C8	1.3507 (10)
C7-C13	1.5062 (10)
C8-C9	1.4520 (11)
C13-O3-C14	116.87 (7)
C9-N1-C1	123.16 (6)
C9-N1-C10	115.85 (6)
C1-N1-C10	120.93 (6)
N1-C1-C2	119.87 (7)
N1-C1-C6	120.08 (6)
C2-C1-C6	120.05 (7)
C3-C2-C1	120.12 (7)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.9
C2-C3-C4	120.62 (7)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.7
C4-C3-H3	119.7
C5-C4-C3	119.80 (8)
C5-C4-H4	120.1
C3-C4-H4	120.1
C4-C5-C6	121.24 (7)
C4-C5-H5	119.4
C6-C5-H5	119.4
C5-C6-C1	118.15 (7)
C5-C6-C7	124.21 (7)
C1-C6-C7	117.65 (6)
C8-C7-C6	119.87 (6)
C8-C7-C13	117.37 (7)
C6-C7-C13	122.76 (6)
C7-C8-C9	123.06 (7)
C7-C8-H8	118.5
C9-C8-H8	118.5
O1-C9-N1	121.42 (7)
O1-C9-C8	122.54 (7)
N1-C9-C8	116.04 (7)
C11-C10-N1	111.46 (7)

C14-C15	1.4995 (13)
C14-H14A	0.9900
C14-H14B	0.9900
C15-C20	1.3922 (12)
C15-C16	1.3955 (13)
C16-C17	1.3940 (17)
C16-H16	0.9500
C17-C18	1.382 (2)
C17-H17	0.9500
C18-C19	1.385 (2)
C18-H18	0.9500
C19-C20	1.3914 (16)
C19-H19	0.9500
C20-H20	0.9500
N1-C10-H10A	109.3
C11-C10-H10B	109.3
N1-C10-H10B	109.3
H10A-C10-H10B	108.0
C12-C11-C10	178.18 (10)
C11-C12-H12	180.0
$\mathrm{O} 2-\mathrm{C} 13-\mathrm{O} 3$	123.21 (7)
$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 7$	125.74 (7)
$\mathrm{O} 3-\mathrm{C} 13-\mathrm{C} 7$	111.05 (6)
O3-C14-C15	112.63 (7)
O3-C14-H14A	109.1
C15-C14-H14A	109.1
O3-C14-H14B	109.1
C15-C14-H14B	109.1
H14A-C14-H14B	107.8
C20-C15-C16	119.00 (9)
C20-C15-C14	120.58 (8)
C16-C15-C14	120.41 (8)
C17-C16-C15	120.11 (10)
C17-C16-H16	119.9
C15-C16-H16	119.9
C18-C17-C16	120.18 (11)
C18-C17-H17	119.9
C16-C17-H17	119.9
C17-C18-C19	120.23 (11)
C17-C18-H18	119.9
C19-C18-H18	119.9
C18-C19-C20	119.68 (11)
C18-C19-H19	120.2
C20-C19-H19	120.2
C19-C20-C15	120.76 (10)
C19-C20-H20	119.6

$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.3
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-175.56(7)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$1.37(10)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$3.97(11)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-179.10(7)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.65(7)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.82(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.16(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.41(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.33(13)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.66(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$179.70(7)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$179.56(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.91(11)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-0.77(10)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$178.76(7)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$178.41(7)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-1.23(11)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 13$	$-0.72(11)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 13$	$179.64(6)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.28(12)$
$\mathrm{C} 13-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$179.45(7)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{O} 1$	$175.57(8)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 9-\mathrm{O} 1$	$-1.50(12)$

$\mathrm{C} 15-\mathrm{C} 20-\mathrm{H} 20$	119.6
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$-4.77(11)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$178.16(7)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1$	$-177.70(9)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	$2.64(12)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11$	$96.66(8)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11$	$-80.48(9)$
$\mathrm{C} 14-\mathrm{O} 3-\mathrm{C} 13-\mathrm{O} 2$	$4.71(12)$
$\mathrm{C} 14-\mathrm{O} 3-\mathrm{C} 13-\mathrm{C} 7$	$-175.41(7)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 13-\mathrm{O} 2$	$179.78(8)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 13-\mathrm{O} 2$	$-1.07(12)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 13-\mathrm{O} 3$	$-0.10(10)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 13-\mathrm{O} 3$	$-80.18(10)$
$\mathrm{C} 13-\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 15$	$107.82(9)$
$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 20$	$-73.57(10)$
$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-1.82(13)$
$\mathrm{C} 20-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$179.56(8)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$1.23(16)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	$0.10(18)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$-0.80(19)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$0.19(17)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 15$	$1.12(14)$
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 20-\mathrm{C} 19$	$179.74(9)$
C14-C15-C20-C19	

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)
$C g 2$ and $C g 3$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 15-\mathrm{C} 20$ benzene rings, respectively.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Cg} 3^{\mathrm{i}}$	0.95	2.94	$3.8206(10)$	154
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.95	2.57	$3.4846(11)$	162
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O} 2$	0.95	2.23	$2.8917(11)$	126
$\mathrm{C} 12 — \mathrm{H} 12 \cdots \mathrm{O} 1^{\text {iii }}$	0.95	2.25	$3.1463(14)$	157
$\mathrm{C} 14 — \mathrm{H} 14 A \cdots \mathrm{Cg}^{\mathrm{iv}}$	0.99	2.65	$3.4652(9)$	140
$\mathrm{C} 16 — \mathrm{H} 16 \cdots \mathrm{O}^{v}$	0.95	2.50	$3.3443(12)$	148

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$; (iii) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (iv) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (v) $-x+3 / 2, y-1 / 2,-z+1 / 2$.

