CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 24 March 2021
Accepted 11 May 2021

Edited by V. Jancik, Universidad Nacional Autónoma de México, México

Keywords: tricyclic quinazoline; intermolecular interactions; Hirshfeld surface; crystal structure.

CCDC reference: 2082994

Supporting information: this article has supporting information at journals.iucr.org/e


# Crystal structure and Hirshfeld surface analysis of bis(6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazol-in-5-ium) tetrachloridozincate 

Akmaljon Tojiboev, ${ }^{\text {a }}$ * Rasul Okmanov, ${ }^{\text {b }}$ Ulli Englert, ${ }^{\text {c }}$ Ruimin Wang, ${ }^{\text {c }}$ Fangfang Pan, ${ }^{\text {d }}$ Kambarali Turgunov ${ }^{\text {b,e }}$ and Bakhodir Tashkhodjaev ${ }^{\text {b }}$


#### Abstract

${ }^{\text {a Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of }}$ Sciences of Uzbekistan, Durmon yuli str. 33, Tashkent, 100125, Uzbekistan, ${ }^{\mathbf{b}}$ S.Yunusov Institute of Chemistry of Plant Substances, Academy of Science of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan, ${ }^{\text {c Institute of }}$ Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany, dCollege of Chemistry, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Luoyu Road 152, Wuhan, Hubei Province 430079, People's Republic of China, and ${ }^{\mathbf{e}}$ Turin Polytechnic University in Tashkent, Kichik Khalka yuli str., 17, 100095 Tashkent, Uzbekistan. *Correspondence e-mail: a_tojiboev@yahoo.com


The title compound, $\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{ZnCl}_{4}\right]$, is a salt with two symmetrically independent, essentially planar heterocyclic cations and a slightly distorted tetrahedral chlorozincate dianion. $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link these ionic constituents into a discrete aggregate, which comprises one formula unit. The effect of hydrogen bonding is reflected in the minor distortions of the $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ moiety: distances between the cation and chlorido ligands engaged in classical hydrogen bonds are significantly longer than the others. Secondary interactions comprise $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonding and weak $\pi-\pi$ stacking. A Hirshfeld surface analysis indicates that the most abundant contacts in packing stem from $\mathrm{H} \cdots \mathrm{H}(47.8 \%)$ and $\mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}(29.3 \%)$ interactions.

## 1. Chemical context

Tricyclic quinazolines are counted among the most exciting quinazoline alkaloids. Specifically, the alkaloid mackinazoline was isolated from Mackinlaya sp. (Johns \& Lamberton, 1965). Tricyclic quinazolines have several different reactive sites and can react with electrophilic and nucleophilic reagents to form various derivatives with potential biological activity (Michael, 2004). As quinazoline alkaloids are scarcely available from natural sources, multiple methods for their synthesis have been developed (Shakhidoyatov \& Elmuradov, 2014). In the context of these synthetic efforts, reaction intermediates similar to the title compound have been studied (Sharma et al., 1993; Sargazakov et al., 1991; Tozhiboev et al., 2005). We investigated the crystal structure of bis(6,7,8,9-tetrahydro$11 H$-pyrido[2,1-b]quinazolin-5-ium) tetrachloridozincate, an intermediate in the synthesis of mackinazolinone, using highresolution diffraction data and Hirshfeld surface analysis.

residue A


Figure 1
Asymmetric unit of the title compound with the atom-numbering scheme (Spek, 2020). Displacement ellipsoids for non-hydrogen atoms are drawn at the $50 \%$ probability level.

## 2. Structural commentary

The title compound crystallizes in the $P 2_{1} / n$ space group, with two $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2}\right]^{+}$cations and a $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ counter-anion in the asymmetric unit (Fig. 1). The benzene and pyrimidine rings in either cation and the attached carbon atoms of the aliphatic ring (C9 $A$ and C12A for residue $A$ and C9B and C12B for residue $B$ ) are essentially coplanar, with r.m.s. deviations of 0.0437 and $0.0168 \AA$ for molecules $A$ and $B$, respectively. The remaining atoms of the third ring are significantly displaced above the opposite faces of these planes with deviations of 0.3877 (12) $\AA$ for $\mathrm{C} 10 A$ and 0.3831 (11) $\AA$ for $\mathrm{C} 11 A$ in residue $A$ and 0.4705 (11) $\AA$ for $\mathrm{C} 10 B$ and 0.2495 (11) $\AA$ for $\mathrm{C} 11 B$ in residue $B$. Fig. 2 shows that the independent cations are almost superimposable including the conformationally soft aliphatic ring.


Figure 2
Overlay (Spek, 2020) of the independent cations in the title compound in the least-squares (top) and most-squares plane (bottom); residue $A$ is depicted in black, residue $B$ in red.

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

| $\mathrm{Zn} 1-\mathrm{Cl} 4$ | $2.2484(3)$ | $\mathrm{N} 1 A-\mathrm{C} 2 A$ | $1.3373(11)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Zn} 1-\mathrm{Cl} 3$ | $2.2664(4)$ | $\mathrm{N} 1 B-\mathrm{C} 2 B$ | $1.3317(10)$ |
| $\mathrm{Zn} 1-\mathrm{Cl} 2$ | $2.2868(4)$ | $\mathrm{C} 2 A-\mathrm{N} 3 A$ | $1.3102(10)$ |
| $\mathrm{Zn} 1-\mathrm{Cl} 1$ | $2.3019(3)$ | $\mathrm{C} 2 B-\mathrm{N} 3 B$ | $1.3114(9)$ |
|  |  |  |  |
| $\mathrm{Cl} 4-\mathrm{Zn} 1-\mathrm{Cl} 3$ | $111.219(10)$ | $\mathrm{Cl} 4-\mathrm{Zn} 1-\mathrm{Cl} 1$ | $109.994(13)$ |
| $\mathrm{Cl} 4-\mathrm{Zn} 1-\mathrm{Cl} 2$ | $115.057(11)$ | $\mathrm{Cl} 3-\mathrm{Zn} 1-\mathrm{Cl} 1$ | $110.340(12)$ |
| $\mathrm{Cl} 3-\mathrm{Zn} 1-\mathrm{Cl} 2$ | $106.573(10)$ | $\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{Cl} 1$ | $103.331(11)$ |

The protonation of the ring occurs at the basic heteroatoms of the pyrimidine rings, $\mathrm{N} 1 A$ and $\mathrm{N} 1 B$, respectively, and the acquired positive charge is delocalized within the $-\mathrm{N}-\mathrm{C}-\mathrm{N}-$ moiety in the ring, where the $\mathrm{N} 1 A-\mathrm{C} 2 A$ and $\mathrm{N} 1 B-\mathrm{C} 2 B$ bonds are only slightly longer than $\mathrm{C} 2 A-\mathrm{N} 3 A$ and $\mathrm{C} 2 B-$ N3 $B$ (Table 1). Similar differences were observed in related reported complexes (Sharma et al., 1993; Turgunov et al., 2003; Tozhiboev et al., 2005).

However, these $\mathrm{C}-\mathrm{N}$ bond lengths are shorter than those in the related tricyclic protonated (PYQAZP: Reck et al., 1974) and non-protonated (GUCZUZ: Le Gall et al., 1999; LIZMOX: Zhang et al., 2008) quinazoline derivatives. In these three compounds, the $s p^{3}$ character of the carbon atom between the two nitrogen atoms and the lack of the $\mathrm{C}=\mathrm{N}$ double bond within the $-\mathrm{N}-\mathrm{C}-\mathrm{N}-$ moiety hampers the delocalization of the positive charge within this unit. It is


Figure 3
Residual electron density in the planes through $\mathrm{C} 2 A, \mathrm{C} 4 A$ and $\mathrm{C} 8 A A$ (top) and $\mathrm{C} 2 B, \mathrm{C} 4 B$ and $\mathrm{C} 4 A B$ (bottom); contour lines are drawn at 0.2 e $\AA^{-3}$. Covalent bonds in the heterocyclic cations clearly show up as local density maxima.

Table 2
Hydrogen-bond geometry ( $\AA \AA^{\circ}$ ).
$C g 3$ and $C g 9$ are the centroids of the $\mathrm{C} 5 A-\mathrm{C} 8 A / \mathrm{C} 4 A A / \mathrm{C} 8 A A$ and $\mathrm{C} 5 B-\mathrm{C} 8 B /$ $\mathrm{C} 4 A B / \mathrm{C} 8 A B$ rings, respectively.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{Cl} 2$ | $0.89(2)$ | $2.44(2)$ | $3.2659(8)$ | $155.9(19)$ |
| $\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$ | $0.83(2)$ | $2.352(19)$ | $3.1661(7)$ | $166.6(18)$ |
| ${\mathrm{C} 11 A-\mathrm{H} 11 A \cdots C g 9^{\mathrm{ii}}}^{\mathrm{C}} 2.99$ | 2.67 | $3.5718(10)$ | 151 |  |
| $\mathrm{C} 12 B-\mathrm{H} 12 D \cdots C g 3^{\mathrm{iii}}$ | 0.99 | 2.57 | $3.4002(10)$ | 142 |

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $\quad-x+1,-y,-z ; \quad$ (iii)
$x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
instead delocalized over the $-\mathrm{N}=\mathrm{CH}-\mathrm{C}$ (phenylene) fragment (see Table S1 in the supporting information).

Analysis of the residual electron density (Spek, 2020) reveals that the covalent bonds in the heterocyclic cations clearly show up as local density maxima (Fig. 3).

The $\mathrm{Zn}^{\text {II }}$ centre in the dianion adopts a slightly distorted geometry, with $\tau^{4}=0.95$ (Yang et al., 2007). The high resolution $\left(\theta_{\text {max }}=109.6^{\circ}, \sin \theta / \lambda=1.150 \AA^{-1}, d=0.43 \AA\right)$ and the very favourable ratio between observations and variables (100:1) in our diffraction data result in small standard uncertainties for atomic coordinates and derived geometric parameters and allow to discuss more subtle details. The most acute angle of $103.33(11)^{\circ}$ within the tetrachloridozincate dianion (Table 1) is subtended by Cl 1 and Cl 2 . These atoms are associated with the longest $\mathrm{Zn}-\mathrm{Cl}$ distances, which, in turn, are correlated with the most relevant intermolecular interactions in the structure: Cl 1 is involved in the shortest and most linear $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond (see Table 2) and represents the most distant ligand in the anion. Cl 2 is signifi-


Figure 4
Crystal packing and short contacts in the title compound. Colour code: $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions light-blue dashed lines, intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts red dashed lines, $\mathrm{Zn}-\mathrm{Cl} \cdots \pi$ contacts green dashed lines, $\pi-\pi$ stacking interactions dark-blue dashed lines. Centroid for the pyrimidine $(C g 1, C g 7)$ and benzene rings ( $C g 3, C g 9$ ) are shown as blue and red spheres, respectively.
cantly closer to Zn 1 and is engaged in a longer and presumably weaker hydrogen bond. The remaining chlorido ligands are not associated with any classical short contacts. Similar features have been reported for structurally related compounds (Sharma et al., 1993; Sargazakov et al., 1991; Tozhiboev et al., 2005; Wang et al., 2017).

## 3. Supramolecular features

In the crystal structure, the protonated $\mathrm{N} 1 A$ and $\mathrm{N} 1 B$ nitrogen atoms in the cations interact with the chlorido ligands Cl 2 and Cl 1 , respectively, via relatively short $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ bonds and generate a $D_{2}{ }^{2}(5)$ graph-set motif (Bernstein et al., 1995) (Table 2 and Fig. 4).

The crystal packing is further stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2) and additional short contacts between Cl 3 and the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ segment of the pyrimidine rings. The shortest contact distance occurs between Cl 3 and $\mathrm{C} 2 B$ [3.5273 (9) Å] and involves an interaction between the elec-tron-rich equatorial region of the halogen atom and the ring atom attached to two N -atom neighbours, most probably the most electron-deficient atom in the heterocycle. These contacts link anions and cations into a three-dimensional network. Weak $\pi-\pi$ stacking interactions occur between pyrimidine $(C g 1, C g 7)$ and benzene ( $C g 3, C g 9$ ) rings of antiparallel pairs of cations and involve contact distances of $C g 1 \cdots C g 3(-x,-y,-z)=3.6225(5) \AA$ (slippage $0.857 \AA$ ) and of $C g 7 \cdots C g 9(1-x,-y, 1-z)=3.6246$ (7) $\AA$ (slippage 0.994 A).

## 4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis (Spackman \& Jayatilaka, 2009) was carried out using CrystalExplorer 17.5 (Turner et al., 2017) to visualize interactions between the constituents of the title compound. The HS mapped with $d_{\text {norm }}$ is represented in Fig. 5. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue


Figure 5
Three-dimensional Hirshfeld surface of the title compound mapped with $d_{\text {norm }}$.


Figure 6
Two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and decomposed into (b) $\mathrm{H} \cdots \mathrm{H}$, (c) $\mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}$, (d) $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ interactions. Values for $d_{\mathrm{i}}$ and $d_{\mathrm{e}}$ represent the closest internal and external distances (in $\AA$ ) from given points on the Hirshfeld surface.
colours indicate distances shorter or longer than the van der Waals radii, respectively. The bright-red spot near Cl1 indicates its role as a hydrogen-bond donor towards N 1 .

The classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds correspond to $\mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}$ contacts ( $29.3 \%$ contribution) in Fig. $6 c$ and show up as a pair of spikes. The most abundant contributions to the Hirshfeld surface arise from $\mathrm{H} \cdots \mathrm{H}$ contacts at $47.8 \%$. $\mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ interactions follow with contributions of $29.3 \%$ and $15.9 \%$, respectively (Fig. 6). Minor contributors are due to $\mathrm{C} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{C}(2.2 \%), \mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ (2.0\%), C $\cdots \mathrm{C}(1.9 \%), \mathrm{C} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{C}(0.4 \%), \mathrm{N} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{N}$ ( $0.3 \%$ ) and $\mathrm{Zn} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Zn}(0.3 \%)$ contacts.

## 5. Database survey

A search in the Cambridge Structural Database (CSD, version 5.41, including the update of January 2020; Groom et al., 2016) confirmed that four related compounds had been structurally characterized in which similar cations interact with $\left[\mathrm{ZnCl}_{4}\right]^{2-}$


Figure 7
Synthesis scheme for 2,3-tetramethylene-3,4-dihydroquinazoline hydrochloride.

Table 3
Experimental details.
Crystal data
Chemical formula
$M_{\mathrm{r}}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{ZnCl}_{4}\right]$
581.69

Monoclinic, $P 2_{1} / n$
100
9.2910 (13), 15.682 (2), 17.275 (2)
95.642 (2)
2504.7 (6)

4
Mo $K \alpha$
1.43
$0.30 \times 0.25 \times 0.23$

Bruker D8 gonimeter with APEX CCD detector
Multi-scan (SADABS; Bruker, 2008)
$0.634,0.751$
170944, 31478, 21664
0.071
1.150
$0.047,0.124,1.04$
31478
306
H atoms treated by a mixture of independent and constrained refinement
$1.29,-0.54$

Computer programs: APEX2 (Bruker, 2008), and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020), publCIF (Westrip, 2010).
anions. They are associated with refcodes PODLUP (Sharma et al., 1993), PODLUP01 (Sargazakov et al., 1991) and SECFAI and SECFAI01 (Tozhiboev et al., 2005). An additional match for a similar cation interacting with a $\mathrm{Cl}^{-}$anion was identified: EYUHEL (Turgunov et al., 2003) and PYQAZP (Reck et al., 1974).

## 6. Synthesis and crystallization

3 g ( 0.015 mol ) of 2,3-tetramethylenquinazoline-4-one (Fig. 7) were placed in a 300 mL flat-bottom flask equipped with a magnetic stirrer and a reflux condenser. 72 mL of hydrochloric acid ( $15 \%$ ) were added under stirring. 12 g of Zn powder were added in small portions over a period of 1 h , and the mixture was heated in a water bath for 4 h . The hot reaction mixture was filtered and the filtrate was left to precipitate overnight. The precipitate corresponding to 2,3-tetramethylenquinazoline hydrochloride was removed by filtration (Fig. 7). Colourless single crystals of the title compound were obtained by slow evaporation of the resulting filtrate at room temperature.

## 7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to C were
positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ (for aromatic) or $\mathrm{C}-\mathrm{H}=0.99 \AA$ (for methylene H atoms), and were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms bonded to nitrogen were located in a difference-Fourier map, and their positional and isotropic displacement parameters were freely refined.

## Acknowledgements

The authors are grateful to the Institute of Inorganic Chemistry, RWTH Aachen University for providing laboratory facilities.

## Funding information

Funding for this research was provided by: the German Academic Exchange Service (DAAD), Germany.

## References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Johns, S. R. \& Lamberton, J. A. (1965). J. Chem. Soc. Chem. Commun. p. 267a.

Le Gall, E., Malassene, R., Toupet, L., Hurvois, J.-P. \& Moinet, C. (1999). Synlett, pp. 1383-1386.

Michael, J. P. (2004). Nat. Prod. Rep. 21, 650-668.
Reck, G., Höhne, E. \& Adam, G. (1974). J. Prakt. Chem. 316, 496-502.
Sargazakov, K. D., Molchanov, L. V., Tashkhodzhaev, B. \& Aripova, Kh. N. (1991). Khim. Prir. Soedin. 6, 862-864.
Shakhidoyatov, Kh. M. \& Elmuradov, B. Zh. (2014). Chem. Nat. Compd. 50, 781-800.
Sharma, S. D., Gupta, V. K., Goswami, K. N. \& Padmanabhan, V. M. (1993). Cryst. Res. Technol. 28, 1115-1121.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32. Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Tozhiboev, A. G., Turgunov, K. K., Tashkhodzhaev, B. \& Musaeva, G. V. (2005). J. Struct. Chem. 46, 950-954.

Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. \& Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379-382.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
Wang, A., Wang, R., Kalf, I., Dreier, A., Lehmann, C. W. \& Englert, U. (2017). Cryst. Growth Des. 17, 2357-2364.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yang, L., Powell, D. R. \& Houser, R. P. (2007). Dalton Trans. pp. 955964.

Zhang, C., De, C. K., Mal, R. \& Seidel, D. (2008). J. Am. Chem. Soc. 130, 416-417.

## supporting information

Acta Cryst. (2021). E77, 629-633 [https://doi.org/10.1107/S2056989021004989]

## Crystal structure and Hirshfeld surface analysis of bis(6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-5-ium) tetrachloridozincate

## Akmaljon Tojiboev, Rasul Okmanov, Ulli Englert, Ruimin Wang, Fangfang Pan, Kambarali <br> Turgunov and Bakhodir Tashkhodjaev

## Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-5-ium) tetrachloridozincate

## Crystal data

$\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{ZnCl}_{4}\right]$
$M_{r}=581.69$
Monoclinic, $P 2_{1} / n$
$a=9.2910(13) \AA$
$b=15.682(2) \AA$
$c=17.275$ (2) $\AA$
$\beta=95.642(2)^{\circ}$
$V=2504.7(6) \AA^{3}$
$Z=4$

## Data collection

Bruker D8 gonimeter with APEX CCD detector diffractometer
Radiation source: Incoatec microsource
Multilayer optics monochromator
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.634, T_{\text {max }}=0.751$
$F(000)=1200$
$D_{\mathrm{x}}=1.543 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9853 reflections
$\theta=2.4-53.5^{\circ}$
$\mu=1.43 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.30 \times 0.25 \times 0.23 \mathrm{~mm}$

170944 measured reflections
31478 independent reflections
21664 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=54.8^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-21 \rightarrow 20$
$k=-35 \rightarrow 35$
$l=-39 \rightarrow 37$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.124$
$S=1.04$
31478 reflections
306 parameters
0 restraints

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0465 P)^{2}+0.1208 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.29 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.54$ e $\AA^{-3}$

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Zn1 | 0.40341 (2) | 0.23046 (2) | 0.17943 (2) | 0.01331 (2) |
| Cl 1 | 0.22695 (2) | 0.31275 (2) | 0.22716 (2) | 0.01745 (3) |
| N1A | 0.16789 (8) | 0.13353 (5) | -0.01919 (5) | 0.01731 (11) |
| H1A | 0.233 (2) | 0.1607 (14) | 0.0126 (12) | 0.033 (5)* |
| N1B | 0.38700 (8) | -0.02546 (4) | 0.36997 (4) | 0.01498 (9) |
| H1B | 0.344 (2) | -0.0665 (13) | 0.3479 (11) | 0.027 (5)* |
| Cl 2 | 0.40142 (3) | 0.27504 (2) | 0.05329 (2) | 0.01999 (4) |
| C2A | 0.20841 (8) | 0.09703 (5) | -0.08356 (5) | 0.01372 (9) |
| C2B | 0.31376 (8) | 0.04719 (5) | 0.37362 (4) | 0.01304 (9) |
| Cl 3 | 0.33617 (3) | 0.09149 (2) | 0.17498 (2) | 0.01962 (4) |
| N3A | 0.11462 (7) | 0.05870 (4) | -0.13348 (4) | 0.01329 (8) |
| N3B | 0.37680 (8) | 0.11694 (4) | 0.40176 (4) | 0.01312 (8) |
| Cl4 | 0.61489 (3) | 0.24837 (2) | 0.25278 (2) | 0.02103 (4) |
| C4A | -0.04199 (9) | 0.06077 (6) | -0.12794 (5) | 0.01591 (11) |
| H4AA | -0.081466 | 0.002500 | -0.136382 | 0.019* |
| H4AB | -0.088035 | 0.097703 | -0.169781 | 0.019* |
| C4B | 0.53321 (9) | 0.12358 (5) | 0.42526 (5) | 0.01502 (10) |
| H4BA | 0.548031 | 0.145493 | 0.479203 | 0.018* |
| H4BB | 0.576081 | 0.165215 | 0.391071 | 0.018* |
| C4AA | -0.08071 (8) | 0.09313 (5) | -0.05096 (4) | 0.01320 (9) |
| C4AB | 0.61022 (8) | 0.04003 (5) | 0.42109 (4) | 0.01289 (9) |
| C5A | -0.22295 (9) | 0.09044 (5) | -0.03207 (5) | 0.01629 (11) |
| H5AA | -0.295685 | 0.064510 | -0.066819 | 0.020* |
| C5B | 0.75850 (9) | 0.03353 (5) | 0.44269 (5) | 0.01662 (11) |
| H5BA | 0.811468 | 0.082125 | 0.462049 | 0.020* |
| C6A | -0.25917 (10) | 0.12560 (6) | 0.03755 (6) | 0.01813 (12) |
| H6AA | -0.356791 | 0.124795 | 0.049536 | 0.022* |
| C6B | 0.82907 (10) | -0.04420 (6) | 0.43590 (5) | 0.01798 (12) |
| H6BA | 0.929998 | -0.048320 | 0.450822 | 0.022* |
| C7A | -0.15242 (10) | 0.16192 (6) | 0.08958 (5) | 0.01727 (11) |
| H7AA | -0.177180 | 0.185134 | 0.137308 | 0.021* |
| C7B | 0.75264 (10) | -0.11583 (5) | 0.40740 (5) | 0.01668 (11) |
| H7BA | 0.801428 | -0.168535 | 0.402655 | 0.020* |
| C8A | -0.00940 (10) | 0.16428 (5) | 0.07178 (5) | 0.01643 (11) |
| H8AA | 0.063845 | 0.188750 | 0.107176 | 0.020* |
| C8B | 0.60526 (9) | -0.11006 (5) | 0.38597 (5) | 0.01506 (10) |
| H8BA | 0.552357 | -0.158681 | 0.366592 | 0.018* |
| C8AA | 0.02476 (8) | 0.13018 (5) | 0.00118 (5) | 0.01397 (10) |
| C8AB | 0.53532 (8) | -0.03207 (5) | 0.39314 (4) | 0.01263 (9) |


| C9A | $0.36640(9)$ | $0.09994(6)$ | $-0.09460(6)$ | $0.01879(13)$ |
| :--- | :--- | :--- | :--- | :--- |
| H9AA | 0.417435 | 0.055347 | -0.061905 | $0.023^{*}$ |
| H9AB | 0.406030 | 0.155936 | -0.076687 | $0.023^{*}$ |
| C9B | $0.15598(9)$ | $0.04381(6)$ | $0.34654(5)$ | $0.01737(11)$ |
| H9BA | 0.104080 | 0.016581 | 0.387400 | $0.021^{*}$ |
| H9BB | 0.141921 | 0.007614 | 0.299452 | $0.021^{*}$ |
| C10A | $0.39598(10)$ | $0.08639(6)$ | $-0.17905(6)$ | $0.01922(13)$ |
| H10A | 0.364050 | 0.136876 | -0.210599 | $0.023^{*}$ |
| H10B | 0.500890 | 0.078255 | -0.182272 | $0.023^{*}$ |
| C10B | $0.08950(10)$ | $0.13131(6)$ | $0.32782(5)$ | $0.01831(12)$ |
| H10C | 0.120478 | 0.152492 | 0.278085 | $0.022^{*}$ |
| H10D | -0.017322 | 0.126944 | 0.322279 | $0.022^{*}$ |
| C11A | $0.31331(10)$ | $0.00783(6)$ | $-0.20972(5)$ | $0.01870(12)$ |
| H11A | 0.334131 | -0.003545 | -0.263874 | $0.022^{*}$ |
| H11B | 0.344925 | -0.042305 | -0.177597 | $0.022^{*}$ |
| C11B | $0.13845(11)$ | $0.19299(6)$ | $0.39317(6)$ | $0.01927(13)$ |
| H11C | 0.096932 | 0.250072 | 0.380703 | $0.023^{*}$ |
| H11D | 0.101903 | 0.173279 | 0.442051 | $0.023^{*}$ |
| C12A | $0.15251(10)$ | $0.02154(6)$ | $-0.20731(5)$ | $0.01692(11)$ |
| H12A | 0.116845 | 0.059773 | -0.250607 | $0.020^{*}$ |
| H12B | 0.102340 | -0.033882 | -0.215627 | $0.020^{*}$ |
| C12B | $0.30183(10)$ | $0.19950(5)$ | $0.40475(5)$ | $0.01622(11)$ |
| H12C | 0.334665 | 0.237291 | 0.364075 | $0.019^{*}$ |
| H12D | 0.330136 | 0.226467 | 0.455799 | $0.019^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Zn1 | $0.01365(3)$ | $0.01277(3)$ | $0.01329(3)$ | $-0.00112(2)$ | $0.00014(2)$ | $-0.00022(2)$ |
| C11 | $0.02079(8)$ | $0.01451(6)$ | $0.01701(7)$ | $0.00525(6)$ | $0.00166(5)$ | $0.00210(5)$ |
| N1A | $0.0117(2)$ | $0.0220(3)$ | $0.0181(3)$ | $-0.00204(19)$ | $0.00103(18)$ | $-0.0070(2)$ |
| N1B | $0.0141(2)$ | $0.01106(19)$ | $0.0192(3)$ | $-0.00093(16)$ | $-0.00121(18)$ | $-0.00287(17)$ |
| C12 | $0.02268(9)$ | $0.02343(9)$ | $0.01374(7)$ | $-0.00702(7)$ | $0.00123(6)$ | $0.00172(6)$ |
| C2A | $0.0117(2)$ | $0.0145(2)$ | $0.0149(2)$ | $-0.00067(18)$ | $0.00108(17)$ | $-0.00124(18)$ |
| C2B | $0.0142(2)$ | $0.0115(2)$ | $0.0135(2)$ | $-0.00064(17)$ | $0.00143(17)$ | $-0.00060(16)$ |
| C13 | $0.01743(8)$ | $0.01217(6)$ | $0.02897(10)$ | $-0.00094(5)$ | $0.00082(6)$ | $-0.00157(6)$ |
| N3A | $0.0132(2)$ | $0.0139(2)$ | $0.0127(2)$ | $-0.00007(16)$ | $0.00030(15)$ | $-0.00098(15)$ |
| N3B | $0.0150(2)$ | $0.01093(18)$ | $0.0134(2)$ | $-0.00029(16)$ | $0.00118(16)$ | $-0.00126(15)$ |
| C14 | $0.01708(8)$ | $0.02447(9)$ | $0.02043(8)$ | $-0.00490(7)$ | $-0.00384(6)$ | $0.00143(6)$ |
| C4A | $0.0116(2)$ | $0.0189(3)$ | $0.0168(3)$ | $-0.0002(2)$ | $-0.00079(19)$ | $-0.0033(2)$ |
| C4B | $0.0157(3)$ | $0.0120(2)$ | $0.0171(3)$ | $-0.00189(19)$ | $0.0005(2)$ | $-0.00154(18)$ |
| C4AA | $0.0116(2)$ | $0.0128(2)$ | $0.0150(2)$ | $0.00039(17)$ | $0.00005(17)$ | $-0.00033(17)$ |
| C4AB | $0.0142(2)$ | $0.0118(2)$ | $0.0128(2)$ | $-0.00191(18)$ | $0.00138(17)$ | $-0.00057(16)$ |
| C5A | $0.0123(2)$ | $0.0165(3)$ | $0.0201(3)$ | $-0.0004(2)$ | $0.0017(2)$ | $0.0008(2)$ |
| C5B | $0.0146(3)$ | $0.0158(3)$ | $0.0192(3)$ | $-0.0023(2)$ | $0.0005(2)$ | $-0.0004(2)$ |
| C6A | $0.0158(3)$ | $0.0180(3)$ | $0.0212(3)$ | $0.0010(2)$ | $0.0052(2)$ | $0.0023(2)$ |
| C6B | $0.0142(3)$ | $0.0190(3)$ | $0.0206(3)$ | $0.0000(2)$ | $0.0011(2)$ | $0.0011(2)$ |
| C7A | $0.0192(3)$ | $0.0164(3)$ | $0.0169(3)$ | $0.0027(2)$ | $0.0048(2)$ | $0.0008(2)$ |


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C7B | $0.0165(3)$ | $0.0154(3)$ | $0.0182(3)$ | $0.0022(2)$ | $0.0023(2)$ | $0.0003(2)$ |
| C8A | $0.0177(3)$ | $0.0159(3)$ | $0.0156(3)$ | $0.0021(2)$ | $0.0011(2)$ | $-0.0019(2)$ |
| C8B | $0.0161(3)$ | $0.0125(2)$ | $0.0165(3)$ | $0.00052(19)$ | $0.0011(2)$ | $-0.00113(18)$ |
| C8AA | $0.0123(2)$ | $0.0140(2)$ | $0.0154(2)$ | $0.00074(18)$ | $0.00041(18)$ | $-0.00140(18)$ |
| C8AB | $0.0134(2)$ | $0.0115(2)$ | $0.0130(2)$ | $-0.00062(17)$ | $0.00100(17)$ | $-0.00091(16)$ |
| C9A | $0.0123(3)$ | $0.0234(3)$ | $0.0208(3)$ | $-0.0012(2)$ | $0.0024(2)$ | $-0.0026(3)$ |
| C9B | $0.0138(3)$ | $0.0171(3)$ | $0.0209(3)$ | $-0.0010(2)$ | $0.0007(2)$ | $-0.0004(2)$ |
| C10A | $0.0168(3)$ | $0.0210(3)$ | $0.0207(3)$ | $-0.0002(2)$ | $0.0060(2)$ | $0.0014(2)$ |
| C10B | $0.0165(3)$ | $0.0192(3)$ | $0.0190(3)$ | $0.0028(2)$ | $0.0008(2)$ | $-0.0008(2)$ |
| C11A | $0.0203(3)$ | $0.0198(3)$ | $0.0167(3)$ | $0.0020(2)$ | $0.0057(2)$ | $0.0001(2)$ |
| C11B | $0.0195(3)$ | $0.0196(3)$ | $0.0190(3)$ | $0.0047(2)$ | $0.0032(2)$ | $-0.0025(2)$ |
| C12A | $0.0190(3)$ | $0.0186(3)$ | $0.0130(2)$ | $-0.0003(2)$ | $0.0012(2)$ | $-0.0017(2)$ |
| C12B | $0.0206(3)$ | $0.0122(2)$ | $0.0158(3)$ | $0.0021(2)$ | $0.0009(2)$ | $-0.00163(19)$ |

Geometric parameters (A, ${ }^{\circ}$ )

| Zn1-Cl4 | 2.2484 (3) | C6A-H6AA | 0.9500 |
| :---: | :---: | :---: | :---: |
| $\mathrm{Zn} 1-\mathrm{Cl} 3$ | 2.2664 (4) | C6B-C7B | 1.3928 (13) |
| Zn1-Cl2 | 2.2868 (4) | C6B-H6BA | 0.9500 |
| $\mathrm{Zn} 1-\mathrm{Cl1}$ | 2.3019 (3) | C7A-C8A | 1.3936 (13) |
| N1A-C2A | 1.3373 (11) | C7A-H7AA | 0.9500 |
| N1A-C8AA | 1.4096 (11) | C7B-C8B | 1.3858 (12) |
| N1A-H1A | 0.89 (2) | C7B-H7BA | 0.9500 |
| N1B-C2B | 1.3317 (10) | C8A-C8AA | 1.3965 (11) |
| N1B-C8AB | 1.4005 (10) | C8A-H8AA | 0.9500 |
| N1B-H1B | 0.83 (2) | C8B-C8AB | 1.3962 (11) |
| $\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}$ | 1.3102 (10) | C8B-H8BA | 0.9500 |
| $\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$ | 1.4994 (12) | C9A-C10A | 1.5257 (14) |
| C2B-N3B | 1.3114 (9) | C9A-H9AA | 0.9900 |
| C2B-C9B | 1.4952 (12) | C9A-H9AB | 0.9900 |
| N3A-C4A | 1.4680 (11) | C9B-C10B | 1.5262 (13) |
| N3A-C12A | 1.4759 (11) | C9B-H9BA | 0.9900 |
| N3B-C12B | 1.4735 (10) | C9B-H9BB | 0.9900 |
| N3B-C4B | 1.4735 (11) | C10A-C11A | 1.5193 (14) |
| C4A-C4AA | 1.4998 (11) | C10A-H10A | 0.9900 |
| C4A-H4AA | 0.9900 | C10A-H10B | 0.9900 |
| C4A-H4AB | 0.9900 | C10B-C11B | 1.5218 (13) |
| C4B-C4AB | 1.4981 (11) | C10B-H10C | 0.9900 |
| C4B-H4BA | 0.9900 | C10B-H10D | 0.9900 |
| C4B-H4BB | 0.9900 | C11A-C12A | 1.5140 (13) |
| C4AA-C8AA | 1.3912 (11) | C11A-H11A | 0.9900 |
| C4AA-C5A | 1.3927 (11) | C11A-H11B | 0.9900 |
| C4AB-C8AB | 1.3891 (10) | C11B-C12B | 1.5149 (14) |
| C4AB-C5B | 1.3951 (12) | C11B-H11C | 0.9900 |
| C5A-C6A | 1.3941 (13) | C11B-H11D | 0.9900 |
| C5A-H5AA | 0.9500 | C12A-H12A | 0.9900 |
| C5B-C6B | 1.3944 (13) | C12A-H12B | 0.9900 |
| C5B-H5BA | 0.9500 | C12B-H12C | 0.9900 |


| C6A-C7A | 1.3930 (14) |
| :---: | :---: |
| Cl4-Zn1-Cl3 | 111.219 (10) |
| Cl4-Zn1-Cl2 | 115.057 (11) |
| $\mathrm{Cl} 3-\mathrm{Zn} 1-\mathrm{Cl} 2$ | 106.573 (10 |
| Cl4-Zn1-Cl1 | 109.994 (13 |
| $\mathrm{Cl3}-\mathrm{Zn} 1-\mathrm{Cl1}$ | 110.340 (12) |
| $\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{Cl} 1$ | 103.331 (11 |
| $\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 8 \mathrm{AA}$ | 122.76 (7) |
| C2A-N1A-H1A | 119.3 (14) |
| C8AA-N1A-H1A | 117.9 (14) |
| $\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{AB}$ | 122.87 (6) |
| C2B-N1B-H1B | 117.3 (14) |
| C8AB-N1B-H1B | 119.4 (14) |
| N3A-C2A-N1A | 121.36 (7) |
| N3A-C2A-C9A | 121.75 (7) |
| N1A-C2A-C9A | 116.87 (7) |
| N3B-C2B-N1B | 121.29 (7) |
| N3B-C2B-C9B | 122.27 (7) |
| N1B-C2B-C9B | 116.41 (7) |
| $\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$ | 123.12 (7) |
| $\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$ | 123.38 (7) |
| $\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$ | 112.78 (6) |
| C2B-N3B-C12B | 123.39 (7) |
| $\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$ | 123.61 (7) |
| C12B-N3B-C4B | 112.65 (6) |
| N3A-C4A-C4AA | 113.01 (6) |
| N3A-C4A-H4AA | 109.0 |
| C4AA-C4A-H4AA | 109.0 |
| N3A-C4A-H4AB | 109.0 |
| C4AA-C4A-H4AB | 109.0 |
| H4AA-C4A-H4AB | 107.8 |
| N3B-C4B-C4AB | 112.81 (6) |
| N3B-C4B-H4BA | 109.0 |
| $\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{BA}$ | 109.0 |
| N3B-C4B-H4BB | 109.0 |
| $\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{BB}$ | 109.0 |
| H4BA $-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{BB}$ | 107.8 |
| C8AA-C4AA-C5A | 119.02 (7) |
| C8AA-C4AA-C4A | 120.02 (7) |
| C5A-C4AA-C4A | 120.88 (7) |
| C8AB-C4AB-C5B | 118.77 (7) |
| C8AB-C4AB-C4B | 120.22 (7) |
| C5B-C4AB-C4B | 120.99 (7) |
| C4AA-C5A-C6A | 120.35 (8) |
| C4AA-C5A-H5AA | 119.8 |
| C6A-C5A-H5AA | 119.8 |
| C6B-C5B-C4AB | 120.10 (8) |


| C12B-H12D | 0.9900 |
| :---: | :---: |
| C7A-C8A-C8AA | 119.08 (8) |
| C7A-C8A-H8AA | 120.5 |
| C8AA-C8A-H8AA | 120.5 |
| C7B-C8B-C8AB | 119.32 (7) |
| C7B-C8B-H8BA | 120.3 |
| C8AB-C8B-H8BA | 120.3 |
| C4AA-C8AA-C8A | 121.28 (7) |
| C4AA-C8AA-N1A | 118.41 (7) |
| C8A-C8AA-N1A | 120.31 (7) |
| $\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 8 \mathrm{AB}-\mathrm{C} 8 \mathrm{~B}$ | 121.48 (7) |
| $\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B}$ | 118.97 (7) |
| C8B-C8AB-N1B | 119.53 (7) |
| C2A-C9A-C10A | 112.83 (7) |
| C2A-C9A-H9AA | 109.0 |
| C10A-C9A-H9AA | 109.0 |
| C2A-C9A-H9AB | 109.0 |
| C10A-C9A-H9AB | 109.0 |
| H9AA-C9A-H9AB | 107.8 |
| $\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$ | 113.48 (7) |
| C2B-C9B-H9BA | 108.9 |
| C10B-C9B-H9BA | 108.9 |
| C2B-C9B-H9BB | 108.9 |
| C10B-C9B-H9BB | 108.9 |
| H9BA-C9B-H9BB | 107.7 |
| C11A-C10A-C9A | 108.29 (7) |
| C11A-C10A-H10A | 110.0 |
| C9A-C10A-H10A | 110.0 |
| C11A-C10A-H10B | 110.0 |
| C9A-C10A-H10B | 110.0 |
| H10A-C10A-H10B | 108.4 |
| C11B-C10B-C9B | 109.21 (7) |
| C11B-C10B-H10C | 109.8 |
| C9B-C10B-H10C | 109.8 |
| C11B-C10B-H10D | 109.8 |
| C9B-C10B-H10D | 109.8 |
| H10C-C10B-H10D | 108.3 |
| C12A-C11A-C10A | 109.98 (7) |
| C12A-C11A-H11A | 109.7 |
| C10A-C11A-H11A | 109.7 |
| C12A-C11A-H11B | 109.7 |
| C10A-C11A-H11B | 109.7 |
| H11A-C11A-H11B | 108.2 |
| C12B-C11B-C10B | 111.30 (7) |
| C12B-C11B-H11C | 109.4 |
| C10B-C11B-H11C | 109.4 |
| C12B-C11B-H11D | 109.4 |


| C6B-C5B-H5BA | 120.0 |
| :---: | :---: |
| $\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 5 \mathrm{BA}$ | 120.0 |
| C7A-C6A-C5A | 120.09 (8) |
| C7A-C6A-H6AA | 120.0 |
| C5A-C6A-H6AA | 120.0 |
| C7B-C6B-C5B | 120.48 (8) |
| C7B-C6B-H6BA | 119.8 |
| C5B-C6B-H6BA | 119.8 |
| C6A-C7A-C8A | 120.15 (8) |
| C6A-C7A-H7AA | 119.9 |
| C8A-C7A-H7AA | 119.9 |
| C8B-C7B-C6B | 119.85 (8) |
| C8B-C7B-H7BA | 120.1 |
| C6B-C7B-H7BA | 120.1 |
| C8AA-N1A-C2A-N3A | 2.92 (13) |
| C8AA-N1A-C2A-C9A | -175.40 (8) |
| $\mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}$ | -2.13 (12) |
| $\mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$ | 179.87 (7) |
| N1A-C2A-N3A-C4A | 7.04 (12) |
| $\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$ | -174.72 (8) |
| N1A-C2A-N3A-C12A | 176.62 (8) |
| $\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$ | -5.15 (12) |
| N1B-C2B-N3B-C12B | 177.97 (7) |
| $\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}$ | -4.15 (12) |
| $\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$ | 5.30 (12) |
| $\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$ | -176.82 (7) |
| $\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}$ | -13.21 (11) |
| $\mathrm{C} 12 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}$ | 176.22 (7) |
| $\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}$ | -5.72 (11) |
| $\mathrm{C} 12 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}$ | -179.08 (7) |
| N3A-C4A-C4AA-C8AA | 10.43 (11) |
| N3A-C4A-C4AA-C5A | -172.68 (7) |
| $\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 8 \mathrm{AB}$ | 3.35 (10) |
| N3B-C4B-C4AB-C5B | -178.68 (7) |
| C8AA-C4AA-C5A-C6A | 0.99 (12) |
| $\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$ | -175.93 (8) |
| $\mathrm{C} 8 \mathrm{AB}-\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$ | 0.16 (12) |
| $\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$ | -177.84 (8) |
| C4AA-C5A-C6A-C7A | -1.52 (13) |
| C4AB-C5B-C6B-C7B | 0.17 (14) |
| C5A-C6A-C7A-C8A | 0.87 (13) |
| C5B-C6B-C7B-C8B | -0.33 (14) |
| C6A-C7A-C8A-C8AA | 0.29 (13) |
| C6B-C7B-C8B-C8AB | 0.15 (13) |


| C10B-C11B-H11D | 109.4 |
| :---: | :---: |
| H11C-C11B-H11D | 108.0 |
| N3A-C12A-C11A | 113.56 (7) |
| N3A-C12A-H12A | 108.9 |
| $\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$ | 108.9 |
| N3A-C12A-H12B | 108.9 |
| $\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~B}$ | 108.9 |
| $\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~B}$ | 107.7 |
| N3B-C12B-C11B | 114.03 (7) |
| N3B-C12B-H12C | 108.7 |
| C11B-C12B-H12C | 108.7 |
| N3B-C12B-H12D | 108.7 |
| C11B-C12B-H12D | 108.7 |
| $\mathrm{H} 12 \mathrm{C}-\mathrm{C} 12 \mathrm{~B}-\mathrm{H} 12 \mathrm{D}$ | 107.6 |
| C5A-C4AA-C8AA-C8A | 0.18 (12) |
| C4A-C4AA-C8AA-C8A | 177.12 (8) |
| C5A-C4AA-C8AA-N1A | -179.12 (8) |
| $\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}-\mathrm{C} 8 \mathrm{AA}-\mathrm{N} 1 \mathrm{~A}$ | -2.18 (11) |
| C7A-C8A-C8AA-C4AA | -0.81 (12) |
| C7A-C8A-C8AA-N1A | 178.47 (8) |
| $\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 8 \mathrm{AA}-\mathrm{C} 4 \mathrm{AA}$ | -5.18 (13) |
| $\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 8 \mathrm{AA}-\mathrm{C} 8 \mathrm{~A}$ | 175.52 (8) |
| $\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 8 \mathrm{AB}-\mathrm{C} 8 \mathrm{~B}$ | -0.34 (12) |
| $\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 8 \mathrm{AB}-\mathrm{C} 8 \mathrm{~B}$ | 177.67 (7) |
| $\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B}$ | -178.78 (7) |
| $\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B}$ | -0.77 (11) |
| C7B-C8B-C8AB-C4AB | 0.19 (12) |
| $\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B}$ | 178.62 (8) |
| $\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{AB}-\mathrm{C} 4 \mathrm{AB}$ | -0.11 (12) |
| $\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{AB}-\mathrm{C} 8 \mathrm{~B}$ | -178.59 (8) |
| N3A-C2A-C9A-C10A | 21.96 (12) |
| N1A-C2A-C9A-C10A | -159.73 (8) |
| $\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$ | 20.32 (12) |
| N1B-C2B-C9B-C10B | -161.70 (8) |
| $\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$ | -49.37 (10) |
| $\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$ | -46.34 (10) |
| $\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$ | 61.61 (10) |
| C9B-C10B-C11B-C12B | 57.99 (10) |
| $\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$ | 17.27 (11) |
| $\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$ | -172.19 (7) |
| $\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}$ | -45.61 (10) |
| $\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$ | 15.61 (11) |
| $\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$ | -171.01 (7) |
| $\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}$ | -42.79 (10) |

## supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$ )
$C g 3$ and $C g 9$ are the centroids of the $\mathrm{C} 5 A-\mathrm{C} 8 A / \mathrm{C} 4 A A / \mathrm{C} 8 A A$ and $\mathrm{C} 5 B-\mathrm{C} 8 B / \mathrm{C} 4 A B / \mathrm{C} 8 A B$ rings, respectively.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{Cl} 2$ | $0.89(2)$ | $2.44(2)$ | $3.2659(8)$ | $155.9(19)$ |
| $\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$ | $0.83(2)$ | $2.352(19)$ | $3.1661(7)$ | $166.6(18)$ |
| $\mathrm{C} 11 A-\mathrm{H} 11 A \cdots C g 9^{\mathrm{ii}}$ | 0.99 | 2.67 | $3.5718(10)$ | 151 |
| $\mathrm{C} 12 B-\mathrm{H} 12 D \cdots C 3^{3 i i}$ | 0.99 | 2.57 | $3.4002(10)$ | 142 |

Symmetry codes: (i) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (ii) $-x+1,-y,-z$; (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$.

