research communications

Received 10 May 2021 Accepted 5 July 2021

Edited by J. T. Mague, Tulane University, USA

Keywords: crystal structure; *N*-acylhydrazone; dihedral angle; inversion dimers; C—H···O interaction.

Supporting information: this article has supporting information at journals.iucr.org/e

780

Crystal structures of three *N***-acylhydrazone isomers**

H. Purandara,^{a,b} Sabine Foro^c and B. Thimme Gowda^{a,d}*

^aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, ^bDepartment of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire 574 240, India, ^cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, and ^dKarnataka State Higher Education Council, Y. Ramachandra Road, Gandhingar, Bengaluru-560009, India. *Correspondence e-mail: gowdabt@yahoo.com

The crystal structures of three isomers of (E)-4-chloro-N-{2-[2-(chlorobenzy]idene)hydrazinyl]-2-oxoethyl}benzenesulfonamide, namely, (E)-4-chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I), (E)-4chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II) and (E)-4-chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III), with the general formula C₁₅H₁₃Cl₂- N_3O_3S are described, with the chloro group in *ortho*, meta and para positions in the benzylidene benzene ring. All the three isomeric compounds crystallize in the centrosymmetric triclinic $P\overline{1}$ space group with one molecule each in the asymmetric unit and two molecules in the unit cell. The dihedral angles between the two phenyl rings are 11.09 (14), 53.79 (18) and 72.37 (11) $^{\circ}$ in (I), (II) and (III), respectively. The central part of the molecule (-C-N-N=C-) is almost linear with C-N-N-C torsion angles of 179.1 (2), -169.5 (3) and 178.5 (2)° for (I), (II) and (III), respectively. In all the three crystals, the molecules form inversion dimers with $R_2^2(8)$ ring motifs, which are further augmented by C- $H \cdot \cdot \cdot O$ interactions.

1. Chemical context

The properties of molecules in solution and the solid state are strongly influenced by weak non-covalent interactions. Weak molecular interactions are investigated routinely in the areas of molecular recognition (Brouwer et al., 1999), self-assembly (Seth et al., 2011), supramolecular chemistry and general hostguest interactions (Kim et al., 2000; Sharma et al., 2009). Analysis of intermolecular interactions and estimation of their energies provide greater insights into molecular conformations (Cao et al., 2020; Jablonski, 2020). The nature and site of substituents influence the extent of polarization of electron distribution in covalent compounds. In our previous work (Purandara et al., 2017a,b), the presence of the electronwithdrawing nitro group on the benzene ring was found to decrease the electronic density, rendering aromatic C-H protons acidic, whereas a methyl substituent did not activate aromatic protons for participation in intermolecular C- $H \cdots O$ interactions. In a continuation of these efforts to study the effect of substituents on weak molecular interactions, we report herein the synthesis, characterization and crystal structures of three isomeric molecules.

(I) R = 2-Cl, (II) R = 3-Cl, (III) R = 4-Cl

Figure 1

Molecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

All three isomers (I)-(III) (Figs. 1-3) crystallize in the centrosymmetric triclinic system with space group $P\overline{1}$ and with one molecule in the asymmetric unit and two molecules in the unit cell. The conformation of both the sulfonamide and hydrazine N-H bonds are syn with respect to the C=Obonds in all the three compounds. Similarly, the imine C-H bond in the amide part is also syn with respect to the amide N-H bond. All four such bonds in the central part are syn to each other. The C8-O3 and C9-N3 bond lengths of 1.224 (3)-1.236 (3) Å and 1.271 (3)-1.275 (4) Å, respectively, are in the ranges of normal C=O and C=N bond lengths, indicating double-bond character and thus confirming the keto tautomeric form and are comparable with those in related N-acylhydrazone structures (Purandara et al., 2017). The delocalization of π -electron density over the C9/N3/N2/C8/O3 fragment is indicated by the shortening of the C8-N2 [1.337 (3)-1.342 (4) Å] distances compared to the normal C-N single bond length of 1.40 Å (Allen et al., 1987). The sulfonamide bonds are synclinal, anticlinal and antiperiplanar with the S1-N1-C7-C8 torsion angle being 83.6 (3),

Figure 2

The molecular structure of (II), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is depicted by a dashed line.

Table 1
Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
0.84 (2)	2.01 (2)	2.823 (3)	162 (3)
0.85 (2)	2.06 (2)	2.897 (2)	167 (2)
0.93	2.53	3.439 (3)	166
	<i>D</i> -H 0.84 (2) 0.85 (2) 0.93	$\begin{array}{c ccc} D-H & H \cdots A \\ \hline 0.84 (2) & 2.01 (2) \\ 0.85 (2) & 2.06 (2) \\ 0.93 & 2.53 \end{array}$	$D-H$ $H\cdots A$ $D\cdots A$ 0.84 (2) 2.01 (2) 2.823 (3) 0.85 (2) 2.06 (2) 2.897 (2) 0.93 2.53 3.439 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) x + 1, y + 1, z.

-107.2 (3) and 171.09 (18)°, in compounds (I), (II) and (III), respectively. The major twist in the molecule occurs about the S1-N1 bond [C1-S1-N1-C7 = 97.6(2)(I), 65.6(2)(II)and $-80.1 (2)^{\circ}$ (III)], giving the molecule an approximate overall L-shape. All the molecules adopt an E configuration around the C9=N3 bond as indicated by the N2-N3-C9-C10 torsion angles of 179.6 (2), 179.1 (3) and 180.0 (2)° for (I), (II) and (III), respectively. The central fragment of the molecule, (C9/N3/N2/C8/O3) is nearly coplanar with the phenyl ring (C10-C15), as indicated by the dihedral angles between their best planes of 4.2 (2) in (I), 11.9 (3) in (II) and 7.0 (3) $^{\circ}$ in (III). The dihedral angles between the two phenyl rings, C1-C6 and C10–·C15 are 11.1 (1), 53.8 (1) and 72.4 (1) $^{\circ}$ for (I), (II) and (III), respectively, indicating non-planarity of the three molecules. An intramolecular hydrogen bond, N1-H1N···O3, is observed in (II) and (III), generating an S(5)ring motif.

3. Supramolecular features

In the crystal of (I), the carbonyl oxygen (O3) shows bifurcated hydrogen bonding. In one part, the molecules are linked by a pair of N2-H2N···O3 hydrogen bonds involving the amide NH atom, forming inversion dimers with an $R_2^2(8)$ ring motif. In the other part, the molecules are linked by a pair of N1-H1N···O3 hydrogen bonds with the sulfonamide NH atom of another molecule, forming rings with an $R_2^2(10)$ graphset motif, leading to a layered structure with the mean planes of the layers inclined to the *ab* plane by 16.1 (5)° (Table 1, Fig. 4). In the crystal of (II), the molecules are linked by two pairs of N-H···O hydrogen bonds (N1-H1N···O2 and

Figure 3

The molecular structure of (III), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is depicted by a dashed line.

Table 2	2					
Hydrog	en-bond	geometry	(Å,	°)	for	(II).

Cg is the centroid of the C1-C6 ring.

0				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1N\cdotsO1^{i}$	0.84 (2)	2.23 (2)	3.041 (3)	161 (3)
$N2-H2N\cdots O3^{ii}$	0.86(2)	1.97 (2)	2.828 (3)	171 (3)
$C6-H6\cdots O1^{i}$	0.93	2.53	3.422 (4)	161
$C7-H7B\cdots O2^{iii}$	0.97	2.47	3.434 (4)	172
$C15-H15\cdots O2^{iv}$	0.93	2.58	3.474 (4)	162
$C14-H14\cdots Cg^{v}$	0.93	2.84	3.675 (5)	150

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y, -z + 1; (iii) -x, -y, -z + 2; (iv) x, y, z - 1; (v) -x, -y, -z + 1.

N2-H2N···O3), involving both the sulfonyl and carbonyl O atoms with both sulfonamide and amide N-H bonds (N1-H1N and N2-H2N), forming inversion dimers with $R_2^2(8)$ ring motifs. These interactions are further strengthened by C-H···O hydrogen bonds. Thus, three-center N1-H1N/C6-

Figure 4

A view of a portion of one chain of inversion dimers in (I) connected by $N-H\cdots O$ hydrogen bonds (dashed lines) and extending along the *a*-axis direction.

Figure 5

A partial packing diagram for (II) with $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds depicted, respectively, by light-blue and black dashed lines. The $C-H\cdots \pi(\text{ring})$ interactions are depicted by violet dashed lines.

Table 3				
Hydrogen-bond	geometry	/ (Å,	°) for	(III).

, , ,		· · ·		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H1N \cdots O2^{i}$ $N1 - H1N \cdots O3$ $N2 - H2N \cdots O3^{ii}$ $C15 - H15 \cdots O1^{iii}$	0.82 (2) 0.82 (2) 0.86 (2) 0.93	2.25 (2) 2.23 (3) 1.98 (2) 2.45	3.032 (3) 2.609 (3) 2.829 (3) 3.330 (3)	162 (3) 109 (2) 170 (3) 157

Symmetry codes: (i) -x - 1, -y + 2, -z; (ii) -x, -y + 1, -z; (iii) x + 1, y - 1, z.

H6...O1 hydrogen bonds result in molecular chains containing the $R_2^1(7)$ ring motif (Fig. 5). These rings are extended along the principal diagonal of the *ac* plane *via* C7– H7···O2 hydrogen bonds, forming $R_2^2(10)$ ring motifs, and by C15-H15···O2 interactions. In addition, the crystal structure is reinforced by $C-H \cdot \cdot \pi$ (ring) interactions (Fig. 5), details of which are summarized in Table 2. In the crystal of (III), the molecules are also linked by two pairs of N-H···O hydrogen bonds (N1-H1N···O2 and N2-H2N···O3), forming inversion dimers with $R_2^2(8)$ ring motifs. These dimers are connected by intermolecular C15-H15...O1 interactions, forming ribbons two molecules wide and extending along the principal diagonal of the ab plane (Table 3, Fig. 6). The presence of the chlorine atom on the phenyl ring (C10-C15) of (I)-(III) makes the aromatic protons acidic, resulting in the formation of $C-H \cdots O$ hydrogen bonds with the sulforyl O atom.

4. Database survey

Comparison of structures (I)–(III) with those of related *N*-acylhydrazone derivatives (Purandara *et al.*, 2017, 2018) shows that the site of substitution of an electron-withdrawing group on the aromatic ring plays a major role in stabilizing the crystal packing by linking the molecules through various weak interactions.

A portion of one chain in (III) viewed along the a-axis direction with hydrogen bonds depicted as in Fig. 5.

Table 4Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$C_{15}H_{13}Cl_2N_3O_3S$	$C_{15}H_{13}Cl_2N_3O_3S$	$C_{15}H_{13}Cl_2N_3O_3S$
M_r	386.24	386.24	386.24
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	293	293	293
a, b, c (Å)	7.7426 (7), 10.429 (1), 10.934 (1)	9.491 (1), 9.976 (1), 10.446 (1)	6.7234 (9), 10.281 (1), 13.611 (2)
α, β, γ (°)	85.51 (1), 76.92 (1), 81.04 (1)	67.22 (1), 66.80 (1), 86.32 (1)	74.98 (1), 87.11 (1), 75.34 (1)
$V(A^3)$	848.64 (14)	833.59 (17)	879.0 (2)
Z	2	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.52	0.53	0.51
Crystal size (mm)	$0.48 \times 0.36 \times 0.10$	$0.36 \times 0.14 \times 0.08$	$0.46 \times 0.42 \times 0.20$
Data collection			
Diffractometer	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> , Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> , Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.787, 0.949	0.831, 0.959	0.801, 0.906
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5699, 3417, 2359	5759, 3354, 2688	5737, 3598, 2600
R _{int}	0.018	0.018	0.019
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.625	0.625	0.625
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.102, 1.04	0.054, 0.108, 1.22	0.048, 0.120, 1.04
No. of reflections	3417	3354	3598
No. of parameters	223	223	223
No. of restraints	2	2	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.24, -0.29	0.27, -0.39	0.33, -0.30

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS2013/1 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2015) and PLATON (Spek, 2020).

5. Synthesis and crystallization

General procedure for the synthesis of *N*-(4-chlorobenzenesulfonyl) glycine hydrazone derivatives (I)-(III)

A mixture of *N*-(4-chlorobenzenesulfonyl) glycinyl hydrazide (0.01 mol) and the appropriate chlorobenzaldehyde (0.01 mol) in anhydrous methanol (30 mL) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol and dried. It was recrystallized to constant melting point from methanol. The purity of the compound was checked by TLC and characterized by its IR and NMR spectra. Single crystals suitable for the X-ray diffraction study were grown from DMF solution by slow evaporation of the solvent.

Compound (I): Prism-like yellow single crystals; m.p. 506– 507 K; IR (KBr, γ , cm⁻¹): 3190.3 (N–H), 1672.3 (C=O), 1608.6 (C=N), 1334.7 (S=O, asym) and 1159.2 cm⁻¹ (S=O, sym); ¹H NMR (400 MHz, DMSO-*d*₆, δ ppm): 3.64, 4.14 (*d*, 2H), 7.36–7.45 (*m*, 2H, Ar-H), 7.47–7.50 (*m*, 1H, Ar-H), 7.61– 7.67 (*m*, 2H, Ar-H), 7.83–7.95 (*m*, 3H, Ar-H), 8.12 (*s*, 1H), 8.13 (*s*, 1H), 11.64 (*s*, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆, δ ppm): 43.27, 44.49, 126.82, 127.53, 128.54, 129.11, 129.82, 131.25, 133.02, 137.24, 139.19, 139.81, 143.18, 164.23, 169.08.

Compound (II): Prism-like colourless single crystals; m.p. 469–470 K; IR (KBr, γ , cm⁻¹): 3265.5 (N--H), 1687.7

(C=O), 1589.3 (C=N), 1340.5 (S=O, asym) and 1168.9 cm⁻¹ (S=O, sym); ¹H NMR (400 MHz, DMSO- d_6 , δ ppm): 3.64, 4.11 (2d, 2H), 7.39–7.44 (m, 2H, Ar-H), 7.54–7.65 (m, 4H, Ar-H), 7.84–7.87 (m, 2H, Ar-H), 7.91, 8.15 (2s, 1H), 8.01, 8.21 (2t, 1H), 11.51, 11.54 (2s, 1H). ¹³C NMR (400 MHz, DMSO- d_6 , δ ppm): 43.24, 44.42, 125.52, 126.14, 128.44, 128.91, 129.47, 130.31, 133.70, 136.05, 137.34, 139.36, 142.18, 145.60, 164.17, 168.96.

Compound (III): Rod-like colourless single crystals; m.p. 473–475 K; IR (KBr, γ , cm⁻¹): 3246.2 (N–H), 1685.8 (C=O), 1591.3 (C=N), 1344.4 (S=O, asym) and 1168.9 cm⁻¹ (S=O, sym); ¹H NMR (400 MHz, DMSO- d_6 , δ ppm): 3.62, 4.11 (2d, 2H), 7.48–7.51 (m, 2H, Ar-H), 7.63–7.71 (m, 4H, Ar-H), 7.81–7.85 (m, 2H, Ar-H), 7.92, 8.14 (2s, 1H), 8.01 (t, 1H), 11.49, 11.53 (2s, 1H). ¹³C NMR (400 MHz, DMSO- d_6 , δ ppm): 43.21, 128.50, 128.70, 128.86, 129.14, 132.87, 134.34, 137.20, 139.50, 142.53, 145.80, 164.07, 168.96.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms bonded to C were positioned with idealized geometry using a riding model with C– H = 0.93 Å (aromatic) and 0.97 Å (methylene). The amino H atoms were refined with the N–H distances restrained to

research communications

0.86 (2) Å. All H atoms were assigned isotropic displacement parameters $1.2 \times U_{eq}$ of the parent atom. In compound (III), the $\overline{113}$ reflection had a poor agreement with its calculated value and was omitted from the final refinement.

Acknowledgements

The authors thank the SAIF, Panjab University, for providing the NMR facility.

Funding information

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–19.

- Brouwer, E. B., Enright, G. D., Ratcliffe, C. I., Facey, G. A. & Ripmeester, J. A. (1999). J. Phys. Chem. B, 103, 10604–10616.
- Cao, Y., Yu, T., Lai, W., Liu, Y. & Wang, B. (2020). Energetic Materials Frontiers, 1, 95–102.
- Jabłoński, M. (2020). Molecules, 25, 5512-5548.
- Kim, K. S., Tarakeshwar, P. & Lee, J. Y. (2000). Chem. Rev. 100, 4145– 4186.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Purandara, H., Foro, S. & Thimme Gowda, B. (2017a). Acta Cryst. E73, 1683–1686.
- Purandara, H., Foro, S. & Thimme Gowda, B. (2017b). Acta Cryst. E73, 1946–1951.
- Purandara, H., Foro, S. & Thimme Gowda, B. (2018). Acta Cryst. C74, 1553–1560.
- Seth, S. K., Sarkar, D., Jana, A. D. & Kar, T. (2011). Cryst. Growth Des. 11, 4837–4849.
- Sharma, P., Sharma, S., Chawla, M. & Mitra, A. (2009). *J. Mol. Model.* **15**, 633–649.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.

Acta Cryst. (2021). E77, 780-784 [https://doi.org/10.1107/S2056989021006885]

Crystal structures of three N-acylhydrazone isomers

H. Purandara, Sabine Foro and B. Thimme Gowda

Computing details

For all structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS2013/1* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/6* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2020); software used to prepare material for publication: *SHELXL2014/6* (Sheldrick, 2015).

(E)-4-Chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I)

Crystal data

 $C_{15}H_{13}Cl_2N_3O_3S$ $M_r = 386.24$ Triclinic, $P\overline{1}$ a = 7.7426 (7) Å b = 10.429 (1) Å c = 10.934 (1) Å $\alpha = 85.51 (1)^{\circ}$ $\beta = 76.92 (1)^{\circ}$ $\gamma = 81.04 (1)^{\circ}$ $V = 848.64 (14) \text{ Å}^{3}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.787, T_{\max} = 0.949$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.102$ S = 1.043417 reflections 223 parameters 2 restraints Z = 2 F(000) = 396 $D_x = 1.512 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2012 reflections $\theta = 2.8-27.8^{\circ}$ $\mu = 0.52 \text{ mm}^{-1}$ T = 293 K Prism, yellow $0.48 \times 0.36 \times 0.10 \text{ mm}$

5699 measured reflections 3417 independent reflections 2359 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 2.8^\circ$ $h = -9 \rightarrow 9$ $k = -10 \rightarrow 13$ $l = -13 \rightarrow 13$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0321P)^2 + 0.3938P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e } \text{Å}^{-3}$

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1746 (3)	0.6076 (2)	0.8440 (2)	0.0487 (6)	
C2	0.1897 (4)	0.7192 (3)	0.8985 (3)	0.0687 (8)	
H2	0.3023	0.7399	0.8985	0.082*	
C3	0.0378 (5)	0.7997 (3)	0.9529 (3)	0.0852 (11)	
Н3	0.0473	0.8756	0.9888	0.102*	
C4	-0.1270 (5)	0.7675 (4)	0.9540 (3)	0.0801 (11)	
C5	-0.1448 (4)	0.6551 (4)	0.9042 (3)	0.0763 (10)	
Н5	-0.2579	0.6330	0.9083	0.092*	
C6	0.0079 (4)	0.5742 (3)	0.8473 (3)	0.0595 (7)	
H6	-0.0022	0.4982	0.8118	0.071*	
C7	0.5597 (3)	0.6727 (2)	0.6046 (3)	0.0521 (7)	
H7A	0.5504	0.7198	0.6794	0.063*	
H7B	0.5376	0.7357	0.5378	0.063*	
C8	0.7483 (3)	0.6002 (2)	0.5670 (2)	0.0386 (5)	
C9	0.9738 (3)	0.8484 (2)	0.6184 (2)	0.0405 (6)	
H9	1.0910	0.8074	0.5943	0.049*	
C10	0.9368 (3)	0.9816 (2)	0.6622 (2)	0.0381 (5)	
C11	1.0705 (3)	1.0515 (2)	0.6753 (2)	0.0430 (6)	
C12	1.0322 (4)	1.1777 (2)	0.7149 (3)	0.0545 (7)	
H12	1.1239	1.2217	0.7240	0.065*	
C13	0.8572 (4)	1.2374 (3)	0.7408 (3)	0.0616 (8)	
H13	0.8306	1.3224	0.7669	0.074*	
C14	0.7213 (4)	1.1717 (3)	0.7281 (3)	0.0614 (8)	
H14	0.6032	1.2124	0.7452	0.074*	
C15	0.7610(3)	1.0457 (2)	0.6902 (3)	0.0516 (7)	
H15	0.6681	1.0019	0.6831	0.062*	
N1	0.4241 (3)	0.5872 (2)	0.6292 (2)	0.0526 (6)	
H1N	0.383 (3)	0.569 (3)	0.569 (2)	0.063*	
N2	0.8820 (3)	0.66560 (18)	0.5716 (2)	0.0420 (5)	
H2N	0.990 (2)	0.631 (2)	0.544 (2)	0.050*	
N3	0.8430 (2)	0.79018 (18)	0.61392 (19)	0.0411 (5)	
01	0.5090 (3)	0.5131 (2)	0.8282 (2)	0.0751 (6)	
O2	0.3180 (3)	0.39150 (17)	0.7388 (2)	0.0732 (6)	
O3	0.7778 (2)	0.48784 (15)	0.53116 (17)	0.0483 (4)	
Cl1	-0.31736 (16)	0.87209 (13)	1.01893 (11)	0.1407 (6)	
Cl2	1.29502 (9)	0.98193 (7)	0.63926 (8)	0.0690 (3)	
S1	0.36939 (9)	0.51159 (7)	0.76264 (7)	0.0529 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0476 (15)	0.0454 (15)	0.0497 (16)	-0.0040 (12)	-0.0062 (12)	0.0005 (12)
C2	0.0685 (19)	0.062 (2)	0.071 (2)	-0.0128 (16)	-0.0002 (16)	-0.0158 (17)
C3	0.105 (3)	0.062 (2)	0.071 (2)	0.004 (2)	0.011 (2)	-0.0138 (18)
C4	0.079 (2)	0.077 (2)	0.056 (2)	0.026 (2)	0.0122 (17)	0.0121 (18)
C5	0.0474 (17)	0.105 (3)	0.064 (2)	0.0034 (18)	-0.0040 (15)	0.019 (2)
C6	0.0504 (16)	0.0663 (19)	0.0597 (18)	-0.0082 (14)	-0.0104 (14)	0.0043 (15)
C7	0.0380 (13)	0.0404 (15)	0.0759 (19)	-0.0050 (11)	-0.0040 (13)	-0.0151 (13)
C8	0.0374 (12)	0.0324 (13)	0.0450 (14)	-0.0041 (10)	-0.0076 (11)	-0.0029 (11)
C9	0.0360 (12)	0.0333 (13)	0.0513 (15)	-0.0035 (10)	-0.0079 (11)	-0.0032 (11)
C10	0.0392 (12)	0.0289 (12)	0.0452 (14)	-0.0035 (10)	-0.0077 (11)	-0.0018 (11)
C11	0.0402 (13)	0.0371 (13)	0.0525 (16)	-0.0063 (10)	-0.0113 (11)	-0.0021 (12)
C12	0.0604 (17)	0.0397 (15)	0.0690 (19)	-0.0164 (13)	-0.0179 (14)	-0.0070 (14)
C13	0.075 (2)	0.0322 (14)	0.077 (2)	-0.0029 (14)	-0.0153 (16)	-0.0124 (14)
C14	0.0508 (16)	0.0414 (16)	0.086 (2)	0.0051 (13)	-0.0068 (15)	-0.0124 (15)
C15	0.0414 (14)	0.0391 (14)	0.0737 (19)	-0.0058 (11)	-0.0096 (13)	-0.0072 (13)
N1	0.0412 (12)	0.0617 (15)	0.0576 (15)	-0.0181 (11)	-0.0039 (10)	-0.0171 (12)
N2	0.0340 (10)	0.0305 (11)	0.0600 (14)	-0.0033 (9)	-0.0053 (10)	-0.0093 (10)
N3	0.0405 (11)	0.0298 (10)	0.0529 (13)	-0.0052 (9)	-0.0086 (9)	-0.0057 (9)
01	0.0577 (12)	0.0822 (15)	0.0895 (16)	0.0029 (11)	-0.0313 (11)	-0.0095 (13)
02	0.0696 (13)	0.0384 (11)	0.1099 (18)	-0.0079 (10)	-0.0132 (12)	-0.0116 (11)
03	0.0393 (9)	0.0342 (9)	0.0725 (12)	-0.0030 (7)	-0.0115 (8)	-0.0153 (9)
Cl1	0.1177 (9)	0.1400 (10)	0.1047 (8)	0.0695 (8)	0.0332 (7)	0.0151 (7)
C12	0.0391 (4)	0.0617 (5)	0.1092 (7)	-0.0066 (3)	-0.0181 (4)	-0.0182 (4)
S1	0.0428 (4)	0.0433 (4)	0.0722 (5)	-0.0029 (3)	-0.0113 (3)	-0.0093 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.380 (4)	C9—C10	1.469 (3)
C1—C6	1.381 (4)	С9—Н9	0.9300
C1—S1	1.769 (3)	C10—C11	1.394 (3)
C2—C3	1.377 (4)	C10—C15	1.398 (3)
С2—Н2	0.9300	C11—C12	1.385 (3)
C3—C4	1.367 (5)	C11—Cl2	1.745 (2)
С3—Н3	0.9300	C12—C13	1.376 (4)
C4—C5	1.369 (5)	C12—H12	0.9300
C4—Cl1	1.736 (3)	C13—C14	1.379 (4)
C5—C6	1.391 (4)	C13—H13	0.9300
С5—Н5	0.9300	C14—C15	1.377 (3)
С6—Н6	0.9300	C14—H14	0.9300
C7—N1	1.447 (3)	C15—H15	0.9300
С7—С8	1.518 (3)	N1—S1	1.604 (2)
C7—H7A	0.9700	N1—H1N	0.841 (16)
С7—Н7В	0.9700	N2—N3	1.379 (3)
C8—O3	1.236 (3)	N2—H2N	0.852 (16)
C8—N2	1.337 (3)	O1—S1	1.4283 (19)

C9—N3	1.271 (3)	O2—S1	1.4312 (19)
C2—C1—C6	120.3 (3)	C11—C10—C9	123.2 (2)
C2—C1—S1	119.8 (2)	C15—C10—C9	120.2 (2)
C6-C1-S1	119.8 (2)	C12—C11—C10	122.1 (2)
C3—C2—C1	119.9 (3)	C12—C11—C12	117.61 (19)
C3—C2—H2	120.1	C10-C11-C12	120.32 (18)
C1—C2—H2	120.1	C13—C12—C11	119.4 (2)
C4-C3-C2	1196(3)	C13—C12—H12	120.3
C4—C3—H3	120.2	C11—C12—H12	120.3
С2—С3—Н3	120.2	C12 - C13 - C14	120.2(2)
C_{3} C_{4} C_{5}	121.4 (3)	C12—C13—H13	119.9
C_{3} C_{4} C_{11}	1191(3)	C14—C13—H13	119.9
C5-C4-Cl1	119.5 (3)	C15-C14-C13	119.7 (3)
C4-C5-C6	119.5 (3)	C_{15} C_{14} H_{14}	120.1
C4—C5—H5	120.3	C13—C14—H14	120.1
С6—С5—Н5	120.3	C_{14} C_{15} C_{10}	120.1 121.9(2)
C1 - C6 - C5	119 4 (3)	C14-C15-H15	119.0
C1-C6-H6	120.3	C10-C15-H15	119.0
C5—C6—H6	120.3	C7—N1—S1	122.21 (19)
N1-C7-C8	112.8 (2)	C7-N1-H1N	119 (2)
N1—C7—H7A	109.0	S1—N1—H1N	119(2)
C8—C7—H7A	109.0	C8—N2—N3	119.52(19)
N1—C7—H7B	109.0	C8—N2—H2N	119.0 (17)
C8—C7—H7B	109.0	N3—N2—H2N	121.4 (17)
H7A—C7—H7B	107.8	C9—N3—N2	117.61 (19)
O3—C8—N2	121.5 (2)	01—S1—O2	120.84 (13)
O3—C8—C7	122.1 (2)	01—S1—N1	107.43 (13)
N2—C8—C7	116.5 (2)	O2—S1—N1	107.08 (12)
N3—C9—C10	119.0 (2)	01—S1—C1	107.99 (13)
N3—C9—H9	120.5	O2—S1—C1	107.31 (12)
С10—С9—Н9	120.5	N1—S1—C1	105.16 (12)
C11—C10—C15	116.6 (2)		
C6C1C2C3	-2.1 (4)	C11—C12—C13—C14	0.5 (4)
S1—C1—C2—C3	174.7 (2)	C12—C13—C14—C15	0.4 (5)
C1—C2—C3—C4	0.9 (5)	C13-C14-C15-C10	-0.8 (4)
C2—C3—C4—C5	1.3 (5)	C11-C10-C15-C14	0.4 (4)
C2—C3—C4—Cl1	-178.2 (2)	C9-C10-C15-C14	-178.1 (3)
C3—C4—C5—C6	-2.3 (5)	C8—C7—N1—S1	83.6 (3)
Cl1—C4—C5—C6	177.2 (2)	O3—C8—N2—N3	-179.0 (2)
C2-C1-C6-C5	1.1 (4)	C7—C8—N2—N3	2.6 (3)
S1—C1—C6—C5	-175.7 (2)	C10—C9—N3—N2	179.6 (2)
C4—C5—C6—C1	1.1 (4)	C8—N2—N3—C9	179.1 (2)
N1—C7—C8—O3	17.0 (4)	C7—N1—S1—O1	-17.3 (2)
N1—C7—C8—N2	-164.6 (2)	C7—N1—S1—O2	-148.5 (2)
N3—C9—C10—C11	177.3 (2)	C7—N1—S1—C1	97.6 (2)
N3—C9—C10—C15	-4.3 (4)	C2—C1—S1—O1	36.9 (3)

C15—C10—C11—C12	0.5 (4)	C6—C1—S1—O1	-146.3 (2)
C9—C10—C11—C12	179.0 (2)	C2-C1-S1-O2	168.7 (2)
C15—C10—C11—Cl2	-178.54 (19)	C6—C1—S1—O2	-14.6 (3)
C9—C10—C11—Cl2	0.0 (3)	C2-C1-S1-N1	-77.6 (2)
C10-C11-C12-C13	-0.9 (4)	C6—C1—S1—N1	99.2 (2)
Cl2—C11—C12—C13	178.1 (2)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1N····O3 ⁱ	0.84 (2)	2.01 (2)	2.823 (3)	162 (3)
N2—H2 <i>N</i> ···O3 ⁱⁱ	0.85 (2)	2.06 (2)	2.897 (2)	167 (2)
С12—Н12…О2 ^{ііі}	0.93	2.53	3.439 (3)	166

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y+1, z.

(E)-4-Chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II)

Crystal data

$C_{15}H_{13}Cl_2N_3O_3S$	Z = 2
$M_r = 386.24$	F(000) = 396
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.539 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.491 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.976 (1) Å	Cell parameters from 2850 reflections
c = 10.446 (1) Å	$\theta = 2.6 - 27.9^{\circ}$
$\alpha = 67.22 \ (1)^{\circ}$	$\mu=0.53~\mathrm{mm^{-1}}$
$\beta = 66.80 \ (1)^{\circ}$	T = 293 K
$\gamma = 86.32 \ (1)^{\circ}$	Prism, colourless
$V = 833.59 (17) \text{ Å}^3$	$0.36 \times 0.14 \times 0.08 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur with Sapphire	5759 measured reflections
CCD	3354 independent reflections
diffractometer	2688 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.018$
Rotation method data acquisition using ω scans.	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(CrysAlis RED, Oxford Diffraction, 2009)	$k = -12 \rightarrow 12$
$T_{\min} = 0.831, T_{\max} = 0.959$	$l = -13 \rightarrow 12$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.108$ S = 1.223354 reflections 223 parameters 2 restraints Primary atom site location: structure-invariant direct methods $\mu = 0.53 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.36 \times 0.14 \times 0.08 \text{ mm}$ 5759 measured reflections 3354 independent reflections 2688 reflections with $I > 2\sigma(I)$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0148P)^2 + 1.1114P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2520 (3)	-0.1930 (3)	1.0295 (3)	0.0312 (6)	
C2	0.1178 (3)	-0.2828 (3)	1.0900 (4)	0.0408 (7)	
H2	0.0241	-0.2549	1.1415	0.049*	
C3	0.1226 (4)	-0.4145 (4)	1.0739 (4)	0.0458 (8)	
Н3	0.0329	-0.4769	1.1166	0.055*	
C4	0.2616 (4)	-0.4519 (3)	0.9939 (4)	0.0392 (7)	
C5	0.3966 (4)	-0.3626 (3)	0.9327 (4)	0.0393 (7)	
Н5	0.4898	-0.3896	0.8789	0.047*	
C6	0.3924 (3)	-0.2326 (3)	0.9519 (3)	0.0356 (7)	
H6	0.4828	-0.1724	0.9131	0.043*	
C7	0.2808 (3)	0.1427 (3)	0.7715 (3)	0.0356 (7)	
H7A	0.2814	0.2480	0.7273	0.043*	
H7B	0.1751	0.0995	0.8162	0.043*	
C8	0.3771 (3)	0.0903 (3)	0.6490 (3)	0.0351 (7)	
C9	0.1510 (4)	0.1675 (4)	0.4412 (3)	0.0414 (7)	
H9	0.2108	0.1262	0.3740	0.050*	
C10	0.0084 (4)	0.2250 (3)	0.4311 (3)	0.0400 (7)	
C11	-0.0769 (4)	0.3041 (4)	0.5152 (4)	0.0469 (8)	
H11	-0.0426	0.3245	0.5783	0.056*	
C12	-0.2121 (4)	0.3515 (4)	0.5037 (4)	0.0540 (9)	
C13	-0.2654 (4)	0.3247 (4)	0.4096 (5)	0.0600 (10)	
H13	-0.3566	0.3589	0.4022	0.072*	
C14	-0.1815 (5)	0.2467 (4)	0.3273 (5)	0.0603 (10)	
H14	-0.2165	0.2274	0.2640	0.072*	
C15	-0.0459 (4)	0.1966 (4)	0.3371 (4)	0.0497 (8)	
H15	0.0097	0.1435	0.2808	0.060*	
Cl1	0.26935 (11)	-0.61454 (10)	0.96808 (12)	0.0584 (3)	
C12	-0.32203 (15)	0.44557 (16)	0.61290 (17)	0.0976 (5)	
N1	0.3402 (3)	0.1031 (3)	0.8891 (3)	0.0318 (5)	
H1N	0.436 (2)	0.101 (3)	0.860 (3)	0.038*	
N2	0.3309 (3)	0.1124 (3)	0.5371 (3)	0.0436 (7)	
H2N	0.378 (4)	0.072 (4)	0.474 (3)	0.052*	
N3	0.1952 (3)	0.1727 (3)	0.5398 (3)	0.0394 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

01	0.3340 (2)	-0.0350 (2)	1.1413 (2)	0.0411 (5)
O2	0.0898 (2)	0.0034 (2)	1.1055 (2)	0.0408 (5)
O3	0.4936 (2)	0.0311 (3)	0.6515(2)	0.0475 (6)
S1	0.24739 (8)	-0.02589 (8)	1.05320 (8)	0.03071 (18)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0333 (15)	0.0300 (15)	0.0385 (16)	0.0073 (12)	-0.0189 (13)	-0.0176 (13)
C2	0.0280 (16)	0.0415 (18)	0.057 (2)	0.0072 (13)	-0.0145 (15)	-0.0268 (16)
C3	0.0347 (17)	0.0386 (18)	0.069 (2)	0.0006 (14)	-0.0209 (17)	-0.0261 (17)
C4	0.0461 (19)	0.0299 (16)	0.0530 (19)	0.0096 (14)	-0.0279 (16)	-0.0204 (15)
C5	0.0347 (17)	0.0377 (17)	0.0496 (19)	0.0124 (13)	-0.0173 (15)	-0.0224 (15)
C6	0.0291 (15)	0.0343 (16)	0.0469 (18)	0.0061 (12)	-0.0159 (14)	-0.0192 (14)
C7	0.0354 (16)	0.0374 (17)	0.0375 (16)	0.0116 (13)	-0.0156 (14)	-0.0185 (14)
C8	0.0341 (16)	0.0371 (17)	0.0339 (16)	0.0086 (13)	-0.0129 (13)	-0.0153 (14)
C9	0.0435 (18)	0.050(2)	0.0326 (16)	0.0112 (15)	-0.0145 (14)	-0.0195 (15)
C10	0.0422 (18)	0.0414 (18)	0.0329 (16)	0.0052 (14)	-0.0150 (14)	-0.0113 (14)
C11	0.047 (2)	0.054 (2)	0.0451 (19)	0.0126 (16)	-0.0246 (16)	-0.0199 (17)
C12	0.048 (2)	0.052 (2)	0.052 (2)	0.0109 (17)	-0.0181 (18)	-0.0131 (18)
C13	0.044 (2)	0.060 (2)	0.067 (3)	0.0048 (18)	-0.031 (2)	-0.006 (2)
C14	0.065 (3)	0.060 (2)	0.062 (2)	-0.004 (2)	-0.042 (2)	-0.011 (2)
C15	0.062 (2)	0.047 (2)	0.0440 (19)	0.0028 (17)	-0.0269 (18)	-0.0156 (16)
Cl1	0.0641 (6)	0.0405 (5)	0.0897 (7)	0.0132 (4)	-0.0367 (5)	-0.0401 (5)
Cl2	0.0847 (9)	0.1137 (11)	0.1072 (10)	0.0590 (8)	-0.0404 (8)	-0.0618 (9)
N1	0.0274 (12)	0.0354 (13)	0.0368 (14)	0.0033 (11)	-0.0109 (11)	-0.0205 (11)
N2	0.0416 (16)	0.0597 (18)	0.0408 (15)	0.0224 (13)	-0.0198 (13)	-0.0303 (14)
N3	0.0378 (14)	0.0457 (16)	0.0368 (14)	0.0134 (12)	-0.0165 (12)	-0.0183 (12)
01	0.0400 (12)	0.0535 (14)	0.0406 (12)	0.0020 (10)	-0.0200 (10)	-0.0249 (11)
O2	0.0309 (11)	0.0474 (13)	0.0512 (13)	0.0071 (9)	-0.0115 (10)	-0.0320 (11)
03	0.0404 (13)	0.0727 (16)	0.0418 (13)	0.0248 (12)	-0.0208 (11)	-0.0336 (12)
S1	0.0279 (4)	0.0352 (4)	0.0363 (4)	0.0050 (3)	-0.0127 (3)	-0.0219 (3)

Geometric parameters (Å, °)

C1—C2	1.377 (4)	C9—C10	1.462 (4)
C1—C6	1.385 (4)	С9—Н9	0.9300
C1—S1	1.773 (3)	C10—C15	1.394 (4)
C2—C3	1.384 (4)	C10—C11	1.394 (4)
С2—Н2	0.9300	C11—C12	1.372 (5)
C3—C4	1.374 (4)	C11—H11	0.9300
С3—Н3	0.9300	C12—C13	1.381 (5)
C4—C5	1.380 (4)	C12—Cl2	1.743 (4)
C4—Cl1	1.737 (3)	C13—C14	1.370 (6)
C5—C6	1.382 (4)	C13—H13	0.9300
С5—Н5	0.9300	C14—C15	1.378 (5)
С6—Н6	0.9300	C14—H14	0.9300
C7—N1	1.457 (4)	C15—H15	0.9300

С7—С8	1.510 (4)	N1—S1	1.618 (3)
C7—H7A	0.9700	N1—H1N	0.841 (17)
С7—Н7В	0.9700	N2—N3	1.380 (3)
C8—O3	1.224 (3)	N2—H2N	0.863 (18)
C8—N2	1.342 (4)	O1—S1	1.433 (2)
C9—N3	1.275 (4)	02—\$1	1.430 (2)
C2—C1—C6	120.8 (3)	C15—C10—C9	118.8 (3)
C2—C1—S1	120.2 (2)	C11—C10—C9	122.2 (3)
C6—C1—S1	119.0 (2)	C12—C11—C10	119.3 (3)
C1—C2—C3	119.9 (3)	C12—C11—H11	120.4
C1—C2—H2	120.0	C10—C11—H11	120.4
С3—С2—Н2	120.0	C11—C12—C13	121.9 (4)
C4—C3—C2	119.1 (3)	C11—C12—Cl2	119.4 (3)
С4—С3—Н3	120.4	C13—C12—Cl2	118.7 (3)
С2—С3—Н3	120.4	C14—C13—C12	118.7 (3)
$C_{3}-C_{4}-C_{5}$	121.4 (3)	C14—C13—H13	120.6
C3-C4-C11	119.8 (2)	C12—C13—H13	120.6
C5-C4-C11	118.8 (2)	C13 - C14 - C15	120.9 (4)
C4-C5-C6	119 5 (3)	C13 - C14 - H14	119.6
C4—C5—H5	120.3	C15 - C14 - H14	119.6
C6-C5-H5	120.3	C_{14} C_{15} C_{10}	120.3 (4)
C_{5} C_{6} C_{1}	119 3 (3)	C14 - C15 - H15	119.9
C5-C6-H6	120.4	C10-C15-H15	119.9
$C_1 = C_6 = H_6$	120.4	C7 N1 S1	119.9 110.9(2)
N1 C7 C8	120.4	C7 N1 H1N	119.9(2)
N1 = C7 = H7A	100 4	C = NI = IIIN	110(2)
$N_1 = C_1 = H_1 A$	109.4	$\frac{31-111-1111}{12}$	112(2) 1208(2)
N1 C7 H7P	109.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.0(2)
M = C / = M / B	109.4	$N_2 = N_2 = H_2 N_1$	117(2) 121(2)
	109.4	$\frac{1}{10} - \frac{1}{12} \frac{1}{12}$	121(2)
$\Pi/A = C / = \Pi/B$	100.0	$C_2 = N_3 = N_2$	113.1(3) 110.52(12)
$O_3 = C_8 = C_7$	121.4(3) 121.1(2)	02 - 31 - 01	119.33(13) 107.80(13)
$V_3 = C_8 = C_7$	121.1(3) 1175(2)	$O_2 = S_1 = N_1$	107.80(13) 105.65(12)
$N_2 = C_0 = C_1^{-1}$	117.3(3) 121.6(2)	$O_1 = S_1 = O_1$	103.03(13) 107.23(13)
$N_2 = C_0 = U_0$	121.0 (5)	02-31-01	107.23(13) 107.84(12)
N_{3} C_{10} C_{0} H_{0}	119.2	OI = SI = CI	107.84(13) 108.40(13)
$C_{10} - C_{9} - H_{9}$	119.2	NI-3I-CI	108.40 (13)
C13-C10-C11	119.0 (3)		
C6-C1-C2-C3	0.2(5)	C_{12} C_{12} C_{13} C_{14}	-1780(3)
81-C1-C2-C3	-1786(3)	$C_{12} = C_{12} = C_{13} = C_{14} = C_{15}$	-0.4(6)
C1 - C2 - C3 - C4	-17(5)	C13 - C14 - C15 - C10	-0.2(6)
$C_1 = C_2 = C_3 = C_4 = C_5$	15(5)	$C_{11} = C_{14} = C_{15} = C_{16}$	0.2(0)
$C_2 = C_3 = C_4 = C_1^{-1}$	-1783(3)	C_{10} C_{10} C_{15} C_{14}	178.7(3)
$C_2 = C_3 = C_4 = C_5 = C_6$	1/0.3(3)	$C_{10} = C_{10} = C_{13} = C_{14}$	-1072(3)
$C_{1} C_{4} C_{5} C_{6}$	170.8(2)	$C_{0} - C_{1} - C_{1$	107.2(3) 1768(3)
$C_{11} - C_{4} - C_{5} - C_{6}$	-1 A (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-28(5)
$C_{+} - C_{-} - C_{-$	1.4(3)	$C_1 = C_0 = N_2 = N_2$	3.0(3)
12 - 1 - 10 - 13	1.5 (5)	U10-U9-N3-N2	1/9.1 (3)

S1—C1—C6—C5	-179.8 (2)	C8—N2—N3—C9	-169.5 (3)
N1—C7—C8—O3	-4.1 (4)	C7—N1—S1—O2	-50.2 (2)
N1—C7—C8—N2	176.5 (3)	C7—N1—S1—O1	-179.0 (2)
N3—C9—C10—C15	-170.4 (3)	C7—N1—S1—C1	65.6 (2)
N3—C9—C10—C11	8.0 (5)	C2-C1-S1-O2	-13.7 (3)
C15—C10—C11—C12	0.2 (5)	C6-C1-S1-O2	167.4 (2)
C9—C10—C11—C12	-178.2 (3)	C2-C1-S1-O1	116.3 (3)
C10-C11-C12-C13	-0.8 (6)	C6-C1-S1-O1	-62.6 (3)
C10-C11-C12-Cl2	178.1 (3)	C2-C1-S1-N1	-129.8 (3)
C11—C12—C13—C14	0.9 (6)	C6-C1-S1-N1	51.3 (3)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N1—H1 <i>N</i> …O1 ⁱ	0.84 (2)	2.23 (2)	3.041 (3)	161 (3)
N2—H2 <i>N</i> ···O3 ⁱⁱ	0.86 (2)	1.97 (2)	2.828 (3)	171 (3)
C6—H6…O1 ⁱ	0.93	2.53	3.422 (4)	161
C7—H7 <i>B</i> ···O2 ⁱⁱⁱ	0.97	2.47	3.434 (4)	172
C15—H15…O2 ^{iv}	0.93	2.58	3.474 (4)	162
C14—H14··· Cg^{v}	0.93	2.84	3.675 (5)	150

Z = 2

F(000) = 396

 $\theta = 2.9 - 27.9^{\circ}$

 $\mu = 0.51 \text{ mm}^{-1}$

Rod, colourless

 $0.46 \times 0.42 \times 0.20 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.459 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1746 reflections

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+2; (iv) x, y, z-1; (v) -x, -y, -z+1.

(E)-4-Chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III)

Crystal data

 $C_{15}H_{13}Cl_2N_3O_3S$ $M_r = 386.24$ Triclinic, *P*1 a = 6.7234 (9) Å b = 10.281 (1) Å c = 13.611 (2) Å $a = 74.98 (1)^{\circ}$ $\beta = 87.11 (1)^{\circ}$ $\gamma = 75.34 (1)^{\circ}$ $V = 879.0 (2) Å^{3}$

Data collection

Oxford Diffraction Xcalibur with Sapphire	5737 measured reflections
CCD	3598 independent reflections
diffractometer	2600 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.019$
Rotation method data acquisition using ω scans.	$\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 2.9^\circ$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(CrysAlis RED, Oxford Diffraction, 2009)	$k = -12 \rightarrow 12$
$T_{\min} = 0.801, \ T_{\max} = 0.906$	$l = -13 \rightarrow 16$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$	Secondary atom site location: difference Fourier map Hydrogen site location: mixed
$wR(F^2) = 0.120$	H atoms treated by a mixture of independent
S = 1.03	and constrained refinement
3598 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0407P)^2 + 0.5495P]$
223 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.33 \ { m e} \ { m \AA}^{-3} \ \Delta ho_{ m min} = -0.30 \ { m e} \ { m \AA}^{-3}$

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	-0.75370 (19)	0.81534 (16)	0.50474 (9)	0.1284 (5)
Cl2	1.20248 (15)	0.42711 (14)	0.39838 (7)	0.1119 (4)
S1	-0.27969 (10)	1.01993 (7)	0.11321 (5)	0.04891 (19)
01	-0.1031 (3)	1.05461 (19)	0.14290 (15)	0.0609 (5)
O2	-0.4241 (3)	1.12132 (19)	0.04119 (15)	0.0628 (5)
O3	-0.1441 (3)	0.66440 (19)	0.00307 (15)	0.0601 (5)
N1	-0.1982 (3)	0.8899 (2)	0.06592 (17)	0.0518 (5)
H1N	-0.285 (4)	0.868 (3)	0.038 (2)	0.062*
N2	0.1718 (3)	0.5636 (2)	0.07085 (17)	0.0529 (5)
H2N	0.179 (4)	0.490 (2)	0.050 (2)	0.063*
N3	0.3257 (3)	0.5661 (2)	0.13326 (15)	0.0490 (5)
C1	-0.4154 (4)	0.9674 (3)	0.2247 (2)	0.0487 (6)
C2	-0.3286 (5)	0.9436 (4)	0.3189 (2)	0.0707 (8)
H2	-0.199533	0.958848	0.324412	0.085*
C3	-0.4330 (5)	0.8971 (4)	0.4049 (2)	0.0840 (10)
Н3	-0.374571	0.880441	0.468907	0.101*
C4	-0.6231 (5)	0.8754 (4)	0.3961 (3)	0.0767 (9)
C5	-0.7090 (5)	0.8990 (4)	0.3026 (3)	0.0909 (11)
Н5	-0.837854	0.883342	0.297257	0.109*
C6	-0.6066 (5)	0.9456 (4)	0.2165 (2)	0.0773 (9)
H6	-0.666116	0.962570	0.152735	0.093*
C7	-0.0149 (4)	0.7821 (3)	0.10526 (19)	0.0471 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H7A H7B 0	-0.022691 0.105960 -0.0016 (4)	0.748572 0.818535 0.6659 (3)	0.178490 0.089975	0.057* 0.057*
Н7В (0.105960 -0.0016 (4)	0.818535	0.089975	0.057*
	-0.0016 (4)	0.6659 (3)		
C8 -		0.0057 (5)	0.05555 (18)	0.0466 (6)
C9 (0.4825 (4)	0.4633 (3)	0.1450 (2)	0.0521 (6)
Н9 (0.486624	0.393537	0.112435	0.063*
C10 (0.6568 (4)	0.4535 (3)	0.20951 (19)	0.0480 (6)
C11 (0.6490 (4)	0.5479 (3)	0.2675 (2)	0.0606 (7)
H11 (0.530130	0.618121	0.266545	0.073*
C12 (0.8152 (5)	0.5385 (3)	0.3263 (2)	0.0682 (8)
H12 (0.808568	0.601525	0.365387	0.082*
C13 (0.9906 (4)	0.4354 (4)	0.3268 (2)	0.0648 (8)
C14 1	1.0018 (4)	0.3406 (3)	0.2719 (2)	0.0692 (8)
H14 1	1.120998	0.270324	0.273761	0.083*
C15 (0.8334 (4)	0.3497 (3)	0.2128 (2)	0.0596 (7)
H15 (0.840415	0.284985	0.175185	0.071*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
Cl1	0.1225 (9)	0.1721 (12)	0.0862 (7)	-0.0563 (9)	0.0375 (7)	-0.0130 (8)
Cl2	0.0737 (6)	0.1848 (12)	0.0779 (6)	-0.0439 (7)	-0.0247 (5)	-0.0185 (7)
S 1	0.0460 (3)	0.0478 (4)	0.0565 (4)	-0.0123 (3)	-0.0034 (3)	-0.0181 (3)
01	0.0516 (10)	0.0629 (12)	0.0799 (13)	-0.0225 (9)	-0.0016 (9)	-0.0303 (10)
O2	0.0616 (12)	0.0518 (11)	0.0695 (13)	-0.0097 (9)	-0.0111 (9)	-0.0076 (9)
O3	0.0520 (10)	0.0608 (11)	0.0742 (13)	-0.0063 (9)	-0.0165 (9)	-0.0329 (10)
N1	0.0454 (12)	0.0572 (13)	0.0591 (14)	-0.0092 (10)	-0.0070 (10)	-0.0277 (11)
N2	0.0500 (12)	0.0529 (13)	0.0604 (14)	-0.0070 (10)	-0.0122 (10)	-0.0258 (11)
N3	0.0473 (12)	0.0524 (13)	0.0495 (12)	-0.0115 (10)	-0.0077 (9)	-0.0161 (10)
C1	0.0438 (13)	0.0487 (14)	0.0566 (15)	-0.0078 (11)	-0.0012 (11)	-0.0215 (12)
C2	0.0552 (17)	0.103 (3)	0.0606 (18)	-0.0226 (16)	-0.0005 (14)	-0.0302 (18)
C3	0.076 (2)	0.119 (3)	0.0541 (19)	-0.019 (2)	-0.0019 (16)	-0.0212 (19)
C4	0.072 (2)	0.090 (2)	0.066 (2)	-0.0230 (18)	0.0196 (16)	-0.0157 (18)
C5	0.061 (2)	0.139 (3)	0.080(2)	-0.044 (2)	0.0082 (17)	-0.023 (2)
C6	0.0577 (18)	0.118 (3)	0.0617 (19)	-0.0349 (18)	-0.0015 (15)	-0.0199 (19)
C7	0.0455 (13)	0.0516 (14)	0.0475 (14)	-0.0129 (11)	-0.0030 (11)	-0.0169 (12)
C8	0.0462 (13)	0.0511 (14)	0.0455 (14)	-0.0142 (11)	-0.0029 (11)	-0.0145 (11)
C9	0.0533 (15)	0.0527 (15)	0.0548 (15)	-0.0139 (12)	-0.0041 (12)	-0.0200 (12)
C10	0.0469 (13)	0.0483 (14)	0.0483 (14)	-0.0115 (11)	-0.0032 (11)	-0.0110 (11)
C11	0.0581 (16)	0.0583 (17)	0.0647 (18)	-0.0068 (13)	-0.0100 (13)	-0.0200 (14)
C12	0.075 (2)	0.077 (2)	0.0606 (18)	-0.0238 (17)	-0.0107 (15)	-0.0244 (16)
C13	0.0557 (17)	0.089 (2)	0.0481 (16)	-0.0261 (16)	-0.0076 (13)	-0.0056 (15)
C14	0.0499 (16)	0.075 (2)	0.0688 (19)	-0.0025 (14)	-0.0039 (14)	-0.0055 (16)
C15	0.0584 (16)	0.0557 (16)	0.0644 (18)	-0.0101 (13)	-0.0019 (13)	-0.0183 (14)

Geometric parameters (Å, °)

Cl1—C4	1.735 (3)	C4—C5	1.362 (5)
Cl2—C13	1.738 (3)	C5—C6	1.368 (4)

S1—01	1.4275 (18)	С5—Н5	0.9300
S1—O2	1.4297 (19)	С6—Н6	0.9300
S1—N1	1.594 (2)	C7—C8	1.500 (3)
S1—C1	1.764 (3)	C7—H7A	0.9700
O3—C8	1.229 (3)	C7—H7B	0.9700
N1—C7	1.450 (3)	C9—C10	1.467 (3)
N1—H1N	0.818 (17)	С9—Н9	0.9300
N2-C8	1 341 (3)	C10—C15	1 375 (4)
N2N3	1.3×10^{-1}	C10-C11	1.370(1) 1 390(4)
N2 H2N	0.861(17)	C_{11} C_{12}	1.370(1)
N2 CO	1.272(2)	C11_U11	1.377(4)
N_{3}	1.273(3) 1.272(4)		0.9300
	1.373 (4)	C12—C13	1.3/1 (4)
CI_C6	1.374 (4)	C12—H12	0.9300
C2—C3	1.375 (4)	C13—C14	1.360 (4)
С2—Н2	0.9300	C14—C15	1.392 (4)
C3—C4	1.369 (5)	C14—H14	0.9300
С3—Н3	0.9300	C15—H15	0.9300
01—\$1—02	119.70 (12)	N1—C7—C8	107.76 (19)
01—S1—N1	107.02 (11)	N1—C7—H7A	110.2
0^2 S1 N1	106.60 (12)	C8 - C7 - H7A	110.2
$O_1 = S_1 = C_1$	100.00(12) 107.38(12)	NI C7 H7R	110.2
01 - 31 - 01	107.38(12) 107.41(12)	MI = C / = II / B	110.2
02-31-01	107.41(12)	$C_0 - C_1 - H_1 B$	110.2
NI—SI—CI	108.32 (12)	H/A - C/ - H/B	108.5
C7—N1—S1	121.73 (16)	O3—C8—N2	121.3 (2)
C7—N1—H1N	117 (2)	O3—C8—C7	121.3 (2)
S1—N1—H1N	116 (2)	N2—C8—C7	117.4 (2)
C8—N2—N3	119.7 (2)	N3—C9—C10	120.7 (2)
C8—N2—H2N	119.9 (19)	N3—C9—H9	119.7
N3—N2—H2N	119.6 (19)	С10—С9—Н9	119.7
C9—N3—N2	115.3 (2)	C15—C10—C11	118.6 (2)
C2—C1—C6	120.1 (3)	C15—C10—C9	119.8 (2)
C2-C1-S1	120.5 (2)	C11—C10—C9	121.6 (2)
C6-C1-S1	1193(2)	C12-C11-C10	120.8(3)
C1 - C2 - C3	119.5(2) 119.8(3)	C12 - C11 - H11	119.6
C1 $C2$ $C3$	120.1	C12 $C11$ $H11$	110.6
$C_1 - C_2 - H_2$	120.1	C12 $C12$ $C11$	119.0 110.2(2)
$C_3 - C_2 - H_2$	120.1	C13 - C12 - C11	119.5 (5)
$C_{4} = C_{3} = C_{2}$	119.7 (5)	C13—C12—H12	120.3
С4—С3—Н3	120.1	CII—CI2—HI2	120.3
С2—С3—Н3	120.1	C14—C13—C12	121.2 (3)
C5—C4—C3	120.4 (3)	C14—C13—Cl2	119.7 (3)
C5—C4—C11	119.9 (3)	C12—C13—Cl2	119.1 (2)
C3—C4—Cl1	119.7 (3)	C13—C14—C15	119.5 (3)
C4—C5—C6	120.3 (3)	C13—C14—H14	120.3
C4—C5—H5	119.8	C15—C14—H14	120.3
С6—С5—Н5	119.8	C10—C15—C14	120.6 (3)
C5—C6—C1	119.7 (3)	C10—C15—H15	119.7
С5—С6—Н6	120.2	C14—C15—H15	119.7

С1—С6—Н6	120.2		
O1—S1—N1—C7	35.4 (2)	S1—C1—C6—C5	177.1 (3)
O2—S1—N1—C7	164.6 (2)	S1—N1—C7—C8	171.09 (18)
C1—S1—N1—C7	-80.1 (2)	N3—N2—C8—O3	-177.6 (2)
C8—N2—N3—C9	178.5 (2)	N3—N2—C8—C7	2.2 (4)
01—\$1—C1—C2	-10.8 (3)	N1—C7—C8—O3	-9.0 (3)
02—\$1—C1—C2	-140.8 (2)	N1—C7—C8—N2	171.1 (2)
N1—S1—C1—C2	104.5 (2)	N2—N3—C9—C10	180.0 (2)
O1—S1—C1—C6	171.5 (2)	N3—C9—C10—C15	-173.1 (3)
02-SI-CI-C6	41.5(3)	$N_3 = C_9 = C_{10} = C_{11}$	6.4(4)
NI-SI-CI-C6	-73.3(3)	$C_{15} = C_{10} = C_{11} = C_{12}$	0.6(4)
C6-C1-C2-C3	0.4(5)	$C_{9} = C_{10} = C_{11} = C_{12}$	-1790(3)
S1-C1-C2-C3	-177.3(3)	C10-C11-C12-C13	0.5 (5)
C1-C2-C3-C4	-0.2(5)	C11-C12-C13-C14	-1.4 (5)
C2-C3-C4-C5	0.3 (6)	C11—C12—C13—Cl2	178.2 (2)
C2-C3-C4-C11	179.5 (3)	C12—C13—C14—C15	1.1 (5)
C3-C4-C5-C6	-0.5 (6)	Cl2—C13—C14—C15	-178.5 (2)
Cl1-C4-C5-C6	-179.7 (3)	C11—C10—C15—C14	-0.9 (4)
C4—C5—C6—C1	0.6 (6)	C9—C10—C15—C14	178.7 (3)
C2—C1—C6—C5	-0.6 (5)	C13—C14—C15—C10	0.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1 <i>N</i> ····O2 ⁱ	0.82 (2)	2.25 (2)	3.032 (3)	162 (3)
N1—H1 <i>N</i> ···O3	0.82 (2)	2.23 (3)	2.609 (3)	109 (2)
N2—H2 <i>N</i> ···O3 ⁱⁱ	0.86 (2)	1.98 (2)	2.829 (3)	170 (3)
C15—H15…O1 ⁱⁱⁱ	0.93	2.45	3.330 (3)	157

Symmetry codes: (i) -*x*-1, -*y*+2, -*z*; (ii) -*x*, -*y*+1, -*z*; (iii) *x*+1, *y*-1, *z*.