

Received 29 April 2021 Accepted 4 May 2021

Edited by C. Schulzke, Universität Greifswald, Germany

Keywords: crystal structure; potassium; hydridoborate; superhydride.

CCDC reference: 2081809

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of potassium triethylhydridoborate ('superhydride')

Ann Christin Fecker, Matthias Freytag, Marc D. Walter and Peter G. Jones*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany. *Correspondence e-mail: p.jones@tu-bs.de

In the title compound, formally K⁺·C₆H₁₆B⁻, the contact sphere of potassium consists of eleven hydrogen atoms from three different anions, assuming an arbitrary cut-off of 3 Å. The shortest interaction, 2.53 (2) Å, involves the hydridic hydrogen H01, which fulfils a bridging function in the formation of chains of KHBEt₃ units parallel to the *a* axis [K1–H01ⁱ 2.71 (2) Å, K1–H01–K1ⁱⁱ 126.7 (9)°, operators $x\mp 1/2$, $-y + \frac{3}{2}$, -z + 1].

1. Chemical context

The title compound KHBEt₃ was first prepared by Ziegler and Lehmkuhl from NaBEt₃H and potassium amalgam (Ziegler & Lehmkuhl, 1963), but a more convenient approach was reported a few years later using KH and BEt₃ in toluene (Binger et al., 1968). Alternatively, the latter reaction may also be performed in THF (Brown & Krishnamurthy, 1978). Since its original synthesis this so-called 'superhydride' reagent has found widespread applications, e.g. as a reducing reagent in organic synthesis (Brown & Hubbard, 1979; Ito et al., 1985; Yoon et al. 1987, 1989), for the generation of low-valent transition-metal complexes (Bönnemann & Korall, 1992), and as a hydride transfer reagent resulting in well-defined metalhydride complexes (Smith et al., 2003; Pfirrmann et al., 2008; Walter et al., 2011; Maekawa et al., 2012). Despite it being a reagent in frequent use, the structure of KHBEt₃ has so far remained elusive. The few reported examples of structures containing KHBEt₃ include its adducts with polydentate amines such as N, N, N', N'-tetramethylethylenediamine (TMEDA) and N, N, N', N'', N''-pentamethyldiethylenetriamine (PMDETA) (Haywood & Wheatley, 2009). During our study on the coordination chemistry of enantiomerically pure constrained-geometry complexes of the rare-earth metals bearing a dianionic N-donor functionalized pentadienyl ligand, we accidentally obtained crystals of solvent-free KHBEt₃ unsupported by any further ligands (see Synthesis and crystallization) and here report its structure.

Table 1 Selected geometric parameters (Å, °).				
K1-C1 ⁱ	3.103 (2)	$K1 - H2B^{iii}$	2.83	
K1-B1	3.205 (2)	$K1 - H3B^{ii}$	2.93	
K1-C5	3.310 (2)	K1 - H3A	2.93	
K1-C3 ⁱⁱ	3.387 (2)	$K1 - H5A^{ii}$	2.94	
K1-C5 ⁱⁱ	3.396 (2)	K1–H3A ⁱⁱ	2.97	
K1-B1 ⁱ	3.465 (2)	$K1 - H5B^{ii}$	2.99	
K1-H01	2.53 (2)	B1-C3	1.640 (3)	
K1-H5B	2.69	B1-C5	1.640 (3)	
$K1-H01^{i}$	2.71 (2)	B1-C1	1.640 (3)	
$K1-H1A^{i}$	2.76	B1-H01	1.20 (2)	
$K1-H1B^{i}$	2.75			
C3-B1-C5	109.90 (16)	C1-B1-H01	106.1 (10)	
C3-B1-C1	112.16 (16)	K1-H01-B1	113.5 (13)	
C5-B1-C1	111.40 (16)	$K1 - H01 - K1^{ii}$	126.7 (9)	
C3-B1-H01	107.6 (10)	$H01 - K1 - H01^{i}$	104.0 (4)	
C5-B1-H01	109.5 (10)			

 $+\frac{3}{2}, -z+1;$ (ii) $x+\frac{1}{2}, -y+\frac{3}{2}, -z+1;$ (iii) Symmetry codes: (i) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$

2. Structural commentary

The asymmetric unit of KHBEt₃ is shown in Fig. 1. Selected interatomic distances and angles are shown in Table 1. The shortest contact involving the potassium atom is K1-H01 at 2.53 (2) Å, but K1-H5B (not drawn explicitly) is not much longer at 2.69 Å. If the neighbouring asymmetric units generated by the 2_1 screw axis parallel to the *a* axis (see next section) are considered, there are a total of eleven K1-H distances shorter than 3 Å, with no clear limit as to what might be considered a 'bonding' distance. One further such distance involves the 2_1 screw axis parallel to the *c* axis. The environment of the potassium atom is shown in Fig. 2. For comparison, one may note the K-H distance of 2.85 Å in potassium hydride (Kuznetsov & Shkrabkina, 1962), which, however, is regarded as an essentially ionic compound, crystallizing in the

Figure 1

The asymmetric unit of KHBEt₃. Ellipsoids are drawn at the 50% level. Only the shortest K1-H contact is drawn explicitly.

Figure 2

The environment of the potassium atom in KHBEt₃, showing ten of the eleven K-H contacts < 3 Å to three neighbouring hydridotriethylborate units. Radii are arbitrary. K–H distances shorter than 2.8 Å are shown as thick dashed bonds, whereas those greater than 2.9 Å are shown as thin dashed bonds. The anion on the right corresponds to the asymmetric unit; the anions at top and bottom were generated by the operators $\frac{1}{2} + x, \frac{3}{2} - y$, 1 - z and $-\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$, respectively. The contact to H2B of a fourth anion (at $\frac{1}{2} - x, 1 - y, -\frac{1}{2} + z$) is omitted for clarity.

NaCl lattice type with coordination number 6 (cf. the ionic formulation of the title compound in Table 2, which is certainly a considerable oversimplification). Some K ··· H contacts of *ca* 2.8–2.9 Å, involving methyl hydrogen atoms, have been postulated as structurally significant in a TMEDA complex of potassium diisopropylamide (Clegg et al., 1998).

Simplified packing diagram of KHBEt₃ viewed parallel to the b axis. Hydrogen atoms except for H01 are omitted.

research communications

Similarly, the distances from K1 to carbon and boron atoms range upwards from 3.103 (2) and 3.205 (2) Å, respectively. The bonding to CH_n and BH moieties may involve multicentre interactions, but we do not wish to speculate on their exact nature. The coordination geometry at the boron atom is as expected tetrahedral to a good approximation.

3. Supramolecular features

To a first approximation, ignoring all interactions at K1 except for K1-H01, the molecules are connected by the appropriate 2_1 operators to form chains parallel to the *a* axis (Fig. 3). The hydridic hydrogen atom acts as the main bridging group, with K1-H01ⁱ = 2.71 (2) Å, H01-K1-H01ⁱ = 104.0 (4)°, K1-H01-K1ⁱⁱ = 126.7 (9)°. The distance between adjacent potassium atoms in the chain is 4.6839 (6) Å.

4. Database survey

A CSD search with *ConQuest* (Bruno *et al.*, 2002) for organic hydridoborate derivatives involving K—H bonds led to the above-mentioned complexes [K(TMEDA)Et₃BH]₂ and [K(PMDETA)Et₃BH]₂ (Haywood & Wheatley, 2009, refcodes CUNNEF and CUNNIJ) with K—H distances of 2.52, 2.58 (3) and 2.64, 2.69 (3) Å, respectively, in the central K₂H₂ rings. A similar structure (refcode OZAZAR), but with 1,3,5-trimethyl-1,3,5-triazanonane, was reported by Krieck *et al.* (2010), with K—H = 2.56, 2.59 (3) Å. Somewhat more complex structures, involving cyclic boranes and additional aromatic ligands at the potassium atom, have been reported by Grigsby & Power (1996; refcode TIZYAC, K—H = 2.54, 2.68 Å) and Chen *et al.* [2007; refcode MITWUI, K—H = 2.65–2.92 (1) Å].

5. Synthesis and crystallization

We attempted the preparation of a rare-earth metal hydride by salt metathesis between $[{(\eta^{5}:\kappa-N-pdl*SiMe_2NtBu)-La(thf)}_2(\mu-Cl)]$ (Jones *et al.*, 2021) and 2 equiv. of KHBEt₃ (1 *M* in THF) in *n*-hexane. The standard work-up procedure included removal of the solvent under dynamic vacuum, extraction of the residue with *n*-hexane and filtration. The filtrate was concentrated and cooled to 243 K. After several days, a few pale-yellow crystals were harvested. However, in contrast to our expectations, these did not consist of $[{(\eta^{5}:\kappa-N-pdl*SiMe_2NtBu)La(thf)}_2(\mu-H)]$, but of the starting reagent KHBEt₃.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The BH hydrogen atom was refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137; C–H = 0.98 Å, H–C–H = 109.5 °). The methylene hydrogens were included using a riding model starting from calculated positions (C–H = 0.99 Å). The $U_{\rm iso}(\rm H)$ values were fixed at 1.2

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$K^+ \cdot C_6 H_{16} B^-$
M _r	138.10
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	100
a, b, c (Å)	7.4758 (3), 7.6682 (6), 14.8010 (12)
$V(Å^3)$	848.48 (10)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.54
Crystal size (mm)	$0.3 \times 0.2 \times 0.15$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur, Eos
Absorption correction	Multi-scan (CrysAlis PRO;
1	Agilent, 2013)
T_{\min}, T_{\max}	0.976, 1.000
No. of measured, independent and	13206, 2441, 2182
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.060
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.704
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.068, 1.04
No. of reflections	2441
No. of parameters	80
H-atom treatment	H atoms treated by a mixture of independent and constrained
	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.20, -0.23
Absolute structure	Flack x determined using 806 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsonset al., 2013)
Absolute structure parameter	-0.05 (3)

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015) and XP (Siemens, 1994).

(for methylene groups) or 1.5 (for methyl groups) times the equivalent U_{eq} value of the parent carbon atoms.

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Binger, P., Benedikt, G., Rotermund, G. W. & Köster, R. (1968). *Liebigs Ann. Chem.* 717, 21–40.
- Bönnemann, H. & Korall, B. (1992). Angew. Chem. Int. Ed. Engl. 31, 1490–1492.
- Brown, C. A. & Hubbard, J. L. (1979). J. Am. Chem. Soc. 101, 3964–3966.
- Brown, C. A. & Krishnamurthy, S. (1978). J. Organomet. Chem. 156, 111–121.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Chen, X., Liu, S., Du, B., Meyers, E. A. & Shore, S. G. (2007). Eur. J. Inorg. Chem. pp. 5563–5570.
- Clegg, W., Kleditzsch, S., Mulvey, R. E. & O'Shaughnessy, P. (1998). J. Organomet. Chem. 558, 193–196.
- Grigsby, W. J. & Power, P. P. (1996). J. Am. Chem. Soc. 118, 7981–7988.
- Haywood, J. & Wheatley, A. E. H. (2009). *Eur. J. Inorg. Chem.* pp. 5010–5016.
- Ito, Y., Katsuki, T. & Yamaguchi, M. (1985). Tetrahedron Lett. 26, 4643–4646.

- Jones, P. G., Freytag, M., Fecker, A. C. & Walter, M. D. (2021). CSD Communication (CCDC-2056070). CCDC, Cambridge, England. http://doi.org/10.5517/ccdc.csd.cc270hvm.
- Krieck, S., Görls, H. & Westerhausen, M. (2010). Inorg. Chem. Commun. 13, 1466–1469.
- Kuznetsov, V. G. & Shkrabkina, M. M. (1962). J. Struct. Chem. 3, 532– 537.
- Maekawa, M., Römelt, M., Daniliuc, C. G., Jones, P. G., White, P. S., Neese, F. & Walter, M. D. (2012). *Chem. Sci.* **3**, 2972–2979.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Pfirrmann, S., Limberg, C. & Ziemer, B. (2008). Dalton Trans. pp. 6689–6691.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.
- Smith, J. M., Lachicotte, R. J. & Holland, P. J. (2003). J. Am. Chem. Soc. 125, 15752–15753.
- Walter, M. D., Grunenberg, J. & White, P. S. (2011). Chem. Sci. 2, 2120–2130.
- Yoon, N. M., Yang, H. S. & Hwang, Y. S. (1987). Bull. Korean Chem. Soc. 8, 285–291.
- Yoon, N. M., Yang, H. S. & Hwang, Y. S. (1989). Bull. Korean Chem. Soc. 10, 205–206.
- Ziegler, K. & Lehmkuhl, H. (1963). German Patent DE 1157620.

supporting information

Acta Cryst. (2021). E77, 592-595 [https://doi.org/10.1107/S2056989021004734]

Crystal structure of potassium triethylhydridoborate (`superhydride')

Ann Christin Fecker, Matthias Freytag, Marc D. Walter and Peter G. Jones

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL2018/3* (Sheldrick, 2015).

Potassium triethylhydridoborate

Crystal data	
$K^{+} \cdot C_{6} H_{16} B^{-}$ $M_{r} = 138.10$ Orthorhombic, $P2_{1}2_{1}2_{1}$ $a = 7.4758 (3) Å$ $b = 7.6682 (6) Å$ $c = 14.8010 (12) Å$ $V = 848.48 (10) Å^{3}$ $Z = 4$ $F(000) = 304$	$D_x = 1.081 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2443 reflections $\theta = 2.8-26.1^{\circ}$ $\mu = 0.54 \text{ mm}^{-1}$ T = 100 K Prism, pale yellow $0.3 \times 0.2 \times 0.15 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1419 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Agilent, 2013) $T_{min} = 0.976, T_{max} = 1.000$	13206 measured reflections 2441 independent reflections 2182 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 30.0^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -10 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -20 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.068$ S = 1.04 2441 reflections 80 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0251P)^2 + 0.0172P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.23 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack <i>x</i> determined using 806 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsonset al., 2013)
map	Absolute structure parameter: -0.05 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The compound is achiral and crystallizes only by chance in a chiral (Sohncke) space group.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
K1	0.22297 (6)	0.87358 (6)	0.42934 (3)	0.01798 (12)
B1	0.2627 (3)	0.6127 (3)	0.59734 (14)	0.0140 (4)
H01	0.368 (3)	0.680 (3)	0.5467 (14)	0.020 (6)*
C1	0.3821 (3)	0.5161 (3)	0.67567 (13)	0.0159 (4)
H1B	0.457483	0.426196	0.646460	0.019*
H1A	0.463245	0.603494	0.702910	0.019*
C2	0.2753 (3)	0.4296 (3)	0.75137 (15)	0.0260 (5)
H2C	0.200842	0.517218	0.781547	0.039*
H2B	0.357773	0.377763	0.795257	0.039*
H2A	0.198637	0.338312	0.725885	0.039*
C3	0.1433 (3)	0.4737 (3)	0.53862 (14)	0.0184 (5)
H3B	0.053383	0.420846	0.579383	0.022*
H3A	0.077404	0.539343	0.491626	0.022*
C4	0.2465 (3)	0.3262 (3)	0.49238 (16)	0.0271 (5)
H4C	0.342593	0.375726	0.455348	0.041*
H4B	0.164952	0.259304	0.453846	0.041*
H4A	0.298115	0.249185	0.538342	0.041*
C5	0.1323 (3)	0.7630 (3)	0.64061 (14)	0.0150 (4)
H5B	0.067029	0.820394	0.590574	0.018*
H5A	0.042278	0.704783	0.679326	0.018*
C6	0.2249 (3)	0.9042 (3)	0.69656 (16)	0.0270 (5)
H6C	0.284544	0.850412	0.748517	0.041*
H6B	0.135728	0.988325	0.717930	0.041*
H6A	0.313644	0.964283	0.659107	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
K1	0.01299 (19)	0.0216 (2)	0.0194 (2)	0.00053 (18)	-0.00233 (19)	0.0028 (2)
B1	0.0099 (10)	0.0164 (10)	0.0156 (10)	0.0015 (10)	0.0008 (8)	0.0005 (8)
C1	0.0112 (10)	0.0187 (10)	0.0178 (11)	0.0003 (8)	0.0013 (8)	0.0028 (9)
C2	0.0195 (11)	0.0318 (12)	0.0267 (12)	0.0025 (10)	0.0045 (10)	0.0133 (9)
C3	0.0145 (10)	0.0199 (11)	0.0207 (11)	0.0033 (8)	-0.0003 (8)	-0.0018 (8)
C4	0.0236 (13)	0.0251 (11)	0.0326 (12)	0.0052 (9)	-0.0056 (10)	-0.0120 (9)
C5	0.0130 (10)	0.0163 (10)	0.0158 (10)	-0.0002 (8)	-0.0018 (8)	-0.0013 (8)
C6	0.0185 (10)	0.0248 (12)	0.0377 (13)	0.0016 (10)	-0.0033 (11)	-0.0127 (9)

Geometric parameters (Å, °)

K1—C1 ⁱ	3.103 (2)	B1—C1	1.640 (3)
K1—B1	3.205 (2)	B1—H01	1.20 (2)
K1—C5	3.310(2)	C1—C2	1.527 (3)
К1—С3 ^{іі}	3.387 (2)	C1—H1B	0.9900
K1—C5 ⁱⁱ	3.396 (2)	C1—H1A	0.9900
K1—B1 ⁱ	3.465 (2)	C2—H2C	0.9800
K1—C2 ⁱⁱⁱ	3.513 (2)	C2—H2B	0.9800
К1—С3	3.518 (2)	C2—H2A	0.9800
K1—H01	2.53 (2)	C3—C4	1.530 (3)
K1—H5B	2.69	С3—НЗВ	0.9900
K1—H01 ⁱ	2.71 (2)	С3—НЗА	0.9900
K1—H1A ⁱ	2.76	C4—H4C	0.9800
K1—H1B ⁱ	2.75	C4—H4B	0.9800
K1—H2B ⁱⁱⁱ	2.83	C4—H4A	0.9800
K1—H3B ⁱⁱ	2.93	C5—C6	1.529 (3)
K1—H3A	2.93	С5—Н5В	0.9900
K1—H5A ⁱⁱ	2.94	C5—H5A	0.9900
K1—H3A ⁱⁱ	2.97	С6—Н6С	0.9800
K1—H5B ⁱⁱ	2.99	С6—Н6В	0.9800
B1—C3	1.640 (3)	С6—Н6А	0.9800
B1—C5	1.640 (3)		
C1 ⁱ —K1—B1	129.41 (5)	B1—C1—H1A	108.4
C1 ⁱ —K1—C5	112.01 (5)	K1 ⁱⁱ —C1—H1A	61.0
B1—K1—C5	29.10 (5)	H1B—C1—H1A	107.5
C1 ⁱ —K1—C3 ⁱⁱ	137.56 (5)	C1-C2-K1 ^{iv}	146.66 (14)
B1—K1—C3 ⁱⁱ	91.22 (5)	C1—C2—H2C	109.5
C5—K1—C3 ⁱⁱ	98.42 (5)	K1 ^{iv} —C2—H2C	96.6
C1 ⁱ —K1—C5 ⁱⁱ	132.18 (5)	C1—C2—H2B	109.5
B1—K1—C5 ⁱⁱ	87.74 (5)	K1 ^{iv} —C2—H2B	39.9
C5—K1—C5 ⁱⁱ	113.18 (5)	H2C—C2—H2B	109.5
C3 ⁱⁱ —K1—C5 ⁱⁱ	46.63 (5)	C1—C2—H2A	109.5
$C1^{i}$ — $K1$ — $B1^{i}$	28.23 (5)	K1 ^{iv} —C2—H2A	79.5
$B1-K1-B1^{i}$	101.50 (5)	H2C—C2—H2A	109.5
C5—K1—B1 ⁱ	84.95 (5)	H2B—C2—H2A	109.5
$C3^{ii}$ — $K1$ — $B1^{i}$	157.94 (5)	C4—C3—B1	116.29 (17)
$C5^{ii}$ —K1—B1 ⁱ	150.39 (5)	C4—C3—K1 ⁱ	141.80 (14)
C1 ⁱ —K1—C2 ⁱⁱⁱ	78.93 (6)	$B1 - C3 - K1^{i}$	101.88 (11)
B1—K1—C2 ⁱⁱⁱ	99.69 (6)	C4—C3—K1	110.68 (14)
C5—K1—C2 ⁱⁱⁱ	122.65 (5)	B1—C3—K1	65.47 (10)
C3 ⁱⁱ —K1—C2 ⁱⁱⁱ	109.29 (5)	K1 ⁱ —C3—K1	85.41 (5)
$C5^{ii}$ — $K1$ — $C2^{iii}$	64.15 (5)	C4—C3—H3B	108.2
$B1^{i}$ —K1—C2 ⁱⁱⁱ	86.47 (5)	B1—C3—H3B	108.2
$C1^{i}$ — $K1$ — $C3$	109.21 (5)	K1 ⁱ —C3—H3B	55.0
B1—K1—C3	27.73 (5)	K1—C3—H3B	138.8
C5—K1—C3	46.18 (5)	C4—C3—H3A	108.2

C3 ⁱⁱ —K1—C3	113.21 (5)	В1—С3—Н3А	108.2
C5 ⁱⁱ —K1—C3	91.37 (5)	K1 ⁱ —C3—H3A	57.4
B1 ⁱ —K1—C3	84.88 (5)	K1—C3—H3A	47.0
C2 ⁱⁱⁱ —K1—C3	76.61 (5)	НЗВ—СЗ—НЗА	107.4
C1 ⁱ —K1—H01	148.8 (5)	C3—C4—H4C	109.5
B1—K1—H01	20.1 (5)	C3—C4—H4B	109.5
C5—K1—H01	44.7 (5)	H4C—C4—H4B	109.5
C3 ⁱⁱ —K1—H01	73.1 (5)	C3—C4—H4A	109.5
C5 ⁱⁱ —K1—H01	69.0 (5)	H4C—C4—H4A	109.5
B1 ⁱ —K1—H01	121.4 (5)	H4B—C4—H4A	109.5
C2 ⁱⁱⁱ —K1—H01	97.1 (5)	C6-C5-B1	116.11 (17)
C3—K1—H01	40.9 (5)	C6—C5—K1	103.74 (13)
C3—B1—C5	109.90 (16)	B1—C5—K1	71.90 (10)
C3 - B1 - C1	112.16 (16)	$C6-C5-K1^{i}$	142.33 (14)
C5—B1—C1	111.40 (16)	$B1-C5-K1^{i}$	101.54 (11)
C3 - B1 - K1	86.80 (11)	$K1 - C5 - K1^{i}$	88.60 (5)
C5-B1-K1	79.00(11)	C6-C5-H5B	108 3
C1 - B1 - K1	151 74 (13)	B1-C5-H5B	108.3
$C3 - B1 - K1^{ii}$	119 99 (12)	K1-C5-H5B	44 0
$C5 - B1 - K1^{ii}$	127.85 (13)	K1 ⁱ -C5-H5B	57.7
$C1 - B1 - K1^{ii}$	63.51 (10)	C6-C5-H5A	108.3
$K1 - B1 - K1^{ii}$	89.12 (5)	B1—C5—H5A	108.3
C3-B1-H01	107.6 (10)	K1—C5—H5A	143.3
C5-B1-H01	109 5 (10)	K1 ⁱ	54.9
C1—B1—H01	106.1 (10)	H5B-C5-H5A	107.4
K1—B1—H01	46.4 (10)	C5—C6—H6C	109.5
K1 ⁱⁱ —B1—H01	42.8 (10)	C5—C6—H6B	109.5
C2-C1-B1	115.49 (18)	H6C—C6—H6B	109.5
$C^2 - C^1 - K^{1i}$	156 25 (14)	C5—C6—H6A	109.5
$B1 - C1 - K1^{ii}$	88.26 (11)	H6C—C6—H6A	109.5
C2—C1—H1B	108.4	H6B—C6—H6A	109.5
B1—C1—H1B	108.4	K1—H01—B1	113.5 (13)
K1 ⁱⁱ —C1—H1B	60.2	K1—H01—K1 ⁱⁱ	126.7 (9)
C2-C1-H1A	108.4	$H01 - K1 - H01^{i}$	1040(4)
02 01 1111	10011		10 110 (1)
C3—B1—C1—C2	-66.0(2)	$K1^{ii}$ —B1—C3— $K1^{i}$	-166.41 (7)
C5-B1-C1-C2	57.7 (2)	C5-B1-C3-K1	77.09 (14)
K1 - B1 - C1 - C2	164.9 (2)	C1-B1-C3-K1	-158.41 (16)
$K1^{ii}$ —B1—C1—C2	-179.55(19)	$K1^{ii}$ —B1—C3—K1	-87.13 (10)
$C3-B1-C1-K1^{ii}$	113.58 (14)	C3—B1—C5—C6	-179.27(18)
$C5-B1-C1-K1^{ii}$	-122.76(14)	C1-B1-C5-C6	55.8 (2)
$K1 - B1 - C1 - K1^{ii}$	-15.5 (3)	K1—B1—C5—C6	-96.78(17)
$B1 - C1 - C2 - K1^{iv}$	161.9 (2)	$K1^{ii}$ —B1—C5—C6	-16.6(3)
K1 ⁱⁱ —C1—C2—K1 ^{iv}	-17.0 (6)	C3—B1—C5—K1	-82.48 (14)
C5—B1—C3—C4	179.06 (18)	C1—B1—C5—K1	152.57 (16)
C1—B1—C3—C4	-56.4 (2)	K1 ⁱⁱ —B1—C5—K1	80.16 (12)
K1—B1—C3—C4	101.97 (17)	C3—B1—C5—K1 ⁱ	2.19 (17)
K1 ⁱⁱ —B1—C3—C4	14.8 (2)	C1—B1—C5—K1 ⁱ	-122.76 (14)
	× /		` '

supporting information

C5—B1—C3—K1 ⁱ	-2.19 (17)	K1—B1—C5—K1 ⁱ	84.67 (6)
C1—B1—C3—K1 ⁱ	122.31 (13)	$K1^{ii}$ — $B1$ — $C5$ — $K1^{i}$	164.83 (9)
K1—B1—C3—K1 ⁱ	-79.28 (7)		

Symmetry codes: (i) x-1/2, -y+3/2, -z+1; (ii) x+1/2, -y+3/2, -z+1; (iii) -x+1/2, -y+1, z-1/2; (iv) -x+1/2, -y+1, z+1/2.