CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 21 December 2020
Accepted 17 June 2021

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela

Keywords: 2-picoline complex; inorganic supramolecular chemistry; crystal structure; hydrogen bonding.

CCDC reference: 2090586

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{array}{r}\text { ACCESS }\end{array}$

Bis(2-methylpyridinium) tetrachloridocuprate(II): synthesis, structure and Hirshfeld surface analysis

Tahir Mehmood, Rajesh S. Bhosale* and J. Prakasha Reddy*

Department of Chemistry, School of Sciences, Indrashil University, Rajpur, Gujarat, 382740, India. *Correspondence e-mail: rajeshbhosale24@gmail.com, j.prakashareddy@gmail.com

The title compound, $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}\right)_{2}\left[\mathrm{CuCl}_{4}\right]$, crystallizes in the monoclinic space group $I 2 / c$. The coordination around the copper atom is a distorted tetrahedron. The 2-methylpyridinium ion $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}^{+}\right)$interacts with the tetrachlorocuprate anion through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H}$ (phenyl) $\cdots \mathrm{Cl}$ contacts, forming a hydrogen-bonded layer-like structure. The supramolecular structure is further stabilized by $\mathrm{C}-\mathrm{H}$ (methyl) $\cdots \mathrm{Cl}$ interactions between the layers.

1. Chemical context

Supramolecular organic and inorganic chemistry have been studied both from the fundamental as well as the application point of view, which is evident from the literature (Ziach et al., 2018; Thorat et al., 2013; Burslem et al., 2016). With the surge in the number of compounds reported, potential applications of supramolecular inorganic materials in energy storage, separation, catalysis, sensors, molecular magnets, optoelectronic materials, etc., have attracted greater attention in recent years (Mueller et al., 2006; Wan et al., 2006; Férey et al., 2003; James, 2003; Eddaoudi et al., 2002; Ruben et al., 2005, Kitagawa et al., 2004, Stavila et al., 2014). Because of the divergent combination of ligands and metal salts, an enormous number of structural architectures with different sizes and shapes could be constructed (Moulton \& Zaworotko, 2001). The special characteristics and features such as ease of synthesis of the material, geometrically well-defined structures, exceptional tunability, post-synthetic modification, along with robustness of the material resulting from strong directional bonding, produce new opportunities and offer a unique platform amenable to the synthesis of more and more functional solids. For example, Adams et al. (2005) reported the synthesis of coordination compounds using a new synthetic route involving a thermal dehydrochlorination reaction in crystals of a pyridinium chlorometallate bicomponent system, i.e., anionic metal complexes and organic cations.

As part of ongoing studies in our group (PrakashaReddy \& Pedireddi, 2007; Reddy et al., 2014), the synthesis of coordination complexes using pyridine ligands has been reported. Hence, we further extended our studies to utilize the pyridinium ligand and to study in situ the single-crystal-to-singlecrystal transition (SCSCT) to investigate the reaction mechanism. In our endeavours to synthesize new functional solids, using a transition-metal anion and a pyridinium cation, we have chosen the CuCl_{2} and 2-methylpyridinium salt complex. Herein, we report the synthesis and crystal structure
of a bis(2-methylpyridinium) tetrachlorocuprate coordination complex.

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$	
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.88	2.93	$3.4297(16)$	118	
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.88	2.41	$3.2050(16)$	150	
$\mathrm{C} 6-\mathrm{H} 6 \cdots 1^{\mathrm{ii}}$	0.95	2.62	$3.453(2)$	147	
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{Cl} 2$	0.98	2.92	$3.850(2)$	159	
$\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{Cl} 2^{\text {iii }}$	0.98	2.98	$3.872(2)$	151	
Symmetry codes: (i) $-x+1,-y,-z+1 ;$	(ii) $x+\frac{1}{2}, y-\frac{1}{2}, z+\frac{1}{2} ;$	(iii)			
$-x+1,-y+1,-z+1$.					

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, complex molecules related by the twofold rotation axis are connected by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}_{\mathrm{ar}}-$ $\mathrm{H} \cdots \mathrm{Cl}$ interactions through a protonated N and an aromatic hydrogen attached to the carbon atom with the chloride ligand bonded to copper, forming a monomeric unit. These units interact with adjacent ones through $\mathrm{C}_{\mathrm{ar}}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding (Table 1, Fig. 2). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ distances and associated bond angles lie within the ranges observed for other similar interactions reported in the literature (Adams et al., 2005; Vittaya et al., 2015; Wyrzykowski et

Figure 2
The $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions between cations and anions in the crystal structure of the title compound.

Figure 3
The crystal packing of the title compound viewed along the b axis with intermolecular contacts shown as dashed lines.

Figure 4
Hirshfeld surface mapped over $d_{\text {norm }}$ highlighting the regions of $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ intermolecular contacts.
al., 2011; Jasrotia et al., 2018). The supramolecular structure is further stabilized by $\mathrm{C}_{\text {methyl }}-\mathrm{H} \cdots \mathrm{Cl}$ interactions involving hydrogens of the methyl group and chlorides bonded to copper, generating layers along the crystallographic b axis (Fig. 3).

To further investigate the intermolecular interactions present in the title compound, a Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots were generated with Crystal Explorer17 (Turner et al., 2017). The Hirshfeld surface mapped over $d_{\text {norm }}$ and corresponding colours representing various interactions are shown in Fig. 4. The red points on the surface correspond to the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions. The two-dimensional fingerprint plots (McKinnon et al., 2007) are shown in Fig. 5. On the Hirshfeld surface, the largest contribution (53.1\%) comes from the weak van der Waals $\mathrm{H} \cdots \mathrm{H}$ contacts. The interaction of $d_{\text {norm }}$ on the two-dimensional fingerprint plot shows two spikes; each one corresponds to $\mathrm{H} \cdots \mathrm{H}(39 \%)$ and $\mathrm{H} \cdots \mathrm{Cl} /$ $\mathrm{Cl} \cdots \mathrm{H}(32.5 \%)$ respectively. The $\mathrm{H} \cdots \mathrm{Cl}$ interaction highlights the hydrogen bond between adjacent moieties in the crystal structure. The $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}(16.5 \%)$ interactions appear as two shoulders. These interactions play a crucial role in the overall stabilization of the crystal packing.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of August 2020; Groom et al., 2016) revealed two related complexes containing 2-methylpyridinium: [2-methylpyridinium tetrachloroferrate(III)] (CCDC refcode WAYJEN; Wyrzykowski et al., 2011) and [bis(2-methyl-pyridinium) tetrachloro-zinc(II)] (CCDC refcode WIPCUW; Jasrotia et al., 2018). The molecular
structures of both WAYJEN and WIPCUW display threedimensional supramolecular networks arising from $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions. In addition, the search also revealed a 2-methylpyridine and copper chloride complex: [dichloro-bis(2-methylpyridine) $\mathrm{Cu}(\mathrm{II})$] (CCDC refcode CMPYCU01; Marsh et al., 1982) and [aqua-dichloro-bis(2methylpyridine) $\mathrm{Cu}(\mathrm{II})]$ (CCDC refcode BIJWUM; Marsh et al., 1982) and a very recently published dichloridomethano-lbis(2-methylpyridine) Cu (II) complex (Reddy, 2020). All of these structures display three-dimensional supramolecular networks stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.

5. Synthesis and crystallization

Both 2-methylpyridine and anhydrous copper(II) chloride obtained from Aldrich were used for the reaction. Anhydrous copper(II) chloride ($0.495 \mathrm{~g}, 0.005 \mathrm{~mol}$) was dissolved in 10 ml of distilled water. To this solution, 2-methylpyridine (0.93 g , 0.01 mol) was added followed by addition of few drops of HCl (36%) and the resulting mixture was stirred for $\sim 30 \mathrm{~min}$. at room temperature. The solution was then allowed to stand at room temperature for a few hours before being filtered and left at room temperature for crystallization. Block-shaped, pale-yellow-coloured crystals were obtained after 36 h .

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated

Figure 5
The full two-dimensional fingerprint plot for the organic cation in the title compound and those delineated into $\mathrm{H} \cdots \mathrm{H}(39 \%), \mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}$ (32.5%) and $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}(16.5 \%)$ contacts.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}\right)_{2}\left[\mathrm{CuCl}_{4}\right]$
M_{r}	393.62
Crystal system, space group	Monoclinic, $I 2 / c$
Temperature (K)	120
$a, b, c(\AA)$	$15.2354(8), 8.3683(3), 12.8372(6)$
$\beta\left({ }^{\circ}\right)$	$99.205(5)$
$V\left(\AA^{3}\right)$	$1615.60(13)$
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	2.00
Crystal size (mm)	$0.32 \times 0.27 \times 0.25$
Data collection	Agilent Xcalibur, Sapphire3
Diffractometer	Analytical $($ CrysAlis PRO; Agilent,
Absorption correction	$2014)$
	$0.848,0.965$
$T_{\text {min }}, T_{\text {max }}$	$24556,2821,2324$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.071
$R_{\text {int }}$	0.758
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.036,0.081,1.08$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2821
No. of reflections	88
No. of parameters	H -atom parameters constrained
H-atom treatment	$0.58,-0.58$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: CrysAlis PRO (Agilent, 2014), SUPERFLIP (Palatinus \& Chapuis, 2007; Palatinus \& van der Lee, 2008; Palatinus et al., 2012), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).
positions with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$ and refined as riding with fixed isotropic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})\right]$.

Acknowledgements

We thank Dr J. S. Yadav, Provost and Director (R\&D) for his support and encouragement.

Funding information

Funding for this research was provided by: Indrashil University.

References

Adams, C. J., Crawford, P. C., Orpen, A. G., Podesta, T. J. \& Salt, B. (2005). Chem. Commun. pp. 2457-2458.

Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Burslem, G. M., Kyle, H. F., Prabhakaran, P., Breeze, A. L., Edwards, T. A., Warriner, S. L., Nelson, A. \& Wilson, A. J. (2016). Org. Biomol. Chem. 14, 3782-3786.

Dodds, C. A. \& Kennedy, A. R. (2018). Acta Cryst. E74, 1369-1372.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. \& Yaghi, O. M. (2002). Science, 295, 469-472.
Férey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T. \& Percheron-Guégan, A. (2003). Chem. Commun. pp. 2976-2977.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.
Jasrotia, D., Verma, S. K., Sridhar, B., Alvi, P. A. \& Kumar, A. (2018). Mater. Chem. Phys. 207, 98-104.
Kitagawa, S., Kitaura, R. \& Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.
Marsh, W. E., Hatfield, W. E. \& Hodgson, D. J. (1982). Inorg. Chem. 21, 2679-2684.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.
Molano, M. F., Lorett Velasquez, V. P., Erben, M. F., Nossa González, D. L., Loaiza, A. E., Echeverría, G. A., Piro, O. E., Tobón, Y. A., Ben Tayeb, K. \& Gómez Castaño, J. A. (2020). Acta Cryst. E76, 148-154.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. \& Pastré, J. (2006). J. Mater. Chem. 16, 626-636.
Palatinus, L. \& Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
Palatinus, L., Prathapa, S. J. \& van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.
Palatinus, L. \& van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.
PrakashaReddy, J. \& Pedireddi, V. R. (2007). Eur. J. Inorg. Chem. pp. 1150-1158.
Reddy, J. P. (2020). Acta Cryst. E76, 1771-1774.
Reddy, J. P., Swain, D. \& Pedireddi, V. R. (2014). Cryst. Growth Des. 14, 5064-5071.
Ruben, M., Ziener, U., Lehn, J. M., Ksenofontov, V., Gütlich, P. \& Vaughan, G. B. M. (2005). Chem. Eur. J. 11, 94-100.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Stavila, V., Talin, A. A. \& Allendorf, M. D. (2014). Chem. Soc. Rev. 43, 5994-6010.
Thorat, V. H., Ingole, T. S., Vijayadas, K. N., Nair, R. V., Kale, S. S., Ramesh, V. V. E., Davis, H. C., Prabhakaran, P., Gonnade, R. G., Gawade, R. L., Puranik, V. G., Rajamohanan, P. R. \& Sanjayan, G. J. (2013). Eur. J. Org. Chem. pp. 3529-3542.

Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
Vittaya, L., Leesakul, N., Saithong, S. \& Chainok, K. (2015). Acta Cryst. E71, m201-m202.
Wan, Y., Yang, H. \& Zhao, D. (2006). Acc. Chem. Res. 39, 423-432.
Wyrzykowski, D., Wera, M., Sikorski, A., Jacewicz, D. \& Chmurzyński, L. (2011). Cent. Eur. J. Chem. 9, 1096-1101.
Ziach, K., Chollet, C., Parissi, V., Prabhakaran, P., Marchivie, M., Corvaglia, V., Bose, P. P., Laxmi-Reddy, K., Godde, F., Schmitter, J.-M., Chaignepain, S., Pourquier, P. \& Huc, I. (2018). Nat. Chem. 10, 511-518.

supporting information

Acta Cryst. (2021). E77, 726-729 [https://doi.org/10.1107/S2056989021006277]

Bis(2-methylpyridinium) tetrachloridocuprate(II): synthesis, structure and Hirshfeld surface analysis

Tahir Mehmood, Rajesh S. Bhosale and J. Prakasha Reddy

Computing details

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: Superflip (Palatinus \& Chapuis, 2007; Palatinus \& van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(2-methylpyridinium) tetrachloridocuprate(II)

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}\right)_{2}\left[\mathrm{CuCl}_{4}\right]$
$M_{r}=393.62$
Monoclinic, $I 2 / c$
$a=15.2354$ (8) \AA
$b=8.3683$ (3) \AA
$c=12.8372(6) \AA$
$\beta=99.205(5)^{\circ}$
$V=1615.60(13) \AA^{3}$
$Z=4$

Data collection

Agilent Xcalibur, Sapphire3
diffractometer
Detector resolution: 16.1511 pixels mm^{-1}
ω scans
Absorption correction: analytical
(CrysAlisPro; Agilent, 2014)
$T_{\text {min }}=0.848, T_{\text {max }}=0.965$
24556 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.081$
$S=1.08$
2821 reflections
88 parameters
0 restraints
Primary atom site location: iterative
$F(000)=796$
$D_{\mathrm{x}}=1.618 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5462 reflections
$\theta=2.9-32.5^{\circ}$
$\mu=2.00 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Blocks, pale yellow
$0.32 \times 0.27 \times 0.25 \mathrm{~mm}$

2821 independent reflections
2324 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=32.6^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-22 \rightarrow 22$
$k=-11 \rightarrow 12$
$l=-19 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0308 P)^{2}+1.4147 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.58 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.58$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cu1	0.500000	$0.22261(4)$	0.250000	$0.01825(9)$
C11	$0.38953(3)$	$0.10590(5)$	$0.13863(3)$	$0.02196(11)$
C12	$0.41898(3)$	$0.32033(5)$	$0.36739(4)$	$0.02260(11)$
N1	$0.68501(11)$	$0.01294(19)$	$0.63521(12)$	$0.0218(3)$
H1	0.642734	-0.054296	0.645210	0.026^{*}
C2	$0.66434(12)$	$0.1697(2)$	$0.62543(13)$	$0.0197(3)$
C3	$0.73176(13)$	$0.2747(2)$	$0.61076(14)$	$0.0222(4)$
H3	0.720458	0.386273	0.605979	0.027^{*}
C4	$0.83354(14)$	$0.0533(2)$	$0.61276(16)$	$0.0261(4)$
H4	0.890816	0.012622	0.607122	0.031^{*}
C5	$0.81548(14)$	$0.2165(2)$	$0.60311(15)$	$0.0247(4)$
H5	0.861102	0.288380	0.591178	0.030^{*}
C6	$0.76632(14)$	$-0.0468(2)$	$0.63060(15)$	$0.0254(4)$
H6	0.777088	-0.158092	0.639704	0.031^{*}
C7	$0.57039(13)$	$0.2174(2)$	$0.62851(16)$	$0.0259(4)$
H7A	0.536395	0.214343	0.556960	0.039^{*}
H7B	0.569141	0.325976	0.656845	0.039^{*}
H7C	0.543936	0.143189	0.673767	0.039^{*}

Atomic displacement parameters (A^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.02142(16)$	$0.01465(15)$	$0.01929(16)$	0.000	$0.00510(12)$	0.000
C 11	$0.0253(2)$	$0.0174(2)$	$0.0226(2)$	$-0.00165(16)$	$0.00223(17)$	$-0.00185(15)$
C 2	$0.0276(2)$	$0.0172(2)$	$0.0246(2)$	$0.00035(16)$	$0.00935(17)$	$-0.00340(16)$
N 1	$0.0268(8)$	$0.0154(7)$	$0.0235(7)$	$-0.0023(6)$	$0.0054(6)$	$0.0011(6)$
C 2	$0.0264(9)$	$0.0172(8)$	$0.0155(8)$	$-0.0004(7)$	$0.0033(7)$	$0.0000(6)$
C 3	$0.0311(10)$	$0.0150(8)$	$0.0203(8)$	$-0.0030(7)$	$0.0040(7)$	$0.0004(6)$
C 4	$0.0251(10)$	$0.0266(10)$	$0.0267(9)$	$0.0016(8)$	$0.0040(8)$	$-0.0010(8)$
C 5	$0.0281(10)$	$0.0221(9)$	$0.0244(9)$	$-0.0069(7)$	$0.0056(8)$	$-0.0008(7)$
C 6	$0.0326(10)$	$0.0172(9)$	$0.0265(10)$	$0.0031(7)$	$0.0048(8)$	$0.0016(7)$
C 7	$0.0263(10)$	$0.0243(10)$	$0.0276(10)$	$0.0018(7)$	$0.0061(8)$	$0.0004(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu}-\mathrm{Cl1}^{\mathrm{i}}$	$2.2496(5)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.383(3)$
$\mathrm{Cu}-\mathrm{Cl1}$	$2.2496(5)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{Cu}-\mathrm{Cl2}$	$2.2492(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.395(3)$
$\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}$	$2.2492(4)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.370(3)$

N1-H1	0.8800	C5-H5	0.9500
N1-C2	1.350 (2)	C6-H6	0.9500
N1-C6	1.346 (2)	C7-H7A	0.9800
C2-C3	1.387 (3)	C7-H7B	0.9800
C2-C7	1.493 (3)	C7-H7C	0.9800
C3-H3	0.9500		
$\mathrm{Cl1}-\mathrm{Cul}-\mathrm{Cl1}^{\text {i }}$	128.54 (3)	C5-C4-H4	121.0
$\mathrm{Cl2}^{\text {i }}-\mathrm{Cu} 1-\mathrm{Cl} 1$	99.614 (17)	C6-C4-H4	121.0
$\mathrm{Cl} 2-\mathrm{Cu}-\mathrm{Cl} 1^{\text {i }}$	98.550 (17)	C6-C4-C5	118.10 (19)
$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	98.549 (17)	C3-C5-C4	120.61 (18)
$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{Cl1}^{\text {i }}$	99.616 (17)	C3-C5-H5	119.7
$\mathrm{Cl} 2-\mathrm{Cu}-\mathrm{Cl} 2$	137.36 (3)	C4-C5-H5	119.7
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	118.0	N1-C6-C4	119.91 (18)
C6-N1-H1	118.0	N1-C6-H6	120.0
C6-N1-C2	124.00 (17)	C4-C6-H6	120.0
N1-C2-C3	117.46 (17)	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.5
N1-C2-C7	117.88 (17)	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
C3-C2-C7	124.64 (17)	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
C2-C3-H3	120.1	H7A-C7-H7B	109.5
C5-C3-C2	119.88 (17)	H7A-C7-H7C	109.5
C5-C3-H3	120.1	H7B-C7-H7C	109.5
N1-C2-C3-C5	2.2 (3)	C6-N1-C2-C3	-0.6 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 4$	-1.5 (3)	C6-N1-C2-C7	177.92 (17)
C2-C3-C5-C4	-1.7(3)	C6-C4-C5-C3	-0.4 (3)
C5-C4-C6-N1	2.0 (3)	C7-C2-C3-C5	-176.27 (18)

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1} 1^{\mathrm{ii}}$	0.88	2.93	$3.4297(16)$	118
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.88	2.41	$3.2050(16)$	150
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	0.95	2.62	$3.453(2)$	147
$\mathrm{C} 7 — \mathrm{H} 7 A \cdots \mathrm{Cl} 2$	0.98	2.92	$3.850(2)$	159
$\mathrm{C} 7 — \mathrm{H} 7 B \cdots \mathrm{Cl} 2^{\mathrm{iv}}$	0.98	2.98	$3.872(2)$	151

Symmetry codes: (ii) $-x+1,-y,-z+1$; (iii) $x+1 / 2, y-1 / 2, z+1 / 2$; (iv) $-x+1,-y+1,-z+1$.

