

Received 21 April 2021 Accepted 2 May 2021

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; imidazolidine ring; pyridine ring; hydrogen bond; Hirshfeld surface analysis.

CCDC reference: 2081515

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 5,7-diphenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]-pyridine-6,6,8-tricarbonitrile methanol mono-solvate

Farid N. Naghiyev,^a Gunay Z. Mammadova,^a Ali N. Khalilov,^{a,b} Zeliha Atioğlu,^c Mehmet Akkurt,^d Anzurat A. Akobirshoeva^e* and İbrahim G. Mamedov^a

^aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, ^b"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, ^cDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^eAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan. *Correspondence e-mail: anzurat2003@mail.ru

In the title compound, $C_{22}H_{17}N_5 \cdot CH_4O$, the imidazolidine ring of the 1,2,3,5,6,7-hexahydroimidazo[1,2-*a*]pyridine ring system is a twisted envelope, while the 1,2,3,4-tetrahydropyridine ring adopts a twisted boat conformation. In the crystal, pairs of molecules are linked by $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds *via* two methanol molecules, forming a centrosymmetric $R_4^4(16)$ ring motif. These motifs are connected to each other by $C-H\cdots N$ hydrogen bonds and form columns along the *a* axis. The columns form a stable molecular packing, being connected to each other by van der Waals interactions. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from $H\cdots H$ (43.8%), $N\cdots H/H\cdots N$ (31.7%) and $C\cdots H/H\cdots C$ (18.4%) contacts.

1. Chemical context

Having a great methodological diversity, C-C and C-X (where X is a heteroatom) bond-forming reactions lie at the heart of synthetic organic chemistry (Khalilov et al., 2018a,b; Maharramov et al., 2019; Cheng & Mankad, 2020). They allow the construction of complex molecular structures and the introduction of various substituents. Nowadays, researchers are constantly trying to develop new methods in these directions for the syntheses of structurally diverse valuable molecular entities. These approaches have successfully found application in the building of carbo- and heterocyclic ring systems (Naghiyev et al., 2020; Mamedov et al., 2019). In heterocyclic ring systems, the use of nitrogen as a bridgehead atom is being assessed widely. Bridgehead nitrogen heterocycles incorporating an imidazole ring are widespread structural motifs in a diverse range of compounds having application in medicinal chemistry, coordination chemistry, catalysis and materials science (Asadov et al., 2016; Ma et al., 2017a,b, 2020, 2021; Maharramov et al., 2010, 2018; Mahmoudi et al., 2017, 2019; Mahmudov et al., 2019, 2020). Various synthetic drugs, such as soraprazan, alpidem, olprinone, saripidem, necopidem, minodronic acid, zolimidine and zolpidem containing the imidazo[1,2-a]pyridine moiety (Fig. 1) have already been used in medical practice (Hosseini & Bayat, 2018).

research communications

Figure 1

Drugs containing the imidazo[1,2-a]pyridine motif.

In the framework of our ongoing structural studies (Naghiyev *et al.*, 2021), herein we report the crystal structure and Hirshfeld surface analysis of the title compound, 5,7-diphenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-*a*]pyridine-6,6,8-tricarbonitrile methanol monosolvate.

2. Structural commentary

In the title compound, (Fig. 2), the imidazolidine ring (N1/N2/ C1–C3) of the 1,2,3,5,6,7-hexahydroimidazo[1,2-*a*]pyridine ring system (N1/N2/C1–C7) is a twisted envelope [with puckering parameters (Cremer & Pople, 1975) Q(2) =0.2844 (16) Å and $\varphi(2) = 226.3$ (3)°], while the 1,2,3,4-tetrahydropyridine ring (N1/C3–C7) adopts a twisted boat conformation with $Q_{\rm T} = 0.5368$ (14) Å, $\theta = 135.38$ (15)°, $\varphi =$ 82.6 (2)°. The C9–C14 and C17–C22 phenyl rings, which are attached to C5 and C7, respectively, are in equatorial positions (Fig. 2) and make dihedral angles of 64.00 (7) and 65.90 (7)°, respectively, with the mean plane of the 1,2,3,5,6,7-hexahydroimidazo[1,2-*a*]pyridine ring system. The dihedral angle between the phenyl rings is 61.43 (8)°. The molecular

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - HO1 \cdots N3^{i}$ $N2 - H2N \cdots O1$ $C7 - H7 \cdots N3^{ii}$	0.92 (3)	2.02 (3)	2.907 (2)	161 (2)
	0.887 (18)	2.004 (18)	2.870 (2)	165.0 (16)
	0.98	2.52	3.3742 (19)	146

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

conformation of the title compound is stabilized by an N2– $H2N \cdots O1$ hydrogen bond (Fig. 2, Table 1).

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, pairs of molecules are linked by $O-H\cdots N$, $C-H\cdots N$ and $N-H\cdots O$ hydrogen bonds *via* two methanol molecules, forming a centrosymmetric $R_4^4(16)$ ring motif (Bernstein *et al.*, 1995; Table 1; Fig. 3). These motifs are connected to each other by $C-H\cdots N$ hydrogen bonds and form columns along the *a*-axis direction (Figs. 4 and 5). The columns form a stable molecular packing, being connected to each other by van der Waals interactions.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a $N-H\cdots$ O hydrogen bond.

research communications

Figure 3

Details of the O-H···N, C-H···N and N-H···O hydrogen bonds (dashed lines) in the unit cell of the title compound. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.]

To further investigate and visualize the intermolecular interactions of the title compound, the *CrystalExplorer* program (Turner *et al.*, 2017) was used. The interactions between the corresponding donor and acceptor atoms are visualized as bright-red spots on the Hirshfeld surface mapped over d_{norm} (Fig. 6), corresponding to O1-HO1...N3, C7-H7...N3 and N2-H2N...O1 hydrogen bonds. The other red spots correspond to weaker van der Waals interactions, of which the details are listed in Table 2.

The overall two-dimensional fingerprint plot of the title structure and $H \cdots H$, $N \cdots H/H \cdots N$ and $C \cdots H/H \cdots C$ contacts are illustrated in Fig. 7a-d). The greatest contribution to the overall Hirshfeld surface results from $H \cdots H$ contacts with a

Figure 4

A view along the *a* axis of the columns that are formed by the $O-H \cdots N$, $C-H \cdots N$ and $N-H \cdots O$ hydrogen bonds (dashed lines) in the title compound. H atoms not involved in hydrogen bonding have been omitted for clarity.

Table 2					
Summary of short interatomic contacts	(Å) i	n the	title	compou	nd

Contact	Distance	Symmetry operation
H2N01	2.00	X 11 7
H7N3	2.00	1 - r - 1 - v - 1 - 7
N3H18	2.75	-1 + x y z
$N3 \cdot \cdot \cdot HO1$	2.02	-x, 1 - y, 1 - z
N5· · ·H1 <i>B</i>	2.75	$-\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$
$N5 \cdot \cdot \cdot H23B$	2.77	$\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$
$H12 \cdot \cdot \cdot H12$	2.54	-x, 1 - y, -z
$C20 \cdot \cdot \cdot H2B$	3.02	$\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$
$H5 \cdot \cdot \cdot O1$	2.79	1 - x, 1 - y, 1 - z
$H12 \cdot \cdot \cdot C23$	3.07	x, y, -1 + z

43.8% contribution (Fig. 7*b*). The relative contributions of the other interactions in descending order are: $N \cdots H/H \cdots N$ (31.7%), $C \cdots H/H \cdots C$ (18.4%), $O \cdots H/H \cdots O$ (2.6%), $C \cdots C$ (2.4%), $N \cdots O/O \cdots N$ (0.1%) and $C \cdots O/O \cdots C$ (0.1%). The large contributions of $H \cdots H$, $N \cdots H/H \cdots N$ and $C \cdots H/H \cdots C$ interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar *et al.*, 2015).

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom *et al.*, 2016) reveals two related compounds having the 1,2,3,5,6,7-hexahydroimidazo[1,2-*a*]pyridine ring system of the title compound: ethyl 8-benzoyl-5-oxo-7-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-*a*]pyridine-6-carboxylate (refcode ADETUZ; Yu *et al.*, 2006) and 1-[(6-chloropyridin-3-yl)methyl]-5-ethoxy-8nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-*a*]pyridine (BUDZAC; Tian *et al.*, 2009).

A part of view along the b axis of the columns shown in Fig. 4. H atoms not involved in hydrogen bonding have been omitted for clarity. Dashed lines indicate hydrogen bonds.

Figure 6

The three-dimensional Hirshfeld surface of the title compound plotted over d_{norm} in the range -0.5585 to +1.5646 a.u. The $O-H \cdots N$, $C-H \cdots O$ and $N-H \cdots O$ hydrogen bonds are shown as dashed lines.

In ADETUZ, the six-membered ring adopts a twist-boat conformation. The molecules form dimeric associations *via*

Figure 7

The two-dimensional fingerprint plots of the title compound, showing (*a*) all interactions, and delineated into (*b*) $H \cdots H$, (*c*) $N \cdots H/H \cdots N$, and (*d*) $C \cdots H/H \cdots C$ interactions [d_e and d_i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].

Table 3	
Experimental details.	
Crystal data	
Chemical formula	$C_{22}H_{17}N_5 \cdot CH_4O$
M _r	383.45
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
a, b, c (Å)	8.5517 (10), 18.781 (2), 13.1925 (14)
β (°)	99.757 (4)
$V(\dot{A}^3)$	2088.2 (4)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.08
Crystal size (mm)	$0.28\times0.26\times0.25$
Data collection	
Diffractometer	Bruker APEXII CCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	33652, 4239, 3656
R _{int}	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.626
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.123, 1.03
No. of reflections	4239
No. of parameters	269
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~{\rm \AA}^{-3})$	0.31, -0.23

T | | | | |

Computer programs: APEX2 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

inversion-generated pairs of $N-H\cdots O$ hydrogen bonds. In BUDZAC, the fused pyridine ring adopts a twisted sofa conformation. The molecular structure features close intramolecular $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonding.

5. Synthesis and crystallization

To a solution of benzylidenemalononitrile (0.78 g; 5.1 mmol) in ethanol (30 mL), ethylenediamine (0.31 g; 5.2 mmol) was added and the mixture was refluxed for 7 h. Then 25 mL of ethanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from methanol (yield 47%; m.p. 443–444 K).

¹H NMR (300 MHz, DMSO- d_6): 3.18 (t, 2H, NCH₂); 3.42 (t, 2H, NCH₂); 4.79 (s, 1H, CH-Ar); 5.19 (s, 1H, CH-Ar); 7.41– 7.58 (m, 10H, 10Ar-H); 7.70 (s, 1H, NH).¹³C NMR (75 MHz, DMSO- d_6): 42.04 (NCH₂), 47.67 (CH-Ar), 48.41 (C_{quart}), 48.64 (=C_{quart}), 49.05 (NCH₂), 63.46 (CH-Ar), 112.91 (CN), 113.69 (CN), 121.24 (CN), 129.03 (4CH_{arom}), 129.42 (2CH_{arom}), 129.72 (CH_{arom}), 129.96 (2CH_{arom}), 130.85 (CH_{arom}), 133.25 (C_{arom}),135.90 (C_{ar.}), 162.08 (=C_{quart}).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms were placed

in calculated positions (C–H = 0.93–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The H atoms of the amine and hydroxyl groups were located in a difference map [N2–H2N = 0.887 (18) Å and O1–HO1 = 0.92 (3) Å] and were refined with the constraint $U_{iso}(H) = 1.2U_{eq}(N)$ or $1.5U_{eq}(O)$.

Acknowledgements

Author contributions are as follows. Conceptualization, FNN and IGM; methodology, GZM, MA and FNN; investigation, ZA, AAA and FNN; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA, IGM and ANK; visualization, MA and ANK; funding acquisition, IGM, and FNN; resources, GZM, AAA, MA and FNN; supervision, MA, IGM and ANK.

Funding information

This work was supported by Baku State University and UNEC Research Program.

References

- Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheng, L.-J. & Mankad, N. P. (2020). Chem. Soc. Rev. 49, 8036–8064.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.
- Hosseini, H. & Bayat, M. (2018). RSC Adv. 8, 41218-41225.
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. NCS 233, 1019–1020.
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.

- Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
- Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). *Mol. Catal.* 428, 17–23.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). *Coord. Chem. Rev.* 437, 213859.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). *Coord. Chem. Rev.* **423**, 213482.
- Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). *Dyes Pigments*, **85**, 1–6.
- Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.
- Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). *Inorg. Chim. Acta*, 461, 192–205.
- Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). *CrystEngComm*, **21**, 108–117.
- Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). *Coord. Chem. Rev.* **418**, 213381.
- Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
- Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). *Mendeleev Commun.* 29, 232–233.
- Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). *Molecules*, **25**, 2235–2248.
- Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). *Acta Cryst.* E77, 195–199.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tian, Z., Li, D. & Li, Z. (2009). Acta Cryst. E65, o2517.
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer*17. University of Western Australia.
- Yu, C.-Y., Yan, S.-J. & Huang, Z.-T. (2006). Acta Cryst. E62, o2731– o2733.

supporting information

Acta Cryst. (2021). E77, 600-604 [https://doi.org/10.1107/S2056989021004655]

Crystal structure and Hirshfeld surface analysis of 5,7-diphenyl-1,2,3,5,6,7hexahydroimidazo[1,2-a]pyridine-6,6,8-tricarbonitrile methanol monosolvate

Farid N. Naghiyev, Gunay Z. Mammadova, Ali N. Khalilov, Zeliha Atioğlu, Mehmet Akkurt, Anzurat A. Akobirshoeva and İbrahim G. Mamedov

Computing details

Data collection: *APEX2* (Bruker, 2018); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

5,7-Diphenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-6,6,8-tricarbonitrile methanol monosolvate

Crystal data C₂₂H₁₇N₅·CH₄O $M_r = 383.45$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.5517 (10) Å b = 18.781 (2) Å c = 13.1925 (14) Å $\beta = 99.757$ (4)° V = 2088.2 (4) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer φ and ω scans 33652 measured reflections 4239 independent reflections 3656 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.046$
$wR(F^2) = 0.123$
S = 1.02
4239 reflections
269 parameters
0 restraints

F(000) = 808 $D_x = 1.220 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9885 reflections $\theta = 3.1-26.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.28 \times 0.26 \times 0.25 \text{ mm}$

 $R_{int} = 0.033$ $\theta_{max} = 26.4^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -10 \rightarrow 10$ $k = -23 \rightarrow 23$ $l = -16 \rightarrow 16$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0553P)^2 + 0.5899P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.60712 (14)	0.34477 (6)	0.50461 (8)	0.0455 (3)	
N2	0.42807 (17)	0.38674 (7)	0.59278 (9)	0.0554 (4)	
N3	0.16518 (16)	0.50048 (7)	0.42172 (10)	0.0564 (4)	
N4	0.77545 (19)	0.37704 (11)	0.17841 (12)	0.0818 (7)	
N5	0.43619 (17)	0.24442 (8)	0.29156 (13)	0.0687 (5)	
C1	0.6680(2)	0.32722 (10)	0.61313 (11)	0.0610 (5)	
01	0.15621 (16)	0.45171 (9)	0.65565 (10)	0.0796 (5)	
C2	0.5187 (2)	0.33436 (11)	0.66018 (13)	0.0728 (6)	
C3	0.47744 (16)	0.38817 (7)	0.50125 (10)	0.0416 (4)	
C4	0.41241 (15)	0.42550 (7)	0.41462 (9)	0.0400 (4)	
C5	0.49374 (15)	0.42867 (7)	0.32123 (9)	0.0400 (3)	
C6	0.60291 (14)	0.36144 (7)	0.32248 (9)	0.0396 (4)	
C7	0.71275 (15)	0.35675 (7)	0.43062 (10)	0.0406 (3)	
C8	0.27705 (16)	0.46706 (7)	0.41791 (10)	0.0430 (4)	
C9	0.38002 (16)	0.43787 (7)	0.22050 (10)	0.0435 (4)	
C10	0.24007 (17)	0.39947 (9)	0.19806 (11)	0.0529 (5)	
C11	0.14001 (19)	0.40923 (12)	0.10485 (13)	0.0698 (6)	
C12	0.1790 (2)	0.45789 (13)	0.03484 (12)	0.0768 (7)	
C13	0.3160 (3)	0.49685 (11)	0.05680 (13)	0.0726 (7)	
C14	0.4164 (2)	0.48700 (9)	0.14907 (12)	0.0567 (5)	
C15	0.70149 (17)	0.36934 (9)	0.24146 (11)	0.0519 (4)	
C16	0.50897 (16)	0.29533 (7)	0.30346 (11)	0.0456 (4)	
C17	0.84126 (15)	0.30107 (7)	0.43683 (10)	0.0422 (4)	
C18	0.99408 (17)	0.32313 (8)	0.43065 (13)	0.0555 (5)	
C19	1.11587 (18)	0.27445 (10)	0.43609 (15)	0.0650 (6)	
C20	1.08799 (19)	0.20309 (9)	0.44872 (14)	0.0622 (6)	
C21	0.93680 (19)	0.18065 (8)	0.45511 (14)	0.0615 (5)	
C22	0.81374 (17)	0.22886 (8)	0.44866 (12)	0.0519 (4)	
C23	0.1184 (3)	0.4273 (2)	0.74675 (18)	0.1210 (12)	
H1A	0.74920	0.36056	0.64351	0.0730*	
H1B	0.71018	0.27920	0.62033	0.0730*	
H2A	0.46245	0.28943	0.65878	0.0870*	
H2B	0.54270	0.35144	0.73049	0.0870*	
H2N	0.334 (2)	0.4024 (10)	0.6028 (14)	0.0660*	
Н5	0.56337	0.47045	0.32956	0.0480*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supporting information

0.0490*
0.0640*
0.0840*
0.0920*
0.0870*
0.0680*
0.0670*
0.0780*
0.0750*
0.0740*
0.0620*
0.1190*
0.1810*
0.1810*
0.1810*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0484 (6)	0.0509 (6)	0.0359 (6)	0.0044 (5)	0.0037 (5)	0.0042 (5)
N2	0.0646 (8)	0.0647 (8)	0.0388 (6)	0.0088 (6)	0.0142 (6)	0.0043 (5)
N3	0.0557 (7)	0.0551 (7)	0.0591 (8)	0.0089 (6)	0.0120 (6)	-0.0015 (6)
N4	0.0656 (9)	0.1250 (15)	0.0605 (9)	0.0014 (9)	0.0267 (8)	0.0042 (9)
N5	0.0602 (8)	0.0552 (8)	0.0845 (10)	-0.0080 (7)	-0.0053 (7)	-0.0160 (7)
C1	0.0707 (10)	0.0703 (10)	0.0390 (7)	0.0103 (8)	0.0004 (7)	0.0099 (7)
01	0.0639(7)	0.1204 (12)	0.0577 (7)	0.0139 (8)	0.0191 (6)	0.0105 (7)
C2	0.0933 (13)	0.0838 (12)	0.0428 (8)	0.0176 (10)	0.0161 (8)	0.0159 (8)
C3	0.0469 (7)	0.0407 (6)	0.0369 (6)	-0.0037 (5)	0.0067 (5)	-0.0032 (5)
C4	0.0432 (7)	0.0391 (6)	0.0373 (6)	-0.0009 (5)	0.0057 (5)	-0.0018 (5)
C5	0.0414 (6)	0.0390 (6)	0.0396 (6)	-0.0032 (5)	0.0067 (5)	0.0017 (5)
C6	0.0377 (6)	0.0438 (7)	0.0370 (6)	-0.0019 (5)	0.0051 (5)	-0.0007 (5)
C7	0.0397 (6)	0.0399 (6)	0.0400 (6)	-0.0044 (5)	0.0009 (5)	-0.0008 (5)
C8	0.0499 (7)	0.0397 (7)	0.0393 (6)	-0.0026 (6)	0.0076 (5)	-0.0017 (5)
С9	0.0451 (7)	0.0480 (7)	0.0381 (6)	0.0099 (6)	0.0095 (5)	0.0036 (5)
C10	0.0431 (7)	0.0721 (10)	0.0434 (7)	0.0063 (7)	0.0067 (6)	0.0015 (7)
C11	0.0436 (8)	0.1130 (15)	0.0509 (9)	0.0185 (9)	0.0027 (7)	-0.0113 (9)
C12	0.0699 (11)	0.1208 (16)	0.0386 (8)	0.0531 (12)	0.0064 (7)	0.0081 (9)
C13	0.0874 (13)	0.0836 (12)	0.0502 (9)	0.0394 (11)	0.0218 (9)	0.0238 (8)
C14	0.0666 (9)	0.0564 (9)	0.0501 (8)	0.0135 (7)	0.0182 (7)	0.0125 (7)
C15	0.0445 (7)	0.0657 (9)	0.0455 (7)	0.0031 (6)	0.0076 (6)	0.0017 (6)
C16	0.0407 (7)	0.0467 (7)	0.0466 (7)	0.0017 (6)	-0.0004(5)	-0.0075 (6)
C17	0.0387 (6)	0.0444 (7)	0.0412 (7)	-0.0035 (5)	-0.0002(5)	-0.0002 (5)
C18	0.0436 (7)	0.0490 (8)	0.0716 (10)	-0.0085 (6)	0.0034 (7)	0.0044 (7)
C19	0.0385 (7)	0.0712 (11)	0.0841 (12)	-0.0037 (7)	0.0074 (7)	0.0060 (9)
C20	0.0488 (8)	0.0629 (10)	0.0731 (11)	0.0106 (7)	0.0052 (7)	0.0055 (8)
C21	0.0582 (9)	0.0453 (8)	0.0798 (11)	0.0022 (7)	0.0080 (8)	0.0084 (7)
C22	0.0418 (7)	0.0462 (7)	0.0663 (9)	-0.0052 (6)	0.0053 (6)	0.0051 (6)
C23	0.0825(15)	0.205(3)	0.0758(14)	-0.0012(18)	0.0142(12)	0.0563 (18)

Geometric parameters (Å, °)

N1—C1	1.4754 (18)	C17—C22	1.390 (2)
N1—C3	1.3710 (18)	C17—C18	1.387 (2)
N1—C7	1.4554 (17)	C18—C19	1.379 (2)
N2—C2	1.458 (2)	C19—C20	1.376 (3)
N2—C3	1.3453 (18)	C20—C21	1.376 (2)
N3—C8	1.1524 (19)	C21—C22	1.380 (2)
N4—C15	1.136 (2)	C1—H1A	0.9700
N5—C16	1.137 (2)	01—H01	0.92 (3)
C1—C2	1.517 (2)	C1—H1B	0.9700
01-C23	1.375 (3)	C2—H2A	0.9700
N2—H2N	0.887 (18)	C2—H2B	0.9700
$C_3 - C_4$	1 3753 (18)	C5—H5	0.9800
C4-C8	1 4029 (19)	C7—H7	0.9800
C4-C5	1.1029(19) 1.5151(17)	C_{10} H10	0.9300
$C_{2} = C_{2}$	1.5687 (18)	C11_H11	0.9300
C_{5}	1.5177 (18)	C12H12	0.9300
C6-C7	1.5770(18)	C12—H12	0.9300
C_{0}	1.3720(10) 1 4770(10)	C14 H14	0.9300
C6_C15	1.4770(19) 1 4767 (10)	C_{14} H_{18}	0.9300
$C_{0} = C_{13}$	1.4707(19) 1 5001(10)	$C_{10} = H_{10}$	0.9300
C^{0}	1.3091(19) 1.201(2)	C19—1119 C20 H20	0.9300
$C_9 = C_{14}$	1.391(2) 1.386(2)	C_{20} H21	0.9300
$C_{2} = C_{10}$	1.300(2)	C_{21} H_{21}	0.9300
C_{11} C_{12}	1.300(2) 1.280(2)	C_{22} H_{22}	0.9300
C12 - C12	1.360(3)	C22 U22D	0.9000
C12 - C13	1.370(3)	C22—H22C	0.9600
013-014	1.378 (3)	C23—H23C	0.9600
C1—N1—C3	108.34 (11)	C17—C22—C21	120.35 (14)
C1—N1—C7	121.89 (12)	N1—C1—H1A	112.00
C3—N1—C7	118.49 (11)	N1—C1—H1B	112.00
C2—N2—C3	110.22 (13)	C2—C1—H1A	112.00
N1—C1—C2	101.20 (13)	C2—C1—H1B	112.00
N2-C2-C1	101.97 (14)	H1A—C1—H1B	109.00
C3—N2—H2N	123.9 (12)	С23—О1—НО1	105.2 (17)
C2—N2—H2N	122.3 (12)	N2—C2—H2B	111.00
N1—C3—C4	122.75 (12)	C1—C2—H2A	111.00
N2—C3—C4	127.72 (13)	C1—C2—H2B	111.00
N1—C3—N2	109.53 (12)	H2A—C2—H2B	109.00
C5—C4—C8	119.88 (11)	N2—C2—H2A	111.00
C3—C4—C5	121.27 (12)	C4—C5—H5	107.00
C3—C4—C8	118.52 (12)	С9—С5—Н5	107.00
C6—C5—C9	113.12 (10)	С6—С5—Н5	107.00
C4—C5—C9	113.71 (11)	N1—C7—H7	108.00
C4—C5—C6	108.31 (10)	С17—С7—Н7	108.00
C5—C6—C15	108.86 (11)	С6—С7—Н7	108.00
C5—C6—C16	111.67 (10)	С9—С10—Н10	120.00

C7—C6—C16	109.34 (11)	C11—C10—H10	120.00
C15—C6—C16	108.80 (11)	C12—C11—H11	120.00
C7—C6—C15	109.63 (11)	C10—C11—H11	120.00
C5—C6—C7	108.52 (10)	C11—C12—H12	120.00
C6—C7—C17	113.94 (11)	С13—С12—Н12	120.00
N1—C7—C6	105.90 (10)	C14—C13—H13	120.00
N1—C7—C17	112.68 (11)	С12—С13—Н13	120.00
N3—C8—C4	178.94 (14)	C9—C14—H14	120.00
C10—C9—C14	118.99 (13)	C13—C14—H14	120.00
C5—C9—C10	122.00 (12)	С19—С18—Н18	120.00
C5—C9—C14	119.01 (13)	C17—C18—H18	120.00
C9—C10—C11	120.11 (15)	С18—С19—Н19	120.00
C10—C11—C12	119.91 (16)	С20—С19—Н19	120.00
C11—C12—C13	120.48 (16)	C21—C20—H20	120.00
C12—C13—C14	119.84 (18)	C19—C20—H20	120.00
C9—C14—C13	120.66 (17)	C20—C21—H21	120.00
N4—C15—C6	178.24 (18)	C22—C21—H21	120.00
N5-C16-C6	178.13 (16)	C17—C22—H22	120.00
C7-C17-C18	118.34 (12)	C_{21} C_{22} H_{22}	120.00
C18 - C17 - C22	118.52 (13)	01-C23-H23A	109.00
C7—C17—C22	123.14 (12)	O1-C23-H23B	109.00
C17—C18—C19	120.67 (14)	01-C23-H23C	109.00
C18 - C19 - C20	120.48 (15)	H23A—C23—H23B	109.00
C19 - C20 - C21	119.31 (15)	$H_{23}A - C_{23} - H_{23}C$	109.00
C_{20} C_{21} C_{22}	120.66 (14)	H23B-C23-H23C	109.00
020 021 022			10,100
C3—N1—C1—C2	26.59 (16)	C9—C5—C6—C7	-179.03 (10)
C7—N1—C1—C2	169.55 (13)	C9—C5—C6—C15	61.71 (14)
C7—N1—C3—N2	-158.46 (12)	C4—C5—C6—C15	-171.28 (11)
C1—N1—C7—C6	171.10 (12)	C16—C6—C7—N1	-57.45 (13)
C1—N1—C3—N2	-14.05 (16)	C16—C6—C7—C17	66.96 (14)
C3—N1—C7—C17	-174.68 (11)	C15—C6—C7—C17	-52.24 (15)
C1—N1—C3—C4	166.57 (13)	C5—C6—C7—N1	64.58 (12)
C7—N1—C3—C4	22.16 (19)	C5—C6—C7—C17	-171.02 (10)
C1—N1—C7—C17	45.91 (17)	C15—C6—C7—N1	-176.64 (11)
C3—N1—C7—C6	-49.49 (14)	N1—C7—C17—C18	-137.73 (13)
C3—N2—C2—C1	22.03 (17)	N1—C7—C17—C22	42.12 (18)
C2—N2—C3—C4	173.60 (14)	C6—C7—C17—C18	101.58 (15)
C2—N2—C3—N1	-5.74 (17)	C6—C7—C17—C22	-78.57 (16)
N1—C1—C2—N2	-28.10 (16)	C5—C9—C10—C11	-179.63 (15)
N1—C3—C4—C5	-8.3 (2)	C14—C9—C10—C11	1.2 (2)
N1—C3—C4—C8	178 32 (12)	C5—C9—C14—C13	-179.97 (16)
	1/0.52(12)		
N2—C3—C4—C5	178.52 (12)	C10-C9-C14-C13	-0.8(2)
N2—C3—C4—C5 N2—C3—C4—C8	172.44 (13) -0.9 (2)	C10—C9—C14—C13 C9—C10—C11—C12	-0.8 (2) -0.8 (3)
N2—C3—C4—C5 N2—C3—C4—C8 C3—C4—C5—C6	172.44 (13) -0.9 (2) 24.53 (16)	C10-C9-C14-C13 C9-C10-C11-C12 C10-C11-C12-C13	-0.8 (2) -0.8 (3) -0.1 (3)
N2-C3-C4-C5 N2-C3-C4-C8 C3-C4-C5-C6 C8-C4-C5-C6	172.44 (13) -0.9 (2) 24.53 (16) -162.18 (11)	C10-C9-C14-C13 C9-C10-C11-C12 C10-C11-C12-C13 C11-C12-C13-C14	-0.8 (2) -0.8 (3) -0.1 (3) 0.6 (3)
N2-C3-C4-C5 N2-C3-C4-C8 C3-C4-C5-C6 C8-C4-C5-C6 C8-C4-C5-C9	$\begin{array}{c} 173.32 (12) \\ 172.44 (13) \\ -0.9 (2) \\ 24.53 (16) \\ -162.18 (11) \\ -35.51 (17) \end{array}$	C10-C9-C14-C13 C9-C10-C11-C12 C10-C11-C12-C13 C11-C12-C13-C14 C12-C13-C14-C9	-0.8 (2) -0.8 (3) -0.1 (3) 0.6 (3) -0.1 (3)
N2-C3-C4-C5 N2-C3-C4-C8 C3-C4-C5-C6 C8-C4-C5-C6 C8-C4-C5-C9 C3-C4-C5-C9	$\begin{array}{c} 173.32 (12) \\ 172.44 (13) \\ -0.9 (2) \\ 24.53 (16) \\ -162.18 (11) \\ -35.51 (17) \\ 151.19 (12) \end{array}$	C10-C9-C14-C13 C9-C10-C11-C12 C10-C11-C12-C13 C11-C12-C13-C14 C12-C13-C14-C9 C7-C17-C18-C19	-0.8 (2) -0.8 (3) -0.1 (3) 0.6 (3) -0.1 (3) 179.89 (15)

supporting information

C4—C5—C6—C7	-52.02(13)	C22-C17-C18-C19	0.0(2)
C9—C5—C6—C16	-58.43 (14)	C7—C17—C22—C21	-179.19 (14)
C4—C5—C9—C10	-43.99 (18)	C18—C17—C22—C21	0.7 (2)
C4—C5—C9—C14	135.18 (14)	C17—C18—C19—C20	-0.6 (3)
C6—C5—C9—C10	80.12 (16)	C18—C19—C20—C21	0.5 (3)
C6—C5—C9—C14	-100.71 (15)	C19—C20—C21—C22	0.2 (3)
C4—C5—C6—C16	68.57 (13)	C20—C21—C22—C17	-0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	<i>D</i> —H··· <i>A</i>
01—H <i>0</i> 1····N3 ⁱ	0.92 (3)	2.02 (3)	2.907 (2)	161 (2)
N2—H2 <i>N</i> ···O1	0.887 (18)	2.004 (18)	2.870 (2)	165.0 (16)
C7—H7…N3 ⁱⁱ	0.98	2.52	3.3742 (19)	146

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1.