

Received 24 February 2021 Accepted 28 April 2021

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; powder X-ray diffraction; magnesium zinc divanadate; MgZnV₂O₇; thortveitite-related structures.

CCDC reference: 2080585

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure refinement of magnesium zinc divanadate, MgZnV₂O₇, from powder X-ray diffraction data

Stephanie J. Hong, Jun Li* and Mas A. Subramanian

Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA. *Correspondence e-mail: lijun@oregonstate.edu

The crystal structure of magnesium zinc divanadate, MgZnV₂O₇, was determined and refined from laboratory X-ray powder diffraction data. The title compound was synthesized by a solid-state reaction at 1023 K in air. The crystal structure is isotypic with Mn_{0.6}Zn_{1.4}V₂O₇ (*C2/m*; *Z* = 6) and is related to the crystal structure of thortveitite. The asymmetric unit contains two metal sites with statistically distributed magnesium and zinc atoms with the atomic ratio close to 1:1. One (Mg/Zn) metal site (*M*1) is located on Wyckoff position 8*j* and the other (*M*2) on 4*h*. Three V sites (all on 4*i*), and eight O (three 8*j*, four 4*i*, and one 2*b*) sites complete the asymmetric unit. The structure is an alternate stacking of V₂O₇ layers and (Mg/Zn) atom layers along [201]. It is distinct from other related structures in that each V₂O₇ layer consists of two groups: a V₂O₇ dimer and a V₄O₁₄ tetramer. Mixed-occupied *M*1 and *M*2 are coordinated by oxygen atoms in distorted trigonal bipyramidal and octahedral sites, respectively.

1. Chemical context

Mixed vanadium oxides with tetrahedrally coordinated pentavalent vanadium ions have been used as catalysts in the heterogeneous oxidation process (Chang & Wang, 1988). Since there is a strong correlation between the crystal structure and its properties, the phase relations of vanadates have been thoroughly investigated. During the course of studying the phase diagram in the MgO–ZnO–V₂O₅ system, a new phase was identified by its X-ray diffraction pattern in the solid-solution range between (Mg_{0.80}Zn_{1.20})V₂O₇ and (Mg_{1.16}Zn_{0.84})V₂O₇, which was completely different from Mg₂V₂O₇ or Zn₂V₂O₇ (Chang & Wang, 1988). The crystal structure of the new phase has not been reported to date. We present here the crystal structure of MgZnV₂O₇ (Fig. 1), as determined and refined from laboratory powder X-ray diffraction data (Table 1).

2. Structural commentary

The crystal structure of magnesium zinc divanadate, MgZnV₂O₇, is isotypic with $Mn_{0.6}Zn_{1.4}V_2O_7$ (Knowles *et al.*, 2009), where statistically distributed Mg and Zn atoms (Mn and Zn for $Mn_{0.6}Zn_{1.4}V_2O_7$) are located in disordered environments in the crystal structure. The unit-cell volume of MgZnV₂O₇ is smaller than that of $Mn_{0.6}Zn_{1.4}V_2O_7$ by 1.65%.

The crystal structure of $MgZnV_2O_7$ is shown in Fig. 1*a*. There are (Mg1/Zn1) (on Wyckoff position 8*j*, site symmetry 1), (Mg2/Zn2) (on 4*h*, 2), three V (all on 4*i*, *m*), and eight O

research communications

Figure 1

The crystal structure of MgZnV₂O₇ with VO₄ tetrahedra, VO₅ trigonal bipyramids (light purple), and (Mg/Zn) atoms (green/yellow). (*a*) overview of the structure, (*b*) a selected slab of one V₂O₇ layer and the adjacent (Mg/Zn) layer, and (*c*) a top view of the slab of (*b*) and magnified local structure of V₄O₁₄ tetrameric and V₂O₇ dimeric units. [Symmetry codes: (xiii) -x + 1, -y + 1, -z; (xiv) x, y + 1, z - 1; (xv) -x + 1, -y + 1, -z + 1; (xvi) x + 1, y + 1, z + 1.]

(three 8j, four 4i, and one 2b, 2/m) sites in the asymmetric unit, where (Mg1/Zn1) and (Mg2/Zn2) represent statistically distributed magnesium and zinc atoms with the atomic ratio close to 1:1.

The crystal structure can be described as an alternate stacking of V_2O_7 layers and (Mg/Zn) atom layers along [201] (Fig. 1*b*). Each V_2O_7 layer consists of two groups: a V_2O_7 dimer and a V_4O_{14} tetramer. For illustration, a slab of one V_2O_7 layer and the adjacent (Mg/Zn) layer is shown in Fig. 1*c*,

Table 1	
Experimental details.	
Crystal data	
Chemical formula	MgZnV ₂ O ₇
M _r	303.56
Crystal system, space group	Monoclinic, $C2/m$
Temperature (K)	298
a, b, c (A)	10.32882 (7), 8.50126 (5),
	9.30814 (6)
β (°)	98.5748 (5)
$V(\text{\AA}^3)$	808.19 (1)
Ζ	6
Radiation type	Cu $K\alpha_1$, $\lambda = 1.5405$ Å
Specimen shape, size (mm)	Irregular, 24.9×24.9
Data collection	
Diffractometer	PANalytical Empyrean
Specimen mounting	Dispersed powder
Data collection mode	Reflection
Scan method	Step
2θ values (°)	$2\theta_{\min} = 5.012, 2\theta_{\max} = 119.991,$
	$2\theta_{\text{step}} = 0.013$
Refinement	
R factors and goodness of fit	$R_{\rm p} = 0.055, R_{\rm wp} = 0.076,$
-	$R_{\rm exp} = 0.042, R(F^2) = 0.20886,$
	$\chi^2 = 3.276$
No. of parameters	40

Computer programs: X'Pert Data Collector and X'Pert HighScore Plus (PANalytical, 2011), GSAS (Larson & Von Dreele, 2000), SHELXS97 (Sheldrick, 2008), CRYSTALS (Betteridge et al., 2003) and VESTA (Momma & Izumi, 2011).

which is rotated by 90° from Fig. 1*b*. Two corner-sharing $(V1)O_4$ tetrahedra form the dimeric group. Two $(V3)O_4$ tetrahedra and two $(V2)O_5$ trigonal bipyramids form the tetrameric group, with a sequence of $(V3)O_4$ - $(V2)O_5$ - $(V2)O_5$ - $(V3)O_4$. The two trigonal bipyramidal units in the middle are edge-sharing, each of which is corner-sharing with the adjacent terminal tetrahedron. (Mg1/Zn1) and (Mg2/Zn2) are coordinated by oxygen atoms in a distorted trigonal

Figure 2 Crystal structure of (*a*) α -Zn₂V₂O₇, (*b*) thortveite-type β '-Zn₂V₂O₇, and (*c*) β -Mg₂V₂O₇.

research communications

bipyramidal and a distorted octahedral environment, respectively (Table 2).

The MgZnV₂O₇ structure (*C*2/*m*, *Z* = 6) is closely related to thortveitite-type α -Zn₂V₂O₇ (*C*2/*c*, *Z* = 4) (Gopal & Calvo, 1973), thortveite-type β '-Zn₂V₂O₇ (*C*2/*m*, *Z* = 2) (Krasnenko *et al.*, 2003), and β -Mg₂V₂O₇ (*P*1, *Z* = 2) (Gopal & Calvo, 1974), as shown in Fig. 2, in which they have an alternate stacking of V₂O₇ layer and Zn or Mg layers. However, in contrast to MgZnV₂O₇, they only contain the V₂O₇ dimer groups. The relationships between other thortveitite-related phases are also well described in a previous work (Knowles *et al.*, 2018).

To check the refined structure model, empirical bondvalence sums (BVSs) were calculated (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991), with the program Valence (Hormillosa et al., 1993). The expected charges of the ions match the obtained BVS values (given in valence units): (Mg1/ Zn1) = 1.96, (Mg2/Zn2) = 2.11, V1 = 6.08, V2 = 4.31, V3 = 4.69, O1 = 1.60, O2 = 2.26, O3 = 2.25, O4 = 1.71, O5 = 2.10, O6 = 1.87, O7 = 2.02, and O8 = 2.38. The high value for V1 comes from the relatively short V-O distances (Table 2). The restrained distance was slightly longer than the final values, however, the refinement led to the shorter distances. Short bond lengths (1.56–1.60 Å) were also found in other materials, such as BiBa₂(VO₄)(V₂O₇) (Huang *et al.*, 1994) Mg₂(V₂O₇) (Nielsen et al., 2001) or Th(V_2O_7) (Launay et al., 1992). The final atomic positions were confirmed in the Fourier maps (observed and difference map).

3. Synthesis and crystallization

MgZnV₂O₇ was synthesized by a solid-state reaction from a mixture of Mg(CH₃COO)₂·4H₂O (98.0–102.0%, Alfa-Aesar), ZnO (99.99%, Aldrich) and V₂O₅ (99.99%, Aldrich) with a nominal composition of Mg:Zn:V = 1:1:2. The mixture was thoroughly ground in an agate mortar with acetone, dried, pressed into a pellet, heated in air at 673 K for 3 h, at 943 K for 6 h, and again at 1023 K for 6 h with intermediate grinding and pressing. For the powder X-ray diffraction measurement, the pellet was ground again in an agate mortar and the resultant powder was dispersed on a zero-background Si sample holder.

4. Refinement details

Details of the crystal data collection and structure refinement are summarized in Table 1 and the supporting information. Powder X-ray diffraction (PXRD) data for MgZnV₂O₇ were collected from a Bragg-Brentano diffractometer (PANalytical, 2011) using Cu $K\alpha_1$ radiation, a focusing primary Ge(111) monochromator ($\lambda = 1.5405$ Å) and a position-sensitive PIXcel 3D 2×2 detector. The angular range was set to 8° ≤ 2 θ ≤ 120°, with a step of 0.0131° and a total measurement time of 8 h at room temperature. The PXRD pattern was indexed using the *DICVOL* algorithm (Boultif & Louër, 2004) run in *WINPLOT* (Roisnel & Rodríguez-Carvajal, 2000) through the positions of 26 reflections, resulting in a monoclinic unit cell (step 1). The space groups from the systematic reflection

Table 2		
Selected	bond lengths ((Å).

Mg1-O3 ⁱ	1.975 (10)	V1-O3 ^{vii}	1.628 (10)
Mg1-O4 ⁱ	1.929 (9)	V1-O3 ^{viii}	1.628 (10)
Mg1-O5 ⁱⁱ	2.172 (10)	V1-O8	1.599 (15)
Mg1-O7 ⁱⁱⁱ	2.081 (11)	V2-O1	1.959 (12)
Mg1-O8 ⁱⁱⁱ	2.120 (11)	V2-O4	1.745 (9)
Mg2-O3 ^{iv}	2.354 (8)	V2–O4 ^{ix}	1.745 (9)
Mg2-O3 ⁱⁱ	2.354 (8)	$V2-O7^{x}$	2.032 (11)
Mg2-O5 ^v	1.948 (10)	V2–O7 ^{xi}	1.898 (15)
Mg2-O5 ⁱ	1.948 (10)	V3-O1 ^{xi}	1.824 (10)
Mg2-O6 ⁱⁱⁱ	2.061 (10)	V3–O5 ^{xi}	1.703 (10)
Mg2-O6 ^{vi}	2.061 (10)	V3–O5 ^{xii}	1.703 (10)
V1-O2	1.757 (4)	V3-O6 ^{xi}	1.760 (15)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, -z + 1; (ii) x, -y + 1, z; (iii) x, y + 1, z; (iv) -x, -y + 1, -z + 1; (v) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z; (vi) -x, y + 1, -z + 1; (vii) -x, y, -z + 1; (viii) -x, -y, -z + 1; (ix) x, -y, z; (x) x, y, z + 1; (xi) -x + 1, y, -z + 1; (xii) -x + 1, -y, -z + 1.

conditions were suggested to be C2/m, C2, or Cm, which were indistinguishable from the reflection conditions. The highest symmetry, C2/m, was chosen first to determine the structure (step 2), and confirmed later. All the reflections were well indexed, except for a few minor unidentified impurity peaks. The structure determination was performed by a combination of the powder profile refinement program GSAS (Larson & Von Dreele, 2000) and the single-crystal structure-refinement program CRYSTALS (Betteridge et al., 2003). The software MCE was used to visualize the three-dimensional Fourier electron-density maps, (Rohlíček & Hušák, 2007). Initially, a structural model was used with only one dummy atom placed at the (0,0,0) position in the unit cell. A Le Bail fit was used to extract the structure factors from the powder data in GSAS (step 3), followed by applying direct methods to build the initial structural solution, using SHELXS97 (Sheldrick, 2008) run in CRYSTALS, which yielded three vanadium sites as the initial structural model (step 4). The initial dummy atom model was then replaced with the partial model containing

Powder X-ray diffraction Rietveld refinement profiles for $MgZnV_2O_7$ from room-temperature data. Black dots mark experimental data, the solid red line represents the calculated profile, and the solid green line is the background. The bottom trace presents the difference curve (blue) and the ticks denote the expected Bragg reflection positions (magenta).

only three vanadium atoms, and the Le Bail fit was applied in GSAS (step 5). Improved structure factors were then extracted, which were used for the refinement in CRYSTALS (step 6). This process (step 5 to 6) was repeated until a complete and satisfactory structural model was obtained. Finally, Rietveld refinement in GSAS was employed to complete the structure model, resulting in reasonable isotropic displacement parameters and agreement indices (step 7). The refinement parameters were scale factors, background, unitcell parameters, peak profile coefficients, atomic coordinates, occupancies for the two (Mg/Zn) sites, common U_{iso} for the metal atoms, common Uiso for the oxygen atoms, and a March-Dollase preferential orientation coefficient (<111> direction). For the final Rietveld refinement cycles, the Mg–O, Zn–O, and V–O bond lengths were restrained with a tolerance value of 0.01 Å with respect to the distances determined from CRYSTALS, which matched reasonably well with the radii sums of Shannon (1976). Atomic coordinates and labeling were finally adapted from isotypic $Mn_{0.6}Zn_{1.4}V_2O_7$ (Knowles et al., 2009). The final Rietveld plot is displayed in Fig. 3.

Acknowledgements

This work was supported by the Oregon State University undergraduate internship program. We thank Dr S.-T. Hong at DGIST (Daegu Gyeongbuk Institute of Science and Technology) for assisting with the powder XRD data collection and for helpful discussions.

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. **36**, 1487.

- Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724-731.
- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Chang, L. L. Y. & Wang, F. Y. (1988). J. Am. Ceram. Soc. 71, 689-693.
- Gopal, R. & Calvo, C. (1973). Can. J. Chem. 51, 1004–1009.
- Gopal, R. & Calvo, C. (1974). Acta Cryst. B30, 2491-2493.
- Hormillosa, C., Healy, S., Stephen, T. & Brown, I. D. (1993). Bond Valence Calculator. Version 2.0. McMaster University, Canada.
- Huang, J., Gu, Q. & Sleight, A. W. (1994). J. Solid State Chem. 110, 226–233.
- Knowles, K. M., Sil, A., Stöger, B. & Weil, M. (2018). Acta Cryst. C74, 1079–1087.
- Knowles, K. M., Vickers, M. E., Sil, A., Han, Y.-H. & Jaffrenou, P. (2009). Acta Cryst. B65, 160–166.
- Krasnenko, T. I., Zubkov, V. G. & Tjutinskaja, E. F. (2003). Kristallografiya, 48, 40-43.
- Larson, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Report LAUR. 86–748 Los Alamos National Laboratory, New Mexico, USA.
- Launay, S., Mahe, P., Quarton, M. & Robert, F. (1992). J. Solid State Chem. 97, 305–313.
- Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
- Nielsen, U. G., Jakobsen, H. J., Skibsted, J. & Norby, P. (2001). J. Chem. Soc. Dalton Trans. pp. 3214–3218.
- PANalytical (2011). X'Pert Data Collector and X'Pert High Score Plus. PANalytical BV, Almelo, The Netherlands.
- Rohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600-601.
- Roisnel, T. & Rodríguez-Carvajal, J. (2000). WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. 7th Europ. Powder Diff. Conf. (EPDIC 7), edited by R. Delhez & E. J. Mittenmeijer, pp. 118–123,
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2021). E77, 588-591 [https://doi.org/10.1107/S2056989021004503]

Crystal structure refinement of magnesium zinc divanadate, MgZnV₂O₇, from powder X-ray diffraction data

Stephanie J. Hong, Jun Li and Mas A. Subramanian

Computing details

Data collection: *X'Pert Data Collector* (PANalytical, 2011); cell refinement: *GSAS* (Larson & Von Dreele, 2000); data reduction: *X'Pert HighScore Plus* (PANalytical, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) and *CRYSTALS* (Betteridge *et al.*, 2003); program(s) used to refine structure: *GSAS* (Larson & Von Dreele, 2000); molecular graphics: *VESTA* (Momma & Izumi, 2011); software used to prepare material for publication: *GSAS* (Larson & Von Dreele, 2000).

Magnesium zinc divanadate

Crystal data

MgZnV₂O₇ M_r = 303.56 Monoclinic, C2/m Hall symbol: -C 2y a = 10.32882 (7) Å b = 8.50126 (5) Å c = 9.30814 (6) Å β = 98.5748 (5)°

Data collection

PANalytical Empyrean diffractometer Radiation source: sealed X-ray tube, PANalytical Cu Ceramic X-ray tube $V = 808.19 (1) \text{ Å}^{3}$ Z = 6 F(000) = 864.0 $D_x = 3.743 \text{ Mg m}^{-3}$ Cu $K\alpha_1$ radiation, $\lambda = 1.5405 \text{ Å}$ T = 298 Kyellow irregular, $24.9 \times 24.9 \text{ mm}$

Specimen mounting: dispersed powder Data collection mode: reflection Scan method: step $2\theta_{\min} = 5.012^\circ, 2\theta_{\max} = 119.991^\circ, 2\theta_{step} = 0.013^\circ$ Refinement

Least-squares matrix: full $R_p = 0.055$ $R_{wp} = 0.076$ $R_{exp} = 0.042$ $R(F^2) = 0.20886$ 8758 data points Excluded region(s): The background is too high

Excluded region(s):	The background is too high
at low angles and	there was no Bragg's peaks.

Profile function: CW Profile function number 4 with 21 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst., 20, 79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst., 27, 892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst., 32, 281-289. #1(GU) = 3.306 #2(GV) = 0.000 #3(GW) = 0.000 #4(GP) = 1.565 #5(LX) $= 2.176 \ \#6(\text{ptec}) = 0.00 \ \#7(\text{trns}) = 0.00 \ \#8(\text{shft})$ $= -0.5558 \ \#9(sfec) = 0.00 \ \#10(S/L) = 0.0005$ #11(H/L) = 0.0005 #12(eta) = 0.7500 #13(S400)) = 0.0E + 00 # 14(S040) = 0.0E + 00 # 15(S004)= 0.0E+00 #16(S220) = 0.0E+00 #17(S202) =0.0E+00 #18(S022) = 0.0E+00 #19(S301) =0.0E+00 # 20(S103) = 0.0E+00 # 21(S121) =0.0E+00 Peak tails are ignored where the intensity is below 0.0020 times the peak Aniso. broadening axis 0.0 0.0 1.0 40 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.03$ Background function: GSAS Background function number 1 with 32 terms. Shifted Chebyshev function of 1st kind 1: 684.144 2: -705.826 3: 591.845 4: -383.442 5: 271.953 6: -144.446 7: 80.6035 8: -57.5987 9: 36.6287 10: -27.9916 11: 15.1285 12: -11.9775 13: 12.8819 14: -10.6721 15: 7.66251 16: -8.35018 17: 1.44025 18: -5.00721 19: 5.78817 20: -2.82870 21: 1.93935 22: -1.83947 23: 4.15929 24: 0.506732 25: -0.182215 26: 0.162584 27: 4.98669 28: 0.850932 29: -0.614188 30: -2.46723 31: 3.10631 32: 3.29784 Preferred orientation correction: March-Dollase AXIS 1 Ratio= 0.72861 h= 1.000 k= 1.000 l= 1.000 Prefered orientation correction range: Min= 0.62193, Max= 1.62737

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mg1	0.3477 (3)	0.8175 (3)	0.2035 (3)	0.0069 (3)*	0.508 (4)
Mg2	0.0	0.8191 (5)	0.5	0.0069 (3)*	0.484 (7)
Zn1	0.3477 (3)	0.8175 (3)	0.2035 (3)	0.0069 (3)*	0.492 (4)
Zn2	0.0	0.8191 (5)	0.5	0.0069 (3)*	0.516(7)
V1	0.0517 (4)	0.0	0.1885 (4)	0.0069 (3)*	
V2	0.3777 (4)	0.0	0.8892 (4)	0.0069 (3)*	
V3	0.6962 (4)	0.0	0.4938 (4)	0.0069 (3)*	
01	0.4041 (12)	0.0	0.6850 (12)	0.0070 (8)*	
O2	0.0	0.0	0.0	0.0070 (8)*	
03	0.0123 (9)	0.1586 (10)	0.7538 (9)	0.0070 (8)*	

04	0.2787 (9)	0.1666 (10)	0.8864 (9)	0.0070 (8)*
05	0.3613 (10)	0.1678 (11)	0.4382 (10)	0.0070 (8)*
06	0.1338 (13)	0.0	0.5091 (13)	0.0070 (8)*
07	0.4380 (14)	0.0	0.1072 (12)	0.0070 (8)*
08	0.2081 (15)	0.0	0.2045 (13)	0.0070 (8)*

Geometric parameters (Å, °)

Mg1—Mg1 ⁱ	3.104 (6)	V2—O1	1.959 (12)
Mg1—Mg2 ⁱⁱ	3.185 (3)	V2—O4	1.745 (9)
Mg1—Zn1 ⁱ	3.104 (6)	V2—O4 ^{xv}	1.745 (9)
Mg1—Zn2 ⁱⁱ	3.185 (3)	V2—O7 ^{xvi}	2.032 (11)
Mg1—V3 ⁱⁱⁱ	3.307 (5)	V2—O7 ^{xvii}	1.898 (15)
Mg1—O3 ^{iv}	1.975 (10)	V3—Mg1 ^{xviii}	3.307 (5)
Mg1—O4 ^{iv}	1.929 (9)	V3—Mg1 ^{xix}	3.307 (5)
Mg1—O5 ^v	2.172 (10)	V3—O1 ^{xvii}	1.824 (10)
Mg1—O7 ^{vi}	2.081 (11)	V3—O5 ^{xvii}	1.703 (10)
Mg1—O8 ^{vi}	2.120 (11)	V3—O5 ^{xx}	1.703 (10)
Mg2—Mg1 ⁱⁱ	3.185 (3)	V3—O6 ^{xvii}	1.760 (15)
Mg2—Mg1 ^{vii}	3.185 (3)	O1—V2	1.959 (12)
Mg2—Mg2 ^{viii}	3.076 (9)	O1—V3 ^{xvii}	1.824 (10)
Mg2—Zn1 ⁱⁱ	3.185 (3)	O2—V1	1.757 (4)
Mg2—Zn1 ^{vii}	3.185 (3)	O2—V1 ^{xxi}	1.757 (4)
Mg2—Zn2 ^{viii}	3.076 (9)	O3—Mg1 ^{xxii}	1.975 (10)
Mg2—O3 ^{ix}	2.354 (8)	O3—Mg2 ^{ix}	2.354 (8)
Mg2—O3 ^v	2.354 (8)	O3—Zn1 ^{xxii}	1.975 (10)
Mg2—O5 ^x	1.948 (10)	O3—Zn2 ^{ix}	2.354 (8)
Mg2—O5 ^{iv}	1.948 (10)	O3—V1 ^{xii}	1.628 (10)
Mg2—O6 ^{vi}	2.061 (10)	O4—Mg1 ^{xxii}	1.929 (9)
Mg2—O6 ^{xi}	2.061 (10)	O4—Zn1 ^{xxii}	1.929 (9)
Zn1—Mg1 ⁱ	3.104 (6)	O4—V2	1.745 (9)
Zn1—Mg2 ⁱⁱ	3.185 (3)	O5—Mg1 ^v	2.172 (10)
Zn1—Zn1 ⁱ	3.104 (6)	O5—Mg2 ^{xxiii}	1.948 (10)
Zn1—O3 ^{iv}	1.975 (10)	O5—Zn1 ^v	2.172 (10)
Zn1—O4 ^{iv}	1.929 (9)	O5—Zn2 ^{xxiii}	1.948 (10)
Zn1—O5 ^v	2.172 (10)	O5—V3 ^{xvii}	1.703 (10)
Zn1—O7 ^{vi}	2.081 (11)	O6—Mg2 ^{xxiv}	2.061 (10)
Zn1—O8 ^{vi}	2.120 (11)	O6—Mg2 ^{ix}	2.061 (10)
Zn2—Mg1 ⁱⁱ	3.185 (3)	O6—Zn2 ^{xxiv}	2.061 (10)
Zn2—Mg1 ^{vii}	3.185 (3)	O6—Zn2 ^{ix}	2.061 (10)
Zn2—Mg2 ^{viii}	3.076 (9)	O6—V3 ^{xvii}	1.760 (15)
Zn2—Zn2 ^{viii}	3.076 (9)	O7—Mg1 ^{xxiv}	2.081 (11)
Zn2—O3 ^{ix}	2.354 (8)	O7—Mg1 ^v	2.081 (11)
Zn2—O3 ^v	2.354 (8)	O7—Zn1 ^{xxiv}	2.081 (11)
Zn2—O5 ^x	1.948 (10)	O7—Zn1 ^v	2.081 (11)
Zn2—O5 ^{iv}	1.948 (10)	O7—V2 ^{xxv}	2.032 (11)
Zn2—O6 ^{vi}	2.061 (10)	O7—V2 ^{xvii}	1.898 (15)
Zn2—O6 ^{xi}	2.061 (10)	O8—Mg1 ^{xxiv}	2.120 (11)

V1—O2	1.757 (4)	O8—Mg1 ^v	2.120 (11)
V1—O3 ^{xii}	1.628 (10)	O8—Zn1 ^{xxiv}	2.120 (11)
V1—O3 ^{xiii}	1.628 (10)	O8—Zn1 ^v	2.120 (11)
V1—O8	1.599 (15)	O8—V1	1.599 (15)
V2—V2 ^{xiv}	3.014 (6)		
	111.27 (0)		111.0 (0)
Mg1-Mg1-Mg2"	111.37 (6)		111.9 (8)
$MgI^{-}-MgI^{-}-O3^{iv}$	133.1 (3)	V_{3}	115.1 (4)
Mgl ¹ —Mgl—O4 ¹ V	131.7 (3)	03xm_V1_08	115.1 (4)
Mg1 ¹ —Mg1—O5 ^v	86.7 (2)	01—V2—04	98.7 (4)
$Mg1^{i}$ $Mg1$ $O7^{vi}$	41.8 (3)	01—V2—04 ^{xv}	98.7 (4)
$Mg1^{1}$ — $Mg1$ — $O8^{v1}$	42.9 (3)	$O1-V2-O7^{xvi}$	154.4 (6)
Mg2 ⁱⁱ —Mg1—O3 ^{iv}	47.5 (3)	$O1$ — $V2$ — $O7^{xvii}$	74.5 (5)
Mg2 ⁱⁱ —Mg1—O4 ^{iv}	110.4 (3)	$O4$ — $V2$ — $O4^{xv}$	108.5 (7)
Mg2 ⁱⁱ —Mg1—O5 ^v	36.9 (3)	O4—V2—O7 ^{xvi}	96.1 (4)
$Mg2^{ii}$ — $Mg1$ — $O7^{vi}$	116.7 (3)	O4—V2—O7 ^{xvii}	125.7 (3)
Mg2 ⁱⁱ —Mg1—O8 ^{vi}	120.7 (4)	$O4^{xv}$ —V2— $O7^{xvi}$	96.1 (4)
O3 ^{iv} —Mg1—O4 ^{iv}	93.5 (3)	O4 ^{xv} —V2—O7 ^{xvii}	125.7 (3)
O3 ^{iv} —Mg1—O5 ^v	84.3 (3)	$O7^{xvi}$ $V2$ $O7^{xvii}$	79.9 (7)
O3 ^{iv} —Mg1—O7 ^{vi}	103.6 (5)	O1 ^{xvii} —V3—O5 ^{xvii}	99.1 (4)
O3 ^{iv} —Mg1—O8 ^{vi}	167.9 (4)	O1 ^{xvii} —V3—O5 ^{xx}	99.1 (4)
$O4^{iv}$ —Mg1—O5 ^v	114.4 (4)	O1 ^{xvii} —V3—O6 ^{xvii}	114.7 (7)
O4 ^{iv} —Mg1—O7 ^{vi}	128.8 (4)	O5 ^{xvii} —V3—O5 ^{xx}	113.8 (8)
O4 ^{iv} —Mg1—O8 ^{vi}	94.1 (4)	O5 ^{xvii} —V3—O6 ^{xvii}	114.2 (4)
$O5^{v}$ —Mg1— $O7^{vi}$	115.1 (4)	O5 ^{xx} —V3—O6 ^{xvii}	114.2 (4)
05^{v} Mg1 $- 08^{vi}$	84.0 (5)	V2-01-V3 ^{xvii}	138.0 (7)
O7 ^{vi} —Mg1—O8 ^{vi}	78.8 (4)	V1—O2—V1 ^{xxi}	180.0
Mg1 ⁱⁱ —Mg2—Mg1 ^{vii}	137.26 (13)	Mg1 ^{xxii} —O3—Mg2 ^{ix}	94.3 (4)
Mg1 ⁱⁱ —Mg2—Mg2 ^{viii}	111.37 (6)	Mg1 ^{xxii} —O3—Zn1 ^{xxii}	0.0
$Mg1^{ii}$ — $Mg2$ — $O3^{ix}$	147.6 (2)	$Mg1^{xxii}$ —O3—V1 ^{xii}	145.2 (5)
$Mg1^{ii}$ — $Mg2$ — $O3^{v}$	38.2 (2)	Mg2 ^{ix} —O3—Zn1 ^{xxii}	94.3 (4)
$Mg1^{ii}$ — $Mg2$ — $O5^{x}$	105.2 (3)	Mg2 ^{ix} —O3—V1 ^{xii}	115.7 (4)
$Mg1^{ii}$ $Mg2$ $O5^{iv}$	42.0 (3)	$Zn1^{xxii}$ O3 $V1^{xii}$	145.2 (5)
$Mg1^{ii}$ — $Mg2$ — $O6^{vi}$	89.7 (3)	$Mg1^{xxii}$ $O4$ $Zn1^{xxii}$	0.0
$Mg1^{ii}$ $Mg2$ $O6^{xi}$	123.3 (3)	$Mg1^{xxii}$ $O4$ $V2$	154.6 (5)
$Mg1^{vii}$ $Mg2$ $Mg2^{viii}$	111 37 (6)	$Zn1^{xxii}$ $O4$ $V2$	154.6 (5)
$Mg1^{vii}$ $Mg2$ $Mg2$	38.2 (2)	Mg1 ^v —O5—Mg2 ^{xxiii}	101.1 (5)
$Mg1^{vii}$ $Mg2^{o}$ $O3^{v}$	147.6(2)	$Mg1^{v} = 05^{o} - 7n1^{v}$	0.0
$Mg1^{vii}$ $Mg2^{o}$ $O5^x$	420(3)	$Mg1^{v} = 05^{v} = 2m^{2}$	101.1(5)
$Mg1^{vii}$ $Mg2^{o}$ $O5^{iv}$	105.2(3)	$Mg1^{v} - 05 - V3^{xvii}$	101.1(5) 116.7(5)
$Mg1^{vii}$ $Mg2$ $O5^{vi}$	103.2(3) 123.3(3)	$Mg2^{xxiii} O5 7n1^{v}$	110.7(5) 101.1(5)
$Mg1^{vii}$ $Mg2 = 00^{xi}$	123.3(3)	Mg2 = 05 = 2hT $Mg2^{xxiii} = 05 = 7n2^{xxiii}$	0.0
$M_{\alpha} 2^{\text{viii}} M_{\alpha} 2 \Omega^{2\text{ix}}$	85 4 (2)	$\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}$	126 5 (5)
$1 v_{1g2} = 1 v_{1g2} = 0.5$ $M_{\alpha} 2^{v_{1ii}} = M_{\alpha} 2^{-0.2v}$	05.4 (2) 85 A (2)	$7n1^{\vee}$ O5 $7n2^{\times}$	130.3(3) 101.1(5)
$1 v_{1g2} = 1 v_{1g2} = 0.5^{\circ}$	03.4(2) 121.2(2)	$Z_{III} = 03 - Z_{II} Z_{III}$	101.1(3) 1167(5)
$VIg2$ $VIg2$ 05°	131.3(3) 121.2(2)	$Z_{III} = 05 = V 3^{IIII}$	110./(3) 126.5(5)
$WIg2$ ^{····} $WIg2$ $U3^{···}$	131.3 (3)	$\Delta m \Delta x_{xiv} = 0.5 - V \Delta x_{viv}$	130.3(3)
$Mg2$ $Mg2$ $O6^{vi}$	41.7 (3)	$Mg2^{AAV} - Ob - Mg2^{AAV}$	90.5 (6)
$Mg2^{vm}$ —Mg2—O6 ^{xi}	41.7 (3)	$Mg2^{xxiv}$ —O6—Zn 2^{xxiv}	0.0

O3 ^{ix} —Mg2—O3 ^v	170.8 (4)	Mg2 ^{xxiv} —O6—Zn2 ^{ix}	96.5 (6)
$O3^{ix}$ —Mg2— $O5^{x}$	80.2 (3)	Mg2 ^{xxiv} —O6—V3 ^{xvii}	131.6 (3)
$O3^{ix}$ —Mg2— $O5^{iv}$	106.1 (4)	$Mg2^{ix}$ —O6—Zn 2^{xxiv}	96.5 (6)
$O3^{ix}$ —Mg2— $O6^{vi}$	85.2 (4)	$Mg2^{ix}$ —O6—Zn 2^{ix}	0.0
$O3^{ix}$ —Mg2— $O6^{xi}$	87.9 (4)	Mg2 ^{ix} —O6—V3 ^{xvii}	131.6 (3)
O3 ^v —Mg2—O5 ^x	106.1 (4)	$Zn2^{xxiv}$ —O6— $Zn2^{ix}$	96.5 (6)
O3 ^v —Mg2—O5 ^{iv}	80.2 (3)	$Zn2^{xxiv}$ —O6—V 3^{xvii}	131.6 (3)
O3 ^v —Mg2—O6 ^{vi}	87.9 (4)	$Zn2^{ix}$ —O6—V 3^{xvii}	131.6 (3)
O3 ^v —Mg2—O6 ^{xi}	85.2 (4)	Mg1 ^{xxiv} —O7—Mg1 ^v	96.4 (6)
O5 ^x —Mg2—O5 ^{iv}	97.3 (5)	Mg1 ^{xxiv} —O7—Zn1 ^{xxiv}	0.0
$O5^{x}$ —Mg2—O6 ^{vi}	164.7 (4)	$Mg1^{xxiv}$ —O7—Z $n1^{v}$	96.4 (6)
$O5^{x}$ —Mg2— $O6^{xi}$	91.2 (4)	$Mg1^{xxiv}$ —O7—V 2^{xxv}	109.8 (4)
$O5^{iv}$ —Mg2— $O6^{vi}$	91.2 (4)	Mg1 ^{xxiv} —O7—V2 ^{xvii}	120.3 (4)
$O5^{iv}$ —Mg2— $O6^{xi}$	164.7 (4)	Mg1 ^v —O7—Zn1 ^{xxiv}	96.4 (6)
$O6^{vi}$ —Mg2— $O6^{xi}$	83.5 (6)	Mg1 ^v —O7—Zn1 ^v	0.0
$O3^{iv}$ —Zn1—O4 ^{iv}	93.5 (3)	$Mg1^v$ —O7—V 2^{xxv}	109.8 (4)
$O3^{iv}$ —Zn1—O5 ^v	84.3 (3)	Mg1 ^v —O7—V2 ^{xvii}	120.3 (4)
$O3^{iv}$ —Zn1— $O7^{vi}$	103.6 (5)	$Zn1^{xxiv}$ —O7— $Zn1^{v}$	96.4 (6)
$O3^{iv}$ —Zn1— $O8^{vi}$	167.9 (4)	$Zn1^{xxiv}$ —O7—V 2^{xxv}	109.8 (4)
$O4^{iv}$ —Zn1—O5 ^v	114.4 (4)	$Zn1^{xxiv}$ —O7—V 2^{xvii}	120.3 (4)
$O4^{iv}$ —Zn1— $O7^{vi}$	128.8 (4)	$Zn1^{v}$ —O7—V2 ^{xxv}	109.8 (4)
$O4^{iv}$ —Zn1— $O8^{vi}$	94.1 (4)	Zn1 ^v —O7—V2 ^{xvii}	120.3 (4)
$O5^{v}$ —Zn1— $O7^{vi}$	115.1 (4)	$V2^{xxv}$ — $O7$ — $V2^{xvii}$	100.1 (7)
$O5^{v}$ —Zn1— $O8^{vi}$	84.0 (5)	Mg1 ^{xxiv} —O8—Mg1 ^v	94.1 (7)
$O7^{vi}$ —Zn1— $O8^{vi}$	78.8 (4)	Mg1 ^{xxiv} —O8—Zn1 ^{xxiv}	0.0
$O5^{x}$ — $Zn2$ — $O5^{iv}$	97.3 (5)	Mg1 ^{xxiv} —O8—Zn1 ^v	94.1 (7)
$O5^{x}$ —Zn2— $O6^{vi}$	164.7 (4)	Mg1 ^{xxiv} —O8—V1	132.7 (3)
$O5^{x}$ —Zn2— $O6^{xi}$	91.2 (4)	Mg1 ^v —O8—Zn1 ^{xxiv}	94.1 (7)
$O5^{iv}$ —Zn2— $O6^{vi}$	91.2 (4)	$Mg1^{v}$ — $O8$ — $Zn1^{v}$	0.0
$O5^{iv}$ —Zn2— $O6^{xi}$	164.7 (4)	Mg1 ^v	132.7 (3)
$O6^{vi}$ —Zn2— $O6^{xi}$	83.5 (6)	$Zn1^{xxiv}$ —O8— $Zn1^{v}$	94.1 (7)
O2—V1—O3 ^{xii}	104.6 (3)	Zn1 ^{xxiv} —O8—V1	132.7 (3)
O2—V1—O3 ^{xiii}	104.6 (3)	Zn1 ^v	132.7 (3)
O2—V1—O8	104.2 (5)		

Symmetry codes: (i) x, -y+2, z; (ii) -x+1/2, -y+3/2, -z+1; (iii) -x+1, y+1, -z+1; (iv) -x+1/2, y+1/2, -z+1; (v) x, -y+1, z; (vi) x, y+1, z; (vii) x-1/2, -y+3/2, z; (viii) -x, -y+2, -z+1; (ix) -x, -y+1, -z+1; (x) x-1/2, y+1/2, z; (xi) -x, y+1, -z+1; (xii) -x, y, -z+1; (xiii) -x, -y, -z+1; (xiv) -x+1, y, -z+2; (xv) x, -y, z; (xvi) x, y, z+1; (xvii) -x+1, y, -z+1; (xviii) -x+1, y, -z+1; (xvi) -x+1, -y+1, -z+1; (xvi) -x+1, -y, -z+1; (xvi) -x, y, -z; (xvii) -x+1/2, y-1/2, -z+1; (xviv) x, y, z-1.