

Received 12 April 2021 Accepted 26 April 2021

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; molybdenum; carbonyl complexes; solvent complexes; *fac*-coordination.

CCDC reference: 2080083

Supporting information: this article has supporting information at journals.iucr.org/e

Molecular structure of *fac*-[Mo(CO)₃(DMSO)₃]

Benedict J. Elvers, Christian Fischer and Carola Schulzke*

Institut für Biochemie, Universität Greifswald, 4 Felix-Hausdorff-Stra β e, 17489 Greifswald, Germany. *Correspondence e-mail: carola.schulzke@uni-greifswald.de

The title compound, tricarbonyltris(dimethyl sulfoxide)molybdenum, [Mo(C_2H_6OS)₃(CO)₃] or *fac*-[Mo(CO)₃(DMSO)₃], crystallizes in the triclinic space group $P\overline{1}$ with two molecules in the unit cell. The geometry around the central molybdenum is slightly distorted octahedral and the *facial* isomer is found exclusively. The packing within the crystal is stabilized by threedimensional non-classical intermolecular hydrogen-bonding contacts between individual methyl substituents of dimethyl sulfoxide and the oxygen atoms of either another dimethyl sulfoxide or a carbonyl ligand on adjacent complex molecules. The observed bond lengths in the carbonyl ligands and between carbonyl carbon atoms and molybdenum are correlated to the observed FT–IR bands for the carbonyl stretches and compared to respective metrical parameters of related complexes.

1. Chemical context

 $[Mo(CO)_6]$ is a commercially available starting material that is easy to handle. It is, however, not particularly reactive. In order to facilitate quicker and/or more complete reactions, it can be activated by replacing some of the CO ligands by solvent ligands. This is often done with acetonitrile, which results in fac-[Mo(CH₃CN)₃(CO)₃] complexes. Other examples comprise, for instance, $[Mo(CO)_5(THF)]$ (THF = tetrahydrofurane), $[Mo(CO)_4(nbd)]$ (nbd = norbornadiene) and $fac-[Mo(CO)_3(DMF)_3]$ (DMF = dimethyl formamide) (Wieland & van Eldik, 1991; Mukerjee et al. 1988; Villanueva et al., 1996). Depending on the co-ligand, the stability and reactivity of the resultant complex can be fine-tuned. It was, for example, previously emphasized that the pyridine complexes surpass acetonitrile complexes in reactivity (Kuhl et al., 2000). In cases where the carbonyl ligands are supposed to be retained, stronger carbonyl-metal interactions and very weak metal-co-ligand interactions are preferred. In cases where the carbonyl ligands shall also be replaced, the opposite is true. The grade of activation is reflected in the C=O bond lengths and the Mo-C_{carbonyl} bond lengths. For the former, infrared spectroscopy provides an easy way to probe the strength of the bond between carbon and oxygen with stretching vibration bands in a normally not populated region of the infrared wavenumber range (around 2000 cm^{-1}). This bond strength depends directly on the metal-carbon interaction as the stronger the metal carbon bond, the weaker the carbon-oxygen bond becomes (Elschenbroich, 2003) and these again depend on the strengths of the trans-located coligand-to-metal interactions. A short and strong C=O bond is, hence, indicative of only weak carbonyl metal-ligand interactions and concomitantly impaired complex stability. FT-IR

research communications

therefore constitutes a particularly helpful assessment tool, in particular in cases where no crystal structure is available. On the other hand, it is also quite useful to combine both methods, if possible, for validation purposes and adding reliability to future spectroscopic evaluation of related species. In the course of synthesizing molybdenum-carbonyl complexes as starting materials and in a search for the optimum balance between reactivity and stability, various solvent complexes were tested in our group. During these experiments, DMSO was considered beneficial and the title complex fac-[Mo(CO)₃(DMSO)₃] was prepared and crystallized. This complex was first reported in the literature in 1959 (Hieber et al., 1959), but its crystal structure remained, apparently, elusive to date. Notably, it also appears that since then the complex has never been mentioned again. As very nice and suitable crystals of the title compound were obtained, an X-ray diffraction structural analysis was carried out. The respective high-quality results, along with the signatory carbonyl FT-IR stretch bands are presented here.

2. Structural commentary

fac-[Mo(CO)₃(DMSO)₃] crystallizes in the triclinic space group $P\overline{1}$. The asymmetric unit represents the entire molecule (Fig. 1) while Z = 2. The central zero-valent molybdenum is coordinated in a *facial* fashion by three neutral dimethyl sulfoxide and three neutral carbonyl ligands, *i.e.* it is embraced by a C₃O₃ donor set. The coordination geometry of the complex is essentially octahedral, showing an almost perfect Bailar twist angle (Wentworth, 1972) of 59.08°. The average *cis*-donor—Mo—donor angle between the three coordinated DMSO molecules is, at approximately 79°, slightly more acute compared to that of the carbonyl ligands, at approximately 84° despite dimethyl sulfoxide being considerably more bulky. The three *trans* angles across molybdenum range from 173.76 (16) to 178.08 (18)°, indicating a slight distortion from ideal octahedral geometry.

The structures of the title compound and those of chemically very closely related fac-[Mo(CH₃CN)₃(CO)₃] (refcode: IZUQAV; Antonini *et al.*, 2004) and fac-[Mo(CO)₃(DMF)₃] (refcode: WAJWIN; Pasquali *et al.*, 1992) are, as expected, quite similar in the immediate coordination sphere surrounding molybdenum, which is also evident from the overlaid molecular structures (Fig. 2). Still, some specifics in the metrical parameter details in the individual species are quite notable.

Figure 1 Molecular structure of fac-[Mo(CO)₃(DMSO)₃] with ellipsoids at the 50% level.

In particular the C–O and Mo–C distances are interesting when compared to those of fac-[Mo(CH₃CN)₃(CO)₃] and fac- $[Mo(CO)_3(DMF)_3]$. Whereas the average C–O bond length in fac-[Mo(CO)₃(DMSO)₃] is 1.170 (6) Å and the average Mo-C distance is 1.911 (5) Å, in fac-[Mo(CH₃CN)₃(CO)₃] the average C–O and Mo–C distances are 1.167 and 1.923 Å, respectively. In fac-[Mo(CO)₃(DMF)₃], these values are 1.172 Å (C-O) and 1.909 Å (Mo-C). The complexes with the O-donor solvent coordination exhibit longer C-O and shorter Mo-C distances, which is indicative of stronger bonds between carbonyl and molybdenum than in the case of the Ndonor solvent. At the same time, this suggests that the share of electron density between molybdenum and coordinated solvent is decreased in the case of O-donor solvents and increased in the case of the N-donor solvent. This is also reflected in the reported IR data. In the case of acetonitrile,

Structural overlay between fac-[Mo(CO)₃(DMSO)₃] in blue with fac-[Mo(CH₃CN)₃(CO)₃] (refcode: IZUQAV; Antonini *et al.*, 2004) in green (left) and with fac-[Mo(CO)₃(DMF)₃] (refcode: WAJWIN; Pasquali *et al.*, 1992) in yellow (right) generated with *Mercury* 2020.3.0 (Macrae *et al.*, 2020).

Figure 3

Correlation between the highest energy infrared band for the C–O stretching vibration and the shortest of the observed C–O bonds in the molecular structures of fac-[Mo(CO)₃(DMSO)₃], fac-[Mo(CH₃CN)₃(CO)₃] (refcode: IZUQAV; Antonini *et al.*, 2004) and fac-[Mo(CO)₃(DMF)₃] (refcode: WAJWIN; Pasquali *et al.*, 1992).

two C-O bands are reported, and for the other two complexes, three. In perfectly octahedral symmetry, only two bands would be expected (Elschenbroich, 2003). The presence of three bands therefore indicates a distortion of the complex from perfect symmetry. The comparison of the highest energy infrared bands with the shortest observed C-O bond lengths in these three species reveals a perfect correlation (Fig. 3).

The O-donor solvents, therefore, appear to be slightly better suited for those reactions in which the carbonyl ligands are supposed to be retained on the metal, while the co-ligands are more labile. In the case of fac-[Mo(CO)₃(DMSO)₃], it was observed that the complex is very sensitive to moisture, for instance, which supports the anticipated facile exchange of the coordinated solvents.

When larger co-ligands are also included in the C-O and Mo-C bond-length analysis, these observations are generally confirmed (Fig. 4). Only the structures with methyl-pyridine

Figure 4

Average C-O and Mo-C distances in the molecular structures of neutral bisleptic triscarbonyl molybdenum(0) complexes with oxygen or nitrogen donor co-ligands.

Table 1 Hydrogen-bond geometry (Å, °).

		,		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C5-H5C\cdotsO1^{i}$	0.98	2.52	3.461 (7)	161
$C4-H4C\cdots O3^{ii}$	0.98	2.60	3.503 (8)	154
$C7-H7C\cdots O1^{ii}$	0.98	2.51	3.419(7)	154
$C9-H9C\cdots O5^{iii}$	0.98	2.45	3.239 (7)	138
$C4-H4B\cdots O3^{iv}$	0.98	2.38	3.334 (8)	165
$C9-H9A\cdotsO1^{v}$	0.98	2.59	3.328 (7)	132
$C9-H9B\cdots O3^{v}$	0.98	2.52	3.469 (7)	163
$C7-H7B\cdots O6^{vi}$	0.98	2.55	3.398 (6)	144

Symmetry codes: (i) x + 1, y - 1, z; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z; (v) -x, -y + 1, -z + 1; (vi) x, y + 1, z.

(refcode: TEMYOZ; Schut *et al.*, 1996) and pyrazole (refcode: OGAZAX; Ardizzoia *et al.*, 2002) exhibit somewhat extreme values with a particularly short and strong C–O bond in the latter and an exceptionally long and weak C–O bond in the former, which even surpasses the effect of the O-donor co-ligands. The other considered structures comprise a second one with acetonitrile (refcode: IZUQAVO1; Sala *et al.*, 2018), one with propionitrile (refcode: FIWTIQ; Hering *et al.*, 2014), one with thiophene-acetonitrile (refcode: VAPBUK; Baker *et al.*, 2003), and one with pyridine (refcode: GUPMOT, Kuhl *et al.*, 2000).

3. Supramolecular features

The unit cell is relatively small and contains only two molecules. Non-classical hydrogen-bonding contacts stabilize the crystal packing (Table 1). All hydrogen atoms are part of

Crystal packing viewed along the b axis with hydrogen-bonding contacts shown as light blue dashed lines, generated with *Mercury* 2020.3.0 (Macrae *et al.*, 2020).

research communications

Figure 6

Crystal packing viewed along the ab diagonal with the c axis in horizontal alignment along which the orientations of the complex molecules alternate, generated with *Mercury* 2020.3.0 (Macrae *et al.*, 2020).

methyl groups and these are thereby the only available donors. Oxygen atoms of DMSO (O5, O6) and of carbonyl ligands (O1, O3) serve as hydrogen-bonding acceptors. Hydrogen bonding within the unit cell involves exclusively DMSO. Hydrogen bonding between unit cells is exclusively between DMSO and carbonyl oxygen atoms (Fig. 5). The orientations of the molecules strictly alternate in the *c*-axis direction, as is evident when viewed along the *ab* diagonal (Fig. 6) while they are identical to those of their neighbours in the *a*- and *b*-axis directions.

4. Database survey

A search of the CSD database with ConQuest (Bruno et al., 2002) for bisleptic triscarbonyl molybdenum(0) complexes and three neutral co-ligands with N, O, S or P donor atoms results, in addition to the eight known molecular structures with oxygen or nitrogen donors, which are already discussed in the structural commentary, only in species with phosphorous donor atoms. These are structures with the refcodes DUSHAA (Tarassoli et al., 1986), DUSHAA10 (Chen et al., 1986), JEWPIL (Nakazawa et al., 2006), KETQIJ (Campbell et al., 1999), KOBSIE (Fukumoto & Nakazawa, 2008), LALSEW (Willey et al., 1993), NIPTAH and NIPTEL (Alyea et al., 1997), NITFOM (Tallis et al., 2008), SANMOJ (Bent et al., 1989), SANMOJ10 (Bent et al., 1990), TAWNIO (Edwards et al., 1996), TIRYUP (Thirupathi et al., 2007), YAZSAT and YAZSIB (Kang et al., 1994), YAZSAT10 and YAZSIB10 (Hockless et al., 1996), YEPWAR (Fischer et al., 1994), and ZEXCIO (Alyea *et al.*, 1995). The average C–O bond lengths in the molecular structures with phosphorous donor atoms range from 1.141 Å (KOBSIE) to 1.228 Å (DUSHAA). This means that both shorter as well as longer bonds are observed in the P-donor species than in the O- and N-donor complexes. In total only 27 examples of complexes are found in the database that meet the search criteria. Considering the simplicity of the complexes this is a surprisingly small number.

Table 2
Experimental details.
Crystal data Chemical formula

Chemical formula	$[Mo(C_2H_6OS)_3(CO)_3]$
M _r	414.35
Crystal system, space group	Triclinic, P1
Temperature (K)	170
a, b, c (Å)	8.2027 (16), 8.4059 (17), 13.465 (3)
α, β, γ (°)	78.58 (3), 75.69 (3), 63.94 (3)
$V(\dot{A}^3)$	803.8 (4)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.22
Crystal size (mm)	$0.27 \times 0.09 \times 0.04$
Data collection	
Diffractometer	Stoe IPDS2T
Absorption correction	Numerical face indexed (<i>X-RED32</i> and <i>X-SHAPE</i> ; Stoe & Cie, 2010)
T_{\min}, T_{\max}	0.909, 0.989
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8903, 4417, 3408
R _{int}	0.054
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.693
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.135, 1.07
No. of reflections	4417
No. of parameters	178
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	1.10, -2.32

Computer programs: X-AREA (Stoe & Cie, 2016), SHELXT2018 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and XP (Sheldrick, 2008), CIFTAB (Sheldrick, 2008).

5. Synthesis and crystallization

A tempered reaction vessel (293 K) was charged with $[Mo(CO)_6]$ (165 mg, 0.625 mmol, 1 eq.) and the atmosphere was replaced by argon. 10 ml of absolute tetrahydrofurane (THF) and 0.2 ml of absolute dimethyl sulfoxide (DMSO, 2.82 mmol, 4.5 eq.) were added and the reaction vessel was irradiated for 2 h with HPM13 and HPA1200 halogen lamps as in previously described related activation procedures (Elvers et al., 2019). The resulting yellow solution was transferred anaerobically into a Schlenk flask and dried in vacuo. The golden-yellow solid precipitate was re-dissolved in THF and layered with n-hexane. Light-yellow, prismatic crystals of the title compound formed after three days of slow diffusion. Yield: 66.9% (160.7 mg, 0.418 mmol). IR (as KBr pellet given in cm⁻¹): 2260 (w, br); 1890 (s); 1750 (s); 1724 (s); 1308 (sh); 1246(s); 1153(s); 1020(sh); 978(s); 824(s); 760(s)(w = weak/s)s = strong/sh = shoulder/br = broad).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms belong to methyl substituents. They were attached to their parent atom in calculated positions based on the presence of electron density (HFIX 137) and treated as riding with $U_{\rm iso}(\rm H) = 1.5$ $U_{\rm eq}(\rm C)$. One reflection was omitted from the refinement as a clear outlier. *WinGX* was used as GUI for solving and refining the structure (Farrugia, 2012).

Funding information

The authors would like to thank the Deutsche Bundesstiftung Umwelt (DBU) for financial support.

References

- Alyea, E. C., Ferguson, G. & Kannan, S. (1997). Polyhedron, 16, 3533–3537.
- Alyea, E. C., Ferguson, G. & Song, S.-Q. (1995). Acta Cryst. C51, 2238–2242.
- Antonini, S., Calderazzo, F., Englert, U., Grigiotti, E., Pampaloni, G. & Zanello, P. (2004). J. Organomet. Chem. 689, 2158–2168.
- Ardizzoia, G. A., Brenna, S., LaMonica, G., Maspero, A. & Masciocchi, N. (2002). J. Organomet. Chem. 649, 173–180.
- Baker, P. K., Drew, M. G. B., Meehan, M. M. & Parker, E. E. (2003). J. Chem. Crystallogr. 33, 669–672.
- Bent, E. G., Schaeffer, R., Curtis Haltiwanger, R. & Norman, A. D. (1989). J. Organomet. Chem. 364, C25–C28.
- Bent, E. G., Schaeffer, R., Haltiwanger, R. C. & Norman, A. D. (1990). *Inorg. Chem.* 29, 2608–2613.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Campbell, T., Gibson, A. M., Hart, R., Orchard, S. D., Pope, S. J. A. & Reid, G. (1999). J. Organomet. Chem. 592, 296–305.
- Chen, H.-J., Tarassoli, A., Allured, V. S., Haltiwanger, R. C. & Norman, A. D. (1986). J. Organomet. Chem. 306, C19–C23.
- Edwards, P. G., Fleming, J. S., Liyanage, S. S., Coles, S. J. & Hursthouse, M. B. (1996). J. Chem. Soc. Dalton Trans. pp. 1801– 1807.
- Elschenbroich, C. (2003). Organometallchemie, pp. 304–366. Wiesbaden: Vieweg+Teubner Verlag.
- Elvers, B. J., Schulzke, C. & Fischer, C. (2019). Eur. J. Inorg. Chem. pp. 2796–2805.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fischer, A., Neda, I., Jones, P. G. & Schmutzler, R. (1994). Z. Naturforsch. Teil B, 49, 1481–1493.
- Fukumoto, K. & Nakazawa, H. (2008). J. Organomet. Chem. 693, 1968–1974.
- Hering, C., Schulz, A. & Villinger, A. (2014). Chem. Sci. 5, 1064-1073.

- Hieber, W., Englert, K. & Rieger, K. (1959). Z. Anorg. Allg. Chem. 300, 295–303.
- Hockless, D. C. R., Kang, Y. B., McDonald, M. A., Pabel, M., Willis, A. C. & Wild, S. B. (1996). *Organometallics*, 15, 1301–1306.
- Kang, Y. B., Pabel, M., Willis, A. C. & Wild, S. B. (1994). J. Chem. Soc. Chem. Commun. pp. 475–476.
- Kuhl, A., Christopher, J. A., Farrugia, L. J. & Kocienski, P. J. (2000). Synlett, pp. 1765–1768.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Mukerjee, S. L., Nolan, S. P., Hoff, C. D. & Lopez de la Vega, R. (1988). *Inorg. Chem.* 27, 81–85.
- Nakazawa, H., Miyoshi, Y., Katayama, T., Mizuta, T., Miyoshi, K., Tsuchida, N., Ono, A. & Takano, K. (2006). Organometallics, 25, 5913–5921.
- Pasquali, M., Leoni, P., Sabatino, P. & Braga, D. (1992). Gazz. Chim. Ital. 122, 275.
- Sala, C. H., Belaj, F. & Mösch-Zanetti, N. C. (2018). *CSD Communication* (refcode IZUQAVO1). CCDC, Cambridge, England.
- Schut, D. A., Tyler, D. R. & Weakley, T. J. R. (1996). J. Chem. Crystallogr. 26, 235–237.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stoe & Cie (2010). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe & Cie (2016). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.
- Tallis, H. A., Newman, P. D., Edwards, P. G., Ooi, L. & Stasch, A. (2008). *Dalton Trans.* pp. 47–53.
- Tarassoli, A., Chen, H. J., Allured, V. S., Hill, T. G., Haltiwanger, R. C., Thompson, M. L. & Norman, A. D. (1986). *Inorg. Chem.* 25, 3541–3544.
- Thirupathi, N., Stricklen, P. M., Liu, X., Oshel, R., Guzei, I., Ellern, A. & Verkade, J. G. (2007). *Inorg. Chem.* 46, 9351–9363.
- Villanueva, L. A., Ward, Y. D., Lachicotte, R. & Liebeskind, L. S. (1996). Organometallics, **15**, 4190–4200.
- Wentworth, R. A. D. (1972). Coord. Chem. Rev. 9, 171-187.
- Wieland, S. & Van Eldik, R. (1991). Organometallics, 10, 3110-3114.
- Willey, G. R., Butcher, M. L., Lakin, M. T. & Downs, G. W. (1993). Acta Cryst. C49, 1350–1352.

supporting information

Acta Cryst. (2021). E77, 583-587 [https://doi.org/10.1107/S2056989021004448]

Molecular structure of *fac*-[Mo(CO)₃(DMSO)₃]

Benedict J. Elvers, Christian Fischer and Carola Schulzke

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2016); cell refinement: *X-AREA* (Stoe & Cie, 2016); data reduction: *X-AREA* (Stoe & Cie, 2016); program(s) used to solve structure: *SHELXT2018* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *XP* (Sheldrick, 2008); software used to prepare material for publication: *CIFTAB* (Sheldrick, 2008).

tricarbonyltris(dimethyl sulfoxide)molybdenum

Crystal data

[Mo(C₂H₆OS)₃(CO)₃] $M_r = 414.35$ Triclinic, $P\overline{1}$ a = 8.2027 (16) Å b = 8.4059 (17) Å c = 13.465 (3) Å a = 78.58 (3)° $\beta = 75.69$ (3)° $\gamma = 63.94$ (3)° V = 803.8 (4) Å³

Data collection

Stoe IPDS2T8903 meas
diffractometerRadiation source: fine-focus sealed tube3408 reflex
3408 reflexDetector resolution: 6.67 pixels mm⁻¹ $R_{int} = 0.054$
 $\Theta_{max} = 29.5$ Absorption correction: numerical
face indexed (X-Red32 and X-Shape; Stoe &
Cie, 2010) $h = -11 \rightarrow 1$
 $l = -16 \rightarrow 1$ $T_{min} = 0.909, T_{max} = 0.989$ Pafinament

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.135$ S = 1.074417 reflections 178 parameters 0 restraints Primary atom site location: dual Z = 2 F(000) = 420 $D_x = 1.712 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8904 reflections $\theta = 6.5-59.0^{\circ}$ $\mu = 1.22 \text{ mm}^{-1}$ T = 170 K Needle, yellow $0.27 \times 0.09 \times 0.04 \text{ mm}$

8903 measured reflections 4417 independent reflections 3408 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 29.5^{\circ}, \theta_{min} = 3.3^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -16 \rightarrow 18$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0653P)^2 + 1.7985P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.10 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -2.32 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	л	У	Z	$U_{\rm iso} - U_{\rm eq}$	
Mo1	0.26439 (5)	0.70392 (5)	0.25843 (3)	0.01937 (12)	
S1	0.64463 (15)	0.46716 (16)	0.11748 (9)	0.0276 (3)	
S2	0.31315 (15)	1.05860 (15)	0.28585 (10)	0.0267 (2)	
S3	0.16962 (15)	0.60278 (16)	0.50846 (9)	0.0259 (2)	
01	-0.1521 (5)	0.9399 (5)	0.3125 (3)	0.0366 (9)	
O2	0.2294 (6)	0.9145 (6)	0.0427 (3)	0.0437 (10)	
O3	0.1020 (5)	0.4935 (6)	0.1823 (3)	0.0425 (10)	
04	0.5662 (4)	0.5143 (5)	0.2275 (3)	0.0261 (7)	
05	0.3793 (5)	0.8603 (4)	0.3182 (3)	0.0276 (7)	
06	0.3177 (4)	0.5503 (4)	0.4125 (2)	0.0241 (7)	
C1	0.0078 (6)	0.8542 (6)	0.2948 (4)	0.0244 (9)	
C2	0.2447 (6)	0.8356 (6)	0.1249 (4)	0.0277 (10)	
C3	0.1697 (6)	0.5673 (6)	0.2123 (4)	0.0269 (9)	
C4	0.7296 (8)	0.6302 (8)	0.0556 (5)	0.0441 (14)	
H4A	0.625940	0.747086	0.050873	0.066*	
H4B	0.797261	0.599555	-0.013743	0.066*	
H4C	0.812511	0.633876	0.095684	0.066*	
C5	0.8601 (7)	0.2841 (7)	0.1252 (4)	0.0333 (11)	
H5A	0.935178	0.317406	0.156388	0.050*	
H5B	0.924538	0.250564	0.055791	0.050*	
H5C	0.839851	0.183013	0.167560	0.050*	
C6	0.4774 (8)	1.0822 (8)	0.1761 (5)	0.0404 (13)	
H6A	0.602434	1.005903	0.189192	0.061*	
H6B	0.461592	1.206568	0.162583	0.061*	
H6C	0.458693	1.046979	0.116050	0.061*	
C7	0.3772 (8)	1.1383 (7)	0.3759 (5)	0.0384 (12)	
H7A	0.299763	1.132681	0.443629	0.058*	
H7B	0.360358	1.261909	0.353195	0.058*	
H7C	0.507049	1.064490	0.380701	0.058*	
C8	0.2159 (9)	0.7503 (8)	0.5644 (5)	0.0450 (15)	
H8A	0.344626	0.694301	0.574038	0.068*	
H8B	0.133983	0.776499	0.631347	0.068*	
H8C	0.194380	0.861157	0.518762	0.068*	
C9	0.2439 (8)	0.4168 (7)	0.6010 (4)	0.0360 (11)	
H9A	0.234863	0.315606	0.580728	0.054*	
H9B	0.165563	0.446406	0.668472	0.054*	
H9C	0.372287	0.385368	0.605036	0.054*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.01869 (18)	0.01643 (18)	0.02248 (19)	-0.00617 (13)	-0.00398 (13)	-0.00316 (13)
S 1	0.0218 (5)	0.0294 (6)	0.0292 (6)	-0.0054 (4)	-0.0042 (4)	-0.0106 (5)
S2	0.0237 (5)	0.0172 (5)	0.0394 (7)	-0.0073 (4)	-0.0082 (5)	-0.0026 (5)
S3	0.0216 (5)	0.0270 (6)	0.0252 (6)	-0.0072 (4)	-0.0028 (4)	-0.0029 (5)
01	0.0227 (17)	0.0234 (17)	0.056 (2)	-0.0051 (13)	-0.0022 (16)	-0.0054 (17)
O2	0.044 (2)	0.047 (2)	0.030 (2)	-0.0096 (18)	-0.0119 (17)	0.0041 (18)
O3	0.040 (2)	0.043 (2)	0.055 (3)	-0.0181 (18)	-0.0106 (19)	-0.023 (2)
O4	0.0189 (14)	0.0297 (17)	0.0239 (16)	-0.0050 (12)	-0.0023 (12)	-0.0042 (13)
05	0.0325 (17)	0.0176 (15)	0.0384 (19)	-0.0131 (13)	-0.0134 (14)	0.0002 (14)
06	0.0269 (16)	0.0184 (15)	0.0235 (16)	-0.0079 (12)	-0.0030 (12)	-0.0001 (12)
C1	0.029 (2)	0.0158 (19)	0.030 (2)	-0.0111 (17)	-0.0045 (18)	-0.0030 (17)
C2	0.023 (2)	0.027 (2)	0.029 (2)	-0.0056 (18)	-0.0068 (18)	-0.0029 (19)
C3	0.024 (2)	0.023 (2)	0.034 (3)	-0.0080 (17)	-0.0023 (18)	-0.0117 (19)
C4	0.041 (3)	0.033 (3)	0.041 (3)	-0.008(2)	0.000 (2)	0.007 (2)
C5	0.024 (2)	0.026 (2)	0.045 (3)	-0.0066 (19)	0.000 (2)	-0.011 (2)
C6	0.047 (3)	0.031 (3)	0.043 (3)	-0.021 (2)	-0.004 (3)	0.002 (2)
C7	0.041 (3)	0.031 (3)	0.049 (3)	-0.017 (2)	-0.005 (2)	-0.014 (2)
C8	0.069 (4)	0.034 (3)	0.035 (3)	-0.027 (3)	0.004 (3)	-0.012 (2)
C9	0.048 (3)	0.030 (3)	0.031 (3)	-0.019 (2)	-0.007 (2)	0.002 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Mo1—C3	1.901 (5)	C4—H4A	0.9800	
Mo1—C1	1.915 (5)	C4—H4B	0.9800	
Mo1—C2	1.919 (5)	C4—H4C	0.9800	
Mo1-06	2.249 (3)	C5—H5A	0.9800	
Mo1—O4	2.264 (3)	С5—Н5В	0.9800	
Mo1-05	2.269 (3)	C5—H5C	0.9800	
S1—O4	1.518 (3)	C6—H6A	0.9800	
S1—C5	1.772 (5)	С6—Н6В	0.9800	
S1—C4	1.777 (6)	С6—Н6С	0.9800	
S2—O5	1.516 (3)	С7—Н7А	0.9800	
S2—C7	1.773 (6)	С7—Н7В	0.9800	
S2—C6	1.782 (6)	C7—H7C	0.9800	
S3—O6	1.522 (3)	C8—H8A	0.9800	
S3—C9	1.771 (6)	C8—H8B	0.9800	
S3—C8	1.782 (6)	C8—H8C	0.9800	
01—C1	1.174 (6)	С9—Н9А	0.9800	
O2—C2	1.177 (6)	С9—Н9В	0.9800	
O3—C3	1.170 (6)	С9—Н9С	0.9800	
C3—Mo1—C1	82.54 (19)	S1—C4—H4C	109.5	
C3—Mo1—C2	85.0 (2)	H4A—C4—H4C	109.5	
C1—Mo1—C2	85.0 (2)	H4B—C4—H4C	109.5	
C3—Mo1—O6	99.49 (18)	S1—C5—H5A	109.5	

C1—Mo1—O6	99.79 (17)	S1—C5—H5B	109.5
C2—Mo1—O6	173.76 (16)	H5A—C5—H5B	109.5
C3—Mo1—O4	97.31 (16)	S1—C5—H5C	109.5
C1—Mo1—O4	175.59 (16)	H5A—C5—H5C	109.5
C2—Mo1—O4	99.35 (16)	H5B—C5—H5C	109.5
O6—Mo1—O4	75.88 (12)	S2—C6—H6A	109.5
C3—Mo1—O5	178.08 (18)	S2—C6—H6B	109.5
C1—Mo1—O5	97.90 (16)	H6A—C6—H6B	109.5
C2—Mo1—O5	96.89 (18)	S2—C6—H6C	109.5
O6—Mo1—O5	78.60 (12)	H6A—C6—H6C	109.5
O4—Mo1—O5	82.10 (13)	H6B—C6—H6C	109.5
O4—S1—C5	104.3 (2)	S2—C7—H7A	109.5
O4—S1—C4	104.6 (3)	S2—C7—H7B	109.5
C5—S1—C4	97.9 (3)	H7A—C7—H7B	109.5
O5—S2—C7	104.0 (2)	S2—C7—H7C	109.5
O5—S2—C6	105.7 (2)	H7A—C7—H7C	109.5
C7—S2—C6	98.1 (3)	H7B—C7—H7C	109.5
O6—S3—C9	104.2 (2)	S3—C8—H8A	109.5
O6—S3—C8	106.0 (2)	S3—C8—H8B	109.5
C9—S3—C8	97.2 (3)	H8A—C8—H8B	109.5
S1—O4—Mo1	115.64 (18)	S3—C8—H8C	109.5
S2—O5—Mo1	118.64 (19)	H8A—C8—H8C	109.5
S3—O6—Mo1	120.18 (18)	H8B—C8—H8C	109.5
O1—C1—Mo1	175.0 (4)	S3—C9—H9A	109.5
O2—C2—Mo1	178.2 (5)	S3—C9—H9B	109.5
O3—C3—Mo1	175.6 (4)	H9A—C9—H9B	109.5
S1—C4—H4A	109.5	S3—С9—Н9С	109.5
S1—C4—H4B	109.5	H9A—C9—H9C	109.5
H4A—C4—H4B	109.5	Н9В—С9—Н9С	109.5
C5—S1—O4—Mo1	-167.4 (2)	C6—S2—O5—Mo1	-94.2 (3)
C4—S1—O4—Mo1	90.3 (3)	C9—S3—O6—Mo1	164.8 (2)
C7—S2—O5—Mo1	163.1 (2)	C8—S3—O6—Mo1	-93.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
C5—H5C···O1 ⁱ	0.98	2.52	3.461 (7)	161	
C4—H4 <i>C</i> ···O3 ⁱⁱ	0.98	2.60	3.503 (8)	154	
С7—Н7 <i>С</i> …О1 ^{іі}	0.98	2.51	3.419 (7)	154	
С9—Н9 <i>С</i> …О5 ^{ііі}	0.98	2.45	3.239 (7)	138	
C4—H4 <i>B</i> ···O3 ^{iv}	0.98	2.38	3.334 (8)	165	
С9—Н9А…О1 ^v	0.98	2.59	3.328 (7)	132	
С9—Н9 <i>В</i> …ОЗ ^v	0.98	2.52	3.469 (7)	163	
C7—H7 <i>B</i> ···O6 ^{vi}	0.98	2.55	3.398 (6)	144	

Symmetry codes: (i) x+1, y-1, z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) -x, -y+1, -z+1; (vi) x, y+1, z.