

Received 10 May 2021 Accepted 25 May 2021

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela

Keywords: azo compounds; 2-naphthols; crystal structure; Hirshfeld surface calculations.

CCDC reference: 2085853

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 1-[(*E*)-2-(5-chloro-2-hydroxyphenyl)hydrazin-1-yl-idene]naphthalen-2(1*H*)-one

Hassiba Bougueria,^{a,b}* Souheyla Chetioui,^{a,c} Mohammed Abdellatif Bensegueni,^a Jean-Pierre Djukic^d and Nesrine Benarous^a*

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (URCHEMS), Département de Chimie, Université des Frères Mentouri de Constantine-1, 25000 Constantine, Algeria, ^bCentre Universitaire Abd El Hafid Boussouf, Mila, 43000 Mila, Algeria, ^cFaculté de Technologie, Université Mohamed Boudiaf M'sila, Algeria, and ^dLaboratoire de Chimie et Systémique Organométallique (LCSOM), Institut de Chimie, Université de Strasbourg, UMR 7177, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France. *Correspondence e-mail: bougueriahassiba@gmail.com, nesrine.benarous@umc.edu.dz

The title compound, $C_{16}H_{11}ClN_2O_2$, was obtained by diazotization of 2-amino-4chlorophenol followed by a coupling reaction with β -naphthol. There are two molecules (*A* and *B*) in the asymmetric unit. The crystal structure features only one type of intermolecular interaction, that is strong hydrogen bonds involving the hydroxyl group. The naphthol and phenol fragments attached to the C=N-N- moiety exhibit an *s*-trans conformation. In addition, those fragments are almost coplanar, subtending a dihedral angle of 13.11 (2)° in molecule *A* and 10.35 (2)° in molecule *B*. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H···H (32.1%), C···H/ H···C (23.1%), Cl···H/H···Cl (15.2%), O···H/H···O (12.8%) and C···C (9%) contacts.

1. Chemical context

Azo compounds are one of the most frequently used compounds in organic chemistry, mainly due to their relatively simple preparation methods. They have therefore been widely used in industry, particularly as dyes for textiles (Ramugade et al., 2019), printing (Benkhaya et al., 2020; Choi et al., 2019), cosmetics (Guerra et al., 2018) and food additives (Wu et al., 2019). Apart from their use as colourants, azo compounds have attracted a lot of attention from chemists as their potential applications are important in coordination chemistry (Asha & Mandal, 2018), metal-organic frameworks (MOFs) (Huang et al., 2017), covalent-organic frameworks (COFs) (Chandra et al., 2014) and catalysis (Choudhary et al., 2017). In addition, they have found many applications in different fields such as non-linear optics (Dudek et al., 2020), optical storage (Kovalchuk et al., 2020), photoluminescence (He et al., 2019), chemosensors (Akram et al., 2020) and magnetism (Nandi et al., 2021). They are used not only in physics but also in the biomedical and pharmacological fields as they can offer new therapeutic properties such as antiviral (Chhetri et al., 2021), antimicrobial (Kyei et al., 2020), anti-inflammatory and antioxidant (Unnisa et al., 2020). On the other hand, azo-naphthol derivatives form a widely studied class of azo compounds. Considerable research has been devoted to the development of new dyes prepared by the azo coupling reaction, which occurs between diazonium salts and 1- or 2-naphthols (Shalini

Rosalyn *et al.*, 2007; Bougueria *et al.*, 2013*a*; Gusev *et al.*, 2018). Following our interest in this area, we describe here the crystal structure of a novel azo compound derived from β -naphthol and 2-amino-4-chlorophenol, *viz.* 1-[(*E*)-2-(5-chloro-2-hy-droxyphenyl)hydrazin-1-ylidene]naphthalen-2(1*H*)-one.

2. Structural commentary

The asymmetric unit of title compound contains two crystallographically independent molecules (A and B) in which the N1A-N2A, N1B-N2B, C8A-O1A and C8B-O1B bond lengths are 1.307 (5), 1.307 (5), 1.262 (7) and 1.271 (7) Å, respectively, which indicates that the dye compound has crystallized in its neutral hydrazo tautomeric form (Fig. 1); this is common when there is a OH group in the ortho-position corresponding to the azo group. Bond lengths and angles are within normal ranges and are comparable to those observed in related structures (Bougueria et al., 2014; Chetioui et al., 2013a). The conformational differences between molecules Aand B are highlighted in an overlay diagram shown in Fig. 2. The naphthol and phenol rings attached to the hydrazo group are almost coplanar, subtending a dihedral angle of $13.11 (2)^{\circ}$ in molecule A and $10.35 (2)^{\circ}$ in molecule B, indicating significant electron delocalization within the molecules. The molecular structures of A and B are each stabilized by two

Figure 1

View of the two independent molecules of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds are shown as dashed lines.

Table 1	_		
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1A \cdots O1A$	0.89 (4)	1.86 (5)	2.550 (7)	133 (4)
$N1A - H1A \cdots O2A$	0.89 (4)	2.35 (5)	2.666 (6)	101 (4)
$N1B - H1B \cdots O1B$	0.88 (4)	1.91 (5)	2.584 (6)	132 (4)
$N1B - H1B \cdots O2B$	0.88 (4)	2.34 (4)	2.673 (6)	103 (4)
$O2A - H2A \cdots O1B^{i}$	0.84 (5)	1.85 (5)	2.674 (6)	168 (5)
$O2B - H2B \cdots O1A$	0.85 (6)	1.82 (6)	2.656 (7)	173 (6)

Symmetry code: (i) $x, -y + 1, z + \frac{1}{2}$.

intramolecular N-H···O hydrogen bonds with S(6) and S(5) motifs and involving the hydrogen atoms from the hydrazo groups (Table 1, Fig. 1).

3. Supramolecular features

In the crystal, the presence of hydroxyl groups leads indeed to the formation of intermolecular $O-H\cdots O$ hydrogen bonds, generating infinite zigzag chains along the *c*-axis direction (Table 1, Fig. 3). No significant $\pi-\pi$ stacking interactions were

Figure 2

Overlay image of the two molecules in the asymmetric unit of the title compound.

research communications

Table 2					
Percentage contributions	of various	contacts to	the	Hirshfeld	surface.

Contact	Percentage contribution
HH	32.1
$C \cdots H/H \cdots C$	23.1
$Cl \cdot \cdot \cdot H/H \cdot \cdot \cdot Cl$	15.2
$O \cdot \cdot \cdot H/H \cdot \cdot \cdot O$	12.8
$\mathbf{C} \cdots \mathbf{C}$	9
$Cl \cdot \cdot \cdot C/C \cdot \cdot \cdot Cl$	2.2
00	0.9
$C \cdots O/O \cdots C$	1.2

observed, despite the presence of aromatic rings in the molecules.

4. Analysis of the Hirshfeld surfaces

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was undertaken using CrystalExplorer17 (Turner et al., 2017) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated. The Hirshfeld (HS) surfaces of the title compound mapped over d_{norm} are given in Fig. 4. The normalized contact distance, d_{norm} , varies from red to blue to white depending on the contact distances relative the sum of the van der Waals radius The intense red spots labelled 1 and 2 are related to the presence of $O-H \cdots O$ hydrogen bonds in the crystal structure. Weak contacts are highlighted by red circles. More significant contacts and their percentage contributions to the Hirshfeld surface are given in Table 2. The two-dimensional fingerprint plots are shown in Fig. 5. They reveal that the main contributions to the HS are from $H \cdots H$ (32.1%), $C \cdots H/H \cdots C$ (23.1%), $C I \cdots H/H \cdots C I$ (15.2%), $O \cdots H/H \cdots O$ (12.8%, Fig. 6a) and $C \cdots C$ (9%, Fig. 6b) contacts.

Figure 4

Hirshfeld surface mapped over $d_{\rm norm}$ for the title compound in the range -0.728 to +1.258 arbitrary units.

Figure 5

The full fingerprint plot for title compound and those delineated into $H \cdots H$, $C \cdots H/H \cdots C$, $C l \cdots H/H \cdots C l$, $O \cdots H/H \cdots O$ and $C \cdots C$ contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD version 2020.3.0, update of February 2021; Groom *et al.*, 2016)

Figure 6 Hirshfeld surface mapped over d_{norm} for the title compound showing: (a) $O \cdots H/H \cdots O$ contacts and (b) $C \cdots C$ contacts.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{16}H_{11}CIN_2O_2$
$M_{ m r}$	298.72
Crystal system, space group	Monoclinic, Cc
Temperature (K)	173
a, b, c (Å)	32.830 (4), 4.4049 (5), 18.844 (2)
β (°)	90.130 (3)
$V(Å^3)$	2725.1 (6)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.29
Crystal size (mm)	$0.3 \times 0.2 \times 0.06$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2002)
T_{\min}, T_{\max}	0.610, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13940, 6168, 4497
R _{int}	0.063
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.660
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.082, 0.97
No. of reflections	6168
No. of parameters	392
No. of restraints	6
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.34, -0.27
Absolute structure	Flack x determined using 1605 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> (2013)
Absolute structure parameter	-0.02 (3)

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXT2018/3* (Sheldrick, 2015*a*), *SHELXL2018/3* (Sheldrick, 2015*b*) and *OLEX2* (Dolomanov *et al.*, 2009).

revealed that several examples of structurally similar azonaphthol compounds were prepared using different aromatic primary amine, *viz*. (*E*)-1-[2-(2-cyanophenyl)diazen-2-ium-1yl]naphthalen-2-olate (Bougueria *et al.*, 2013*b*), (*E*)-1-(4fluorophenyl)-2-(2-oxidonaphthalen-1-yl)diazenium (Bougueria *et al.*, 2017), 4-[(2-aphthalen-1-yl)diazenyl]benzenesulfonamide (Benosmane *et al.*, 2012), 1-(3-acetylphenyl)-2-(2oxidonaphthalen-1-yl)diazen-1-ium (Bougueria *et al.*, 2013*c*), (*E*)-1-(3-chlorophenyl)-2-(2-oxidonaphthalen-1-yl)diazen-1ium (Benosmane *et al.*, 2013), (*E*)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-ol (Chetioui *et al.*, 2013*b*).

6. Synthesis and crystallization

The title compound was synthesized according to a reported method (Wang *et al.*, 2003). A solution of hydrochloric acid (12 mmol, in 6 mL of water) was added to 2-amino-4-chlorophenol (12 mmol) at 273 K. Sodium nitrite solution (24 mmol, in 8 mL of water) was added dropwise to the cooled mixture and stirred for 20 min. To the formed diazonium chloride was added dropwise an aqueous solution of 2-naphthol (12 mmol in 100 mL of water) containing hydroxide sodium (16 mL). The produced mixture was allowed to stir for 1 h at 278 K. The resulting red precipitate was filtered and washed with water

several times. The crude azo dye was recrystallized from hot ethanol giving a pure azo dye in a good yield (80.0%). Single crystals suitable for X-ray analysis, were obtained by dissolving the compound in a minimum amount of THF/H₂O ($1/1 \nu$ / v) at room temperature. To confirm the formula of the compound, an elementary analysis was carried out: calculated for C₁₆H₁₁N₂OCl, C 64.33%, N 9.38%, H 3.71%, found C 64.41%, N 8.45%, H 3.70%. The IR spectra (KBr pellet) were recorded using a Shimadzu FTIR 8000 series Fourier transform spectrometer in the range 4000 to 400 cm⁻¹. IR (cm⁻¹): v(C=O): 1596.91, v(C=C): 1500, v(C=N): 1490.43, v(C-Cl): 745.10, v (C-C): 1400, v(C-H): 2921.31. NMR spectra of CDCl₃ solutions were recorded on a Bruker Advance 400 spectrometer at 400 MHz. ¹H NMR δ (ppm) 7.031–8.209 (9H, aromatic group protons), 12.414 (singlet, 1H, OH phenol) and 14.38 (singlet, 1H, N-H···O). ¹³C NMR δ (ppm) 156.86 (C=O), 150.49 (C=N), (109.49-136.92) (C-H).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms of hydroxyl and hydrazo groups were localized in a difference-Fourier map and refined with O-H = 0.84 (1) Å and N-H =0.88 (1) Å, respectively, and with $U_{iso}(H)$ set to $1.5U_{eq}(O)$ or $1.2U_{eq}(N)$. The other hydrogen atoms were placed in calculated positions with C-H = 0.93 Å and refined using a riding model with fixed isotropic displacement parameters $[U_{iso}(H) =$ $1.2U_{eq}(C)]$.

Acknowledgements

The authors would like to thank Professor L. Ouahab, University of Rennes (France), for performing the elementary analysis and obtaining the NMR spectra (¹³C,¹H).

References

- Akram, D., Elhaty, I. A. & AlNeyadi, S. S. (2020). *Chemosensors*, **8**, 16–28.
- Asha, P. & Mandal, S. (2018). Cryst. Growth Des. 18, 4937-4944.
- Benkhaya, S., M'rabet, S. & El Harfi, A. (2020). *Heliyon*, **6**, e03271–e03296.
- Benosmane, A., Bougueria, H., Bouchoul, A. K. & Bouaoud, S. E. (2012). J. Chem. Bio. Phys. Sci. 2, 114–122.
- Benosmane, A., Mili, A., Bouguerria, H. & Bouchoul, A. K. (2013). Acta Cryst. E69, o1021.
- Bougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. K. (2013b). *Acta Cryst.* E69, 01175–01176.
- Bougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. K. & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1052.
- Bougueria, H., Chetioui, S., Boudraa, I., Bouchoul, A. K. & Bouaoud, S. E. (2013*a*). *Acta Cryst.* E**69**, o1335–o1336.
- Bougueria, H., Mili, A., Benosmane, A., Bouchoul, A. K. & Bouaoud, S. E. (2014). Acta Cryst. E70, o225.
- Bougueria, H., Chetioui, S., Mili, A., Bouaoud, S. E. & Merazig, M. (2017). *IUCrData*, **2**, x170039.
- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chandra, S., Kundu, T., Kandambeth, S., BabaRao, R., Marathe, Y., Kunjir, S. M. & Banerjee, R. (2014). *J. Am. Chem. Soc.* **136**, 6570– 6573.

research communications

- Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. K. & Bouaoud, S. E. (2013*a*). *Acta Cryst.* E**69**, 01322–01323.
- Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. K. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1250.
- Chhetri, A., Chettri, S., Rai, P., Sinha, B. & Brahman, D. (2021). J. Mol. Struct. 1224, 129178–129186.
- Choi, S., Cho, K. H., Namgoong, J. W., Kim, J. Y., Yoo, E. S., Lee, W., Jung, J. W. & Choi, J. (2019). Dyes Pigments, 163, 381–392.
- Choudhary, A., Singh, O., Singh, U. P. & Ghosh, K. (2017). Inorg. Chim. Acta, 464, 195–203.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dudek, M., Tarnowicz-Staniak, N., Deiana, M., Pokładek, Z., Samoć, M. & Matczyszyn, K. (2020). RSC Adv. 10, 40489–40507.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guerra, E., Alvarez-Rivera, G., Llompart, M. & Garcia-Jares, C. (2018). *Talanta*, **188**, 251–258.
- Gusev, V. Y., Radushev, A. V., Chekanova, L. G., Baigacheva, E. V., Manylova, K. O. & Gogoshvili, V. O. (2018). *Russ. J. Appl. Chem.* 91, 573–582.
- He, Y., Li, J., Li, J., Zhu, C. & Guo, J. (2019). ACS Appl. Polym. Mater. 1, 746–754.
- Huang, H., Sato, H. & Aida, T. (2017). J. Am. Chem. Soc. 139, 8784– 8787.
- Kovalchuk, A. I., Kobzar, Y. L., Tkachenko, I. M., Kurioz, Y. I., Tereshchenko, O. G., Shekera, O. V., Nazarenko, V. G. & Shevchenko, V. V. (2020). ACS Appl. Polym. Mater. 2, 455–463.

- Kyei, S. K., Akaranta, O. & Darko, G. (2020). Sci. Afr. 8, e00406– e00419.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Nandi, N. B., Purkayastha, A., Roy, S., Kłak, J., Ganguly, R., Alkorta, I. & Misra, T. K. (2021). *New J. Chem.* **45**, 2742–2753.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Ramugade, S. H., Warde, U. S. & Sekar, N. (2019). *Dyes Pigments*, **170**, 107626.
- Shalini Rosalyn, P. D., Senthil, S., Kannan, P., Vinitha, G. & Ramalingam, A. (2007). J. Phys. Chem. Solids, 68, 1812–1820.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer*17. The University of Western Australia.
- Unnisa, A., Abouzied, A. S., Baratam, A., Chenchu Lakshmi, K. N. V., Hussain, T., Kunduru, R. D., Banu, H., Bushra Fatima, S., Hussian, A. & Selvarajan, K. K. (2020). *Arab. J. Chem.* 13, 8638– 8649.
- Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77–86.
- Wu, W., Duan, R., Geng, F., Hu, X., Gan, N. & Li, H. (2019). Food Chem. 284, 180–187.

supporting information

Acta Cryst. (2021). E77, 672-676 [https://doi.org/10.1107/S2056989021005491]

Crystal structure and Hirshfeld surface analysis of 1-[(*E*)-2-(5-chloro-2-hydroxy-phenyl)hydrazin-1-ylidene]naphthalen-2(1*H*)-one

Hassiba Bougueria, Souheyla Chetioui, Mohammed Abdellatif Bensegueni, Jean-Pierre Djukic and Nesrine Benarous

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXT2018/3* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

1-[(E)-2-(5-Chloro-2-hydroxyphenyl)hydrazin-1-ylidene]naphthalen-2(1H)-one

Crystal data

 $C_{16}H_{11}CIN_2O_2$ $M_r = 298.72$ Monoclinic, Cc a = 32.830 (4) Å b = 4.4049 (5) Å c = 18.844 (2) Å $\beta = 90.130$ (3)° V = 2725.1 (6) Å³ Z = 8

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\min} = 0.610, T_{\max} = 0.746$ 13940 measured reflections

Refinement

Refinement on
$$F^2$$

Least-squares matrix: full
 $R[F^2 > 2\sigma(F^2)] = 0.046$
 $wR(F^2) = 0.082$
 $S = 0.97$
6168 reflections
392 parameters
6 restraints
Hydrogen site location: mixed

F(000) = 1232 $D_x = 1.456 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13940 reflections $\theta = 1.6-28.0^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 173 KPlate, red $0.3 \times 0.2 \times 0.06 \text{ mm}$

6168 independent reflections 4497 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$ $\theta_{max} = 28.0^\circ, \ \theta_{min} = 1.6^\circ$ $h = -42 \rightarrow 42$ $k = -5 \rightarrow 5$ $l = -23 \rightarrow 24$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0325P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.27 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 1605 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.* (2013) Absolute structure parameter: -0.02 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1A	0.33793 (5)	-0.0030 (4)	0.79791 (9)	0.0327 (5)	
Cl1B	0.66132 (5)	1.4840 (4)	0.55207 (9)	0.0397 (5)	
O1B	0.54584 (14)	0.4608 (10)	0.2885 (2)	0.0302 (12)	
O1A	0.45074 (14)	1.0202 (9)	0.5356 (3)	0.0293 (12)	
O2A	0.48688 (13)	0.5655 (11)	0.6906 (2)	0.0325 (11)	
H2A	0.5072 (14)	0.541 (14)	0.717 (3)	0.049*	
N1A	0.41552 (14)	0.7116 (10)	0.6321 (2)	0.0214 (11)	
H1A	0.4385 (10)	0.795 (11)	0.616 (3)	0.026*	
N2A	0.38083 (14)	0.8261 (10)	0.6109 (2)	0.0238 (11)	
O2B	0.51014 (13)	0.9509 (10)	0.4415 (2)	0.0325 (11)	
H2B	0.4928 (17)	0.978 (14)	0.474 (3)	0.049*	
C3A	0.45484 (18)	0.2251 (13)	0.7736 (3)	0.0275 (14)	
H3A	0.480248	0.176258	0.794936	0.033*	
C4A	0.41959 (19)	0.0909 (14)	0.7992 (3)	0.0264 (14)	
H4A	0.420616	-0.050199	0.837289	0.032*	
N1B	0.58132 (14)	0.7832 (11)	0.3851 (2)	0.0225 (11)	
H1B	0.5580 (9)	0.721 (11)	0.367 (3)	0.027*	
C5A	0.38280 (18)	0.1682 (13)	0.7677 (3)	0.0263 (14)	
N2B	0.61607 (14)	0.6715 (10)	0.3637 (2)	0.0202 (10)	
C11A	0.33655 (18)	1.3521 (14)	0.4820 (3)	0.0285 (14)	
C6A	0.38021 (16)	0.3698 (12)	0.7126 (3)	0.0210 (13)	
H6A	0.354633	0.417884	0.691739	0.025*	
C1A	0.41578 (19)	0.5025 (12)	0.6878 (3)	0.0198 (14)	
C12A	0.33986 (18)	1.1471 (13)	0.5398 (3)	0.0243 (13)	
C2A	0.45390 (17)	0.4265 (14)	0.7182 (3)	0.0231 (13)	
C9A	0.41010 (19)	1.3450 (13)	0.4640 (3)	0.0282 (14)	
H9A	0.433088	1.416994	0.438520	0.034*	
C7A	0.3799 (2)	1.0286 (13)	0.5580 (3)	0.0180 (15)	
C1B	0.58115 (19)	0.9956 (12)	0.4404 (3)	0.0215 (14)	
C8A	0.41619 (17)	1.1280 (12)	0.5204 (3)	0.0221 (12)	
C11B	0.66111 (19)	0.1491 (14)	0.2370 (3)	0.0270 (13)	
C10A	0.3725 (2)	1.4493 (14)	0.4463 (3)	0.0293 (15)	
H10A	0.370064	1.592201	0.408711	0.035*	
C7B	0.6165 (2)	0.4648 (13)	0.3122 (3)	0.0204 (15)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C6B	0.61767 (17)	1.1186 (13)	0.4666 (3)	0.0252 (14)
H6B	0.643110	1.060965	0.446860	0.030*
C9B	0.58710 (19)	0.1460 (14)	0.2176 (3)	0.0302 (15)
H9B	0.564299	0.071472	0.191826	0.036*
C8B	0.58115 (17)	0.3618 (13)	0.2735 (3)	0.0245 (13)
C2B	0.54441 (18)	1.0792 (14)	0.4703 (3)	0.0238 (13)
C3B	0.54349 (18)	1.2819 (13)	0.5257 (3)	0.0271 (14)
H3B	0.518167	1.337103	0.546279	0.033*
C4B	0.5795 (2)	1.4071 (15)	0.5518 (3)	0.0302 (15)
H4B	0.579068	1.548100	0.589890	0.036*
C13B	0.69225 (19)	0.4422 (14)	0.3309 (4)	0.0320 (15)
H13B	0.690062	0.577789	0.369884	0.038*
C14A	0.2675 (2)	1.1832 (16)	0.5571 (4)	0.0446 (18)
H14A	0.243793	1.130825	0.583282	0.054*
C5B	0.61592 (16)	1.3217 (13)	0.5209 (3)	0.0226 (13)
C15A	0.2637 (2)	1.3754 (17)	0.4983 (4)	0.0453 (19)
H15A	0.237675	1.444671	0.483537	0.054*
C13A	0.30454 (19)	1.0684 (15)	0.5779 (4)	0.0318 (15)
H13A	0.306332	0.936823	0.617770	0.038*
C10B	0.6250 (2)	0.0474 (14)	0.2012 (4)	0.0352 (17)
H10B	0.627872	-0.096770	0.164073	0.042*
C12B	0.65732 (17)	0.3528 (14)	0.2939 (3)	0.0245 (13)
C16A	0.2976 (2)	1.4619 (15)	0.4627 (4)	0.0407 (19)
H16A	0.295169	1.598838	0.423940	0.049*
C14B	0.72996 (19)	0.3336 (16)	0.3108 (3)	0.0366 (16)
H14B	0.753507	0.392677	0.336718	0.044*
C15B	0.7339 (2)	0.1396 (18)	0.2533 (4)	0.0439 (18)
H15B	0.760132	0.072960	0.238667	0.053*
C16B	0.6999 (2)	0.0451 (16)	0.2179 (4)	0.0404 (19)
H16B	0.702620	-0.093672	0.179603	0.048*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1A	0.0279 (10)	0.0326 (10)	0.0379 (12)	-0.0041 (7)	0.0076 (7)	0.0030 (7)
Cl1B	0.0341 (11)	0.0507 (13)	0.0343 (12)	-0.0168 (8)	-0.0114 (7)	-0.0005 (8)
O1B	0.019 (2)	0.040 (3)	0.032 (3)	0.0019 (18)	-0.007(2)	-0.007(2)
O1A	0.019 (2)	0.037 (3)	0.033 (3)	0.0005 (19)	-0.001 (2)	0.000(2)
O2A	0.017 (2)	0.043 (3)	0.038 (3)	-0.001 (2)	-0.005 (2)	0.008 (2)
N1A	0.014 (3)	0.023 (3)	0.027 (3)	-0.002 (2)	0.000 (2)	-0.004(2)
N2A	0.020 (2)	0.025 (3)	0.026 (3)	0.000(2)	-0.007(2)	-0.004 (2)
O2B	0.020 (2)	0.045 (3)	0.032 (3)	-0.008(2)	0.0028 (19)	-0.010 (2)
C3A	0.025 (3)	0.030 (4)	0.027 (3)	0.006 (3)	-0.005 (2)	-0.001 (3)
C4A	0.033 (4)	0.025 (3)	0.021 (3)	0.009 (3)	0.001 (3)	0.004 (3)
N1B	0.018 (3)	0.029 (3)	0.020 (3)	0.003 (2)	-0.005 (2)	0.001 (2)
C5A	0.029 (3)	0.022 (3)	0.028 (3)	0.004 (3)	0.007 (3)	-0.003 (3)
N2B	0.019 (2)	0.024 (3)	0.017 (2)	0.002 (2)	-0.0003 (19)	0.004 (2)
C11A	0.029 (3)	0.031 (3)	0.026 (3)	0.005 (3)	-0.008 (3)	-0.006 (3)

supporting information

C6A	0.021 (3)	0.017 (3)	0.025 (3)	-0.001 (2)	-0.003 (2)	-0.006 (3)
C1A	0.022 (3)	0.017 (3)	0.020 (3)	0.005 (2)	-0.003 (3)	0.000(2)
C12A	0.027 (3)	0.022 (3)	0.023 (3)	0.000 (3)	-0.004 (2)	-0.001 (3)
C2A	0.019 (3)	0.023 (3)	0.028 (3)	0.001 (3)	-0.002 (2)	-0.004 (3)
C9A	0.035 (4)	0.020 (3)	0.030 (4)	0.001 (3)	0.007 (3)	0.001 (3)
C7A	0.023 (3)	0.012 (3)	0.019 (3)	0.000(2)	-0.002 (2)	-0.001 (3)
C1B	0.022 (4)	0.022 (4)	0.021 (3)	-0.001 (3)	-0.003 (3)	0.003 (2)
C8A	0.027 (3)	0.018 (3)	0.021 (3)	-0.005 (3)	0.000 (2)	-0.006 (3)
C11B	0.030 (3)	0.026 (3)	0.025 (3)	0.007 (3)	0.002 (2)	0.004 (3)
C10A	0.041 (4)	0.024 (3)	0.023 (3)	0.004 (3)	-0.002 (3)	0.000 (3)
C7B	0.021 (3)	0.023 (4)	0.018 (3)	-0.001 (3)	-0.003 (2)	0.007 (3)
C6B	0.023 (3)	0.031 (3)	0.022 (3)	0.001 (3)	-0.002 (2)	0.006 (3)
C9B	0.035 (4)	0.038 (4)	0.018 (3)	-0.003 (3)	-0.008 (3)	-0.005 (3)
C8B	0.027 (3)	0.027 (3)	0.020 (3)	0.004 (3)	-0.002 (2)	0.005 (3)
C2B	0.021 (3)	0.027 (3)	0.023 (3)	-0.005 (3)	-0.003 (2)	0.003 (3)
C3B	0.025 (3)	0.030 (4)	0.026 (3)	0.000 (3)	0.005 (2)	-0.004 (3)
C4B	0.037 (4)	0.033 (3)	0.021 (3)	-0.008 (3)	-0.003 (3)	-0.002 (3)
C13B	0.024 (3)	0.038 (4)	0.034 (4)	0.000 (3)	-0.001 (3)	0.001 (3)
C14A	0.023 (3)	0.053 (5)	0.058 (5)	0.000 (3)	-0.004 (3)	-0.004 (4)
C5B	0.020 (3)	0.026 (3)	0.022 (3)	-0.008 (2)	-0.009 (2)	0.008 (3)
C15A	0.026 (4)	0.049 (5)	0.061 (5)	0.012 (3)	-0.017 (3)	0.004 (4)
C13A	0.024 (3)	0.037 (4)	0.035 (4)	0.001 (3)	-0.001 (3)	0.000 (3)
C10B	0.049 (5)	0.035 (4)	0.022 (3)	0.005 (3)	-0.001 (3)	-0.008 (3)
C12B	0.023 (3)	0.028 (3)	0.022 (3)	0.004 (3)	0.002 (3)	0.008 (3)
C16A	0.044 (5)	0.041 (4)	0.037 (4)	0.009 (3)	-0.019 (3)	0.001 (3)
C14B	0.021 (3)	0.048 (4)	0.041 (4)	0.002 (3)	-0.004 (3)	0.007 (4)
C15B	0.026 (4)	0.055 (5)	0.051 (5)	0.012 (3)	0.008 (3)	0.010 (4)
C16B	0.041 (4)	0.040 (4)	0.040 (4)	0.011 (3)	0.008 (3)	-0.002 (3)

Geometric parameters (Å, °)

Cl1A—C5A	1.751 (6)	C1B—C6B	1.405 (8)	
Cl1B—C5B	1.753 (6)	C1B—C2B	1.383 (8)	
O1B—C8B	1.271 (7)	C11B—C10B	1.433 (9)	
O1A—C8A	1.262 (7)	C11B—C12B	1.405 (8)	
O2A—H2A	0.834 (14)	C11B—C16B	1.402 (9)	
O2A—C2A	1.350(7)	C10A—H10A	0.9500	
N1A—H1A	0.891 (14)	C7B—C8B	1.443 (9)	
N1A—N2A	1.307 (5)	C7B—C12B	1.469 (9)	
N1A—C1A	1.397 (7)	C6B—H6B	0.9500	
N2A—C7A	1.338 (7)	C6B—C5B	1.360 (8)	
O2B—H2B	0.842 (14)	C9B—H9B	0.9500	
O2B—C2B	1.370 (7)	C9B—C8B	1.433 (8)	
СЗА—НЗА	0.9500	C9B—C10B	1.355 (9)	
C3A—C4A	1.388 (8)	C2B—C3B	1.373 (8)	
C3A—C2A	1.370 (8)	C3B—H3B	0.9500	
C4A—H4A	0.9500	C3B—C4B	1.393 (8)	
C4A—C5A	1.387 (8)	C4B—H4B	0.9500	

supporting information

N1B—H1B	0.885 (14)	C4B—C5B	1.382 (8)
N1B—N2B	1.307 (5)	C13B—H13B	0.9500
N1B—C1B	1.400 (7)	C13B—C12B	1.397 (8)
C5A—C6A	1.369 (8)	C13B—C14B	1.381 (9)
N2B—C7B	1.329 (7)	C14A—H14A	0.9500
C11A—C12A	1.420 (8)	C14A—C15A	1.399 (10)
C11A—C10A	1.426 (9)	C14A—C13A	1.374 (9)
C11A—C16A	1.413 (9)	C15A—H15A	0.9500
С6А—Н6А	0.9500	C15A—C16A	1.356 (10)
C6A—C1A	1.387 (8)	C13A—H13A	0.9500
C1A—C2A	1.415 (8)	C10B—H10B	0.9500
C12A—C7A	1.454 (9)	C16A—H16A	0.9500
C12A—C13A	1.409 (9)	C14B—H14B	0.9500
С9А—Н9А	0.9500	C14B—C15B	1.386 (10)
C9A—C8A	1.443 (8)	C15B—H15B	0.9500
C9A—C10A	1.359 (8)	C15B—C16B	1.364 (10)
C7A—C8A	1.455 (9)	C16B—H16B	0.9500
C2A—O2A—H2A	111 (5)	N2B—C7B—C12B	114.4 (6)
N2A—N1A—H1A	119 (4)	C8B—C7B—C12B	120.6 (5)
N2A—N1A—C1A	119.2 (5)	C1B—C6B—H6B	120.6
C1A—N1A—H1A	121 (4)	C5B—C6B—C1B	118.8 (5)
N1A—N2A—C7A	120.2 (5)	C5B—C6B—H6B	120.6
C2B—O2B—H2B	102 (5)	C8B—C9B—H9B	119.8
С4А—С3А—Н3А	119.2	C10B—C9B—H9B	119.8
С2А—С3А—НЗА	119.2	C10B—C9B—C8B	120.5 (6)
C2A—C3A—C4A	121.6 (6)	O1B—C8B—C7B	120.9 (6)
C3A—C4A—H4A	120.9	O1B—C8B—C9B	121.2 (5)
C5A—C4A—C3A	118.2 (6)	C9B—C8B—C7B	118.0 (5)
C5A—C4A—H4A	120.9	O2B—C2B—C1B	116.4 (5)
N2B—N1B—H1B	121 (4)	O2B—C2B—C3B	123.3 (5)
N2B—N1B—C1B	119.1 (5)	C3B—C2B—C1B	120.3 (5)
C1B—N1B—H1B	120 (4)	C2B—C3B—H3B	119.8
C4A—C5A—Cl1A	119.1 (5)	C2B—C3B—C4B	120.3 (5)
C6A—C5A—Cl1A	118.4 (5)	C4B—C3B—H3B	119.8
C6A—C5A—C4A	122.5 (5)	C3B—C4B—H4B	120.7
N1B—N2B—C7B	119.6 (5)	C5B—C4B—C3B	118.6 (6)
C12A—C11A—C10A	119.4 (5)	C5B—C4B—H4B	120.7
C16A—C11A—C12A	118.9 (6)	C12B—C13B—H13B	120.0
C16A—C11A—C10A	121.6 (6)	C14B—C13B—H13B	120.0
C5A—C6A—H6A	120.7	C14B— $C13B$ — $C12B$	120.1 (6)
C5A—C6A—C1A	118.5 (5)	C15A—C14A—H14A	119.2
C1A—C6A—H6A	120.7	C13A—C14A—H14A	119.2
N1A—C1A—C2A	117.6 (5)	C13A—C14A—C15A	121.6 (7)
C6A—C1A—N1A	121.8 (5)	C6B—C5B—C11B	118.9 (5)
C6A—C1A—C2A	120.6 (5)	C6B—C5B—C4B	122.2 (5)
C11A—C12A—C7A	118.5 (5)	C4B—C5B—C11B	118.9 (5)
C13A—C12A—C11A	119.1 (6)	C14A—C15A—H15A	120.3

C13A—C12A—C7A	122.4 (5)	C16A—C15A—C14A	119.5 (6)
O2A—C2A—C3A	124.8 (5)	C16A—C15A—H15A	120.3
O2A—C2A—C1A	116.5 (5)	C12A—C13A—H13A	120.2
C3A—C2A—C1A	118.7 (5)	C14A—C13A—C12A	119.6 (7)
С8А—С9А—Н9А	119.0	C14A—C13A—H13A	120.2
С10А—С9А—Н9А	119.0	C11B-C10B-H10B	118.2
C10A—C9A—C8A	122.0 (6)	C9B—C10B—C11B	123.5 (6)
N2A—C7A—C12A	115.7 (6)	C9B—C10B—H10B	118.2
N2A—C7A—C8A	123.1 (6)	C11B-C12B-C7B	118.5 (5)
C12A - C7A - C8A	120.1(6) 121.2(5)	$C_{13B} - C_{12B} - C_{11B}$	119.1(5)
N1B-C1B-C6B	121.2(5) 121.0(5)	$C_{13B} - C_{12B} - C_{7B}$	122 4 (6)
C2B - C1B - N1B	121.0(5) 1191(5)	C_{11A} C_{16A} H_{16A}	119.4
C^{2B} C^{1B} C^{6B}	119.1(5) 119.9(5)	$C_{15} - C_{16} - C_{11}$	119.4 121.2(7)
$C_{2D} = C_{1D} = C_{0D}$	117.9(5)	C15A $C16A$ $H16A$	121.2 (7)
O1A C8A C7A	122.0(5)	$C_{13R} = C_{14R} = H_{14R}$	119.4
$C_{A} C_{A} C_{A} C_{A}$	120.9(0) 116.5(5)	C13B = C14B = III4B	119.5
$C_{3A} = C_{0A} = C_{1A}$	110.3(5)	C15D - C14D - C15D	120.9 (0)
CICD CIID CIOD	119.0 (3)	C13D - C14D - H14B	119.5
	121.9 (0)	CI4B—CI5B—HI5B	120.5
CI6B—CIIB—CI2B	119.1 (6)	C16B— $C15B$ — $C14B$	119.5 (6)
CIIA—CI0A—HI0A	118.8	CI6B—CI5B—HI5B	120.3
C9A—C10A—C11A	122.3 (6)	CIIB—CI6B—HI6B	119.4
C9A—C10A—H10A	118.8	CI5B—CI6B—CIIB	121.2 (7)
N2B—C/B—C8B	125.0 (6)	C15B—C16B—H16B	119.4
			4 9 (9)
Cl1A—C5A—C6A—C1A	-179.1 (4)	C1B—C6B—C5B—C4B	1.0 (8)
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A	-179.1 (4) -178.5 (5)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B	1.0 (8) 0.6 (9)
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A	-179.1 (4) -178.5 (5) 1.3 (8)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A	1.0 (8) 0.6 (9) 0.0 (10)
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A	1.0 (8) 0.6 (9) 0.0 (10) -3.7 (8)
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A	1.0 (8) 0.6 (9) 0.0 (10) -3.7 (8) 175.7 (6)
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A	1.0 (8) 0.6 (9) 0.0 (10) -3.7 (8) 175.7 (6) -177.9 (6)
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A	1.0 (8) 0.6 (9) 0.0 (10) -3.7 (8) 175.7 (6) -177.9 (6) 177.1 (6)
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A	1.0 (8) 0.6 (9) 0.0 (10) -3.7 (8) 175.7 (6) -177.9 (6) 177.1 (6) -0.6 (8)
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B	1.0 (8) 0.6 (9) 0.0 (10) -3.7 (8) 175.7 (6) -177.9 (6) 177.1 (6) -0.6 (8) 179.6 (5)
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C6A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C11A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C11A C3A—C4A—C5A—C6A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C13B	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C11A C3A—C4A—C5A—C11A C4A—C3A—C2A—O2A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C13B C8B—C9B—C10B—C11B	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C6A N2A—C7A—C8A—O1A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C11A C3A—C4A—C5A—C11A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6) 1.3 (9)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C13B C8B—C7B—C12B—C13B C8B—C9B—C10B—C11B C2B—C1B—C6B—C5B	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \\ -0.7 \ (8) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C6A N2A—C7A—C8A—O1A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C1A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—C1A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6) 1.3 (9) -0.4 (8)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C11B C8B—C9B—C10B—C11B C2B—C1B—C6B—C5B C2B—C3B—C4B—C5B	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \\ -0.7 \ (8) \\ -0.3 \ (9) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—O2A N2A—N1A—C1A—C6A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C1A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—C1A C4A—C5A—C6A—C1A N1B—N2B—C7B—C8B	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6) 1.3 (9) -0.4 (8) 4.1 (9)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C13B C8B—C9B—C10B—C11B C2B—C1B—C6B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C11B	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \\ -0.7 \ (8) \\ -0.3 \ (9) \\ 178.6 \ (5) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C1A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C5A—C6A—C1A N1B—N2B—C7B—C8B N1B—N2B—C7B—C12B	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6) 1.3 (9) -0.4 (8) 4.1 (9) -178.9 (5)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C11B C8B—C7B—C12B—C13B C8B—C9B—C10B—C11B C2B—C1B—C6B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C11B C3B—C4B—C5B—C6B	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \\ -0.7 \ (8) \\ -0.3 \ (9) \\ 178.6 \ (5) \\ -0.6 \ (9) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C1A C3A—C4A—C5A—C6A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—C1A C4A—C5A—C6A—C1A N1B—N2B—C7B—C12B N1B—N2B—C7B—C12B N1B—C1B—C6B—C5B	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6) 1.3 (9) -0.4 (8) 4.1 (9) -178.9 (5) -179.3 (5)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C13B C8B—C9B—C10B—C11B C2B—C1B—C6B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C1B C13B—C4B—C5B—C6B C13B—C14B—C15B—C16B	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \\ -0.7 \ (8) \\ -0.3 \ (9) \\ 178.6 \ (5) \\ -0.6 \ (9) \\ -2.7 \ (11) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C1A C3A—C4A—C5A—C6A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C5A—C6A—C1A N1B—N2B—C7B—C8B N1B—N2B—C7B—C12B N1B—C1B—C6B—C5B N1B—C1B—C2B—O2B	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6) 1.3 (9) -0.4 (8) 4.1 (9) -178.9 (5) -179.3 (5) -179.3 (5) -1.7 (8)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C11B C8B—C9B—C10B—C11B C2B—C1B—C6B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C1B C3B—C4B—C5B—C16B C14A—C15A—C16A—C11A	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \\ -0.7 \ (8) \\ -0.3 \ (9) \\ 178.6 \ (5) \\ -0.6 \ (9) \\ -2.7 \ (11) \\ 2.5 \ (11) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C4B C3A—C4A—C5A—C1A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C5A—C6A—C1A N1B—N2B—C7B—C1B N1B—N2B—C7B—C12B N1B—C1B—C2B—O2B N1B—C1B—C2B—O2B N1B—C1B—C2B—O2B	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6) 1.3 (9) -0.4 (8) 4.1 (9) -178.9 (5) -179.3 (5) -1.7 (8) 178.6 (5)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C13B C8B—C9B—C10B—C11B C2B—C1B—C6B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C1B C3B—C4B—C5B—C1B C13B—C14B—C15B—C16B C14A—C15A—C16A—C11A C15A—C14A—C13A—C12A	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \\ -0.7 \ (8) \\ -0.3 \ (9) \\ 178.6 \ (5) \\ -0.6 \ (9) \\ -2.7 \ (11) \\ 2.5 \ (11) \\ 0.6 \ (11) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C1A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C5A—C6A—C1A N1B—N2B—C7B—C12B N1B—C1B—C2B—O2B N1B—C1B—C2B—O2B N1B—C1B—C2B—C3B C5A—C6A—C1A—N1A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6) 1.3 (9) -0.4 (8) 4.1 (9) -178.9 (5) -179.3 (5) -1.7 (8) 178.6 (5) -179.6 (5)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—O2B C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C13B C8B—C7B—C12B—C13B C8B—C9B—C10B—C11B C2B—C1B—C6B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C1B C3B—C4B—C5B—C1B C13B—C14B—C15B—C16B C14A—C15A—C16A—C11A C15A—C14A—C13A—C12A C13A—C12A—C7A—N2A	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \\ -0.7 \ (8) \\ -0.3 \ (9) \\ 178.6 \ (5) \\ -0.6 \ (9) \\ -2.7 \ (11) \\ 2.5 \ (11) \\ 0.6 \ (11) \\ 3.6 \ (8) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C1A C4A—C5A—C6A—C1A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C5A—C6A—C1A N1B—N2B—C7B—C8B N1B—N2B—C7B—C12B N1B—C1B—C2B—O2B N1B—C1B—C2B—O2B N1B—C1B—C2B—O2B N1B—C1B—C2B—O2B N1B—C1B—C2B—O2B N1B—C1B—C2B—C3B C5A—C6A—C1A—N1A C5A—C6A—C1A—C2A	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6) 1.3 (9) -0.4 (8) 4.1 (9) -178.9 (5) -179.3 (5) -1.7 (8) 178.6 (5) -179.6 (5) 1.1 (8)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—O2B C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C11B C8B—C7B—C12B—C11B C2B—C1B—C6B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C1B C3B—C4B—C5B—C1B C3B—C4B—C5B—C1B C13B—C14B—C15B—C16B C14A—C15A—C16A—C11A C15A—C14A—C13A—C12A C13A—C12A—C7A—N2A C13A—C12A—C7A—C8A	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \\ -0.7 \ (8) \\ -0.3 \ (9) \\ 178.6 \ (5) \\ -0.6 \ (9) \\ -2.7 \ (11) \\ 2.5 \ (11) \\ 0.6 \ (11) \\ 3.6 \ (8) \\ -176.3 \ (6) \end{array}$
Cl1A—C5A—C6A—C1A N1A—N2A—C7A—C12A N1A—N2A—C7A—C8A N1A—C1A—C2A—O2A N1A—C1A—C2A—O2A N1A—C1A—C2A—C3A N2A—N1A—C1A—C6A N2A—N1A—C1A—C2A N2A—C7A—C8A—O1A N2A—C7A—C8A—O1A N2A—C7A—C8A—C9A O2B—C2B—C3B—C4B C3A—C4A—C5A—C1A C3A—C4A—C5A—C1A C4A—C3A—C2A—O2A C4A—C3A—C2A—O2A C4A—C3A—C2A—C1A C4A—C5A—C6A—C1A N1B—N2B—C7B—C12B N1B—N2B—C7B—C12B N1B—C1B—C6B—C5B N1B—C1B—C2B—O2B N1B—C1B—C2B—O2B N1B—C1B—C2B—C3B C5A—C6A—C1A—N1A C5A—C6A—C1A—C2A N2B—N1B—C1B—C6B	-179.1 (4) -178.5 (5) 1.3 (8) 0.4 (8) 179.1 (5) 12.3 (8) -168.4 (5) 1.4 (9) 179.3 (5) -179.1 (6) 178.9 (4) 0.2 (9) 180.0 (6) 1.3 (9) -0.4 (8) 4.1 (9) -178.9 (5) -179.3 (5) -179.3 (5) -179.6 (5) 1.1 (8) 8.3 (8)	C1B—C6B—C5B—C4B C1B—C2B—C3B—C4B C8A—C9A—C10A—C11A C10A—C11A—C12A—C7A C10A—C11A—C12A—C13A C10A—C11A—C16A—C15A C10A—C9A—C8A—O1A C10A—C9A—C8A—O1A C10A—C9A—C8A—C7A C6B—C1B—C2B—O2B C6B—C1B—C2B—C3B C8B—C7B—C12B—C11B C8B—C7B—C12B—C11B C8B—C9B—C10B—C11B C2B—C1B—C6B—C5B C2B—C3B—C4B—C5B C3B—C4B—C5B—C1B C3B—C4B—C5B—C6B C13B—C14B—C15B—C16B C14A—C15A—C16A—C11A C15A—C14A—C13A—C12A C13A—C12A—C7A—N2A C13A—C12A—C7A—C8A C13A—C12A—C7A—C8A C13A—C14A—C15A—C16A	$\begin{array}{c} 1.0 \ (8) \\ 0.6 \ (9) \\ 0.0 \ (10) \\ -3.7 \ (8) \\ 175.7 \ (6) \\ -177.9 \ (6) \\ 177.1 \ (6) \\ -0.6 \ (8) \\ 179.6 \ (5) \\ -0.1 \ (9) \\ 1.5 \ (8) \\ -178.8 \ (6) \\ -0.4 \ (10) \\ -0.7 \ (8) \\ -0.3 \ (9) \\ 178.6 \ (5) \\ -0.6 \ (9) \\ -2.7 \ (11) \\ 2.5 \ (11) \\ 0.6 \ (11) \\ 3.6 \ (8) \\ -176.3 \ (6) \\ -2.9 \ (11) \end{array}$

N2B—C7B—C8B—O1B N2B—C7B—C8B—C9B N2B—C7B—C12B—C11B N2B—C7B—C12B—C13B C11A—C12A—C7A—N2A C11A—C12A—C7A—N2A C11A—C12A—C13A—C14A C6A—C1A—C2A—O2A C6A—C1A—C2A—O2A C6A—C1A—C2A—C3A C12A—C11A—C10A—C9A C12A—C11A—C16A—C15A C12A—C11A—C16A—C15A C12A—C7A—C8A—O1A C12A—C7A—C8A—O1A C12A—C7A—C8A—C9A C2A—C3A—C4A—C5A	$\begin{array}{c} -2.2 (9) \\ 177.5 (5) \\ -175.8 (5) \\ 4.0 (8) \\ -177.1 (5) \\ 3.1 (8) \\ 2.1 (9) \\ 179.7 (5) \\ -1.5 (9) \\ 179.4 (5) \\ 2.3 (9) \\ 0.1 (10) \\ -178.8 (5) \\ -0.9 (8) \\ -0.7 (9) \end{array}$	C10B—C11B—C12B—C13B C10B—C11B—C16B—C15B C10B—C9B—C8B—O1B C10B—C9B—C8B—C7B C12B—C11B—C10B—C9B C12B—C11B—C16B—C15B C12B—C7B—C8B—O1B C12B—C7B—C8B—C9B C12B—C7B—C8B—C9B C12B—C13B—C14B—C15B C16A—C11A—C12A—C7A C16A—C11A—C12A—C13A C16A—C11A—C12A—C13A C16A—C11A—C12B—C13B C12B—C13B—C12B—C11B C14B—C13B—C12B—C7B C14B—C15B—C16B—C11B	$177.2 (6) \\ -178.7 (6) \\ 178.6 (6) \\ -1.2 (8) \\ 2.6 (10) \\ -0.4 (10) \\ -179.1 (5) \\ 0.6 (8) \\ 1.1 (10) \\ 178.2 (6) \\ -2.4 (9) \\ -179.7 (6) \\ 0.8 (9) \\ -179.0 (6) \\ 2.3 (11)$
C12A—C7A—C8A—O1A	-178.8 (5)	C14B—C13B—C12B—C11B	0.8 (9)
C12A—C7A—C8A—C9A	-0.9 (8)	C14B—C13B—C12B—C7B	-179.0 (6)
C2A—C3A—C4A—C5A	-0.7 (9)	C14B—C15B—C16B—C11B	2.3 (11)
C7A—C12A—C13A—C14A	-178.6 (6)	C16B—C11B—C10B—C9B	-179.1 (6)
C1B—N1B—N2B—C7B	178.5 (5)	C16B—C11B—C12B—C7B	178.7 (6)
C1B—C6B—C5B—C11B	-178.2 (4)	C16B—C11B—C12B—C13B	-1.1 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1 <i>A</i> —H1 <i>A</i> ···O1 <i>A</i>	0.89 (4)	1.86 (5)	2.550 (7)	133 (4)
N1 <i>A</i> —H1 <i>A</i> ···O2 <i>A</i>	0.89 (4)	2.35 (5)	2.666 (6)	101 (4)
N1 <i>B</i> —H1 <i>B</i> ···O1 <i>B</i>	0.88 (4)	1.91 (5)	2.584 (6)	132 (4)
N1 <i>B</i> —H1 <i>B</i> ···O2 <i>B</i>	0.88 (4)	2.34 (4)	2.673 (6)	103 (4)
$O2A$ —H2 A ···O1 B^{i}	0.84 (5)	1.85 (5)	2.674 (6)	168 (5)
O2 <i>B</i> —H2 <i>B</i> ⋯O1 <i>A</i>	0.85 (6)	1.82 (6)	2.656 (7)	173 (6)

Symmetry code: (i) x, -y+1, z+1/2.