

Received 26 April 2021 Accepted 11 May 2021

Edited by P. Roussel, ENSCL, France

Keywords: Single-crystal structure; low-temperature X-ray diffraction; space-group determination.

CCDC references: 2083048; 2083047

Supporting information: this article has supporting information at journals.iucr.org/e

Ba₅(IO₆)₂: crystal structure evolution from room temperature to 80 K

David Wenhua Bi,* Priya Ranjan Baral and Arnaud Magrez

Crystal Growth Facility, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. *Correspondence e-mail: wen.bi@epfl.ch

The crystal structure of $Ba_5(IO_6)_2$, pentabarium bis(orthoperiodate), has been re-investigated at room temperature based on single-crystal X-ray diffraction data. In comparison with a previous crystal structure determination by the Rietveld method, an improved precision of the structural parameters was achieved. Additionally, low-temperature measurements allowed the crystal structure evolution to be studied down to 80 K. No evidence of structural transition was found even at the lowest temperature. Upon cooling, the lattice contraction is more pronounced along the *b* axis. This contraction is found to be inhomogeneous along different crystallographic axes. The interatomic distances between different Ba atoms reduce drastically with lowering temperature, resulting in a closer packing around the IO₆ octahedra, which remain largely unaffected.

1. Database survey

No structural model was found before 2014, even though the compound had been known for a long time. Two different records with structural models from Rietveld refinement against polycrystalline diffraction patterns were found in both the ICSD (426639 & 237982) and PDF4 v2020 (04-021-7777 & 01-083-9132). However, those models have no information about the ADPs. No similar structure can be found in COD before April 2021. Obviously, the high-quality model presented herein will be very useful for research activities related to iodate materials.

2. Chemical context

Orthoperiodates are compounds based on the $(IO_6)^{5-}$ anion in which iodine is in the oxidation state +7. Pentasodium orthoperiodate was the first synthesized by oxidation of sodium iodide in air in the presence of Na₂O (Zintl & Morawietz, 1940). About 30 years later, ammonium orthoperiodates were studied for their antiferroelectric properties (Gränicher et al., 1968). Pentacalcium orthoperiodate was foreseen as a stable nutritional complement of iodine for bovines (Moss & Miller, 1970). In the past three years, orthoperiodates have regained interest. They act as a stabilizing agent of Pickering solution, which is used to harvest cellulose nanocrystals (Liu et al., 2018; Liu et al., 2020) and chitin nanocrystals (Liu et al., 2021) in high yield from microcrystalline samples. When used as ligands, orthoperiodates were found to enhance the stability of water oxidation catalysts (Chakraborty et al., 2018).

Figure 1

The crystal structure of $Ba_5(IO_6)_2$ visualized along different crystallographic axes. Green, violet and red balls represents barium, iodine and oxygen atoms, respectively.

Among alkaline earth orthoperiodates, $M_5(IO_6)_2$ with M = Ca, Sr and Ba are the only ones to be reported in the literature since the 1960s. They are produced by a controlled oxidation of alkaline earth iodide at temperature above 723 K or by precipitation from alkaline earth hydroxide and periodic acid. Alkaline earth orthoperiodates are also observed during the course of decomposition of iodates, dimesoperiodates (Sanyal & Nag, 1977) and periodates (Balek & Julák, 1972). Ca₅(IO₆)₂ and Ba₅(IO₆)₂ are solids formed during the thermochemical production of hydrogen from water using a combination of iodine with Ca or Ba metals, respectively (Mizuta *et al.*, 1978).

The first crystallographic data on $Ba_5(IO_6)$ were published in 2014 (Kubel *et al.*, 2014). $Ba_5(IO_6)_2$ differs structurally from $Ca_5(IO_6)_2$ and $Sr_5(IO_6)_2$ (Hummel *et al.*, 2015). At room

Figure 2

Bond lengths (in Å) and equatorial plane angles (in °) for the two IO_6 octahedra of the $Ba_5(IO_6)_2$ structure. The values obtained at 80 K and 298 K are indicated in blue and red, respectively.

temperature, Ba₅(IO₆)₂ exhibits orthorhombic symmetry while Sr and Ca orthoperiodates are isomorphic and crystallize with rhombohedral symmetry. The structure of Ba₅(IO₆)₂ was refined from powder XRD data as single crystals were not available. The low-temperature dependence of the Ba₅(IO₆)₂ structure, and in particular the evolution of the periodate (IO₆)⁵⁻ anion, has not previously been reported.

3. Structural commentary

According to the comprehensive description given by Hummel *et al.*, 2015, $Ba_5(IO_6)_2$ contains two crystallographically independent iodine atoms, which are placed in the centre of distorted octahedra formed by oxygen atoms, also confirmed by our room-temperature single-crystal XRD (SCXRD) data. Perpendicular to the *a* axis, the crystal structure of $Ba_5(IO_6)_2$ is made up of alternating layers formed by $I(6)O_6$ and $I(7)O_6$ octahedra, respectively, as shown in Fig. 1. These IO_6 octahedra from two consecutive layers do not share any direct connection to each other. The octahedra are symmetrically distributed in three dimensions over the crystal structure between the five different barium atoms of the $Ba_5(IO_6)_2$ structure.

In order to detect any possible structural transitions in $Ba_5(IO_6)_2$, SCXRD measurements were also performed at 100 K and 80 K. By comparing the results obtained at 80 K with those of 298 K, average thermal dilation coefficients of 4.8 × 10⁻⁶ K⁻¹, 17.56 × 10⁻⁶ K⁻¹, 5.23 × 10⁻⁶ K⁻¹ were found along *a*, *b* and *c* axes, respectively.

The temperature evolution of the IO_6 octahedra are quite different from the barium atom 'matrix' within which they are distributed. As can be seen in Fig. 2, the IO_6 octahedra at 80 K are almost identical with respect to interatomic distances and angles to the ones refined at 298 K. However, the interatomic distances between Ba atoms are very sensitive to the

Dilation coefficient of the Ba–Ba interatomic distances from 80 K to 298 K.

research communications

Table 1	
Experimental	details.

	298 K	80 K
Crystal data		
Chemical formula	$Ba_{5}(IO_{6})_{2}$	$Ba_{5}I_{2}O_{12}$
$M_{\rm r}$	1132.50	1132.50
Crystal system, space group	Orthorhombic, Pnma	Orthorhombic, Pnma
Temperature (K)	298	80
a, b, c (Å)	19.7568 (2), 5.9003 (1), 10.5869 (1)	19.7361 (3), 5.8779 (1), 10.5749 (1)
$V(Å^3)$	1234.13 (3)	1226.76 (3)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	20.78	20.90
Crystal size (mm)	$0.22 \times 0.12 \times 0.08$	$0.22 \times 0.12 \times 0.08$
Data collection		
Diffractometer	XtaLAB Synergy-I with HyPix3000	XtaLAB Synergy-I with HyPix3000
Absorption correction	Gaussian (CrysAlis PRO; Rigaku OD, 2020)	Gaussian (CrysAlis PRO; Rigaku OD, 2020)
T_{\min}, T_{\max}	0.029, 0.494	0.150, 0.750
No. of measured, independent and $[I_{2}, 2\pi(D)]$ reflections	57653, 2543, 2407	16187, 2529, 2462
observed $[I > 2o(I)]$ reflections	0.058	0.022
Λ_{int} (cin $\theta(1)$) (Å ⁻¹)	0.058	0.055
$(\sin \theta/\lambda)_{\rm max}$ (A)	0.709	0.769
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.021, 0.046, 1.16	0.022, 0.043, 1.25
No. of reflections	2543	2529
No. of parameters	104	104
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.39, -1.54	1.90, -1.60

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT2018/3 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

temperature in another way. They dramatically expand when $Ba_5(IO_6)_2$ is heated from 80 K to 298 K (Fig. 3). Except for the Ba2-Ba4 distance, all the interatomic distances show a dilation coefficient that is up to one order of magnitude higher than those of the lattice constant.

In conclusion, single crystals of $Ba_5(IO_6)_2$ have been grown using a flux method. The crystal structures at two different temperatures, from 298 K down to 80 K, have been refined using high-quality SCXRD data. We confirm the assignment of the structure to the centrosymmetric space group *Pnma* (No. 62), which cannot be distinguished *via* extinction rules from the *Pna2*₁ (No. 33) space group by powder XRD. From the low-temperature XRD data, evolution of the lattice constants was found to be inhomogeneous. While IO₆ octahedra size and distortion do not change drastically between 80 K and 298 K, the packing of the barium atoms around the octahedra grows upon cooling. This leads to an increase of the density from 6.097 (8) g cm⁻³ at 298 K to 6.134 (7) g cm⁻³ at 80 K.

4. Synthesis and crystallization

Iron oxalate dihydrate (FeC₂O₄·2H₂O), barium carbonate (BaCO₃) and barium iodide dihydrate (BaI₂·2H₂O) were mixed in a molar ratio 2:2:10 and placed in an alumina crucible. The mixture was heated to 1273 K at a rate of 100 K per hour. The furnace was maintained at this temperature for 24 h, followed by a slow cooling to 1173 K at a rate of 1 K per hour, and was finally quenched to room temperature. The whole synthesis process took place under atmospheric conditions. Crystals were collected from the wall of the crucible.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

On considering the large value of beam attenuation coefficient of the title compound, a nice crystal with small size and Mo $K\alpha$ radiation was selected for structure determination.

Data sets were collected up to the resolution of 0.6 Å at two different temperatures. No restraints were applied for the refinement at 298 K, but one O atom in the structure at 80 K had abnormal ADPs, and an EADP constraint was applied on it to eliminate the level B *checkCIF* alert. Then both models were modified to follow the same bonding and labelling style as the one in the database, and the EADP constraint was removed.

Acknowledgements

DWB is grateful for the help of Dr Rosario Scopelliti in ISIC of EPFL.

Funding information

Funding for this research was provided by: Swiss National Science Foundation (SNSF) Sinergia network 'NanoSkyrmionics' (grant No. CRSII5-171003).

References

Balek, V. & Julák, J. (1972). J. Therm. Anal. 4, 293-298.

- Chakraborty, B., Gan-Or, G., Raula, M., Gabot, E. & Weinstock, I. A. (2018). *Nat. Commun.* 9, 4896, 1–8.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

- Gränicher, H., Kind, R., Meier, W. M. & Petter, W. (1968). *Helv. Phys. Acta*, **41**, 843-854.
- Hummel, T., Salk, K., Ströbele, M., Enseling, D., Jüstel, T. & Meyer, H. J. (2015). *Eur. J. Inorg. Chem.* **2015**, 977–981.
- Kubel, F., Pantazi, M. & Hagemann, H. (2014). Z. Anorg. Allg. Chem. 640, 3074–3077.
- Liu, P. W., Liu, H., Schäfer, T., Gutmann, T., Gibhardt, H., Qi, H. J., Tian, L., Zhang, X. C., Buntkowsky, G. & Zhang, K. (2021). *Green Chem.* 23, 745–751.
- Liu, P. W., Pang, B., Dechert, S., Zhang, X. C., Andreas, L. B., Fischer, S., Meyer, F. & Zhang, K. (2020). Angew. Chem. Int. Ed. 59, 3218– 3225.
- Liu, P. W., Pang, B., Tian, L., Schäfer, T., Gutmann, T., Liu, H., Volkert, C. A., Buntkowsky, G. & Zhang, K. (2018). Chem-SusChem, 11, 3581–3585.
- Mizuta, S., Kondo, W., Kumagai, T. & Fujii, K. (1978). Int. J. Hydrogen Energy, **3**, 407–417.
- Moss, B. R. & Miller, J. K. (1970). J. Diary Sci. 53, 772-775.
- Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.

Sanyal, G. S. & Nag, K. (1977). J. Inorg. Nucl. Chem. 39, 1127–1130.

- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Zintl, E. & Morawietz, W. (1940). Z. Anorg. Allg. Chem. 245, 20-25.

Acta Cryst. (2021). E77, 634-637 [https://doi.org/10.1107/S2056989021004990]

Ba₅(IO₆)₂: crystal structure evolution from room temperature to 80 K

David Wenhua Bi, Priya Ranjan Baral and Arnaud Magrez

Computing details

For both structures, data collection: *CrysAlis PRO* (Rigaku OD, 2020); cell refinement: *CrysAlis PRO* (Rigaku OD, 2020); data reduction: *CrysAlis PRO* (Rigaku OD, 2020); program(s) used to solve structure: *SHELXT2018/3* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Pentabarium bis(orthoperiodate) (298K)

Crystal data Ba₅(IO₆)₂ $M_r = 1132.50$ Orthorhombic, Pnma a = 19.7568 (2) Å b = 5.9003 (1) Å c = 10.5869 (1) Å V = 1234.13 (3) Å³ Z = 4F(000) = 1928

Data collection

XtaLAB Synergy-I with HyPix3000
diffractometer
ω Scan scans
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2020)
$T_{\min} = 0.029, \ T_{\max} = 0.494$
57653 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.046$ S = 1.162543 reflections 104 parameters 0 restraints $D_x = 6.095 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 29837 reflections $\theta = 2.2-36.3^{\circ}$ $\mu = 20.78 \text{ mm}^{-1}$ T = 298 KPrism, brown $0.22 \times 0.12 \times 0.08 \text{ mm}$

2543 independent reflections 2407 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 33.1^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -30 \rightarrow 30$ $k = -9 \rightarrow 9$ $l = -16 \rightarrow 16$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0162P)^{2} + 4.6175P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.39$ e Å⁻³ $\Delta\rho_{min} = -1.54$ e Å⁻³ Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00080 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ba1	0.04831 (2)	0.250000	0.08907 (3)	0.01014 (6)
Ba2	0.14123 (2)	0.250000	0.38321 (3)	0.00819 (6)
Ba3	0.19933 (2)	0.250000	0.74019 (3)	0.01149 (6)
Ba4	0.34287 (2)	0.250000	0.47502 (3)	0.00930 (6)
Ba5	0.42814 (2)	0.250000	0.08851 (3)	0.01175 (6)
I6	0.01315 (2)	0.250000	0.74877 (3)	0.00578 (6)
I7	0.23901 (2)	0.250000	0.10140 (3)	0.00659 (6)
08	0.03751 (13)	0.5222 (4)	0.3320 (2)	0.0132 (5)
09	0.18857 (14)	0.0239 (4)	0.1828 (2)	0.0141 (5)
O10	0.28823 (15)	0.0235 (5)	0.0184 (3)	0.0184 (6)
O11	0.43557 (13)	0.5199 (4)	0.3281 (3)	0.0134 (5)
O12	0.07500 (19)	0.250000	0.6116 (4)	0.0135 (7)
O13	0.3027 (2)	0.250000	0.2338 (4)	0.0182 (8)
O14	0.45600 (19)	0.250000	0.6074 (3)	0.0123 (7)
015	0.6730 (2)	0.250000	0.5248 (4)	0.0178 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.01190 (13)	0.00841 (12)	0.01012 (12)	0.000	-0.00023 (9)	0.000
Ba2	0.00924 (12)	0.00836 (11)	0.00698 (11)	0.000	-0.00090 (9)	0.000
Ba3	0.01612 (14)	0.00807 (12)	0.01028 (12)	0.000	0.00336 (10)	0.000
Ba4	0.01039 (12)	0.00840 (12)	0.00911 (12)	0.000	-0.00143 (9)	0.000
Ba5	0.01280 (13)	0.00815 (12)	0.01431 (13)	0.000	-0.00272 (10)	0.000
I6	0.00691 (12)	0.00474 (11)	0.00569 (11)	0.000	0.00027 (9)	0.000
I7	0.00812 (13)	0.00585 (12)	0.00581 (12)	0.000	0.00011 (9)	0.000
08	0.0130 (12)	0.0104 (11)	0.0162 (12)	0.0040 (9)	-0.0013 (9)	0.0057 (10)
09	0.0186 (13)	0.0092 (11)	0.0146 (12)	-0.0044 (9)	0.0066 (10)	0.0003 (9)
O10	0.0228 (14)	0.0133 (12)	0.0190 (13)	0.0074 (10)	0.0078 (11)	-0.0009 (10)
O11	0.0132 (12)	0.0086 (11)	0.0183 (12)	-0.0032 (9)	0.0038 (10)	0.0040 (10)
O12	0.0135 (17)	0.0151 (17)	0.0120 (16)	0.000	0.0082 (13)	0.000
O13	0.0192 (19)	0.0201 (19)	0.0154 (18)	0.000	-0.0103 (15)	0.000
O14	0.0114 (16)	0.0143 (16)	0.0113 (16)	0.000	-0.0035 (13)	0.000
O15	0.0130 (17)	0.029 (2)	0.0113 (17)	0.000	0.0048 (14)	0.000

Geometric parameters (Å, °)

Ba1—O8 ⁱ	3.040 (3)	Ba4—I7 ^{viii}	3.6209 (2)
Ba1—O8	3.040 (3)	Ba4—O9 ^{ix}	2.799 (3)

Ba1—O9	3.232 (3)	Ba4—O9 ^{viiii}	2.799 (3)
Ba1—O9 ⁱ	3.232 (3)	Ba4—O10 ^{ix}	3.086 (3)
Ba1—O11 ⁱⁱ	3.095 (3)	Ba4—O10 ^{viii}	3.086 (3)
Ba1—O11 ⁱⁱⁱ	3.095 (3)	Ba4—O11 ⁱ	2.883 (2)
Ba1—O11 ^{iv}	2.875 (3)	Ba4—O11	2.883 (2)
Ba1—O11 ^v	2.875 (3)	Ba4—O13	2.675 (4)
Ba1—O14 ⁱⁱ	2.9578 (3)	Ba4—O14	2.638 (4)
Ba1—O14 ^{vi}	2.9578 (3)	Ba4—O15 ^{xii}	2.9668 (4)
Ba1—O14 ^{iv}	2.766 (4)	Ba4—O15 ^{xiii}	2.9668 (4)
Ba1—O15 ^{iv}	2.743 (4)	Ba5—I6 ⁱⁱ	3.5954 (2)
Ba2—Ba3	3.9498 (4)	Ba5—O8 ⁱⁱ	3.105 (3)
Ba2—Ba5 ^{vii}	3.9123 (3)	Ba5—O8 ^{xiv}	2.821 (3)
Ba2—Ba5 ^{viii}	3.9123 (3)	Ba5—O8 ^{xv}	2.821 (3)
Ba2—I7	3.5543 (4)	Ba5—O8 ⁱⁱⁱ	3.105 (3)
Ba2—O8	2.659 (2)	Ba5—O10 ⁱ	3.159 (3)
Ba2—O8 ⁱ	2.659 (2)	Ba5—O10	3.159 (3)
Ba2—O9 ⁱ	2.675 (3)	Ba5—O11	2.999 (3)
Ba2	2.675 (3)	$Ba5-011^{i}$	2.999 (3)
Ba2—O10 ^{viii}	2.568 (3)	$Ba5-O12^{vi}$	2.9609 (3)
Ba2—O10 ^{ix}	2.568 (3)	Ba5—012 ⁱⁱ	2.9609 (3)
Ba2—012	2.749 (4)	Ba5-013	2.917 (4)
Ba3—I7 ^{viii}	3.5138 (2)	I6—O8 ^{xvi}	1.881(2)
Ba3—I7 ^{vii}	3.5138 (2)	I6—O8 ^{xvii}	1.881(2)
Ba3—O9 ^{ix}	2.808 (3)	I6—011 ^{vii}	1.891 (2)
Ba3—O9 ^{viii}	2.808 (3)	I6—011 ^x	1.891 (2)
Ba3—O10 ^{ix}	2.860 (3)	16-012	1.898 (3)
Ba3—O10 ^{viii}	2.860 (3)	I6—014 ^{xi}	1.896 (4)
Ba3—O11 ^{vii}	3.132 (3)	17—09 ⁱ	1.875 (2)
Ba3—O11 ^x	3 132 (3)	17-09	1.875(2)
Ba3—012	2 809 (4)	$17 - 010^{i}$	1.872(3)
Ba3—O13 ^{vii}	2,9512 (1)	17-010	1.872(3)
Ba3—O13 ^{viii}	2.9512 (1)	17-013	1.883 (4)
$Ba3-O15^{xi}$	2 542 (4)	I7—015 ^{iv}	1 866 (4)
Ba4—I7 ^{vii}	3,6209(2)	1, 010	1.000 (1)
Dur II	5.0209 (2)		
08—Ba1—08 ⁱ	63 79 (9)	$O8^{iii}$ —Ba5—O10	78 61 (7)
$08 - Ba1 - 09^{i}$	65 31 (7)	08^{xv} Ba5 010	119 97 (7)
$O8^{i}$ Bal $O9^{i}$	91.06(7)	08^{ii} Ba5 010	99 72 (7)
08 - Ba1 - 09	91.06 (7)	$O8^{xiv}$ Ba5 $O10$	168.92(7)
$O8^{i}$ Bal $O9$	65 31 (7)	0.00^{iii} Ba5 010 ⁱ	99.72(7)
$08 - Ba1 - 011^{iii}$	$173 \ 91 \ (7)$	0.00^{ii} Ba5 0.10^{i}	78 61 (7)
$O8^{i}$ Ba1 $O11^{iii}$	122.06.(6)	0.00^{xv} Ba5 0.10^{i}	168.92(7)
$08 - Ba1 - 011^{ii}$	122.00 (0)	$O8^{xiv}$ Ba5 $O10^{i}$	11997(7)
$O8^{i}$ Ba1 $O11^{ii}$	173 91 (7)	$O8^{xiv}$ —Ba5—O11	53 68 (7)
$O9^{i}$ Ba1 $O9$	48 76 (9)	$O8^{xv}$ —Ba5—O11 ⁱ	53 68 (7)
$O11^{v}$ Ba1 $O8$	88 87 (7)	08^{xv} Ba5 -011	90 72 (7)
$O11^{iv}$ Ba1 $O8$	52 77 (7)	$O8^{xiv}$ Ba5 $O11^{i}$	90 72 (7)
011^{v} Ba1 03^{i}	52 77 (7)	$O8^{xiv}$ Ba5 $O12^{ii}$	54 84 (9)
ULL DUL UU		00 Du3 012	JT. UT (J)

O11 ^{iv} —Ba1—O8 ⁱ	88.87 (7)	O8 ^{xv} —Ba5—O12 ^{vi}	54.84 (9)
O11 ^v —Ba1—O9 ⁱ	143.07 (7)	O8 ^{xv} —Ba5—O12 ⁱⁱ	123.97 (9)
O11 ^v —Ba1—O9	110.00 (6)	O8 ^{xiv} —Ba5—O12 ^{vi}	123.97 (9)
O11 ⁱⁱⁱ —Ba1—O9	90.27 (6)	O8 ^{xv} —Ba5—O13	119.58 (8)
O11 ^{iv} —Ba1—O9 ⁱ	110.00 (6)	O8 ^{xiv} —Ba5—O13	119.58 (8)
O11 ^{iv} —Ba1—O9	143.07 (7)	O10 ⁱ —Ba5—I6 ⁱⁱ	92.63 (5)
O11 ⁱⁱⁱ —Ba1—O9 ⁱ	111.53 (7)	O10—Ba5—I6 ⁱⁱ	137.76 (5)
O11 ⁱⁱ —Ba1—O9	111.53 (7)	O10 ⁱ —Ba5—O10	50.07 (10)
O11 ⁱⁱ —Ba1—O9 ⁱ	90.27 (6)	$O11^{i}$ —Ba5—I6 ⁱⁱ	91.20 (5)
O11 ⁱⁱⁱ —Ba1—O11 ⁱⁱ	52.03 (9)	O11—Ba5—I6 ⁱⁱ	31.71 (5)
$O11^{v}$ —Ba1—O11 ^{iv}	67.28 (10)	O11—Ba5—O8 ⁱⁱ	119.95 (6)
O11 ^v —Ba1—O11 ⁱⁱ	126.51 (4)	O11 ⁱ —Ba5—O8 ⁱⁱ	163.54 (7)
$O11^{v}$ Ba1 $O11^{iii}$	96.26 (7)	O11 ⁱ —Ba5—O8 ⁱⁱⁱ	119.94 (6)
$O11^{iv}$ —Ba1—O11 ⁱⁱⁱ	126.51 (4)	011—Ba5—O8 ⁱⁱⁱ	163.54 (7)
$O11^{iv}$ —Ba1—O11 ⁱⁱ	96.26 (7)	$O11^{i}$ Ba5 $O10$	90.96 (7)
$O11^{iv}$ —Ba1—O14 ⁱⁱ	53.50 (8)	O11—Ba5—O10	117.80(7)
$O11^{v}$ —Ba1—O14 ⁱⁱ	120.68 (9)	$O11^{i}$ Ba5 $O10^{i}$	117.80 (7)
011^{v} Ba1 014^{vi}	53 50 (8)	$011 - Ba5 - 010^{i}$	90,96 (7)
$O11^{iv}$ Ba1 $O14^{vi}$	120.68 (9)	011^{i} Ba5 011	64.16 (9)
$O14^{iv}$ —Ba1— $O8^{i}$	126.15 (7)	$O12^{ii}$ —Ba5—I6 ⁱⁱ	31.82 (7)
$O14^{vi}$ Ba1 $O8^{i}$	54.23 (8)	$O12^{vi}$ —Ba5—I6 ⁱⁱ	141.76 (7)
$O14^{ii}$ Ba1 $O3^{ii}$	118.00 (8)	012^{ii} Ba5 03^{ii}	69.23 (9)
$O14^{ii}$ Ba1 $O8$	54.23 (8)	$O12^{vi}$ Ba5 $O8^{ii}$	120.53 (9)
$O14^{vi}$ Ba1 $O8$	118.00 (8)	$O12^{vi}$ Ba5 $O8^{iii}$	69.23 (9)
$O14^{iv}$ Bal $O8$	126 15 (7)	012^{ii} Ba5 03^{iii}	12053(9)
$O14^{iv}$ Ba1 $O9$	142.77 (7)	$O12^{vi}$ Ba5 $O10$	65.13 (9)
$O14^{ii}$ Ba1 $O9^{i}$	65.97 (8)	$O12^{ii}$ Ba5 $O10$	115.00 (9)
$O14^{iv}$ Ba1 $O9^{i}$	142.77 (7)	$O12^{ii}$ Ba5 $O10^{i}$	65.13 (8)
$O14^{ii}$ —Ba1—O9	114.60 (9)	$O12^{vi}$ —Ba5—O10 ⁱ	115.00 (9)
$O14^{vi}$ Ba1 $O9$	65.97 (8)	$O12^{vi}$ Ba5 $O11$	117.42 (9)
$O14^{vi}$ Ba1 $O9^{i}$	114.60 (9)	$O12^{ii}$ —Ba5—O11 ⁱ	117.42 (9)
$O14^{iv}$ —Ba1—O11 ^{iv}	73.66 (8)	$O12^{vi}$ Ba5 $O11^{i}$	53.28 (9)
$O14^{iv}$ —Ba1—O11 ^v	73.66 (8)	$O12^{ii}$ —Ba5—O11	53.28 (9)
$O14^{vi}$ Ba1 $O11^{ii}$	119 94 (8)	012^{ii} Ba5 012^{vi}	170.25(15)
$O14^{iv}$ Ba1 $O11^{iii}$	52.89 (8)	O13—Ba5—I6 ⁱⁱ	91.45 (4)
014^{ii} Ba1 -011^{ii}	67.92 (8)	013 —Ba5— 08^{iii}	130.30 (8)
$O14^{ii}$ Ba1 $O11^{iii}$	119.94 (8)	$013 - Ba5 - 08^{ii}$	130.30 (8)
$O14^{iv}$ —Ba1—O11 ⁱⁱ	52.89 (8)	013 —Ba5— 010^{i}	51.70 (8)
$O14^{vi}$ Ba1 $O11^{iii}$	67.92 (8)	013 - Ba5 - 010	51.70 (8)
$O14^{iv}$ —Ba1—O14 ⁱⁱ	91.74 (7)	013 - Ba5 - 011	66.15 (8)
$O14^{iv}$ Ba1 $O14^{vi}$	91 74 (7)	$013 - Ba5 - 011^{i}$	66 15 (8)
014^{ii} Ba1 014^{vi}	171 78 (14)	$013 - Ba5 - 012^{ii}$	86 49 (8)
$O15^{iv}$ Bal $O18$	115.77 (8)	$O13$ —Ba5— $O12^{vi}$	86.49 (8)
$O15^{iv}$ Bal $O8^{i}$	115.77 (8)	$Ba1^{xvi} I6 Ba1^{xviii}$	109.041 (11)
$O15^{iv}$ Ba1 $O9^{i}$	50 55 (8)	$Ba1^{xvi} I6 Ba1^{xix}$	66 305 (7)
$O15^{iv}$ Ba1-O9	50 55 (8)	$Ba1^{xviii} I6 Ba1^{xix}$	66 305 (7)
$O15^{iv}$ Bal $O11^{ii}$	61.00 (8)	Bal ^{xvi} —I6—Ba3	110 289 (7)
015^{iv} Bal 011^{v}	146.09 (5)	$Ba1^{xix} I6 Ba3$	80 504 (9)
	10.07 (3)	Dui 10 Day	00.00+(9)

O15 ^{iv} —Ba1—O11 ^{iv}	146.09 (5)	Ba1 ^{xviii} —I6—Ba3	110.289 (7)
O15 ^{iv} —Ba1—O11 ⁱⁱⁱ	61.00 (8)	Ba5 ^{viii} —I6—Ba1 ^{xvi}	179.188 (10)
O15 ^{iv} —Ba1—O14 ^{iv}	105.18 (11)	Ba5 ^{vii} —I6—Ba1 ^{xviii}	179.188 (10)
O15 ^{iv} —Ba1—O14 ⁱⁱ	93.13 (7)	Ba5 ^{viii} —I6—Ba1 ^{xviii}	70.339 (6)
O15 ^{iv} —Ba1—O14 ^{vi}	93.13 (7)	Ba5 ^{viii} —I6—Ba1 ^{xix}	113.722 (7)
Ba1—Ba2—Ba3	166.371 (11)	Ba5 ^{vii} —I6—Ba1 ^{xix}	113.722 (7)
Ba1—Ba2—Ba5 ^{vii}	107.497 (7)	Ba5 ^{vii} —I6—Ba1 ^{xvi}	70.339 (6)
Ba1—Ba2—Ba5 ^{viii}	107.497 (8)	Ba5 ^{viii} —I6—Ba3	70.481 (7)
Ba5 ^{viii} —Ba2—Ba3	64.547 (6)	Ba5 ^{vii} —I6—Ba3	70.481 (7)
Ba5 ^{vii} —Ba2—Ba3	64.547 (6)	Ba5 ^{viii} —I6—Ba5 ^{vii}	110.276 (11)
Ba5 ^{vii} —Ba2—Ba5 ^{viii}	97 888 (9)	$O8^{xvi}$ _I6_Ba1 ^{xviii}	128 23 (8)
I7—Ba2—Ba1	63 445 (8)	$O8^{xvi}$ _I6_Ba1 ^{xix}	123.16 (8)
I7 Ba2 Ba1 I7 Ba2 Ba3	$130\ 184\ (10)$	$O8^{xvii}$ I6 Bal $xviii$	57.00 (8)
I7 Ba2 Ba5 $I7 Ba2 Ba5^{vii}$	131 052 (5)	$O8^{xvii}$ —I6—Ba1 ^{xix}	123 16 (8)
$I7 Ba2 Ba5$ $I7 Ba2 Ba5^{viii}$	131.052(5) 131.052(5)	$O8^{xvii}$ I6 Bal	128.23 (8)
$\frac{17}{08} = \frac{1}{28} = \frac{1}{28}$	55 46 (6)	$O8^{xvi}$ I6 Bal	57.00(8)
O_{i}^{i} B ₂ 2 B ₂ 1	55.46 (6)	$O8^{xvi}$ I6 Ba3	$121 \ 37 \ (8)$
O_{i}^{i} B ₂ B ₂ ³	114.77(6)	O^{exvii} I6 B_{2}	121.37(8)
$O_8 = B_{a2} = B_{a3}$	114.77(6)	O8 - I0 - Ba5	121.37(8)
O_{0} D_{0} D_{0} D_{0} D_{0} S_{0}	114.77(0)	O^{exvii} If $D_{\text{e}}5^{\text{vii}}$	31.02(6)
O_{0}^{Ba2} Ba3 \sim	32.20(0)	O^{Svii} If D_{Sviii}	122.91(6)
$O_{0}^{\text{a}} = D_{0}^{\text{a}} = D_{0$	107.38(0)		31.02(8)
O_{8}^{i} Ba2 Ba5 ^{····}	52.20(0)		122.91(8)
$O_8 = Ba2 = Ba3^{**}$	107.38 (6)		91.20 (16)
08—Ba2—I/	104.34 (6)		88.51 (11)
$O8^{4}$ Ba2 -17	104.34 (6)		179.34 (12)
$O8 - Ba2 - O8^{1}$	74.30 (11)		88.51 (11)
$O8$ —Ba2— $O9^{1}$	78.85 (8)	08 ^{xvi} —16—011 ^x	179.34 (12)
$O8^{i}$ —Ba2—O9 ⁱ	114.13 (8)	O8 ^{xvii} —16—O12	89.69 (12)
08—Ba2—O9	114.14 (8)	$O8^{xv_1}$ I6 $O12$	89.69 (12)
$O8^{i}$ —Ba2—O9	78.85 (8)	$O8^{xvn}$ —I6—O14 ^{xn}	92.76 (11)
O8—Ba2—O12	79.19 (9)	$O8^{xvi}$ —I6—O14 ^{xi}	92.76 (11)
O8 ⁱ —Ba2—O12	79.19 (9)	O11 ^{vii} —I6—Ba1 ^{xviii}	123.62 (8)
O9 ⁱ —Ba2—Ba1	59.62 (6)	O11 ^x —I6—Ba1 ^{xviii}	52.00 (8)
O9—Ba2—Ba1	59.63 (6)	O11 ^x —I6—Ba1 ^{xvi}	123.62 (8)
O9 ⁱ —Ba2—Ba3	131.09 (6)	O11 ^{vii} —I6—Ba1 ^{xix}	57.47 (8)
O9—Ba2—Ba3	131.09 (6)	O11 ^{vii} —I6—Ba1 ^{xvi}	52.00 (8)
O9 ⁱ —Ba2—Ba5 ^{viii}	159.91 (5)	O11 ^x —I6—Ba1 ^{xix}	57.47 (8)
O9—Ba2—Ba5 ^{vii}	159.91 (5)	O11 ^x —I6—Ba3	58.35 (8)
O9 ⁱ —Ba2—Ba5 ^{vii}	100.78 (5)	O11 ^{vii} —I6—Ba3	58.35 (8)
O9—Ba2—Ba5 ^{viii}	100.78 (5)	O11 ^{vii} —I6—Ba5 ^{vii}	56.48 (8)
O9 ⁱ —Ba2—I7	31.15 (5)	O11 ^x —I6—Ba5 ^{vii}	128.75 (8)
O9—Ba2—I7	31.15 (5)	O11 ^x —I6—Ba5 ^{viii}	56.48 (8)
O9 ⁱ —Ba2—O9	59.83 (11)	O11 ^{vii} —I6—Ba5 ^{viii}	128.75 (8)
O9 ⁱ —Ba2—O12	149.76 (5)	O11 ^{vii} —I6—O11 ^x	91.77 (16)
O9—Ba2—O12	149.76 (5)	O11 ^{vii} —I6—O12	89.72 (12)
O10 ^{viii} —Ba2—Ba1	139.09 (6)	O11 ^x —I6—O12	89.72 (12)
O10 ^{ix} —Ba2—Ba1	139.09 (6)	O11 ^{vii} —I6—O14 ^{xi}	87.84 (11)
O10 ^{viii} —Ba2—Ba3	46.29 (6)	O11 ^x —I6—O14 ^{xi}	87.84 (11)

O10 ^{ix} —Ba2—Ba3	46.29 (6)	O12—I6—Ba1 ^{xix}	129.02 (12)
O10 ^{ix} —Ba2—Ba5 ^{viii}	110.75 (6)	O12—I6—Ba1 ^{xvi}	125.337 (9)
O10 ^{viii} —Ba2—Ba5 ^{vii}	110.75 (6)	O12—I6—Ba1 ^{xviii}	125.337 (9)
O10 ^{ix} —Ba2—Ba5 ^{vii}	53.61 (7)	O12—I6—Ba3	48.52 (12)
O10 ^{viii} —Ba2—Ba5 ^{viii}	53.61 (7)	O12—I6—Ba5 ^{vii}	55.336 (10)
O10 ^{ix} —Ba2—I7	99.96 (7)	O12—I6—Ba5 ^{viii}	55.336 (10)
O10 ^{viii} —Ba2—I7	99.96 (7)	O14 ^{xi} —I6—Ba1 ^{xviii}	54.531 (6)
O10 ^{viii} —Ba2—O8 ⁱ	98.76 (9)	O14 ^{xi} —I6—Ba1 ^{xvi}	54.531 (6)
$O10^{ix}$ —Ba2—O8 ⁱ	155.68 (8)	O14 ^{xi} —I6—Ba1 ^{xix}	47.47 (11)
O10 ^{ix} —Ba2—O8	98.76 (9)	O14 ^{xi} —I6—Ba3	127.97 (11)
O10 ^{viii} —Ba2—O8	155.68 (8)	O14 ^{xi} —I6—Ba5 ^{viii}	124.833 (6)
$O10^{ix}$ —Ba2—O9 ⁱ	86.50 (9)	O14 ^{xi} —I6—Ba5 ^{vii}	124.833 (6)
O10 ^{viii} —Ba2—O9	86.50 (9)	O14 ^{xi} —I6—O12	176.49 (17)
O10 ^{viii} —Ba2—O9 ⁱ	124.45 (9)	Ba2—I7—Ba4 ^{vi}	93.860 (7)
O10 ^{ix} —Ba2—O9	124.45 (9)	Ba2—I7—Ba4 ⁱⁱ	93.860 (7)
O10 ^{ix} —Ba2—O10 ^{viii}	77.86 (13)	Ba2—I7—Ba5	125.013 (10)
O10 ^{viii} —Ba2—O12	76.60 (9)	Ba3 ^{vi} —I7—Ba2	80.642 (7)
$O10^{ix}$ —Ba2—O12	76.60 (9)	Ba3 ⁱⁱ —I7—Ba2	80.642 (7)
O12—Ba2—Ba1	121.05 (8)	$Ba3^{ii}$ $I7$ $Ba3^{vi}$	114.195 (11)
O12—Ba2—Ba3	45.32 (8)	$Ba3^{vi}$ —I7—Ba4 ⁱⁱ	173.462 (11)
O12—Ba2—Ba5 ^{vii}	49.054 (7)	Ba3 ⁱⁱ —I7—Ba4 ^{vi}	173.462 (11)
O12—Ba2—Ba5 ^{viii}	49.054 (7)	Ba3 ⁱⁱ —I7—Ba4 ⁱⁱ	67.997 (6)
O12—Ba2—I7	175.50 (8)	Ba3 ^{vi} —I7—Ba4 ^{vi}	67.997 (6)
I7 ^{viii} —Ba3—I7 ^{vii}	114.196 (11)	Ba3 ^{vi} —I7—Ba5	70.658 (7)
O9 ^{ix} —Ba3—I7 ^{vii}	32.11 (5)	Ba3 ⁱⁱ —I7—Ba5	70.658 (7)
O9 ^{viii} —Ba3—I7 ^{viii}	32.11 (5)	Ba4 ^{vi} —I7—Ba4 ⁱⁱ	109.129 (11)
O9 ^{viii} —Ba3—I7 ^{vii}	96.85 (5)	Ba4 ⁱⁱ —I7—Ba5	115.660 (7)
O9 ^{ix} —Ba3—I7 ^{viii}	96.85 (5)	Ba4 ^{vi} —I7—Ba5	115.660 (7)
O9 ^{ix} —Ba3—O9 ^{viii}	70.27 (10)	O9 ⁱ —I7—Ba2	47.57 (8)
O9 ^{ix} —Ba3—O10 ^{ix}	55.24 (7)	O9—I7—Ba2	47.57 (8)
O9 ^{viii} —Ba3—O10 ^{viii}	55.24 (7)	O9 ⁱ —I7—Ba3 ⁱⁱ	52.75 (8)
O9 ^{ix} —Ba3—O10 ^{viii}	94.55 (8)	O9—I7—Ba3 ^{vi}	52.75 (8)
O9 ^{viii} —Ba3—O10 ^{ix}	94.55 (8)	O9 ⁱ —I7—Ba3 ^{vi}	126.11 (8)
$O9^{ix}$ —Ba3—O11 ^x	169.96 (7)	O9—I7—Ba3 ⁱⁱ	126.11 (8)
O9 ^{viii} —Ba3—O11 ^{vii}	169.96 (7)	O9 ⁱ —I7—Ba4 ⁱⁱ	49.66 (8)
O9 ^{ix} —Ba3—O11 ^{vii}	119.07 (7)	O9 ⁱ —I7—Ba4 ^{vi}	120.80 (9)
O9 ^{viii} —Ba3—O11 ^x	119.07 (7)	O9—I7—Ba4 ⁱⁱ	120.80 (9)
O9 ^{ix} —Ba3—O12	125.79 (7)	O9—I7—Ba4 ^{vi}	49.66 (8)
O9 ^{viii} —Ba3—O12	125.79 (7)	O9—I7—Ba5	123.22 (9)
O9viii—Ba3—O13viii	55.27 (9)	O9 ⁱ —I7—Ba5	123.22 (9)
O9 ^{ix} —Ba3—O13 ^{viii}	125.51 (9)	O9 ⁱ —I7—O9	90.71 (16)
O9 ^{ix} —Ba3—O13 ^{vii}	55.27 (9)	O9 ⁱ —I7—O13	90.74 (13)
O9 ^{viii} —Ba3—O13 ^{vii}	125.51 (9)	O9—I7—O13	90.74 (13)
O10 ^{viii} —Ba3—I7 ^{viii}	32.12 (5)	O10—I7—Ba2	132.56 (9)
O10 ^{viii} —Ba3—I7 ^{vii}	95.77 (6)	O10 ⁱ —I7—Ba2	132.56 (9)
O10 ^{ix} —Ba3—I7 ^{vii}	32.12 (5)	O10—I7—Ba3 ^{vi}	54.32 (9)
O10 ^{ix} —Ba3—I7 ^{viii}	95.77 (6)	O10 ⁱ —I7—Ba3 ⁱⁱ	54.32 (9)
O10 ^{viii} —Ba3—O10 ^{ix}	68.70 (11)	O10—I7—Ba3 ⁱⁱ	128.00 (9)
	× /		

O10 ^{viii} —Ba3—O11 ^{vii}	124.17 (7)	O10 ⁱ —I7—Ba3 ^{vi}	128.00 (9)
O10 ^{ix} —Ba3—O11 ^x	124.17 (7)	O10—I7—Ba4 ⁱⁱ	129.82 (9)
O10 ^{viii} —Ba3—O11 ^x	94.17 (8)	O10 ⁱ —I7—Ba4 ^{vi}	129.82 (9)
O10 ^{ix} —Ba3—O11 ^{vii}	94.17 (8)	O10 ⁱ —I7—Ba4 ⁱⁱ	58.46 (9)
O10 ^{viii} —Ba3—O13 ^{vii}	123.11 (10)	O10—I7—Ba4 ^{vi}	58.46 (9)
O10 ^{ix} —Ba3—O13 ^{vii}	54.42 (9)	O10 ⁱ —I7—Ba5	57.57 (9)
O10 ^{viii} —Ba3—O13 ^{viii}	54.42 (9)	O10—I7—Ba5	57.57 (9)
O10 ^{ix} —Ba3—O13 ^{viii}	123.11 (10)	O10—I7—O9	89.07 (12)
O11 ^x —Ba3—I7 ^{viii}	93.18 (5)	O10 ⁱ —I7—O9	179.10 (13)
O11 ^x —Ba3—I7 ^{vii}	141.54 (4)	O10 ⁱ —I7—O9 ⁱ	89.08 (12)
O11 ^{vii} —Ba3—I7 ^{viii}	141.54 (4)	O10—I7—O9 ⁱ	179.10 (13)
O11 ^{vii} —Ba3—I7 ^{vii}	93.18 (5)	O10—I7—O10 ⁱ	91.12 (17)
O11 ^x —Ba3—O11 ^{vii}	51.36 (9)	O10—I7—O13	90.13 (13)
O12—Ba3—I7 ^{viii}	95.76 (4)	O10 ⁱ —I7—O13	90.13 (13)
O12—Ba3—I7 ^{vii}	95.76 (4)	O13—I7—Ba2	74.83 (13)
O12—Ba3—O10 ^{viii}	71.16 (8)	O13—I7—Ba3 ⁱⁱ	57.126 (7)
O12—Ba3—O10 ^{ix}	71.16 (8)	013—I7—Ba3 ^{vi}	57.126 (7)
$O12$ —Ba3— $O11^x$	53.13 (8)	O13—I7—Ba4 ⁱⁱ	124.989 (15)
$O12$ —Ba3— $O11^{vii}$	53.13 (8)	O13—I7—Ba4 ^{vi}	124.989 (15)
012—Ba3—013 ^{vii}	88.69 (9)	013—I7—Ba5	50.18 (13)
012—Ba3—013 ^{viii}	88.69 (9)	$O15^{iv}$ —I7—Ba2	102.78 (12)
O13 ^{viii} —Ba3—I7 ^{viii}	32.40 (7)	$O15^{iv}$ —I7—Ba 3^{vi}	122.781 (9)
O13 ^{vii} —Ba3—I7 ^{vii}	32.40 (7)	O15 ^{iv} —I7—Ba3 ⁱⁱ	122.781 (9)
O13 ^{vii} —Ba3—I7 ^{viii}	146.54 (7)	O15 ^{iv} —I7—Ba4 ⁱⁱ	54.796 (11)
O13 ^{viii} —Ba3—I7 ^{vii}	146.54 (7)	O15 ^{iv} —I7—Ba4 ^{vi}	54.796 (11)
O13 ^{viii} —Ba3—O11 ^{vii}	115.38 (9)	O15 ^{iv} —I7—Ba5	132.21 (12)
O13 ^{vii} —Ba3—O11 ^x	115.38 (9)	O15 ^{iv} —I7—O9	87.58 (12)
O13 ^{viii} —Ba3—O11 ^x	64.04 (9)	O15 ^{iv} —I7—O9 ⁱ	87.58 (12)
O13 ^{vii} —Ba3—O11 ^{vii}	64.04 (9)	O15 ^{iv} —I7—O10 ⁱ	91.54 (13)
O13 ^{viii} —Ba3—O13 ^{vii}	176.94 (17)	O15 ^{iv} —I7—O10	91.54 (13)
O15 ^{xi} —Ba3—I7 ^{vii}	118.70 (3)	O15 ^{iv} —I7—O13	177.61 (18)
O15 ^{xi} —Ba3—I7 ^{viii}	118.70 (3)	Ba1—O8—Ba5 ^{vii}	162.43 (9)
O15 ^{xi} —Ba3—O9 ^{ix}	111.90 (9)	Ba2—O8—Ba1	78.42 (7)
O15 ^{xi} —Ba3—O9 ^{viii}	111.90 (9)	Ba2—O8—Ba5 ^{iv}	100.70 (8)
O15 ^{xi} —Ba3—O10 ^{viii}	145.22 (6)	Ba2—O8—Ba5 ^{vii}	85.11 (7)
O15 ^{xi} —Ba3—O10 ^{ix}	145.22 (6)	Ba5 ^{iv} —O8—Ba1	90.31 (7)
O15 ^{xi} —Ba3—O11 ^x	62.30 (9)	Ba5 ^{iv} —O8—Ba5 ^{vii}	98.80 (8)
O15 ^{xi} —Ba3—O11 ^{vii}	62.30 (9)	I6 ^{xvi} —O8—Ba1	91.73 (10)
$O15^{xi}$ Ba3 $O12$	107.21 (11)	I6 ^{xvi} —O8—Ba2	159.07 (13)
O15 ^{xi} —Ba3—O13 ^{viii}	91.14 (8)	I6 ^{xvi} —O8—Ba5 ^{iv}	97.75 (10)
$O15^{xi}$ Ba3 $O13^{vii}$	91.14 (8)	$I6^{xvi}$ — $O8$ — $Ba5^{vii}$	101.80 (10)
$I7^{\text{viii}}$ —Ba4— $I7^{\text{vii}}$	109.128 (11)	Ba2—O9—Ba1	74.80 (6)
$O9^{\text{viii}}$ Ba4—I7 ^{viii}	30.70 (5)	$Ba2 - O9 - Ba3^{vi}$	113.03 (10)
$O9^{ix}$ Ba4 $I7^{vii}$	30.70 (5)	$Ba2 - O9 - Ba4^{vi}$	146.46 (11)
O9 ^{ix} —Ba4—I7 ^{viii}	94.64 (6)	Ba3 ^{vi} —O9—Ba1	168.60 (10)
O9 ^{viii} —Ba4—I7 ^{vii}	94.64 (6)	Ba4 ^{vi} —O9—Ba1	78.85 (7)
$O9^{ix}$ —Ba4— $O9^{viii}$	70.52 (11)	Ba4 ^{vi} —O9—Ba3 ^{vi}	90.73 (7)
$O9^{\text{viii}}$ Ba4— $O10^{\text{viii}}$	52.77 (7)	I7—O9—Ba1	91.20 (10)
57 Bui 010		1, 07 Dui	/ 1.20 (10)

O9 ^{ix} —Ba4—O10 ^{viii}	89.92 (8)	I7—O9—Ba2	101.28 (10)
O9 ^{ix} —Ba4—O10 ^{ix}	52.77 (7)	I7—O9—Ba3 ^{vi}	95.15 (10)
O9 ^{viii} —Ba4—O10 ^{ix}	89.92 (8)	I7—O9—Ba4 ^{vi}	99.64 (10)
O9 ^{viii} —Ba4—O11 ⁱ	104.24 (8)	Ba2 ^{vi} —O10—Ba3 ^{vi}	93.24 (8)
$O9^{ix}$ —Ba4—O11 ⁱ	152.12 (8)	Ba2 ^{vi} —O10—Ba4 ^{vi}	92.53 (8)
O9 ^{viii} —Ba4—O11	152.12 (8)	Ba2 ^{vi} —O10—Ba5	85.52 (8)
O9 ^{ix} —Ba4—O11	104.24 (8)	Ba3 ^{vi} —O10—Ba4 ^{vi}	84.22 (7)
O9 ^{ix} —Ba4—O15 ^{xiii}	123.37 (9)	Ba3 ^{vi} —O10—Ba5	88.32 (8)
O9 ^{viii} —Ba4—O15 ^{xii}	123.37 (9)	Ba4 ^{vi} —O10—Ba5	172.17 (10)
O9 ^{viii} —Ba4—O15 ^{xiii}	53.26 (9)	I7—O10—Ba2 ^{vi}	172.83 (15)
O9 ^{ix} —Ba4—O15 ^{xii}	53.26 (9)	I7—O10—Ba3 ^{vi}	93.56 (10)
O10 ^{ix} —Ba4—I7 ^{viii}	89.77 (5)	I7—O10—Ba4 ^{vi}	90.41 (10)
O10 ^{ix} —Ba4—I7 ^{vii}	31.13 (5)	I7—O10—Ba5	92.41 (11)
O10 ^{viii} —Ba4—I7 ^{vii}	89.77 (5)	Ba1 ^{xiv} —O11—Ba1 ^{vii}	83.74 (7)
O10 ^{viii} —Ba4—I7 ^{viii}	31.13 (5)	Ba1 ^{vii} —O11—Ba3 ⁱⁱ	99.37 (7)
O10 ^{viii} —Ba4—O10 ^{ix}	63.04 (10)	Ba1 ^{xiv} —O11—Ba3 ⁱⁱ	171.81 (9)
O11 ⁱ —Ba4—I7 ^{vii}	158.97 (5)	Ba1 ^{xiv} —O11—Ba4	91.24 (7)
O11 ⁱ —Ba4—I7 ^{viii}	91.89 (5)	Ba1 ^{xiv} —O11—Ba5	90.09 (7)
O11—Ba4—I7 ^{vii}	91.89 (5)	Ba4—O11—Ba1 ^{vii}	79.99 (7)
O11—Ba4—I7 ^{viii}	158.97 (5)	Ba4—O11—Ba3 ⁱⁱ	81.91 (6)
O11 ⁱ —Ba4—O10 ^{ix}	154.47 (7)	Ba4—O11—Ba5	97.58 (7)
O11—Ba4—O10 ^{viii}	154.47 (7)	Ba5—O11—Ba1 ^{vii}	173.30 (10)
O11 ⁱ —Ba4—O10 ^{viii}	108.94 (7)	Ba5—O11—Ba3 ⁱⁱ	86.40 (7)
O11—Ba4—O10 ^{ix}	108.94 (7)	I6 ⁱⁱ —O11—Ba1 ^{xiv}	96.78 (10)
O11—Ba4—O11 ⁱ	67.08 (10)	I6 ⁱⁱ —O11—Ba1 ^{vii}	91.52 (9)
O11—Ba4—O15 ^{xiii}	128.10 (9)	I6 ⁱⁱ —O11—Ba3 ⁱⁱ	90.73 (9)
O11 ⁱ —Ba4—O15 ^{xiii}	61.20 (9)	I6 ⁱⁱ —O11—Ba4	167.64 (13)
O11 ⁱ —Ba4—O15 ^{xii}	128.10 (9)	I6 ⁱⁱ —O11—Ba5	91.82 (10)
O11—Ba4—O15 ^{xii}	61.20 (9)	Ba2—O12—Ba3	90.58 (11)
O13—Ba4—I7 ^{vii}	102.72 (5)	Ba2—O12—Ba5 ^{viii}	86.42 (7)
O13—Ba4—I7 ^{viii}	102.72 (5)	Ba2—O12—Ba5 ^{vii}	86.42 (7)
O13—Ba4—O9 ^{ix}	133.19 (8)	Ba3—O12—Ba5 ^{viii}	93.34 (8)
O13—Ba4—O9 ^{viii}	133.19 (8)	Ba3—O12—Ba5 ^{vii}	93.34 (8)
O13—Ba4—O10 ^{ix}	83.85 (9)	Ba5 ^{viii} —O12—Ba5 ^{vii}	170.24 (15)
O13—Ba4—O10 ^{viii}	83.85 (9)	I6—O12—Ba2	168.4 (2)
O13—Ba4—O11 ⁱ	70.94 (9)	I6—O12—Ba3	101.07 (15)
O13—Ba4—O11	70.94 (9)	I6—O12—Ba5 ^{viii}	92.84 (7)
O13—Ba4—O15 ^{xii}	88.24 (8)	I6—O12—Ba5 ^{vii}	92.84 (7)
O13—Ba4—O15 ^{xiii}	88.24 (8)	Ba3 ^{vi} —O13—Ba3 ⁱⁱ	176.94 (17)
O14—Ba4—I7 ^{viii}	100.50 (5)	Ba4—O13—Ba3 ⁱⁱ	88.97 (8)
O14—Ba4—I7 ^{vii}	100.50 (5)	Ba4—O13—Ba3 ^{vi}	88.97 (8)
O14—Ba4—O9 ^{viii}	76.73 (8)	Ba4—O13—Ba5	104.54 (13)
O14—Ba4—O9 ^{ix}	76.73 (8)	Ba5—O13—Ba3 ⁱⁱ	91.35 (9)
O14—Ba4—O10 ^{ix}	129.20 (8)	Ba5—O13—Ba3 ^{vi}	91.35 (9)
O14—Ba4—O10 ^{viii}	129.20 (8)	I7—O13—Ba3 ⁱⁱ	90.47 (7)
O14—Ba4—O11	75.43 (9)	I7—O13—Ba3 ^{vi}	90.47 (7)
O14—Ba4—O11 ⁱ	75.43 (9)	I7—O13—Ba4	155.4 (2)
O14—Ba4—O13	139.37 (12)	I7—O13—Ba5	100.10 (16)
			` ´

O14—Ba4—O15 ^{xii}	95.13 (8)	Ba1 ^{xiv} —O14—Ba1 ^{vii}	88.26 (7)
O14—Ba4—O15 ^{xiii}	95.13 (8)	Ba1xiv—O14—Ba1viii	88.26 (7)
O15 ^{xiii} —Ba4—I7 ^{viii}	30.93 (7)	Ba1 ^{viii} —O14—Ba1 ^{vii}	171.78 (14)
O15 ^{xii} —Ba4—I7 ^{vii}	30.93 (7)	Ba4—O14—Ba1 ^{vii}	86.60 (7)
O15 ^{xii} —Ba4—I7 ^{viii}	139.69 (7)	Ba4—O14—Ba1 ^{xiv}	99.15 (12)
O15 ^{xiii} —Ba4—I7 ^{vii}	139.69 (7)	Ba4—O14—Ba1 ^{viii}	86.60 (7)
O15 ^{xiii} —Ba4—O10 ^{viii}	52.49 (9)	I6 ^{xx} —O14—Ba1 ^{viii}	94.00 (7)
$O15^{xii}$ —Ba4— $O10^{viii}$	115.52 (9)	I6 ^{xx} —O14—Ba1 ^{vii}	94.00 (7)
O15 ^{xiii} —Ba4—O10 ^{ix}	115.52 (9)	I6 ^{xx} —O14—Ba1 ^{xiv}	102.20 (15)
$O15^{xii}$ —Ba4— $O10^{ix}$	52.49 (9)	I6 ^{xx} —O14—Ba4	158.65 (19)
O15 ^{xiii} —Ba4—O15 ^{xii}	167.84 (15)	Ba1 ^{xiv} —O15—Ba4 ^{xiii}	84.56 (8)
$O8^{ii}$ —Ba5—I6 ⁱⁱ	89.25 (5)	$Ba1^{xiv}$ —O15—Ba 4^{xii}	84.56 (8)
$O8^{xiv}$ Ba5—I6 ⁱⁱ	31 23 (5)	$Ba3^{xx} - O15 - Ba1^{xiv}$	127.86 (15)
$O8^{xv}$ —Ba5—I6 ⁱⁱ	94 55 (5)	$Ba3^{xx} - O15 - Ba4^{xii}$	91 20 (8)
$O8^{iii}$ Ba5 Io	134 22 (5)	$Ba3^{xx} - O15 - Ba4^{xiii}$	91.20 (8)
$O8^{xiv}$ Ba5 $O8^{ii}$	81 20 (8)	$Ba4^{xii}$ 015 $Ba4^{xii}$	167.84 (15)
$O8^{xiv}$ Ba5 $O8^{iii}$	109.88 (5)	17^{xiv} 015 Ba1 ^{xiv}	107.01(12) 108.24(17)
08^{xv} Ba5 08^{iii}	81 20 (8)	17^{xiv} 015 Bal	100.24(17) 123.91(19)
$O_{a}^{xv} - B_{a}^{z} - O_{a}^{xi}$	109.88 (5)	17 = 015 = Bas $17^{\text{xiv}} = 015 = \text{Ba}4^{\text{xii}}$	94.27(7)
0.00^{3} Ba5 0.00^{3}	51 30 (9)	17 = 015 = Ba4	94.27(7)
$O_{\text{siv}} B_{\text{s}} S = O_{\text{sv}} O_{\text{sv}}$	69.41(10)	17 —015 —Da+)4.27(7)
00 Das 00	0).11 (10)		
Ba1 ^{xviii} —I6—O12—Ba2	93.41 (9)	Ba5—I7—O9—Ba1	-175.958 (13)
Ba1 ^{xix} —I6—O12—Ba2	180.000 (1)	Ba5—I7—O9—Ba2	109.30 (8)
Ba1 ^{xvi} —I6—O12—Ba2	-93.41 (9)	Ba5—I7—O9—Ba3 ^{vi}	-5.44 (11)
Ba1 ^{xvi} —I6—O12—Ba3	86.59 (9)	Ba5—I7—O9—Ba4 ^{vi}	-97.06 (9)
Ba1 ^{xviii} —I6—O12—Ba3	-86.59 (9)	Ba5—I7—O10—Ba3 ^{vi}	88.46 (9)
Ba1 ^{xix} —I6—O12—Ba3	0.000 (1)	Ba5—I7—O10—Ba4 ^{vi}	172.70 (11)
Ba1 ^{xix} —I6—O12—Ba5 ^{vii}	-93.97 (8)	Ba5—I7—O13—Ba3 ⁱⁱ	91.45 (9)
Ba1 ^{xviii} —I6—O12—Ba5 ^{vii}	179.445 (14)	Ba5—I7—O13—Ba3 ^{vi}	-91.45 (9)
Ba1 ^{xvi} —I6—O12—Ba5 ^{vii}	-7.38 (17)	Ba5—I7—O13—Ba4	180.000(1)
Ba1 ^{xvi} —I6—O12—Ba5 ^{viii}	-179.445 (14)	O8 ^{xvi} —I6—O12—Ba2	-45.60 (8)
Ba1 ^{xix} —I6—O12—Ba5 ^{viii}	93.97 (8)	O8 ^{xvii} —I6—O12—Ba2	45.60 (8)
Ba1 ^{xviii} —I6—O12—Ba5 ^{viii}	7.38 (17)	O8 ^{xvi} —I6—O12—Ba3	134.40 (8)
Ba2—I7—O9—Ba1	74.74 (8)	O8 ^{xvii} —I6—O12—Ba3	-134.40(8)
Ba2—I7—O9—Ba3 ^{vi}	-114.74 (12)	08 ^{xvi} —I6—012—Ba5 ^{viii}	-131.63(12)
$Ba2-I7-O9-Ba4^{vi}$	153.64 (15)	O8 ^{xvii} —I6—O12—Ba5 ^{viii}	-40.43 (12)
Ba2—I7—O10—Ba3 ^{vi}	-21.39(15)	08 ^{xvi} —I6—012—Ba5 ^{vii}	40.43 (12)
$Ba2 - I7 - O10 - Ba4^{vi}$	62.85 (12)	$O8^{xvii}$ —I6—O12—Ba5 ^{vii}	131.63 (12)
Ba2—I7—O10—Ba5	-109.85(8)	09 ⁱ —I7—09—Ba1	52.50 (12)
Ba2—I7—O13—Ba3 ⁱⁱ	-88.55 (9)	$O9^{i}$ —I7—O9—Ba2	-22.24(16)
$Ba2 I7 O13 Ba3^{vi}$	88.55 (9)	09^{i} 17 09 Ba2 ^{vi}	-136.98(6)
Ba2—I7—O13—Ba4	0.0	$O9^{i}$ I7 O9 Ba4 ^{vi}	131 40 (6)
Ba2—I7—O13—Ba5	180.000 (1)	$09-17-010-Ba3^{vi}$	-42.80(11)
Ba3—I6—O12—Ba2	180.000 (2)	09—I7—010—Ba4 ^{vi}	41.44 (10)
$Ba3 - I6 - O12 - Ba2^{vii}$	-93.97 (8)	09—17—010—Ba5	-131.26(10)
$Ba3 - I6 - O12 - Ba5^{viii}$	93.97 (8)	$O9^{i}$ [7—O13—Ba3 ^{vi}	133.91 (12)
$Ba3^{vi}$ 17 09 $Ba1$	-17052(11)	$09-17-013-Ba3^{ii}$	-133 91 (12)
Duo 1/ 0/ Du1	1,0.22 (11)	C 11 015 Dus	155.71 (14)

Ba3 ⁱⁱ —I7—O9—Ba1	94.75 (8)	O9—I7—O13—Ba3 ^{vi}	43.19 (12)
Ba3 ⁱⁱ —I7—O9—Ba2	20.00 (14)	O9 ⁱ —I7—O13—Ba3 ⁱⁱ	-43.19 (12)
Ba3 ^{vi} —I7—O9—Ba2	114.74 (12)	O9—I7—O13—Ba4	-45.36 (8)
Ba3 ⁱⁱ —I7—O9—Ba3 ^{vi}	-94.73 (8)	O9 ⁱ —I7—O13—Ba4	45.36 (8)
Ba3 ⁱⁱ —I7—O9—Ba4 ^{vi}	173.643 (17)	O9 ⁱ —I7—O13—Ba5	-134.64 (8)
Ba3 ^{vi} —I7—O9—Ba4 ^{vi}	-91.62 (9)	O9—I7—O13—Ba5	134.64 (8)
Ba3 ⁱⁱ —I7—O10—Ba3 ^{vi}	94.55 (9)	O10—I7—O9—Ba1	-126.63 (10)
Ba3 ⁱⁱ —I7—O10—Ba4 ^{vi}	178.780 (19)	O10—I7—O9—Ba2	158.63 (12)
Ba3 ^{vi} —I7—O10—Ba4 ^{vi}	84.23 (8)	O10—I7—O9—Ba3 ^{vi}	43.89 (11)
Ba3 ⁱⁱ —I7—O10—Ba5	6.08 (12)	O10—I7—O9—Ba4 ^{vi}	-47.73 (12)
Ba3 ^{vi} —I7—O10—Ba5	-88.46 (9)	O10 ⁱ —I7—O10—Ba3 ^{vi}	138.08 (6)
Ba3 ^{vi} —I7—O13—Ba3 ⁱⁱ	-177.09 (17)	O10 ⁱ —I7—O10—Ba4 ^{vi}	-137.69 (7)
Ba3 ⁱⁱ —I7—O13—Ba3 ^{vi}	177.09 (17)	O10 ⁱ —I7—O10—Ba5	49.61 (14)
Ba3 ⁱⁱ —I7—O13—Ba4	88.55 (9)	O10—I7—O13—Ba3 ^{vi}	-45.89 (12)
Ba3 ^{vi} —I7—O13—Ba4	-88.55 (9)	O10—I7—O13—Ba3 ⁱⁱ	137.02 (12)
Ba3 ^{vi} —I7—O13—Ba5	91.45 (9)	O10 ⁱ —I7—O13—Ba3 ⁱⁱ	45.89 (12)
Ba3 ⁱⁱ —I7—O13—Ba5	-91.45 (9)	O10 ⁱ —I7—O13—Ba3 ^{vi}	-137.02 (12)
Ba4 ⁱⁱ —I7—O9—Ba1	10.77 (10)	O10 ⁱ —I7—O13—Ba4	134.44 (9)
Ba4 ^{vi} —I7—O9—Ba1	-78.90 (8)	O10—I7—O13—Ba4	-134.44 (9)
Ba4 ^{vi} —I7—O9—Ba2	-153.64 (15)	O10—I7—O13—Ba5	45.56 (9)
Ba4 ⁱⁱ —I7—O9—Ba2	-63.97 (11)	O10 ⁱ —I7—O13—Ba5	-45.56 (9)
Ba4 ⁱⁱ —I7—O9—Ba3 ^{vi}	-178.708 (17)	O11 ^{vii} —I6—O12—Ba2	-134.11 (8)
$Ba4^{vi}$ —I7—O9— $Ba3^{vi}$	91.62 (9)	O11 ^x —I6—O12—Ba2	134.11 (8)
$Ba4^{ii}$ —I7—O9— $Ba4^{vi}$	89.67 (8)	O11 ^{vii} —I6—O12—Ba3	45.89 (8)
Ba4 ⁱⁱ —I7—O10—Ba3 ^{vi}	-173.595 (18)	O11 ^x —I6—O12—Ba3	-45.89 (8)
Ba4 ^{vi} —I7—O10—Ba3 ^{vi}	-84.23 (8)	O11 ^{vii} —I6—O12—Ba5 ^{viii}	139.85 (11)
Ba4 ⁱⁱ —I7—O10—Ba4 ^{vi}	-89.36 (9)	O11 ^{vii} —I6—O12—Ba5 ^{vii}	-48.08 (11)
Ba4 ^{vi} —I7—O10—Ba5	-172.70 (11)	O11 ^x —I6—O12—Ba5 ^{viii}	48.08 (11)
Ba4 ⁱⁱ —I7—O10—Ba5	97.94 (9)	O11 ^x —I6—O12—Ba5 ^{vii}	-139.85 (11)
Ba4 ^{vi} —I7—O13—Ba3 ^{vi}	4.55 (18)	O13—I7—O9—Ba1	143.25 (11)
Ba4 ^{vi} —I7—O13—Ba3 ⁱⁱ	-172.541 (16)	O13—I7—O9—Ba2	68.51 (12)
Ba4 ⁱⁱ —I7—O13—Ba3 ⁱⁱ	-4.55 (18)	O13—I7—O9—Ba3 ^{vi}	-46.23 (11)
Ba4 ⁱⁱ —I7—O13—Ba3 ^{vi}	172.541 (16)	O13—I7—O9—Ba4 ^{vi}	-137.85 (12)
Ba4 ^{vi} —I7—O13—Ba4	-83.99 (9)	O13—I7—O10—Ba3 ^{vi}	47.94 (12)
Ba4 ⁱⁱ —I7—O13—Ba4	83.99 (9)	O13—I7—O10—Ba4 ^{vi}	132.17 (11)
Ba4 ⁱⁱ —I7—O13—Ba5	-96.01 (9)	O13—I7—O10—Ba5	-40.52 (11)
Ba4 ^{vi} —I7—O13—Ba5	96.01 (9)	O15 ^{iv} —I7—O9—Ba1	-35.05 (10)
Ba5 ^{vii} —I6—O12—Ba2	-86.03 (8)	O15 ^{iv} —I7—O9—Ba2	-109.79 (12)
Ba5 ^{viii} —I6—O12—Ba2	86.03 (8)	O15 ^{iv} —I7—O9—Ba3 ^{vi}	135.47 (11)
Ba5 ^{viii} —I6—O12—Ba3	-93.97 (8)	$O15^{iv}$ —I7— $O9$ — $Ba4^{vi}$	43.85 (11)
Ba5 ^{vii} —I6—O12—Ba3	93.97 (8)	O15 ^{iv} —I7—O10—Ba3 ^{vi}	-130.35 (11)
Ba5 ^{viii} —I6—O12—Ba5 ^{vii}	172.07 (17)	$O15^{iv}$ —I7—O10—Ba 4^{vi}	-46.12 (10)
Ba5 ^{vii} —I6—O12—Ba5 ^{viii}	-172.07 (17)	O15 ^{iv} —I7—O10—Ba5	141.19 (10)

Symmetry codes: (i) x, -y+1/2, z; (ii) -x+1/2, -y+1, z-1/2; (iii) -x+1/2, y-1/2, z-1/2; (iv) x-1/2, y, -z+1/2; (v) x-1/2, -y+1/2, -z+1/2; (vi) -x+1/2, -y, z-1/2; (vii) -x+1/2, -y+1/2; (vii) -x-1/2; (vii) -x-1/2, -y+1/2; (vii) -x-1/2; (vii) -x-1/2; (vii) -x-1/2, -y+1/2; (vii) -x-1/2, -y+1/2; (vii) -x-1/2, -y+1/2; (vii) -x-1/2; (vii) -x-1/2;

(80K)

Crvstal data

 $Ba_5I_2O_{12}$ $M_r = 1132.50$ Orthorhombic, Pnma *a* = 19.7361 (3) Å b = 5.8779(1) Å c = 10.5749(1) Å V = 1226.76 (3) Å³ Z = 4F(000) = 1928

Data collection

XtaLAB Synergy-I with HyPix3000	2529 in
diffractometer	2462 re
Detector resolution: 10.0000 pixels mm ⁻¹	$R_{\rm int}=0$
ω scans	$\theta_{\rm max} = 3$
Absorption correction: gaussian	h = -27
(CrysAlisPro; Rigaku OD, 2020)	k = -8 -
$T_{\min} = 0.150, \ T_{\max} = 0.750$	l = -16
16187 measured reflections	

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0092P)^2 + 7.6239P]$ where $P = (F_0^2 + 2F_c^2)/3$ Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.90 \text{ e } \text{\AA}^{-3}$ $wR(F^2) = 0.043$ $\Delta \rho_{\rm min} = -1.60 \ {\rm e} \ {\rm \AA}^{-3}$ *S* = 1.25 2529 reflections Extinction correction: SHELXL2018/3 104 parameters (Sheldrick 2015b), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ 0 restraints Extinction coefficient: 0.00060 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ba1	0.04800 (2)	0.250000	0.08951 (3)	0.00409 (6)	
Ba2	0.14082 (2)	0.250000	0.38331 (3)	0.00342 (6)	
Ba3	0.19966 (2)	0.250000	0.74015 (3)	0.00461 (6)	
Ba4	0.34267 (2)	0.250000	0.47535 (3)	0.00355 (6)	
Ba5	0.42748 (2)	0.250000	0.08947 (3)	0.00448 (6)	
I6	0.01359 (2)	0.250000	0.74889 (3)	0.00249 (6)	
I7	0.23871 (2)	0.250000	0.10166 (3)	0.00307 (6)	
08	0.03691 (13)	0.5213 (4)	0.3330 (2)	0.0056 (5)	
09	0.18812 (14)	0.0229 (5)	0.1838 (2)	0.0074 (5)	
O10	0.28798 (14)	0.0228 (5)	0.0181 (3)	0.0083 (5)	

 $D_{\rm x} = 6.132 {\rm Mg} {\rm m}^{-3}$ Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 13815 reflections $\theta = 1.9 - 36.2^{\circ}$ $\mu = 20.90 \text{ mm}^{-1}$ T = 80 KPrism, brown $0.22 \times 0.12 \times 0.08 \text{ mm}$

dependent reflections effections with $I > 2\sigma(I)$.033 $3.1^\circ, \theta_{\min} = 2.1^\circ$ 7→30 →9 $\rightarrow 14$

011	0.43517 (13)	0.5187 (5)	0.3288 (3)	0.0067 (5)
012	0.07588 (19)	0.250000	0.6120 (4)	0.0062 (7)
013	0.3025 (2)	0.250000	0.2342 (4)	0.0079 (7)
O14	0.45602 (18)	0.250000	0.6070 (3)	0.0048 (6)
015	0.67265 (19)	0.250000	0.5245 (4)	0.0081 (7)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.00457 (12)	0.00427 (12)	0.00343 (11)	0.000	0.00003 (9)	0.000
Ba2	0.00324 (11)	0.00415 (12)	0.00288 (11)	0.000	-0.00054 (9)	0.000
Ba3	0.00566 (12)	0.00425 (12)	0.00394 (12)	0.000	0.00160 (9)	0.000
Ba4	0.00339 (11)	0.00438 (12)	0.00288 (11)	0.000	-0.00051 (9)	0.000
Ba5	0.00447 (12)	0.00409 (12)	0.00487 (12)	0.000	-0.00101 (9)	0.000
I6	0.00238 (12)	0.00310 (13)	0.00198 (12)	0.000	0.00006 (9)	0.000
I7	0.00310 (12)	0.00381 (13)	0.00229 (12)	0.000	0.00011 (10)	0.000
08	0.0048 (10)	0.0055 (12)	0.0065 (11)	0.0025 (9)	-0.0006 (9)	0.0025 (9)
09	0.0106 (12)	0.0054 (12)	0.0063 (11)	-0.0019 (10)	0.0028 (9)	0.0004 (9)
O10	0.0112 (12)	0.0053 (12)	0.0084 (11)	0.0030 (10)	0.0031 (10)	-0.0012 (9)
011	0.0065 (11)	0.0059 (11)	0.0077 (11)	-0.0022 (9)	0.0013 (9)	0.0025 (9)
O12	0.0051 (15)	0.0077 (17)	0.0056 (15)	0.000	0.0047 (13)	0.000
013	0.0104 (17)	0.0101 (17)	0.0033 (15)	0.000	-0.0040 (13)	0.000
O14	0.0044 (14)	0.0063 (16)	0.0038 (15)	0.000	-0.0009 (12)	0.000
015	0.0065 (15)	0.0112 (18)	0.0066 (16)	0.000	0.0015 (13)	0.000

Geometric parameters (Å, °)

Ba1—O8	3.037 (3)	Ba4—I7 ^{viii}	3.6057 (2)
Ba1—O8 ⁱ	3.037 (3)	Ba4—O9 ^{ix}	2.793 (3)
Ba1—O9	3.229 (3)	Ba4—O9 ^{viii}	2.793 (3)
Ba1—O9 ⁱ	3.229 (3)	Ba4—O10 ^{ix}	3.070 (3)
Ba1—O11 ⁱⁱ	3.092 (3)	Ba4—O10 ^{viii}	3.070 (3)
Ba1—O11 ⁱⁱⁱ	3.092 (3)	Ba4—O11 ⁱ	2.869 (3)
Ba1-O11 ^{iv}	2.864 (3)	Ba4—O11	2.869 (3)
Ba1—O11 ^v	2.864 (3)	Ba4—O13	2.670 (4)
Ba1—O14 ⁱⁱ	2.9458 (3)	Ba4—O14	2.635 (4)
Ba1—O14 ^{vi}	2.9458 (3)	Ba4—O15 ^{xii}	2.9545 (4)
Ba1—O14 ^{iv}	2.759 (4)	Ba4—O15 ^{xiii}	2.9545 (4)
Ba1-O15 ^{iv}	2.740 (4)	Ba5—I6 ⁱⁱ	3.5822 (2)
Ba2—Ba3	3.9482 (4)	Ba5—O8 ⁱⁱ	3.107 (3)
Ba2—Ba5 ^{vii}	3.8997 (3)	Ba5—O8 ^{xiv}	2.807 (3)
Ba2—Ba5 ^{viii}	3.8997 (3)	Ba5—O8 ^{xv}	2.807 (3)
Ba2—I7	3.5501 (4)	Ba5—O8 ⁱⁱⁱ	3.107 (3)
Ba2—O8 ⁱ	2.652 (3)	Ba5—O10	3.152 (3)
Ba2—O8	2.652 (3)	Ba5—O10 ⁱ	3.152 (3)
Ba2—O9 ⁱ	2.665 (3)	Ba5—O11 ⁱ	2.987 (3)
Ba2—O9	2.665 (3)	Ba5—O11	2.987 (3)
Ba2-O10viii	2.565 (3)	Ba5—O12 ^{vi}	2.9494 (3)

Ba2—O10 ^{ix}	2.565 (3)	Ba5—O12 ⁱⁱ	2.9494 (3)
Ba2—O12	2.737 (4)	Ba5—O13	2.903 (4)
Ba3—I7 ^{viii}	3.5016 (2)	I6—O8 ^{xvi}	1.884 (3)
Ba3—I7 ^{vii}	3.5016 (2)	I6—O8 ^{xvii}	1.884 (3)
Ba3—O9 ^{viii}	2.799 (3)	I6—O11 ^{vii}	1.893 (3)
Ba3—O9 ^{ix}	2.799 (3)	I6—O11 ^x	1.893 (3)
Ba3—O10 ^{ix}	2.854 (3)	I6—O12	1.899 (4)
Ba3—O10 ^{viii}	2.854 (3)	I6—O14 ^{xi}	1.901 (4)
Ba3—O11 ^{vii}	3.132 (3)	I7—O9 ⁱ	1.880 (3)
Ba3—O11 ^x	3.132 (3)	I7—O9	1.880 (3)
Ba3—O12	2.794 (4)	I7—O10	1.873 (3)
Ba3—O13 ^{vii}	2.9399 (1)	I7—O10 ⁱ	1.873 (3)
Ba3—O13 ^{viii}	2.9399 (1)	I7—O13	1.884 (4)
Ba3—O15 ^{xi}	2.545 (4)	I7—O15 ^{iv}	1.866 (4)
Ba4—I7 ^{vii}	3.6057 (2)		
O8 ⁱ —Ba1—O8	63.36 (10)	O8 ⁱⁱⁱ —Ba5—O10 ⁱ	99.90 (7)
O8 ⁱ —Ba1—O9 ⁱ	90.97 (7)	O8 ^{xv} —Ba5—O10 ⁱ	169.34 (7)
O8—Ba1—O9 ⁱ	65.33 (7)	O8 ⁱⁱ —Ba5—O10 ⁱ	78.78 (7)
O8 ⁱ —Ba1—O9	65.33 (7)	$O8^{xiv}$ —Ba5—O10 ⁱ	120.09 (7)
O8—Ba1—O9	90.97 (7)	O8 ⁱⁱⁱ —Ba5—O10	78.77 (7)
O8i—Ba1—O11iii	122.21 (7)	O8 ⁱⁱ —Ba5—O10	99.90 (7)
O8—Ba1—O11 ⁱⁱⁱ	174.14 (7)	O8 ^{xv} —Ba5—O10	120.09 (7)
O8i—Ba1—O11ii	174.14 (7)	O8 ^{xiv} —Ba5—O10	169.35 (7)
08—Ba1—011 ⁱⁱ	122.21 (7)	O8 ^{xiv} —Ba5—O11 ⁱ	90.80 (8)
O9 ⁱ —Ba1—O9	48.85 (10)	O8 ^{xv} —Ba5—O11	90.80 (7)
O11 ^v —Ba1—O8 ⁱ	53.02 (7)	O8 ^{xv} —Ba5—O11 ⁱ	54.06 (7)
O11 ^{iv} —Ba1—O8 ⁱ	88.73 (7)	O8 ^{xiv} —Ba5—O11	54.06 (7)
O11 ^v —Ba1—O8	88.73 (7)	O8 ^{xiv} —Ba5—O12 ⁱⁱ	55.08 (9)
O11 ^{iv} —Ba1—O8	53.02 (7)	O8 ^{xv} —Ba5—O12 ^{vi}	55.08 (9)
O11 ^v —Ba1—O9 ⁱ	143.22 (7)	O8 ^{xv} —Ba5—O12 ⁱⁱ	124.04 (9)
O11 ^v —Ba1—O9	110.17 (7)	O8 ^{xiv} —Ba5—O12 ^{vi}	124.04 (9)
O11 ⁱⁱⁱ —Ba1—O9	90.10(7)	O8 ^{xv} —Ba5—O13	119.99 (8)
O11 ^{iv} —Ba1—O9 ⁱ	110.17 (7)	O8 ^{xiv} —Ba5—O13	119.99 (8)
011 ^{iv} —Ba1—O9	143.22 (7)	O10—Ba5—I6 ⁱⁱ	138.07 (5)
O11 ⁱⁱⁱ —Ba1—O9 ⁱ	111.43 (7)	O10 ⁱ —Ba5—I6 ⁱⁱ	92.79 (5)
011 ⁱⁱ —Ba1—O9	111.43 (7)	O10—Ba5—O10 ⁱ	50.13 (10)
$O11^{ii}$ —Ba1—O9 ⁱ	90.10(7)	O11—Ba5—I6 ⁱⁱ	31.89 (5)
$O11^{iii}$ —Ba1—O11 ⁱⁱ	52.17 (10)	$O11^{i}$ —Ba5—I6 ⁱⁱ	91.07 (5)
$O11^{v}$ —Ba1—O11 ^{iv}	66.95 (10)	$O11^{i}$ Ba5 $O8^{ii}$	163.07 (7)
011^{v} Ba1 -011^{ii}	126 52 (4)	$011 - Ba5 - 08^{ii}$	119 95 (7)
011^{v} Ba1 -011^{iii}	96 32 (7)	$011 - Ba5 - O8^{iii}$	163.07(7)
$O11^{iv}$ —Ba1—O11 ⁱⁱⁱ	126.52 (4)	$O11^{i}$ Ba5 $O8^{iii}$	119.95 (7)
$O11^{iv}$ —Ba1—O11 ⁱⁱ	96.32 (7)	$O11 - Ba5 - O10^{i}$	91.33 (7)
$O11^{iv}$ —Ba1—O14 ⁱⁱ	53.83 (9)	$O11^{i}$ Ba5 $O10^{i}$	118.12 (7)
$O11^{v}$ —Ba1—O14 ⁱⁱ	120.69 (9)	O11 - Ba5 - O10	118.12(7)
$O11^{v}$ —Ba1—O14 ^{vi}	53.83 (9)	$O11^{i}$ Ba5 $O10$	91 33 (7)
$O11^{iv}$ —Ba1—O14 ^{vi}	120.69 (9)	$011 - Ba5 - 011^{i}$	63.85 (10)
		011 200 011	00.00 (10)

O14 ^{iv} —Ba1—O8	126.24 (7)	O12 ⁱⁱ —Ba5—I6 ⁱⁱ	31.97 (7)
O14 ^{vi} —Ba1—O8	117.95 (9)	O12 ^{vi} —Ba5—I6 ⁱⁱ	141.89 (7)
O14 ⁱⁱ —Ba1—O8	54.61 (9)	O12 ⁱⁱ —Ba5—O8 ⁱⁱ	69.18 (9)
O14 ⁱⁱ —Ba1—O8 ⁱ	117.95 (9)	O12 ^{vi} —Ba5—O8 ⁱⁱ	120.45 (9)
O14 ^{vi} —Ba1—O8 ⁱ	54.61 (9)	O12 ^{vi} —Ba5—O8 ⁱⁱⁱ	69.18 (9)
O14 ^{iv} —Ba1—O8 ⁱ	126.24 (7)	O12 ⁱⁱ —Ba5—O8 ⁱⁱⁱ	120.45 (9)
O14 ^{iv} —Ba1—O9	142.76 (7)	O12 ^{vi} —Ba5—O10 ⁱ	114.95 (9)
O14 ⁱⁱ —Ba1—O9 ⁱ	65.87 (9)	O12 ⁱⁱ —Ba5—O10 ⁱ	65.01 (9)
O14 ^{iv} —Ba1—O9 ⁱ	142.76 (7)	O12 ⁱⁱ —Ba5—O10	114.95 (9)
O14 ⁱⁱ —Ba1—O9	114.60 (9)	O12 ^{vi} —Ba5—O10	65.01 (9)
O14 ^{vi} —Ba1—O9	65.87 (9)	O12 ^{vi} —Ba5—O11 ⁱ	53.54 (9)
O14 ^{vi} —Ba1—O9 ⁱ	114.60 (9)	O12 ⁱⁱ —Ba5—O11	53.54 (9)
O14 ^{iv} —Ba1—O11 ^{iv}	73.48 (8)	O12 ^{vi} —Ba5—O11	117.36 (9)
$O14^{iv}$ —Ba1—O11 ^v	73.48 (8)	O12 ⁱⁱ —Ba5—O11 ⁱ	117.36 (9)
$O14^{vi}$ —Ba1—O11 ⁱⁱ	119.83 (9)	$O12^{ii}$ —Ba5—O12 ^{vi}	170.37 (15)
$O14^{iv}$ —Ba1—O11 ⁱⁱⁱ	53.07 (8)	O13—Ba5—I6 ⁱⁱ	91.59 (4)
0.14^{ii} Ba1 -0.11^{ii}	67.68 (9)	$O13$ —Ba5— $O8^{iii}$	130.72 (8)
$O14^{ii}$ —Ba1—O11 ⁱⁱⁱ	119.83 (9)	$013 - Ba5 - 08^{ii}$	130.72 (8)
$O14^{iv}$ —Ba1—O11 ⁱⁱ	53.07 (8)	013 - Ba5 - 010	51.97 (8)
$O14^{vi}$ Ba1 $O11^{iii}$	67.68 (9)	$O13 - Ba5 - O10^{i}$	51.97 (8)
$O14^{iv}$ —Ba1—O14 ⁱⁱ	91.69 (7)	$O13 - Ba5 - O11^{i}$	66.20 (8)
O14 ^{iv} —Ba1—O14 ^{vi}	91.69 (7)	O13—Ba5—O11	66.20 (8)
O14 ⁱⁱ —Ba1—O14 ^{vi}	172.17 (14)	O13—Ba5—O12 ⁱⁱ	86.46 (8)
O15 ^{iv} —Ba1—O8 ⁱ	115.98 (8)	O13—Ba5—O12 ^{vi}	86.46 (8)
O15 ^{iv} —Ba1—O8	115.98 (8)	Ba1 ^{xvi} —I6—Ba1 ^{xviii}	108.979 (11)
$O15^{iv}$ —Ba1—O9 ⁱ	50.72 (8)	Ba1 ^{xvi} —I6—Ba1 ^{xix}	66.249 (7)
O15 ^{iv} —Ba1—O9	50.72 (8)	Ba1 ^{xviii} —I6—Ba1 ^{xix}	66.249 (7)
O15 ^{iv} —Ba1—O11 ⁱⁱ	60.73 (8)	Ba1 ^{xvi} —I6—Ba3	110.393 (7)
O15 ^{iv} —Ba1—O11 ^v	146.21 (5)	Ba1 ^{xix} —I6—Ba3	80.763 (9)
O15 ^{iv} —Ba1—O11 ^{iv}	146.21 (5)	Ba1 ^{xviii} —I6—Ba3	110.393 (7)
O15 ^{iv} —Ba1—O11 ⁱⁱⁱ	60.73 (8)	Ba5 ^{viii} —I6—Ba1 ^{xvi}	179.206 (10)
O15 ^{iv} —Ba1—O14 ^{iv}	105.02 (11)	Ba5 ^{vii} —I6—Ba1 ^{xviii}	179.206 (10)
O15 ^{iv} —Ba1—O14 ⁱⁱ	92.97 (7)	Ba5 ^{viii} —I6—Ba1 ^{xviii}	70.380 (5)
O15 ^{iv} —Ba1—O14 ^{vi}	92.97 (7)	Ba5 ^{viii} —I6—Ba1 ^{xix}	113.722 (7)
Ba1—Ba2—Ba3	166.582 (11)	Ba5 ^{vii} —I6—Ba1 ^{xix}	113.722 (7)
Ba1—Ba2—Ba5 ^{vii}	107.819 (7)	Ba5 ^{vii} —I6—Ba1 ^{xvi}	70.380 (5)
Ba1—Ba2—Ba5 ^{viii}	107.819 (7)	Ba5 ^{viii} —I6—Ba3	70.341 (7)
Ba5 ^{viii} —Ba2—Ba3	64.364 (6)	Ba5 ^{vii} —I6—Ba3	70.341 (7)
Ba5 ^{vii} —Ba2—Ba3	64.364 (6)	Ba5 ^{viii} —I6—Ba5 ^{vii}	110.256 (11)
Ba5 ^{vii} —Ba2—Ba5 ^{viii}	97.813 (9)	O8 ^{xvi} —I6—Ba1 ^{xviii}	128.33 (8)
I7—Ba2—Ba1	63.494 (8)	O8 ^{xvi} —I6—Ba1 ^{xix}	123.35 (8)
I7—Ba2—Ba3	129.924 (10)	O8 ^{xvii} —I6—Ba1 ^{xviii}	57.24 (8)
I7—Ba2—Ba5 ^{vii}	131.082 (5)	O8 ^{xvii} —I6—Ba1 ^{xix}	123.35 (8)
I7—Ba2—Ba5 ^{viii}	131.082 (5)	O8 ^{xvii} —I6—Ba1 ^{xvi}	128.33 (8)
O8 ⁱ —Ba2—Ba1	55.56 (6)	O8 ^{xvi} —I6—Ba1 ^{xvi}	57.24 (8)
O8—Ba2—Ba1	55.56 (6)	O8 ^{xvi} —I6—Ba3	121.15 (8)
O8—Ba2—Ba3	114.78 (6)	O8 ^{xvii} —I6—Ba3	121.15 (8)
O8 ⁱ —Ba2—Ba3	114.78 (6)	O8 ^{xvi} —I6—Ba5 ^{vii}	50.96 (8)

O8 ⁱ —Ba2—Ba5 ^{vii}	107.34 (6)	O8 ^{xvii} —I6—Ba5 ^{vii}	122.73 (8)
O8i—Ba2—Ba5 ^{viii}	52.52 (6)	O8 ^{xvii} —I6—Ba5 ^{viii}	50.96 (8)
O8—Ba2—Ba5 ^{viii}	107.34 (6)	O8 ^{xvi} —I6—Ba5 ^{viii}	122.73 (8)
O8—Ba2—Ba5 ^{vii}	52.52 (6)	O8 ^{xvii} —I6—O8 ^{xvi}	91.01 (16)
O8 ⁱ —Ba2—I7	104.63 (6)	O8 ^{xvi} —I6—O11 ^{vii}	88.60 (12)
O8—Ba2—I7	104.63 (6)	O8 ^{xvii} —I6—O11 ^{vii}	179.13 (12)
O8 ⁱ —Ba2—O8	73.95 (11)	O8 ^{xvii} —I6—O11 ^x	88.60 (12)
O8 ⁱ —Ba2—O9 ⁱ	114.42 (8)	O8 ^{xvi} —I6—O11 ^x	179.13 (12)
O8—Ba2—O9 ⁱ	79.10 (8)	O8 ^{xvii} —I6—O12	89.54 (11)
O8 ⁱ —Ba2—O9	79.10 (8)	O8 ^{xvi} —I6—O12	89.54 (11)
O8—Ba2—O9	114.42 (8)	O8 ^{xvii} —I6—O14 ^{xi}	93.01 (11)
O8 ⁱ —Ba2—O12	79.34 (8)	O8 ^{xvi} —I6—O14 ^{xi}	93.01 (11)
O8—Ba2—O12	79.34 (8)	O11 ^{vii} —I6—Ba1 ^{xix}	57.49 (8)
O9 ⁱ —Ba2—Ba1	59.74 (6)	O11 ^x —I6—Ba1 ^{xviii}	51.98 (8)
O9—Ba2—Ba1	59.74 (6)	O11 ^x —I6—Ba1 ^{xvi}	123.58 (8)
O9 ⁱ —Ba2—Ba3	130.80 (6)	O11 ^{vii} —I6—Ba1 ^{xviii}	123.58 (8)
O9—Ba2—Ba3	130.80 (6)	O11 ^{vii} —I6—Ba1 ^{xvi}	51.98 (8)
O9 ⁱ —Ba2—Ba5 ^{viii}	160.23 (6)	O11 ^x —I6—Ba1 ^{xix}	57.49 (8)
O9—Ba2—Ba5 ^{vii}	160.23 (6)	O11 ^x —I6—Ba3	58.48 (8)
O9 ⁱ —Ba2—Ba5 ^{vii}	100.72 (6)	O11 ^{vii} —I6—Ba3	58.48 (8)
O9—Ba2—Ba5 ^{viii}	100.72 (6)	O11 ^{vii} —I6—Ba5 ^{viii}	128.73 (8)
O9 ⁱ —Ba2—I7	31.28 (6)	O11 ^{vii} —I6—Ba5 ^{vii}	56.46 (8)
O9—Ba2—I7	31.28 (6)	O11 ^x —I6—Ba5 ^{vii}	128.73 (8)
O9 ⁱ —Ba2—O9	60.12 (11)	O11 ^x —I6—Ba5 ^{viiii}	56.46 (8)
O9 ⁱ —Ba2—O12	149.69 (6)	O11 ^{vii} —I6—O11 ^x	91.78 (16)
O9—Ba2—O12	149.69 (6)	O11 ^x —I6—O12	89.67 (11)
O10 ^{ix} —Ba2—Ba1	139.20 (6)	O11 ^{vii} —I6—O12	89.67 (12)
O10 ^{viii} —Ba2—Ba1	139.20 (6)	O11 ^x —I6—O14 ^{xi}	87.79 (11)
O10 ^{viii} —Ba2—Ba3	46.18 (6)	O11 ^{vii} —I6—O14 ^{xi}	87.79 (11)
O10 ^{ix} —Ba2—Ba3	46.18 (6)	O12—I6—Ba1 ^{xvi}	125.360 (9)
O10 ^{ix} —Ba2—Ba5 ^{viii}	110.48 (6)	O12—I6—Ba1 ^{xix}	128.98 (12)
O10 ^{viii} —Ba2—Ba5 ^{vii}	110.48 (6)	O12—I6—Ba1 ^{xviii}	125.360 (9)
O10 ^{viii} —Ba2—Ba5 ^{viii}	53.66 (6)	O12—I6—Ba3	48.21 (12)
O10 ^{ix} —Ba2—Ba5 ^{vii}	53.66 (6)	O12—I6—Ba5 ^{viii}	55.328 (10)
O10 ^{ix} —Ba2—I7	99.68 (6)	O12—I6—Ba5 ^{vii}	55.328 (10)
O10 ^{viii} —Ba2—I7	99.68 (6)	O12—I6—O14 ^{xi}	176.36 (16)
O10 ^{viii} —Ba2—O8 ⁱ	99.15 (9)	O14 ^{xi} —I6—Ba1 ^{xviii}	54.500 (6)
O10 ^{viii} —Ba2—O8	155.67 (8)	O14 ^{xi} —I6—Ba1 ^{xix}	47.38 (11)
O10 ^{ix} —Ba2—O8	99.15 (9)	O14 ^{xi} —I6—Ba1 ^{xvi}	54.500 (6)
$O10^{ix}$ —Ba2—O8 ⁱ	155.67 (8)	O14 ^{xi} —I6—Ba3	128.15 (11)
O10 ^{viii} —Ba2—O9 ⁱ	124.14 (9)	O14 ^{xi} —I6—Ba5 ^{viii}	124.845 (7)
$O10^{ix}$ —Ba2—O9 ⁱ	86.26 (9)	O14 ^{xi} —I6—Ba5 ^{vii}	124.845 (6)
O10 ^{viii} —Ba2—O9	86.26 (9)	Ba2—I7—Ba4 ^{vi}	93.922 (8)
O10 ^{ix} —Ba2—O9	124.14 (9)	Ba2—I7—Ba4 ⁱⁱ	93.922 (8)
O10 ^{ix} —Ba2—O10 ^{viii}	77.40 (12)	Ba2—I7—Ba5	124.951 (11)
O10 ^{ix} —Ba2—O12	76.43 (9)	Ba3 ^{vi} —I7—Ba2	80.685 (8)
O10 ^{viii} —Ba2—O12	76.43 (9)	Ba3 ⁱⁱ —I7—Ba2	80.685 (8)
O12—Ba2—Ba1	121.56 (8)	Ba3 ⁱⁱ —I7—Ba3 ^{vi}	114.135 (12)

O12—Ba2—Ba3	45.03 (8)	Ba3 ^{vi} —I7—Ba4 ⁱⁱ	173.593 (12)
O12—Ba2—Ba5 ^{vii}	49.017 (7)	Ba3 ⁱⁱ —I7—Ba4 ^{vi}	173.593 (12)
O12—Ba2—Ba5 ^{viiii}	49.017 (7)	Ba3 ⁱⁱ —I7—Ba4 ⁱⁱ	68.009 (6)
O12—Ba2—I7	174.95 (8)	Ba3 ^{vi} —I7—Ba4 ^{vi}	68.009 (6)
I7 ^{viii} —Ba3—I7 ^{vii}	114.134 (12)	Ba3 ^{vi} —I7—Ba5	70.569 (7)
O9 ^{viii} —Ba3—I7 ^{viii}	32.34 (5)	Ba3 ⁱⁱ —I7—Ba5	70.569 (7)
O9 ^{ix} —Ba3—I7 ^{viii}	96.73 (6)	Ba4 ^{vi} —I7—Ba4 ⁱⁱ	109.191 (11)
O9 ^{viii} —Ba3—I7 ^{vii}	96.73 (6)	Ba4 ⁱⁱ —I7—Ba5	115.616 (7)
O9 ^{ix} —Ba3—I7 ^{vii}	32.34 (5)	Ba4 ^{vi} —I7—Ba5	115.616 (7)
O9 ^{ix} —Ba3—O9 ^{viii}	69.93 (11)	09—I7—Ba2	47.41 (8)
$O9^{ix}$ —Ba3—O10 ^{ix}	55.61 (8)	$O9^{i}$ —I7—Ba2	47.41 (8)
$O9^{\text{viii}}$ Ba3 $O10^{\text{viii}}$	55.61 (8)	$09 - 17 - Ba3^{ii}$	125.96 (8)
O^{jix} Ba3 $O^{10^{\text{viii}}}$	94 55 (8)	O^{i} I7 Ba3 ^{vi}	125.96 (8)
$O9^{\text{viii}}$ Ba3 $O10^{\text{ix}}$	94 55 (8)	$09 - 17 - Ba3^{vi}$	52,78 (8)
$O9^{\text{viii}}$ Ba3-O11 ^x	119 17 (7)	O^{i} I7 Ba3 ⁱⁱ	52.78 (8)
O^{jix} Ba3 O^{11x}	170.03 (8)	$09 - 17 - Ba3^{ii}$	120.90 (8)
O^{jix} Ba3 O^{11}^{vii}	119 17 (7)	$09 I7 Ba4^{vi}$	49 90 (8)
$O9^{\text{viii}}$ Ba3 $O11^{\text{vii}}$	170.03 (8)	O^{i} I7 Ba^{i}	49.90 (8)
O^{ix} Ba3 O^{13} ^{vii}	55 53 (9)	$O9^{i}$ I7 Ba4 ^{vi}	120.90 (9)
$O_{\text{viii}}^{\text{viii}} = B_{23}^{\text{vii}} = O_{13}^{\text{vii}}$	12544(10)	O^{i} _I7_Ba5	120.90(9) 123 14 (8)
$O_{ix} B_{23} O_{13}^{iii}$	125.44(10)	09 - 17 - Ba5 09 - 17 - Ba5	123.14(8)
O^{viii} B ₂ 3 O^{13}	55 53 (9)	$O9 I7 O9^{i}$	90 50 (16)
$O10^{\text{viii}} B_{3} - I7^{\text{vii}}$	95.62 (6)	09 - 17 - 013	90.63 (12)
$O10^{ix}$ B ₂ 3 $I7^{viii}$	95.62 (6)	O_{0}^{i} I7 O13	90.63(12)
$O10^{\text{viii}}$ B ₂ 3 $I7^{\text{viii}}$	32.28 (5)	0.010^{i} 17 B ₂ 2	30.03(12)
$O10^{ix} B_{23} I7^{ii}$	32.28(5)	O10 I7 Ba2	132.70(8)
$O10^{\text{viii}}$ B ₂ 3 $O10^{\text{ix}}$	52.28(5)	$O10^{i}$ I7 Ba2	132.70(8) 127.07(9)
$O10^{ix} = Ba3 = O10^{ix}$	124.25(7)	O10 I7 Ba3	127.97(9) 127.97(9)
$O10^{ix}$ B_{2}^{3} $O11^{vii}$	124.23(7)	$O10^{i}$ I7 Ba3 ⁱⁱ	127.97(9)
O10 - Ba3 - O11 $O10^{viii} - Ba3 - O11^{x}$	94.30(7)	O10 I7 Ba3	54.46 (8)
$O10^{\text{viii}}$ $B_{2}3^{\text{o}}$ $O11^{\text{viii}}$	94.30(7) 124.25(7)	$O10^{i}$ 17 Ba3	58 37 (0)
$O10^{\text{viii}} = Ba3 = O11^{\text{viii}}$	124.23(7) 123.06(0)	O10 I7 Ba4	58.37 (9) 58.37 (0)
$O10^{i}$ $Ba3 - O13^{i}$	123.00 (9) 54.68 (0)	O10 I7 Ba4	120.60(8)
O10 - Ba5 - O13	54.68 (0)	$O10^{i}$ I7 $Pa4^{vi}$	129.00 (8)
$O10^{ix} B_{2}^{2} O13^{iii}$	123.06(9)	O10 I7 Ba5	129.00 (8) 57.65 (0)
O10 - Ba3 - O13 O11 vii Pa2 I7 viii	123.00(9) 141.60(5)	$O10^{i}$ 17 Pa5	57.65 (9)
$O11^{\text{m}}$ $Ba3 - 17^{\text{m}}$	141.09(3)	O10i I7 O0i	37.03(9)
$O_{11} = Ba_{3} = 17$	93.21(3)	010 - 17 - 09	09.20(12)
O_{11}^{m} B_{a3}^{m} I_{7}^{m}	141.09(3)	010 17 00	1/9.11(12)
O_{11}^{m} Ba_{3}^{m} O_{11}^{m}	95.21 (5) 51.45 (10)	010 - 17 - 09	89.28 (12) 170.11 (12)
	51.45 (10)	010 - 17 - 09	1/9.11(12)
012 - Ba3 - 1/2	95.79 (4)	010 - 17 - 010	90.92 (17)
012 - Ba3 - 1/m	95.79 (4)	010-17-013	90.23 (12)
$012 - Ba3 - 09^{xx}$	126.07 (7)	010 - 17 - 013	90.23 (12)
O12 - Ba3 - O9''''	120.07(7)	O13 - 1/-Ba2	74.90 (12)
$O12 - Ba3 - O10^{14}$	/1.08 (8)	$013 - 1/-Ba3^{"}$	57.095 (7)
$O12 - Ba3 - O10^{vm}$	/1.08 (8)	$013 - 17 - Ba3^{**}$	5/.095 (/)
	55.28 (8)	013—1/—Ba4"	124.977 (14)
$O12$ —Ba3— $O11^x$	53.28 (8)	O13— $I/$ —Ba4 ^{vi}	124.977 (14)

O12—Ba3—O13 ^{viii}	88.68 (8)	O13—I7—Ba5	50.05 (12)
O12—Ba3—O13 ^{vii}	88.68 (8)	O15 ^{iv} —I7—Ba2	102.70 (12)
O13 ^{vii} —Ba3—I7 ^{viii}	146.63 (7)	O15 ^{iv} —I7—Ba3 ^{vi}	122.812 (9)
O13 ^{vii} —Ba3—I7 ^{vii}	32.55 (7)	O15 ^{iv} —I7—Ba3 ⁱⁱ	122.812 (9)
O13 ^{viii} —Ba3—I7 ^{viii}	32.55 (7)	O15 ^{iv} —I7—Ba4 ⁱⁱ	54.813 (10)
O13 ^{viii} —Ba3—I7 ^{vii}	146.63 (7)	O15 ^{iv} —I7—Ba4 ^{vi}	54.813 (10)
O13 ^{viii} —Ba3—O11 ^x	63.90 (9)	O15 ^{iv} —I7—Ba5	132.35 (12)
O13 ^{vii} —Ba3—O11 ^x	115.34 (9)	O15 ^{iv} —I7—O9 ⁱ	87.68 (12)
O13 ^{vii} —Ba3—O11 ^{vii}	63.90 (9)	O15 ^{iv} —I7—O9	87.68 (12)
O13 ^{viii} —Ba3—O11 ^{vii}	115.34 (9)	O15 ^{iv} —I7—O10	91.45 (12)
O13 ^{viii} —Ba3—O13 ^{vii}	177.04 (16)	O15 ^{iv} —I7—O10 ⁱ	91.45 (12)
O15 ^{xi} —Ba3—I7 ^{vii}	118.80 (3)	O15 ^{iv} —I7—O13	177.60 (17)
O15 ^{xi} —Ba3—I7 ^{viii}	118.80 (3)	Ba1—O8—Ba5 ^{vii}	161.98 (9)
O15 ^{xi} —Ba3—O9 ^{viiii}	111.96 (9)	Ba2—O8—Ba1	78.37 (7)
O15 ^{xi} —Ba3—O9 ^{ix}	111.96 (9)	Ba2—O8—Ba5 ^{iv}	101.23 (8)
O15 ^{xi} —Ba3—O10 ^{ix}	145.32 (6)	Ba2—O8—Ba5 ^{vii}	84.85 (7)
O15 ^{xi} —Ba3—O10 ^{viii}	145.32 (6)	Ba5 ^{iv} —O8—Ba1	90.26 (7)
$O15^{xi}$ —Ba3— $O11^{x}$	61.92 (9)	Ba5 ^{iv} —O8—Ba5 ^{vii}	99.50 (8)
O15 ^{xi} —Ba3—O11 ^{vii}	61.92 (9)	I6 ^{xvi} —O8—Ba1	91.31 (9)
O15 ^{xi} —Ba3—O12	106.92 (11)	I6 ^{xvi} —O8—Ba2	158.48 (13)
O15 ^{xi} —Ba3—O13 ^{viiii}	91.02 (7)	I6 ^{xvi} —O8—Ba5 ^{iv}	97.62 (10)
O15 ^{xi} —Ba3—O13 ^{vii}	91.02 (7)	I6 ^{xvi} —O8—Ba5 ^{vii}	102.26 (10)
I7 ^{viii} —Ba4—I7 ^{vii}	109.190 (11)	Ba2—O9—Ba1	74.77 (7)
O9 ^{viii} —Ba4—I7 ^{viii}	30.98 (5)	Ba2—O9—Ba3 ^{vi}	113.32 (9)
O9 ^{ix} —Ba4—I7 ^{vii}	30.98 (5)	Ba2—O9—Ba4 ^{vi}	146.73 (11)
O9 ^{ix} —Ba4—I7 ^{viii}	94.51 (6)	Ba3 ^{vi} —O9—Ba1	168.67 (10)
O9 ^{viii} —Ba4—I7 ^{vii}	94.51 (6)	Ba4 ^{vi} —O9—Ba1	78.89 (7)
O9 ^{ix} —Ba4—O9 ^{viii}	70.09 (11)	Ba4 ^{vi} —O9—Ba3 ^{vi}	90.63 (8)
O9 ^{viii} —Ba4—O10 ^{viii}	53.21 (7)	I7—O9—Ba1	91.06 (10)
O9 ^{ix} —Ba4—O10 ^{viiii}	90.05 (8)	I7—O9—Ba2	101.31 (11)
O9 ^{ix} —Ba4—O10 ^{ix}	53.21 (7)	I7—O9—Ba3 ^{vi}	94.88 (10)
O9 ^{viii} —Ba4—O10 ^{ix}	90.05 (8)	I7—O9—Ba4 ^{vi}	99.12 (10)
O9 ^{viii} —Ba4—O11 ⁱ	104.40 (8)	Ba2 ^{vi} —O10—Ba3 ^{vi}	93.39 (8)
O9 ^{ix} —Ba4—O11 ⁱ	151.76 (8)	Ba2 ^{vi} —O10—Ba4 ^{vi}	92.96 (8)
O9 ^{viii} —Ba4—O11	151.76 (8)	Ba2 ^{vi} —O10—Ba5	85.38 (7)
O9 ^{ix} —Ba4—O11	104.40 (8)	Ba3 ^{vi} —O10—Ba4 ^{vi}	84.23 (7)
O9 ^{ix} —Ba4—O15 ^{xiii}	123.27 (9)	Ba3 ^{vi} —O10—Ba5	88.08 (7)
O9 ^{viii} —Ba4—O15 ^{xii}	123.27 (9)	Ba4 ^{vi} —O10—Ba5	172.02 (10)
O9 ^{viii} —Ba4—O15 ^{xiii}	53.58 (9)	I7—O10—Ba2 ^{vi}	172.85 (15)
O9 ^{ix} —Ba4—O15 ^{xii}	53.58 (9)	I7—O10—Ba3 ^{vi}	93.26 (10)
O10 ^{ix} —Ba4—I7 ^{viii}	89.83 (5)	I7—O10—Ba4 ^{vi}	90.33 (10)
O10 ^{ix} —Ba4—I7 ^{vii}	31.30 (5)	I7—O10—Ba5	92.21 (10)
O10 ^{viii} —Ba4—I7 ^{vii}	89.83 (5)	Ba1 ^{xiv} —O11—Ba1 ^{vii}	83.68 (7)
O10 ^{viii} —Ba4—I7 ^{viii}	31.30 (5)	Ba1 ^{vii} —O11—Ba3 ⁱⁱ	99.63 (8)
O10 ^{viii} —Ba4—O10 ^{ix}	62.98 (10)	Ba1 ^{xiv} —O11—Ba3 ⁱⁱ	172.10 (10)
$O11^{i}$ Ba4 $I7^{vii}$	158.81 (5)	Ba1 ^{xiv} —O11—Ba4	91.61 (8)
$O11^{i}$ —Ba4—I7 ^{viii}	92.00 (5)	Ba1 ^{xiv} —O11—Ba5	90.20 (7)
O11—Ba4—I7 ^{vii}	92.00 (5)	Ba4—O11—Ba1 ^{vii}	80.14 (7)

O11—Ba4—I7 ^{viii}	158.81 (5)	Ba4—O11—Ba3 ⁱⁱ	81.95 (6)
O11 ⁱ —Ba4—O10 ^{ix}	154.38 (7)	Ba4—O11—Ba5	97.72 (8)
O11—Ba4—O10 ^{viii}	154.38 (7)	Ba5—O11—Ba1 ^{vii}	173.43 (10)
O11 ⁱ —Ba4—O10 ^{viii}	109.05 (7)	Ba5—O11—Ba3 ⁱⁱ	86.15 (7)
O11—Ba4—O10 ^{ix}	109.05 (7)	I6 ⁱⁱ —O11—Ba1 ^{xiv}	96.62 (10)
O11—Ba4—O11 ⁱ	66.81 (11)	I6 ⁱⁱ —O11—Ba1 ^{vii}	91.42 (10)
O11—Ba4—O15 ^{xiii}	127.81 (9)	I6 ⁱⁱ —O11—Ba3 ⁱⁱ	90.50 (9)
O11 ⁱ —Ba4—O15 ^{xiii}	61.16 (9)	I6 ⁱⁱ —O11—Ba4	167.51 (13)
O11 ⁱ —Ba4—O15 ^{xii}	127.81 (9)	I6 ⁱⁱ —O11—Ba5	91.65 (10)
O11—Ba4—O15 ^{xii}	61.16 (9)	Ba2—O12—Ba3	91.09 (11)
O13—Ba4—I7 ^{vii}	102.80 (5)	Ba2—O12—Ba5 ^{viii}	86.51 (7)
O13—Ba4—I7 ^{viii}	102.80 (5)	Ba2—O12—Ba5 ^{vii}	86.51 (7)
O13—Ba4—O9 ^{ix}	133.56 (8)	Ba3—O12—Ba5 ^{viii}	93.38 (7)
O13—Ba4—O9 ^{viiii}	133.56 (8)	Ba3—O12—Ba5 ^{vii}	93.38 (7)
O13—Ba4—O10 ^{ix}	83.76 (9)	Ba5 ^{viii} —O12—Ba5 ^{vii}	170.37 (15)
O13—Ba4—O10 ^{viii}	83.76 (9)	I6—O12—Ba2	167.6 (2)
O13—Ba4—O11 ⁱ	70.92 (9)	I6—O12—Ba3	101.33 (15)
O13—Ba4—O11	70.91 (9)	I6—O12—Ba5 ^{viii}	92.70 (7)
013—Ba4—015 ^{xii}	88.28 (8)	I6—O12—Ba5 ^{vii}	92.70 (7)
O13—Ba4—O15 ^{xiii}	88.28 (8)	Ba3 ^{vi} —O13—Ba3 ⁱⁱ	177.04 (16)
O14—Ba4—I7 ^{viii}	100.51 (4)	Ba4—O13—Ba3 ⁱⁱ	89.08 (7)
O14—Ba4—I7 ^{vii}	100.51 (4)	Ba4—O13—Ba3 ^{vi}	89.08 (7)
O14—Ba4—O9 ^{viii}	76.57 (8)	Ba4—O13—Ba5	104.55 (13)
O14—Ba4—O9 ^{ix}	76.57 (8)	Ba5—O13—Ba3 ⁱⁱ	91.35 (8)
O14—Ba4—O10 ^{ix}	129.44 (8)	Ba5—O13—Ba3 ^{vi}	91.35 (8)
O14—Ba4—O10 ^{viii}	129.44 (8)	I7—O13—Ba3 ⁱⁱ	90.35 (7)
O14—Ba4—O11	75.24 (8)	I7—O13—Ba3 ^{vi}	90.35 (7)
O14—Ba4—O11 ⁱ	75.24 (8)	I7—O13—Ba4	155.3 (2)
O14—Ba4—O13	139.17 (12)	I7—O13—Ba5	100.11 (15)
O14—Ba4—O15 ^{xii}	94.97 (8)	Ba1 ^{xiv} —O14—Ba1 ^{vii}	88.31 (7)
O14—Ba4—O15 ^{xiii}	94.97 (8)	Ba1 ^{xiv} —O14—Ba1 ^{viii}	88.31 (7)
O15 ^{xiii} —Ba4—I7 ^{viii}	31.07 (7)	Ba1 ^{viii} —O14—Ba1 ^{vii}	172.17 (14)
O15 ^{xii} —Ba4—I7 ^{vii}	31.07 (7)	Ba4—O14—Ba1 ^{vii}	86.79 (7)
O15 ^{xii} —Ba4—I7 ^{viii}	139.91 (7)	Ba4—O14—Ba1 ^{xiv}	99.25 (12)
O15 ^{xiii} —Ba4—I7 ^{vii}	139.91 (7)	Ba4—O14—Ba1 ^{viii}	86.79 (7)
O15 ^{xiii} —Ba4—O10 ^{viii}	52.72 (9)	I6 ^{xx} —O14—Ba1 ^{viii}	93.81 (7)
O15 ^{xii} —Ba4—O10 ^{viii}	115.70 (9)	I6 ^{xx} —O14—Ba1 ^{vii}	93.81 (7)
O15 ^{xiii} —Ba4—O10 ^{ix}	115.70 (9)	I6 ^{xx} —O14—Ba1 ^{xiv}	102.16 (15)
O15 ^{xii} —Ba4—O10 ^{ix}	52.72 (9)	I6 ^{xx} —O14—Ba4	158.60 (19)
O15 ^{xiii} —Ba4—O15 ^{xii}	168.25 (15)	Ba1 ^{xiv} —O15—Ba4 ^{xiii}	84.74 (7)
O8 ⁱⁱ —Ba5—I6 ⁱⁱ	88.99 (5)	Ba1 ^{xiv} —O15—Ba4 ^{xii}	84.74 (7)
O8 ^{xiv} —Ba5—I6 ⁱⁱ	31.42 (5)	Ba3 ^{xx} —O15—Ba1 ^{xiv}	128.21 (15)
O8 ^{xv} —Ba5—I6 ⁱⁱ	94.53 (5)	Ba3 ^{xx} —O15—Ba4 ^{xii}	91.21 (8)
O8 ⁱⁱⁱ —Ba5—I6 ⁱⁱ	133.80 (5)	Ba3 ^{xx} —O15—Ba4 ^{xiii}	91.21 (8)
O8 ^{xiv} —Ba5—O8 ⁱⁱ	80.50 (8)	Ba4 ^{xiii} —O15—Ba4 ^{xii}	168.26 (15)
O8 ^{xiv} —Ba5—O8 ⁱⁱⁱ	109.06 (5)	I7 ^{xiv} —O15—Ba1 ^{xiv}	108.21 (17)
O8 ^{xv} —Ba5—O8 ⁱⁱⁱ	80.50 (8)	I7 ^{xiv} —O15—Ba3 ^{xx}	123.57 (18)
O8 ^{xv} —Ba5—O8 ⁱⁱ	109.06 (5)	I7 ^{xiv} —O15—Ba4 ^{xii}	94.12 (7)
			× /

O8 ⁱⁱⁱ —Ba5—O8 ⁱⁱ	51.26 (10)	I7 ^{xiv} —O15—Ba4 ^{xiii}	94.12 (7)
$O8^{xiv}$ —Ba5— $O8^{xv}$	69.24 (11)		
Ba1 ^{xviii} —I6—O12—Ba2	93.51 (9)	Ba5—I7—O9—Ba1	-176.105 (13)
Ba1 ^{xix} —I6—O12—Ba2	180.000(1)	Ba5—I7—O9—Ba2	109.21 (8)
Ba1 ^{xvi} —I6—O12—Ba2	-93.51 (9)	Ba5—I7—O9—Ba3 ^{vi}	-5.76 (12)
Ba1 ^{xvi} —I6—O12—Ba3	86.49 (8)	Ba5—I7—O9—Ba4 ^{vi}	-97.19 (8)
Ba1 ^{xviii} —I6—O12—Ba3	-86.49 (8)	Ba5—I7—O10—Ba3 ^{vi}	88.20 (8)
Ba1 ^{xix} —I6—O12—Ba3	0.000(1)	$Ba5$ —I7—O10— $Ba4^{vi}$	172.43 (10)
Ba1 ^{xix} —I6—O12—Ba5 ^{vii}	-93.99 (8)	Ba5—I7—O13—Ba3 ⁱⁱ	91.44 (8)
Ba1 ^{xviii} —I6—O12—Ba5 ^{vii}	179.517 (15)	Ba5—I7—O13—Ba3 ^{vi}	-91.44 (8)
Ba1 ^{xvi} —I6—O12—Ba5 ^{vii}	-7.49 (16)	Ba5—I7—O13—Ba4	180.000(1)
Ba1 ^{xvi} —I6—O12—Ba5 ^{viii}	-179.517 (15)	O8 ^{xvi} —I6—O12—Ba2	-45.51 (8)
Ba1 ^{xix} —I6—O12—Ba5 ^{viii}	93.99 (8)	O8 ^{xvii} —I6—O12—Ba2	45.51 (8)
Ba1 ^{xviii} —I6—O12—Ba5 ^{viii}	7.49 (16)	O8 ^{xvi} —I6—O12—Ba3	134.49 (8)
Ba2—I7—O9—Ba1	74.68 (8)	O8 ^{xvii} —I6—O12—Ba3	-134.49 (8)
Ba2—I7—O9—Ba3 ^{vi}	-114.97 (12)	O8 ^{xvi} —I6—O12—Ba5 ^{viii}	-131.52 (11)
Ba2—I7—O9—Ba4 ^{vi}	153.60 (14)	O8 ^{xvii} —I6—O12—Ba5 ^{viii}	-40.50 (11)
Ba2—I7—O10—Ba3 ^{vi}	-21.57 (14)	O8 ^{xvi} —I6—O12—Ba5 ^{vii}	40.50 (11)
Ba2—I7—O10—Ba4 ^{vi}	62.67 (11)	O8 ^{xvii} —I6—O12—Ba5 ^{vii}	131.52 (11)
Ba2—I7—O10—Ba5	-109.77 (8)	O9 ⁱ —I7—O9—Ba1	52.70 (12)
Ba2—I7—O13—Ba3 ⁱⁱ	-88.56 (8)	O9 ⁱ —I7—O9—Ba2	-21.98 (16)
Ba2—I7—O13—Ba3 ^{vi}	88.56 (8)	O9 ⁱ —I7—O9—Ba3 ^{vi}	-136.96 (6)
Ba2—I7—O13—Ba4	0.0	$O9^{i}$ —I7—O9—Ba 4^{vi}	131.61 (6)
Ba2—I7—O13—Ba5	180.0	O9—I7—O10—Ba3 ^{vi}	-42.73 (10)
Ba3—I6—O12—Ba2	180.000 (2)	O9—I7—O10—Ba4 ^{vi}	41.50 (10)
Ba3—I6—O12—Ba5 ^{vii}	-93.99 (8)	O9—I7—O10—Ba5	-130.93 (10)
Ba3—I6—O12—Ba5 ^{viii}	93.99 (8)	O9—I7—O13—Ba3 ^{vi}	43.31 (12)
Ba3 ^{vi} —I7—O9—Ba1	-170.35 (11)	O9 ⁱ —I7—O13—Ba3 ⁱⁱ	-43.31 (12)
Ba3 ⁱⁱ —I7—O9—Ba1	94.88 (8)	O9 ⁱ —I7—O13—Ba3 ^{vi}	133.82 (11)
Ba3 ⁱⁱ —I7—O9—Ba2	20.20 (14)	O9—I7—O13—Ba3 ⁱⁱ	-133.82 (11)
Ba3 ^{vi} —I7—O9—Ba2	114.97 (12)	O9 ⁱ —I7—O13—Ba4	45.25 (8)
Ba3 ⁱⁱ —I7—O9—Ba3 ^{vi}	-94.78 (8)	O9—I7—O13—Ba4	-45.25 (8)
Ba3 ⁱⁱ —I7—O9—Ba4 ^{vi}	173.793 (17)	O9—I7—O13—Ba5	134.75 (8)
Ba3 ^{vi} —I7—O9—Ba4 ^{vi}	-91.43 (9)	O9 ⁱ —I7—O13—Ba5	-134.75 (8)
Ba3 ⁱⁱ —I7—O10—Ba3 ^{vi}	94.58 (9)	O10—I7—O9—Ba1	-126.44 (10)
Ba3 ⁱⁱ —I7—O10—Ba4 ^{vi}	178.820 (19)	O10—I7—O9—Ba2	158.88 (12)
Ba3 ^{vi} —I7—O10—Ba4 ^{vi}	84.24 (8)	O10—I7—O9—Ba3 ^{vi}	43.90 (11)
Ba3 ⁱⁱ —I7—O10—Ba5	6.39 (12)	O10—I7—O9—Ba4 ^{vi}	-47.53 (11)
Ba3 ^{vi} —I7—O10—Ba5	-88.20 (8)	O10 ⁱ —I7—O10—Ba3 ^{vi}	138.13 (6)
Ba3 ^{vi} —I7—O13—Ba3 ⁱⁱ	-177.13 (16)	O10 ⁱ —I7—O10—Ba4 ^{vi}	-137.64 (6)
Ba3 ⁱⁱ —I7—O13—Ba3 ^{vi}	177.13 (16)	O10 ⁱ —I7—O10—Ba5	49.93 (13)
Ba3 ⁱⁱ —I7—O13—Ba4	88.56 (8)	010 ⁱ —I7—013—Ba3 ^{vi}	-136.90(12)
$Ba3^{vi}$ —I7—O13—Ba4	-88.56(8)	$O10^{i}$ I7 O13 Ba3 ⁱⁱ	45.97 (12)
Ba3 ^{vi} —I7—O13—Ba5	91.44 (8)	O10—I7—O13—Ba3 ⁱⁱ	136.90 (12)
Ba3 ⁱⁱ —I7—O13—Ba5	-91.44 (8)	010—I7—013—Ba3 ^{vi}	-45.97(12)
Ba4 ⁱⁱ —I7—O9—Ba1	10.90 (10)	010—I7—013—Ba4	-134.54(8)
Ba4 ^{vi} —I7—O9—Ba1	-78.92 (8)	$O10^{i}$ I7 O13 Ba4	134.54 (8)

Ba4 ^{vi} —I7—O9—Ba2	-153.60 (14)	O10 ⁱ —I7—O13—Ba5	-45.46 (8)
Ba4 ⁱⁱ —I7—O9—Ba2	-63.78 (11)	O10—I7—O13—Ba5	45.46 (8)
Ba4 ⁱⁱ —I7—O9—Ba3 ^{vi}	-178.751 (17)	O11 ^{vii} —I6—O12—Ba2	-134.11 (8)
Ba4 ^{vi} —I7—O9—Ba3 ^{vi}	91.43 (9)	O11 ^x —I6—O12—Ba2	134.11 (8)
Ba4 ⁱⁱ —I7—O9—Ba4 ^{vi}	89.82 (9)	O11 ^{vii} —I6—O12—Ba3	45.89 (8)
Ba4 ⁱⁱ —I7—O10—Ba3 ^{vi}	-173.745 (18)	O11 ^x —I6—O12—Ba3	-45.89 (8)
Ba4 ^{vi} —I7—O10—Ba3 ^{vi}	-84.24 (8)	O11 ^{vii} —I6—O12—Ba5 ^{viii}	139.88 (12)
Ba4 ⁱⁱ —I7—O10—Ba4 ^{vi}	-89.51 (9)	O11 ^{vii} —I6—O12—Ba5 ^{vii}	-48.10 (11)
Ba4 ^{vi} —I7—O10—Ba5	-172.43 (10)	O11 ^x —I6—O12—Ba5 ^{viii}	48.10 (11)
Ba4 ⁱⁱ —I7—O10—Ba5	98.06 (8)	O11 ^x —I6—O12—Ba5 ^{vii}	-139.88 (12)
Ba4 ^{vi} —I7—O13—Ba3 ^{vi}	4.44 (17)	O13—I7—O9—Ba1	143.33 (10)
Ba4 ^{vi} —I7—O13—Ba3 ⁱⁱ	-172.690 (16)	O13—I7—O9—Ba2	68.65 (12)
Ba4 ⁱⁱ —I7—O13—Ba3 ⁱⁱ	-4.44 (17)	O13—I7—O9—Ba3 ^{vi}	-46.32 (11)
Ba4 ⁱⁱ —I7—O13—Ba3 ^{vi}	172.690 (16)	O13—I7—O9—Ba4 ^{vi}	-137.75 (11)
Ba4 ^{vi} —I7—O13—Ba4	-84.13 (9)	O13—I7—O10—Ba3 ^{vi}	47.89 (11)
Ba4 ⁱⁱ —I7—O13—Ba4	84.13 (9)	O13—I7—O10—Ba4 ^{vi}	132.13 (10)
Ba4 ⁱⁱ —I7—O13—Ba5	-95.87 (9)	O13—I7—O10—Ba5	-40.31 (10)
Ba4 ^{vi} —I7—O13—Ba5	95.87 (9)	O15 ^{iv} —I7—O9—Ba1	-34.96 (10)
Ba5 ^{vii} —I6—O12—Ba2	-86.01 (8)	O15 ^{iv} —I7—O9—Ba2	-109.64 (12)
Ba5 ^{viii} —I6—O12—Ba2	86.01 (8)	O15 ^{iv} —I7—O9—Ba3 ^{vi}	135.39 (11)
Ba5 ^{viii} —I6—O12—Ba3	-93.99 (8)	O15 ^{iv} —I7—O9—Ba4 ^{vi}	43.96 (11)
Ba5 ^{vii} —I6—O12—Ba3	93.99 (8)	O15 ^{iv} —I7—O10—Ba3 ^{vi}	-130.39 (10)
Ba5 ^{viii} —I6—O12—Ba5 ^{vii}	172.02 (16)	O15 ^{iv} —I7—O10—Ba4 ^{vi}	-46.16 (10)
Ba5 ^{vii} —I6—O12—Ba5 ^{viii}	-172.02 (16)	O15 ^{iv} —I7—O10—Ba5	141.41 (10)

Symmetry codes: (i) x, -y+1/2, z; (ii) -x+1/2, -y+1, z-1/2; (iii) -x+1/2, y-1/2, z-1/2; (iv) x-1/2, y, -z+1/2; (v) x-1/2, -y+1/2, -z+1/2; (vi) -x+1/2, -y, z-1/2; (vii) -x+1/2, -y+1, z+1/2; (vii) -x+1/2, -y, z+1/2; (vii) -x-1/2, y, -z+3/2; (viii) -x-1/2, y, -z+3/2; (viii) -x, -y, -z+1; (viii) -x, -z