

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 31 March 2021
Accepted 3 June 2021

Edited by A. M. Chippindale, University of Reading, England

Keywords: crystal structure; hexachloridostannate(IV) complex; ethylenediammonium; p-anisaldehyde; organic-inorganic hybrid complex.

CCDC reference: 2063269

Supporting information: this article has supporting information at journals.iucr.org/e

A new organic-inorganic compound, ethylenediammonium hexachloridostannate(IV) p-anisaldehyde disolvate

Adrienne Ndiolene, ${ }^{\text {a }}$ Tidiane Diop, ${ }^{\mathbf{a}}$ Mouhamadou Sembène Boye, ${ }^{\mathbf{b}}$ Aminata Diasse-Sarr ${ }^{\text {a }}$ and Ulli Englert ${ }^{\text {c }}$

áLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université
Cheikh Anta Diop, Dakar, Senegal, 'bépartement de Physique Chimie, Faculté des Sciences et Technologies de
I'Education et de la Formation, Université Cheikh Anta Diop, Boulevard Habib, Bourguiba, BP 5036 Fann-Dakar,
Senegal, and 'Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1,52056 Aachen, Germany.
${ }^{\text {*Correspondence e-mail: andiolene@gmail.com }}$

The asymmetric unit of the title organic-inorganic hybrid complex [systematic name: ethane-1,2-diaminium hexachloridostannate(IV)-4-methoxybenzaldehyde (1/2)], $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{SnCl}_{6}\right] \cdot 2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$, contains one half of an ethylenediammonium cation, one half of an $\left[\mathrm{SnCl}_{6}\right]^{2-}$ anion and one p-anisaldehyde molecule. Both the organic cation and the quasi-regular octahedral inorganic anion are located about inversion centres. The organic cations and $\left[\mathrm{SnCl}_{6}\right]^{2-}$ anions lie in layers parallel to the $a c$ plane with p-anisaldehyde molecules occupying the space between the layers. A network of classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds exists between the ethylenediammonium cations and the $\left[\mathrm{SnCl}_{6}\right]^{2-}$ anions and p-anisaldehyde molecules. These interactions, together with non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between the ethylenediammonium cations and the p-anisaldehyde molecules, serve to hold the structure together. The crystal studied was refined as a two-component twin.

1. Chemical context

The combination of organic and inorganic components to form organic-inorganic hybrid materials has attracted considerable attention owing to the generation of new properties that are absent in type either of building block (Boopathi et al., 2017; Newman et al., 1989; Chun \& Jung, 2009; Bouchene et al., 2018). Hybrid functional materials, containing both inorganic and organic components, are considered to be potential platforms for applications in extremely diverse fields, such as optics, micro-electronics, magnetism, vibrational spectroscopy, transportation, health, energy, energy storage, diagnosis, housing and the environment (Masteri-Farahani et al., 2012; Kim et al., 2020; Manser et al., 2016; Rademeyer et al., 2007). Moreover, halogenostannate hybrid compounds containing protonated amine cations have recently received considerable attention because of their interesting physical and chemical properties, such as magnetism, electroluminescence, photoluminescence and conductivity, which may lead to technological innovations (Aruta et al., 2005; Chouaib \& Kamoun, 2015; Papavassiliou et al., 1999; Yin \& Yo, 1998). The structures of these hybrid materials have been shown to contain contain isolated or connected chains or clusters of $\operatorname{Sn} X_{6}$ octahedra separated by amine cations (Zhou
\& Liu, 2012; Shahzadi et al., 2008; Liu, 2012; Diop et al., 2020). In this category of materials, the organic moieties, which balance the negative charge on the inorganic units, may also act as structure-directing agents and greatly affect the structure and dimensionality of the supramolecular framework formed (Díaz et al., 2006; Hannon et al., 2002). In the present study, we report the synthesis and structural analysis of a new organic-inorganic hybrid complex, $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{SnCl}_{6}\right] \cdot 2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$.

2. Structural commentary

The asymmetric unit comprises of one half of an ethylenediammonium cation, one half of a hexachlorostannate(IV) dianion, $\left[\mathrm{SnCl}_{6}\right]^{2-}$, both of which lie on centres of inversion, and one molecule of p-anisaldehyde (Fig. 1). The environment around the tin atom in the $\left[\mathrm{SnCl}_{6}\right]^{2-}$ dianion is an almost undistorted octahedron in which the $\mathrm{Sn}-\mathrm{Cl}$ bond lengths lie in the range 2.4100 (12) to 2.4322 (11) \AA and the cis $\mathrm{Cl}-\mathrm{Sn}-$ Cl bond angles lie in the range 89.36 (4) to 90.20 (4) ${ }^{\circ}$. The $\mathrm{Sn}-\mathrm{Cl} 2$ bond involved in hydrogen bonding is slightly longer, at $2.4322(11) \AA$, than the other $\mathrm{Sn}-\mathrm{Cl}$ bonds $[\mathrm{Sn}-\mathrm{Cl} 1=$ $2.4100(12) \AA$ and $\mathrm{Sn}-\mathrm{Cl} 3=2.4220$ (11) $\AA]$. These results are comparable to those reported by other research groups (van Megen et al., 2013; Ali et al., 2008; Xue \& Kong 2014).

Figure 1
The atom-numbering for the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x,-y,-z$; (ii) $-x+1,-y,-z+1$.]

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.95	3.05	$3.596(5)$	118
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.90(2)$	$1.89(3)$	$2.763(6)$	$162(6)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.92(2)$	$2.71(5)$	$3.312(4)$	$124(5)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 3^{\mathrm{iii}}$	$0.92(2)$	$2.62(4)$	$3.404(4)$	$144(5)$
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 2$	$0.92(2)$	$2.44(3)$	$3.315(5)$	$158(6)$
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 3$	$0.92(2)$	$2.75(6)$	$3.292(4)$	$119(5)$
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O} 2^{\text {iv }}$	0.99	2.62	$3.319(7)$	128

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x+1, y, z$; (iii) $-x+1,-y,-z$; (iv) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

3. Supramolecular features

The packed crystal structure contains sheets lying parallel to the $a c$ plane in which each $\left[\mathrm{SnCl}_{6}\right]^{2-}$ dianion is surrounded by four ethylenediammonium cations (Fig. 2). The p-anisaldehyde molecules are located in the otherwise empty space between the sheets (Fig. 3). The crystal packing of the complex is supported by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (Table 1). The $\mathrm{NH}_{3}{ }^{+}$groups of the ethylenediammonium cation act as the hydrogen-bonding donors. The $D \cdots A$ distances involving the $\mathrm{NH}_{3}{ }^{+}$group and either the p-anisaldehyde molecule or the $\left[\mathrm{SnCl}_{6}\right]^{2-}$ units range from 2.763 (6) \AA for $\mathrm{N} 1 \cdots \mathrm{O}^{2 i i i}$ to 3.404 (4) \AA for $\mathrm{N} 1 \cdots \mathrm{Cl}^{\mathrm{v}}$. Nonclassical interactions between the p-anisaldehyde molecules and the ethylenediammonium cations, $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 2^{\text {vi }}$ at $2.62 \AA$, further serve to hold the structure together.

4. Database survey

Organic-inorganic hybrid compounds with structures most similar to that of the title compound include: $\left(\mathrm{C}_{6} \mathrm{H}_{22} \mathrm{~N}_{4}\right)\left[\mathrm{SnCl}_{6}\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{C}_{8} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\left[\mathrm{SnCl}_{6}\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Bouchene et al. 2018), $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BrN}_{2}\right)\left[\mathrm{SnCl}_{6}\right]$ (Ali et al., 2008),

Figure 2
The arrangement of the $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)^{2-}$ and $\left[\mathrm{SnCl}_{6}\right]^{2-}$ units of the title compound in the ac plane showing the $\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 2$ and $\mathrm{N} 1-$ $\mathrm{H} 1 A \cdots \mathrm{O} 2$ hydrogen bonds as dashed lines.

Figure 3
View of the title compound along the c axis showing the organic cationinorganic anion layers separated by p-anisaldehyde molecules. Hydrogen bonds are indicated by dashed lines.
$\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{SnCl}_{6}\right]$, and $\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\left[\mathrm{SnCl}_{6}\right]$ (Rademeyer et al., 2007) and $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}\right)_{3} \mathrm{SnBr}_{6} \cdot \mathrm{Br}$ (Chouaib \& Kamoun, 2015). These structures contain isolated or connected chains or
clusters of $\operatorname{Sn} X_{6}$ octahedra separated by the organic cations. A variety of intermolecular hydrogen bonds, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, together with $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, serve to consolidate the molecular structures.

5. Synthesis and crystallization

Chemicals [p-anisaldehyde, ethylenediamine and tin (II)] were purchased from Sigma-Aldrich and were used without any further purification. The solvent use for the synthesis was ethanol (96\%).

Synthesis of $\boldsymbol{N}, \boldsymbol{N}^{\prime}$-bis(4-methoxybenzylidene)ethylenediamine

The Schiff base N, N^{\prime}-bis(4-methoxybenzylidene)ethylenediamine was prepared by condensing p-anisaldehyde (10 g ; 0.0734 mol) with ethylenediamine ($2.205 \mathrm{~g} ; 0.0367 \mathrm{~mol}$) in ethanol (30 ml) (Fig. 4). The resulting mixture was heated under reflux for 6 h , filtered and left to evaporate at ambient temperature. (The reaction between p-anisaldehyde and ethylenediamine gave the same product whatever the proportions of reactants used). After a few days of slow evaporation, 4.511 g of crystals were obtained, corresponding to a yield of 82%. The compound was characterized by FT-IR $\left(\mathrm{cm}^{-1}: 1639.05(\mathrm{C}=\mathrm{N}) ; 1603,1505,1461\right.$ and $1448(\mathrm{C}=\mathrm{C}$, aromatic); 1019 (C-O, ether).

Synthesis of the title compound

$0.3 \mathrm{~g} \quad(0.00168 \mathrm{~mol})$ of N, N^{\prime}-bis (4-methoxybenzylidene)ethylenediamine were dissolved in 30 ml of ethanol in a round-bottomed flask, followed by the addition of SnCl_{2} $(0.638 \mathrm{~g} ; 0.00168 \mathrm{~mol})$ to form a yellow solution (Fig. 5). The mixture was refluxed for 7 h at 353 K , filtered to remove $\mathrm{Sn}(\mathrm{OEt})_{6}$ and $\mathrm{Sn}(\mathrm{OH})_{2}$ and the resulting solution was allowed to evaporate slowly. After a few days of evaporation, lightyellow block-shaped crystals suitable for single-crystal X-ray analysis were obtained in a yield of 31%. The presence of water molecules in the solvent ($\mathrm{EtOH}, 96 \%$) causes hydrolysis of the Schiff base and oxidation of $\operatorname{tin}(I I)$ to $\operatorname{tin}(I V)$. The hydrolysis reaction leads to the formation of two molecules of p-anisaldehyde and one ethylenediammonium cation.

Figure 4
Synthesis of the intermediate N, N^{\prime}-bis(4-methoxybenzylidene)ethylenediamine.

Figure 5
Synthesis of the title compound.

Table 2
Experimental details.

Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer

Absorption correction	Multi-scan $(S A D A B S$; Krause et al., 2015)
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	$3929,3929,3182$
$R_{\text {int }}$	
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.112
	0.723
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.062,0.164,1.07$
No. of reflections	3929
No. of parameters	154
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$2.91,-2.69$

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2009), SHELXT (Sheldrick 2015a), SHELXL2018/3 (Sheldrick, 2015b) and PLATON (Spek, 2020).

The crystalline product was characterized by FT-IR (cm^{-1} : 1659 ($\mathrm{C}=\mathrm{O}$); $3290(\mathrm{~N}-\mathrm{H}) ; 2801$ ($\mathrm{C}-\mathrm{H}$, aldehyde); 1596, 1570 and $1556(\mathrm{C}=\mathrm{C}$, phenyl); 1259 ($\mathrm{C}-\mathrm{O}$, ether).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{SnCl}_{6}\right] \cdot 2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$ crystallizes in the space group $P 2_{1} / n$ with the monoclinic angle, β, close to 90°. The crystals formed as non-merohedral twins with about one quarter of reflections overlapping. The twin law corresponds to rotation about c^{*}. For the crystal investigated, the relative domain sizes amounted to 0.790 (4): 0.210 (4). The structure was solved by intrinsic phasing (Sheldrick, 2015a). The twin law was identified from reflections with $I_{\text {obs }} \gg I_{\text {calc }}$, and PLATON (Spek, 2020) was used to generate a suitable two-domain reflection file for twin refinement (Sheldrick, 2015b). All non-hydrogen atoms were assigned anisotropic displacement parameters. H atoms attached to C were calculated in standard geometry and treated as riding $[\mathrm{C}-\mathrm{H}=$
$0.95-0.99 \AA ; U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {iso }}(\mathrm{C})$ or $1.5 U_{\text {iso }}(\mathrm{C}-$ methyl $\left.)\right] . \mathrm{H}$ atoms attached to N were located as local maxima in a difference-Fourier map and refined with a distance restraint $\mathrm{N}-\mathrm{H}=0.9 \AA$ and an isotropic displacement parameter $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {iso }}(\mathrm{N})$.

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal) for support. The diffraction data were collected at RWTH Aachen University.

References

Ali, B. F., Al-Far, R. \& Haddad, S. F. (2008). Acta Cryst. E64, m637m638.
Aruta, C., Licci, F., Zappettini, A., Bolzoni, F., Rastelli, F., Ferro, P. \& Besagni, T. (2005). Appl. Phys. A, 81, 963-968.
Boopathi, K., Babu, S. M., Jagan, R. \& Ramasamy, P. (2017). J. Phys. Chem. Solids, 111, 419-430.
Bouchene, R., Lecheheb, Z., Belhouas, R. \& Bouacida, S. (2018). Acta Cryst. E74, 206-211.
Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chouaib, H. \& Kamoun, S. (2015). J. Phys. Chem. Solids, 85, 218-225.
Chun, H. \& Jung, H. (2009). Inorg. Chem. 48, 417-419.
Díaz, P., Benet-Buchholz, J., Vilar, R. \& White, A. J. P. (2006). Inorg. Chem. 45, 1617-1626.
Diop, M. B., Sarr, M., Cissé, S., Diop, L., Allen, G. O. \& Akkurt, M. (2020). Int. J. Eng. Res. Appl. (IJERA) 10, 17-23.

Hannon, M. J., Painting, C. L., Plummer, E. A., Childs, L. J. \& Alcock, N. W. (2002). Chem. Eur. J. 8, 2225-2238.

Kim, T., Lim, J. \& Song, S. (2020). Energies 13, 5572, 1-16.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Liu, M.-L. (2012). Acta Cryst. E68, m681.
Manser, J. S., Christians, J. A. \& Kamat, P. V. (2016). Chem. Rev. 116, 12956-13008.
Masteri-Farahani, M., Bahmanyar, M. \& Mohammadikish, M. (2012). J. Nanostruct. 1, 191-197.

Megen, M. van, Prömper, S. \& Reiss, G. J. (2013). Acta Cryst. E69, m217.
Newman, P. R., Warren, L. F., Cunningham, P., Chang, T. Y., Cooper, D. E., Burdge, G. L., Polak-Dingels, P. \& Lowe-Ma, C. K. (1989). MRS Online Proceedings Library 173, 557-561
Papavassiliou, G. C., Mousdis, G. A. \& Koutselas, I. B. (1999). Adv. Mater. Opt. Electron. 9, 265-271.
Rademeyer, M., Lemmerer, A. \& Billing, D. G. (2007). Acta Cryst. C63, m289-m292.
Shahzadi, S., Khan, H. N., Ali, S. \& Helliwell, M. (2008). Acta Cryst. E64, m573.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Xue, R. \& Kong, L. (2014). Acta Cryst. E70, m269.
Yin, R. Z. \& Yo, C. H. (1998). Bull. Korean Chem. Soc. 19, 947-951.
Zhou, B. \& Liu, H. (2012). Acta Cryst. E68, m782.

supporting information

Acta Cryst. (2021). E77, 696-699 [https://doi.org/10.1107/S205698902100579X]

A new organic-inorganic compound, ethylenediammonium hexachloridostannate(IV) \boldsymbol{p}-anisaldehyde disolvate

Adrienne Ndiolene, Tidiane Diop, Mouhamadou Sembène Boye, Aminata Diasse-Sarr and Ulli Englert

Computing details

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

Ethane-1,2-diaminium hexachloridostannate(IV)-4-methoxybenzaldehyde (1/2)

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{SnCl}_{6}\right] \cdot 2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=665.80$
Monoclinic, $P 2_{1} / n$
$a=6.9762(12) \AA$
$b=22.806$ (4) \AA
$c=8.0394$ (13) \AA
$\beta=90.948$ (4) ${ }^{\circ}$
$V=1278.9$ (4) \AA^{3}
$Z=2$

Data collection

Bruker D8 gonimeter with APEX CCD detector diffractometer
Radiation source: Incoatec microsource
Multilayer optics monochromator ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$F(000)=664$
$D_{\mathrm{x}}=1.729 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4273 reflections
$\theta=2.7-27.3^{\circ}$
$\mu=1.65 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, light yellow
$0.17 \times 0.17 \times 0.13 \mathrm{~mm}$

3929 measured reflections
3929 independent reflections
3182 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.112$
$\theta_{\text {max }}=30.9^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-9 \rightarrow 9$
$k=-32 \rightarrow 32$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.164$
$S=1.07$
3929 reflections
154 parameters
3 restraints

Primary atom site location: dual
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.090 P)^{2}+3 . P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=2.91$ e \AA^{-3}

supporting information

$\Delta \rho_{\min }=-2.69$ e \AA^{-3}
Extinction correction: SHELXL-2018/3
(Sheldrick 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0073 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\text {eq }}$
O1	$0.0054(6)$	$0.20471(16)$	$0.5640(5)$	$0.0297(8)$
O2	$0.0223(7)$	$0.35799(17)$	$-0.0922(5)$	$0.0346(9)$
C1	$0.0073(7)$	$0.2253(2)$	$0.4064(6)$	$0.0216(9)$
C2	$0.0110(8)$	$0.1905(2)$	$0.2647(6)$	$0.0271(11)$
H2	0.011776	0.148942	0.273751	0.032^{*}
C3	$0.0134(8)$	$0.2171(2)$	$0.1100(6)$	$0.0261(10)$
H3	0.014641	0.193476	0.012738	0.031^{*}
C4	$0.0141(8)$	$0.2776(2)$	$0.0945(6)$	$0.0224(9)$
C5	$0.0197(8)$	$0.3047(2)$	$-0.0684(7)$	$0.0289(11)$
H5	0.021414	0.279678	-0.162937	0.035^{*}
C6	$0.0097(8)$	$0.3121(2)$	$0.2377(6)$	$0.0262(10)$
H6	0.008962	0.353603	0.227991	0.031^{*}
C7	$0.0063(9)$	$0.2865(2)$	$0.3939(7)$	$0.0281(11)$
H7	0.003288	0.310129	0.491121	0.034^{*}
C8	$0.0077(9)$	$0.1422(2)$	$0.5874(7)$	$0.0299(11)$
H8A	-0.104360	0.124858	0.531118	0.045^{*}
H8B	0.003967	0.133301	0.706506	0.045^{*}
H8C	0.124940	0.125913	0.540404	0.045^{*}
Sn1	0.000000	0.000000	0.000000	$0.01522(16)$
C11	$-0.23806(17)$	$0.07591(5)$	$-0.03230(15)$	$0.0231(3)$
C12	$0.02718(18)$	$0.02031(5)$	$0.29645(13)$	$0.0225(3)$
C13	$0.25385(17)$	$0.06982(5)$	$-0.05138(14)$	$0.0207(3)$
N1	$0.5008(6)$	$0.02942(18)$	$0.2818(5)$	$0.0209(8)$
H1A	$0.533(8)$	$0.0662(13)$	$0.313(8)$	0.025^{*}
H1B	$0.544(9)$	$0.015(3)$	$0.183(5)$	0.025^{*}
H1C	$0.372(4)$	$0.029(3)$	$0.255(8)$	0.025^{*}
C9	$0.5429(9)$	$-0.0111(2)$	$0.4218(6)$	$0.0259(11)$
H9A	0.683408	-0.014942	0.437370	0.031^{*}
H9B	0.490162	-0.050389	0.395586	0.031^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.049(2)$	$0.0189(17)$	$0.0210(17)$	$0.0022(16)$	$-0.0011(16)$	$0.0025(13)$

O2	$0.052(3)$	$0.0207(18)$	$0.031(2)$	$-0.0010(17)$	$0.0017(18)$	$0.0066(15)$
C1	$0.030(2)$	$0.016(2)$	$0.019(2)$	$0.0003(18)$	$-0.0028(18)$	$0.0013(16)$
C2	$0.043(3)$	$0.014(2)$	$0.025(2)$	$0.001(2)$	$-0.001(2)$	$-0.0011(17)$
C3	$0.041(3)$	$0.015(2)$	$0.022(2)$	$-0.001(2)$	$0.001(2)$	$-0.0024(16)$
C4	$0.030(2)$	$0.017(2)$	$0.020(2)$	$-0.0004(18)$	$-0.0019(18)$	$0.0007(16)$
C5	$0.040(3)$	$0.022(2)$	$0.024(2)$	$0.000(2)$	$-0.001(2)$	$0.0026(19)$
C6	$0.042(3)$	$0.014(2)$	$0.023(2)$	$0.000(2)$	$-0.001(2)$	$-0.0024(17)$
C7	$0.044(3)$	$0.016(2)$	$0.024(2)$	$0.000(2)$	$0.000(2)$	$-0.0026(17)$
C8	$0.043(3)$	$0.018(2)$	$0.029(3)$	$0.003(2)$	$-0.002(2)$	$0.0067(18)$
Sn1	$0.0197(3)$	$0.0131(2)$	$0.0128(2)$	$-0.00059(15)$	$-0.00159(15)$	$0.00193(13)$
C11	$0.0246(6)$	$0.0173(5)$	$0.0275(6)$	$0.0032(4)$	$0.0004(4)$	$0.0059(4)$
C12	$0.0294(6)$	$0.0242(6)$	$0.0138(5)$	$-0.0038(5)$	$-0.0010(4)$	$-0.0003(4)$
C13	$0.0240(6)$	$0.0181(5)$	$0.0199(5)$	$-0.0040(4)$	$-0.0016(4)$	$0.0032(4)$
N1	$0.028(2)$	$0.0205(19)$	$0.0145(17)$	$-0.0016(16)$	$-0.0025(15)$	$0.0007(14)$
C9	$0.035(3)$	$0.026(2)$	$0.017(2)$	$0.007(2)$	$0.003(2)$	$0.0041(18)$

Geometric parameters ($\hat{A},{ }^{\circ}$)

O1-C1	1.351 (6)	C8-H8B	0.9800
O1-C8	1.438 (6)	C8-H8C	0.9800
O2-C5	1.231 (6)	$\mathrm{Sn} 1-\mathrm{Cl1}^{\text {i }}$	2.4100 (12)
C1-C2	1.390 (7)	$\mathrm{Sn} 1-\mathrm{Cl} 1$	2.4100 (12)
C1-C7	1.399 (7)	$\mathrm{Sn} 1-\mathrm{Cl3}^{\text {i }}$	2.4220 (11)
C2-C3	1.384 (7)	$\mathrm{Sn} 1-\mathrm{Cl} 3$	2.4220 (11)
C2-H2	0.9500	$\mathrm{Sn} 1-\mathrm{Cl2}{ }^{\text {i }}$	2.4322 (11)
C3-C4	1.385 (6)	$\mathrm{Sn} 1-\mathrm{Cl} 2$	2.4322 (11)
C3-H3	0.9500	N1-C9	1.482 (6)
C4-C6	1.395 (7)	N1-H1A	0.902 (19)
C4-C5	1.449 (7)	N1-H1B	0.92 (2)
C5-H5	0.9500	N1-H1C	0.925 (19)
C6-C7	1.386 (7)	$\mathrm{C} 9-\mathrm{C} 9^{\text {ii }}$	1.490 (10)
C6-H6	0.9500	C9-H9A	0.9900
C7-H7	0.9500	C9—H9B	0.9900
C8-H8A	0.9800		
C1-O1-C8	117.8 (4)	Cl1 ${ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Cl1}$	180.0
O1-C1-C2	124.8 (4)	$\mathrm{Cl1}{ }^{\text {i }}-\mathrm{Sn} 1-\mathrm{Cl3}^{\text {i }}$	90.80 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 7$	114.4 (4)	$\mathrm{Cl1}-\mathrm{Sn} 1-\mathrm{Cl3}^{\text {i }}$	89.21 (4)
C2-C1-C7	120.7 (5)	$\mathrm{Cl1}{ }^{\text {i }} \mathrm{Sn} 1-\mathrm{Cl} 3$	89.20 (4)
C3-C2-C1	119.1 (4)	$\mathrm{Cl} 1-\mathrm{Sn} 1-\mathrm{Cl} 3$	90.79 (4)
C3-C2-H2	120.4	Cl 3 - $\mathrm{Sn} 1-\mathrm{Cl} 3$	180.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.4	$\mathrm{Cl1}{ }^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Cl2}{ }^{\text {i }}$	90.64 (4)
C2-C3-C4	121.2 (5)	$\mathrm{Cl1}-\mathrm{Sn} 1-\mathrm{Cl}^{\text {i }}$	89.36 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.4	$\mathrm{Cl3}{ }^{\text {i }}-\mathrm{Sn} 1-\mathrm{Cl2}{ }^{\text {i }}$	89.80 (4)
C4-C3-H3	119.4	$\mathrm{Cl} 3-\mathrm{Sn} 1-\mathrm{Cl}^{\text {i }}$	90.20 (4)
C3-C4-C6	119.1 (5)	$\mathrm{Cl1}{ }^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Cl2}$	89.36 (4)
C3-C4-C5	120.4 (5)	$\mathrm{Cl} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	90.64 (4)
C6-C4-C5	120.5 (5)	$\mathrm{Cl} 3{ }^{\text {i }} \mathrm{Sn} 1-\mathrm{Cl} 2$	90.20 (4)

O2-C5-C4	124.2 (5)	$\mathrm{Cl} 3-\mathrm{Sn} 1-\mathrm{Cl} 2$	89.80 (4)
O2-C5-H5	117.9	$\mathrm{Cl2}{ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Cl} 2$	180.0
C4-C5-H5	117.9	C9-N1-H1A	109 (4)
C7-C6-C4	120.8 (4)	C9-N1-H1B	111 (4)
C7-C6-H6	119.6	$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	120 (6)
C4-C6-H6	119.6	C9-N1-H1C	110 (4)
C6-C7-C1	119.0 (5)	H1A-N1-H1C	109 (6)
C6-C7-H7	120.5	H1B-N1-H1C	97 (6)
C1-C7-H7	120.5	N1-C9-C9 ${ }^{\text {ii }}$	110.6 (5)
O1-C8-H8A	109.5	N1-C9-H9A	109.5
O1-C8-H8B	109.5	C ${ }^{\text {ii- }}$ - $\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	109.5
H8A-C8-H8B	109.5	N1-C9-H9B	109.5
O1-C8- H 8 C	109.5	C9 ${ }^{\text {ii }}$-C9- H 9 B	109.5
H8A-C8-H8C	109.5	H9A-C9-H9B	108.1
H8B-C8-H8C	109.5		
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	0.1 (8)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	-179.3 (6)
C8-O1-C1-C7	-179.6 (5)	C6-C4-C5-O2	0.6 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.7 (5)	C3-C4-C6-C7	0.6 (9)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.1 (9)	C5-C4-C6-C7	-179.4 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.6 (9)	C4-C6-C7-C1	0.0 (9)
C2-C3-C4-C6	-0.9 (9)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 6$	179.5 (5)
C2-C3-C4-C5	179.1 (5)	C2- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 6$	-0.2 (9)

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x+1,-y,-z+1$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6 — \mathrm{H} 6 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.95	3.05	$3.596(5)$	118
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots 2^{\mathrm{iii}}$	$0.90(2)$	$1.89(3)$	$2.763(6)$	$162(6)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl1}^{\mathrm{iv}}$	$0.92(2)$	$2.71(5)$	$3.312(4)$	$124(5)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl} 3^{v}$	$0.92(2)$	$2.62(4)$	$3.404(4)$	$144(5)$
$\mathrm{N} 1 — \mathrm{H} 1 C \cdots \mathrm{Cl} 2$	$0.92(2)$	$2.44(3)$	$3.315(5)$	$158(6)$
$\mathrm{N} 1 — \mathrm{H} 1 C \cdots \mathrm{Cl} 3$	$0.92(2)$	$2.75(6)$	$3.292(4)$	$119(5)$
$\mathrm{C} 9 — \mathrm{H} 9 B \cdots \mathrm{O} 2^{\text {vi }}$	0.99	2.62	$3.319(7)$	128

Symmetry codes: (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (iv) $x+1, y, z$; (v) $-x+1,-y,-z$; (vi) $-x+1 / 2, y-1 / 2,-z+1 / 2$.

