

Received 15 March 2021 Accepted 9 April 2021

Edited by C. Schulzke, Universität Greifswald, Germany

Keywords: crystal structure; ketenylidene; trigold.

CCDC reference: 2070092

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of tris(2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl-κP)-μ-oxoethenylidene-*triangulo*-trigold(I) bis(trifluoromethanesulfonyl)imide

Colin T. Hartgerink,^a Richard J. Staples^b and Carolyn E. Anderson^a*

^aDepartment of Chemistry and Biochemistry, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI 49546, USA, and ^bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA. *Correspondence e-mail: cea3@calvin.edu

The title ketenylidene, $[Au_3(C_2O)(C_{26}H_{35}O_2P)_3](C_2F_6NO_4S_2)$, was obtained upon exposure of [2-(dicyclohexylphosphino)-2',6'-dimethoxy-1,1'-biphenyl]gold(I) bis(trifluoromethanesulfonyl)imide to acetic anhydride at elevated temperature. The ketenylidene bridge caps the tri-gold cluster. The title compound has provided crystals that upon analysis represent the first tri-gold ketenylidene with atomic distances indicative of bonding interaction between the gold atoms.

1. Chemical context

Metal clusters containing ketenylidenes are of interest for their wide range of applications. For instance, ketenylidenes are useful for facilitating C–C bond formation and cleavage (Went *et al.*, 1987), metal cluster building (Sailor & Shriver, 1985), and as potential intermediates for carbon monoxide chemistry (Jensen & Shriver, 1992). One of the first transitionmetal ketenylidene complexes described was a tricobalt cluster reported by Seyferth *et al.* in 1974 (Seyferth *et al.*, 1974). Since then, the scope of ketenylidene clusters has been expanded to include metals such as osmium (Went *et al.*, 1987), ruthenium (Sailor & Shriver, 1985), molybdenum (Ramalakshmi *et al.*, 2015), and manganese (Crespi & Shriver, 1986) to name a few.

However, relatively few ketenylidenes involving gold have been reported. Work by Green and co-workers uncovered a surface-bound gold ketenylidene [Au₂CCO], which serves as a reactive intermediate in the aerobic oxidation of acetic acid on Au/TiO₂ surfaces (Green *et al.*, 2012). More recently, Daugherty and co-workers reported the first instance of a tri-gold ketenylidene (Daugherty *et al.*, 2017). In that case, the Au···Au distances suggest that there is no bonding interaction between the metal atoms.

Herein, we describe the first crystal structure analysis of a tri-gold ketenylidene in which the atomic distances suggest a bonding interaction between the gold atoms

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. Four molecules are present in the unit cell (Z = 4) and there is one component in the asymmetric unit. The title

research communications

compound consists of three molecules of (2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl)gold(I) bis(trifluoromethanesulfonyl)imide capped by a ketenylidene unit (C=C=O) to form a tri-gold cluster. The tri-gold cluster has an overall charge of +1, with trifluoromethanesulfonylimide serving as the counter-ion. As shown in Fig. 1, the ketenylidene atoms (C=C=O) form an angle of 88.1 (5)° with the mean Au1-Au2-Au3 gold plane.

The Au–Au bond distances suggest aurophilic interaction (Schmidbaur & Schier, 2012). The shortest Au–Au bond length is 3.1910 (5) Å (Au1-Au3), which is significantly shorter than the sum of two van der Waals radii (Bondi, 1964). The Au2–Au3 bond length of 3.2101 (5) Å also indicates a

significant Au-Au interaction, although the complex is not entirely symmetrical, with the Au1-Au2 bond length measuring 3.3005 (5) Å. Other bond lengths within the cluster are more highly conserved within each subunit of the trimeric structure [*e.g.* Au-C1 distances: 2.090 (7) to 2.098 (7) Å; Au-P distances: 2.273 (2) to 2.281 (2) Å].

3. Supramolecular features

In the crystal structure of the title compound, the discrete complexes are arranged into columns along the *b* axis (Fig. 2). Within these columns, the ketenylidene atoms alternate between the +a and -a-axis directions. The only other similar cluster with Au was reported by Daugherty and co-workers (Daugherty *et al.*, 2017), and it does not show this alternating arrangement. However, in this earlier case, the Au atoms are all bonded to the carbon of *N*-heterocyclic carbene ligands, rather than to phosphines. As such, the title compound is the first trimetallic ketenylidene cluster of any metal that involves the metal bound to only phosphine and the ketenylidiene bridge, rather than the more common C=O ligand found in most trimetallic metal complexes in the CSD.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.42, February 2021; Groom *et al.*, 2016) contains 12 unique struc-

Figure 1

The molecular structure of the title compound with select atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity reasons.

Figure 2 Packing diagram of the title compound along the *b* axis.

research communications

tures of ketenylidene-bridged metal clusters. Of these, ten contain clusters of three metal atoms, including: all iron (CAXVAY, Kolis et al., 1983; GEFPIQ, Bogdan et al., 1988), all ruthenium (DELSAO, Sailor & Shriver, 1985; FONWAG, Sailor et al., 1987), all osmium (FONYEM, Went et al., 1987), and all gold(I) (LEBFOQ, Daugherty et al., 2017) and various combinations of iron, cobalt, manganese, molybdenum, and ruthenium (DUHDIT, Crespi & Shriver, 1986 and Crespi et al., 1988; GAHBIA, Ching et al., 1988; HUQBIG, Ramalakshmi et al., 2015; KALVAU, Ching et al., 1989). Two additional structures of this type with central clusters of four metal atoms, either three ruthenium and one copper (PAJWOM, Gunale et al., 1992) or three iron and one copper (KINFOC10, Gunale et al., 1992) have also been reported. Within this group, only one 2Fe/1Co cluster bears a phosphine ligand (KALVAU, Ching et al., 1989) similar to the reported title compound; however, even in this case, the reported cluster is much simpler than the title compound, as all of the remaining positions are occupied by CO.

The only other known all gold(I) cluster (LEBFOQ, Daugherty *et al.*, 2017) differs from both the reported title compound as well as the other structures in the CSD, as it bears *N*-heterocyclic carbene ligands attached to gold, rather than either phosphines or carbon monoxide ligands. Additionally, the gold(I) atoms in this previously reported cluster were too far apart from each other to have any metal-metal bonding interaction.

Thus, the reported ketenylidene cluster differs from similar compounds in the CSD in both the title cluster's unique phosphine ligands and the short Au—Au bonding interactions.

5. Synthesis and crystallization

The title compound was observed during scope studies related to the gold(I)-catalyzed synthesis of trisubstituted indolizine **2**

Figure 3

Reaction scheme. The title ketenylidene 3 was discovered as an unexpected by-product of a reaction exploring the gold(I)-catalyzed rearrangement of 2-propargyloxypyridine 1.

Table 1 Experimental details.	
Crystal data	
Chemical formula	$[Au_3(C_2O)(C_{26}H_{35}O_2P)_3]-$ (C ₂ F ₆ NO ₄ S ₂)
M _r	2142.59
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	173
a, b, c (Å)	24.0018 (3), 12.4867 (1), 28.4299 (3)
β (°)	103.7669 (8)
$V(Å^3)$	8275.75 (15)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	11.42
Crystal size (mm)	$0.2 \times 0.05 \times 0.03$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2013)
T_{\min}, T_{\max}	0.321, 0.735
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	73587, 15716, 11064
R _{int}	0.110
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.610
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.120, 1.01
No. of reflections	15716
No. of parameters	979
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.77, -0.95

Computer programs: COSMO and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

from 2-propargyloxypyridine 1 (Rossler et al., 2019). While initial studies had shown that treatment of pyridine 1 with methyl ketones in the presence of alcohols and (2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl)gold(I) bis(trifluoromethane-sulfonyl)imide could provide trisubstituted indolizines 2 in moderate to good yields, when the methyl ketone was replaced with acetic anhydride, an unknown organic product and the title ketenylidene cluster 3 were observed (Fig. 3). In an attempt to determine the organic product of the reaction, crystals were grown by the slow evaporation of a concentrated ethanol solution over several weeks at room temperature. Using this method, a few tiny yellow needle-shaped crystals, suitable for X-ray diffraction, were obtained and analyzed. However, rather than revealing the structure of the organic product as expected, the X-ray structure revealed the title ketenylidene-bridged tri-gold cluster 3. Subsequent studies aimed at the independent synthesis of cluster 3 and related species stoichiometrically were unsuccessful.

6. Refinement

Crystal data, data collection, and refinement details are collected in Table 1. All non-hydrogen atoms were refined anisotropically. Hydrogen-atom positions were calculated geometrically (C-H = 0.95–1.00 Å) and refined using a riding model with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ or $1.5 U_{\rm eq}({\rm C}-{\rm methyl})$.

Acknowledgements

The authors would like to thank Dr S. Biros for help with manuscript preparation. Funding for the Single Crystal X-ray diffractometer was provided by the MRI program by the National Science Foundation under grant No. 1919565.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1665139 to C. Anderson and grant No. CHE-1919565 to R. Staples); Organic Syntheses, Inc. (grant No. Summer Research at an Undergraduate Institution to C. Hartgerink).

References

- Bogdan, P. L., Sabat, M., Sunshine, S. A., Woodcock, C. & Shriver, D. F. (1988). *Inorg. Chem.* 27, 1904–1910.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Bruker (2013). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc. Madison, Wisconsin, USA.
- Ching, S., Holt, E. M., Kolis, J. W. & Shriver, D. F. (1988). Organometallics, 7, 892–898.
- Ching, S., Sabat, M. & Shriver, D. F. (1989). *Organometallics*, **8**, 1047–1058.
- Crespi, A. M. & Shriver, D. F. (1986). Organometallics, 5, 1750-1752.

- Crespi, A. M., Went, M. J., Sunshine, S. S. & Shriver, D. F. (1988). Organometallics, 7, 214–218.
- Daugherty, N. T., Bacsa, J. & Sadighi, J. P. (2017). Organometallics, **36**, 3171–3174.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Green, I. X., Tang, W., Neurock, M. & Yates, J. T. (2012). J. Am. Chem. Soc. 134, 13569–13572.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gunale, A. S., Jensen, M. P., Phillips, D. A., Stern, C. L. & Shriver, D. F. (1992). *Inorg. Chem.* 31, 2622–2626.
- Jensen, M. P. & Shriver, D. F. (1992). J. Mol. Catal. 74, 73-84.
- Kolis, J. W., Holt, E. M. & Shriver, D. F. (1983). J. Am. Chem. Soc. 105, 7307–7313.
- Ramalakshmi, R., Mondal, B., Bhattacharyya, M., Varghese, B. & Ghosh, S. (2015). J. Organomet. Chem. **798**, 106–111.
- Rossler, M. D., Hartgerink, C. T., Zerull, E. E., Boss, B. L., Frndak, A. K., Mason, M. M., Nickerson, L. A., Romero, E. O., Van de Burg, J. E., Staples, R. J. & Anderson, C. E. (2019). Org. Lett. 21, 5591–5595.
- Sailor, M. J., Brock, C. P. & Shriver, D. F. (1987). J. Am. Chem. Soc. 109, 6015–6022.
- Sailor, M. J. & Shriver, D. F. (1985). Organometallics, 4, 1476-1478.
- Schmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370-412.
- Seyferth, D., Hallgren, J. E. & Eschbach, C. S. (1974). J. Am. Chem. Soc. 96, 1730–1737.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Went, M. J., Sailor, M. J., Bogdan, P. L., Brock, C. P. & Shriver, D. F. (1987). J. Am. Chem. Soc. 109, 6023–6029.

Acta Cryst. (2021). E77, 537-541 [https://doi.org/10.1107/S2056989021003844]

Crystal structure of tris(2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'-bi-phenyl- κP)- μ -oxoethenylidene-*triangulo*-trigold(I) bis(trifluoromethane-sulfonyl)imide

Colin T. Hartgerink, Richard J. Staples and Carolyn E. Anderson

Computing details

Data collection: *COSMO* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 (Dolomanov *et al.*, 2009).

 $\label{eq:linear} Tris (2-dicyclohexylphosphino-2', 6'-dimethoxy-1, 1'-biphenyl-κP$)-$\mu$-oxoethenylidene-$triangulo-trigold(I)$ bis(trifluoromethanesulfonyl)imide$

Crystal data

$[Au_3(C_2O)(C_{26}H_{35}O_2P)_3](C_2F_6NO_4S_2)$
$M_r = 2142.59$
Monoclinic, $P2_1/n$
a = 24.0018 (3) Å
b = 12.4867 (1) Å
c = 28.4299 (3) Å
$\beta = 103.7669 \ (8)^{\circ}$
V = 8275.75 (15) Å ³
Z = 4

Data collection Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8.36 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{min} = 0.321, T_{max} = 0.735$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.120$ S = 1.0115716 reflections F(000) = 4240 $D_x = 1.720 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9988 reflections $\theta = 2.2-70.1^{\circ}$ $\mu = 11.42 \text{ mm}^{-1}$ T = 173 KNeedle, yellow $0.2 \times 0.05 \times 0.03 \text{ mm}$

73587 measured reflections 15716 independent reflections 11064 reflections with $I > 2\sigma(I)$ $R_{int} = 0.110$ $\theta_{max} = 70.1^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -29 \rightarrow 28$ $k = -15 \rightarrow 15$ $l = -34 \rightarrow 34$

979 parameters
0 restraints
Primary atom site location: dual
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 20.5744P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 1.77 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.95 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2. **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2014/6 of XL (Sheldrick, 2008) incorporated in Olex2 (Dolomanov *et al.*, 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.'

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Aul	0.53937 (2)	0.36171 (3)	0.21151 (2)	0.03027 (9)	
Au2	0.54502 (2)	0.30927 (3)	0.32634 (2)	0.03393 (9)	
Au3	0.44934 (2)	0.20237 (3)	0.24086 (2)	0.03374 (9)	
P1	0.59759 (9)	0.34972 (16)	0.15898 (8)	0.0314 (4)	
P2	0.61858 (10)	0.26651 (18)	0.39059 (8)	0.0368 (5)	
P3	0.41808 (10)	0.03219 (17)	0.22248 (8)	0.0364 (5)	
01	0.4258 (3)	0.5067 (5)	0.2643 (2)	0.0507 (16)	
O2	0.5926 (3)	0.6146 (5)	0.2136 (2)	0.0412 (14)	
O3	0.4780 (3)	0.5587 (5)	0.0590(2)	0.0425 (14)	
O4	0.4879 (4)	0.2011 (9)	0.4500 (5)	0.118 (4)	
05	0.5453 (4)	0.5423 (6)	0.4146 (3)	0.071 (2)	
O6	0.2659 (3)	0.1195 (5)	0.2662 (2)	0.0518 (17)	
O7	0.3411 (3)	0.2431 (6)	0.1389 (3)	0.0555 (18)	
C1	0.4875 (3)	0.3511 (6)	0.2611 (3)	0.0274 (16)	
C2	0.4552 (4)	0.4319 (7)	0.2631 (3)	0.038 (2)	
C3	0.6180 (4)	0.4679 (6)	0.1282 (3)	0.0336 (18)	
C4	0.6653 (4)	0.4587 (7)	0.1086 (3)	0.0367 (19)	
H4	0.688034	0.395750	0.115090	0.044*	
C5	0.6808 (4)	0.5367 (7)	0.0801 (3)	0.043 (2)	
H5	0.713897	0.527777	0.067595	0.052*	
C6	0.6482 (4)	0.6270 (8)	0.0698 (3)	0.043 (2)	
H6	0.657838	0.680655	0.049466	0.052*	
C7	0.6006 (4)	0.6402 (7)	0.0894 (3)	0.040 (2)	
H7	0.578703	0.704180	0.082893	0.048*	
C8	0.5845 (3)	0.5616 (6)	0.1184 (3)	0.0330 (18)	
C9	0.5331 (3)	0.5833 (6)	0.1374 (3)	0.0340 (18)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.5377 (4)	0.6131 (6)	0.1857 (3)	0.0339 (18)
C11	0.4892 (4)	0.6375 (7)	0.2022 (3)	0.043 (2)
H11	0.492373	0.655634	0.235195	0.052*
C12	0.4365 (4)	0.6351 (7)	0.1700 (4)	0.046 (2)
H12	0.403331	0.652251	0.181156	0.055*
C13	0.4304 (4)	0.6090 (7)	0.1224 (4)	0.044 (2)
H13	0.393527	0.607929	0.100791	0.053*
C14	0.4790 (4)	0.5838 (6)	0.1060 (3)	0.0366 (19)
C15	0.6001 (5)	0.6310 (8)	0.2644 (4)	0.058 (3)
H15A	0.584512	0.701133	0.270078	0.087*
H15B	0.641006	0.628363	0.280373	0.087*
H15C	0.579768	0.574788	0.277735	0.087*
C16	0.4226 (4)	0.5417 (9)	0.0267 (4)	0.056 (3)
H16A	0.427567	0.514674	-0.004380	0.083*
H16B	0.401483	0.609579	0.021584	0.083*
H16C	0.400999	0.489350	0.040980	0.083*
C17	0.5643 (4)	0.2573 (7)	0.1096 (3)	0.0347 (18)
H17	0.554779	0.190324	0.125365	0.042*
C18	0.6013 (4)	0.2237 (7)	0.0751 (3)	0.044(2)
H18A	0.611749	0.287751	0.058530	0.053*
H18B	0.637162	0.190220	0.093769	0.053*
C19	0.5692 (5)	0.1446 (8)	0.0374 (4)	0.057(3)
H19A	0.593181	0.126978	0.014542	0.068*
H19B	0.562425	0.077565	0.053808	0.068*
C20	0.5121 (5)	0.1897 (9)	0.0094 (4)	0.057 (3)
H20A	0.519205	0.251229	-0.010338	0.068*
H20B	0.491462	0.134176	-0.013001	0.068*
C21	0.4745 (5)	0.2260 (9)	0.0425 (4)	0.057 (3)
H21A	0.462137	0.162899	0.058536	0.069*
H21B	0.439727	0.261723	0.023096	0.069*
C22	0.5074 (4)	0.3038 (7)	0.0810 (4)	0.044(2)
H22A	0.514978	0.370838	0.065036	0.053*
H22B	0.483260	0.321855	0.103709	0.053*
C23	0.6663 (4)	0.2883 (6)	0.1892 (3)	0.0347 (18)
H23	0.687237	0.268777	0.163914	0.042*
C24	0.6562 (4)	0.1845 (6)	0.2160 (3)	0.041(2)
H24A	0.636134	0.202298	0.241689	0.049*
H24B	0.631552	0.134861	0.192923	0.049*
C25	0.7139 (4)	0.1300 (7)	0.2387 (4)	0.046(2)
H25A	0.706969	0.065621	0.256844	0.056*
H25B	0 732180	0 106649	0 212692	0.056*
C26	0.7544(4)	0.2061 (8)	0.2731(3)	0.043(2)
H26A	0.738786	0.220874	0.301645	0.052*
H26B	0.792276	0 171329	0.284525	0.052*
C27	0.7619 (4)	0.3117 (8)	0.2480 (4)	0.048(2)
H27A	0.785333	0.361275	0.271920	0.058*
H27B	0.782679	0.298093	0.222420	0.058*
C28	0 7043 (4)	0 3639 (7)	0 2255 (3)	0.0383 (19)
220		0.0007 (7)	()	

H28A	0.710730	0.430873	0.208902	0.046*
H28B	0.684717	0.382670	0.251365	0.046*
C29	0.6169 (4)	0.3013 (7)	0.4529 (3)	0.040(2)
C30	0.6664 (4)	0.2764 (8)	0.4899 (4)	0.051 (2)
H30	0.696362	0.235542	0.482178	0.061*
C31	0.6715 (5)	0.3106 (9)	0.5367 (4)	0.058 (3)
H31	0.704642	0.293109	0.561268	0.069*
C32	0.6277 (5)	0.3712 (9)	0.5478 (4)	0.060 (3)
H32	0.631325	0.397685	0.579737	0.072*
C33	0.5792 (5)	0.3923 (8)	0.5125 (4)	0.058 (3)
H33	0.549451	0.433181	0.520603	0.069*
C34	0.5723 (4)	0.3561 (8)	0.4655 (4)	0.049(2)
C35	0.5158 (4)	0.3740 (9)	0.4305 (4)	0.052 (3)
C36	0.4742 (5)	0.2971 (11)	0.4246 (5)	0.071 (3)
C37	0.4210 (6)	0.3079 (13)	0.3935 (6)	0.090 (5)
H37	0.393316	0.252199	0.389193	0.108*
C38	0.4098 (5)	0.4049 (13)	0.3686 (5)	0.082 (4)
H38	0.373598	0.414986	0.346543	0.098*
C39	0.4489 (5)	0.4852 (10)	0.3748 (4)	0.061 (3)
H39	0.440122	0.551058	0.357920	0.073*
C40	0.5020 (4)	0.4694 (10)	0.4064 (4)	0.058 (3)
C41	0.4611 (9)	0.1637 (19)	0.4802 (8)	0.178 (11)
H41A	0.454369	0.086915	0.474341	0.268*
H41B	0.424264	0.200710	0.476118	0.268*
H41C	0.484121	0.174786	0.513242	0.268*
C42	0.5349(7)	0.6405 (12)	0.3875 (6)	0.106 (5)
H42A	0.531818	0.625531	0.353136	0.160*
H42B	0.566778	0.690217	0.399398	0.160*
H42C	0.499126	0.672768	0.391507	0.160*
C43	0.6354 (4)	0.1216 (7)	0.3930 (4)	0.043 (2)
H43	0.669434	0.108234	0.420426	0.052*
C44	0.5838 (4)	0.0590(7)	0.4024 (4)	0.045 (2)
H44A	0.575897	0.082988	0.433312	0.054*
H44B	0.549456	0.074185	0.376123	0.054*
C45	0.5956 (5)	-0.0607(8)	0.4046 (4)	0.053 (3)
H45A	0.628158	-0.076379	0.432397	0.064*
H45B	0.561465	-0.099116	0.409858	0.064*
C46	0.6095 (5)	-0.1007 (7)	0.3584 (4)	0.059 (3)
H46A	0.575521	-0.092007	0.331002	0.070*
H46B	0.619145	-0.177892	0.361620	0.070*
C47	0.6599 (5)	-0.0383 (7)	0.3481 (4)	0.055 (3)
H47A	0.667039	-0.062736	0.316940	0.066*
H47B	0.694749	-0.053823	0.373861	0.066*
C48	0.6493 (5)	0.0829 (7)	0.3458 (4)	0.048 (2)
H48A	0.616908	0.099917	0.318028	0.057*
H48B	0.683828	0.120460	0.340921	0.057*
C49	0.6807 (4)	0.3412 (7)	0.3790 (3)	0.042 (2)
H49	0.681878	0.324040	0.344894	0.051*

C50	0.7410 (4)	0.3146 (8)	0.4104 (4)	0.052 (2)
H50A	0.743247	0.334052	0.444534	0.062*
H50B	0.748318	0.236771	0.408944	0.062*
C51	0.7866 (4)	0.3773 (9)	0.3916 (5)	0.061 (3)
H51A	0.825119	0.361399	0.412326	0.073*
H51B	0.786035	0.353851	0.358255	0.073*
C52	0.7760 (4)	0.4959 (8)	0.3918 (4)	0.055 (3)
H52A	0.804607	0.533685	0.377895	0.066*
H52B	0.780626	0.520844	0.425589	0.066*
C53	0.7158 (4)	0.5233 (8)	0.3625 (4)	0.056 (3)
H53A	0.712916	0.506597	0.327995	0.067*
H53B	0.709109	0.601050	0.365162	0.067*
C54	0.6692 (4)	0.4610(7)	0.3799 (4)	0.049(2)
H54A	0.668976	0.483412	0.413288	0.059*
H54B	0.631127	0.477376	0.358665	0.059*
C55	0.3468 (4)	0.0062 (7)	0.1833 (3)	0.0379 (19)
C56	0.3376 (4)	-0.0890 (7)	0.1569 (3)	0.043 (2)
H56	0.368843	-0.136941	0.158874	0.051*
C57	0.2845 (4)	-0.1157(8)	0.1280 (4)	0.048(2)
H57	0.279522	-0.180323	0.109843	0.058*
C58	0.2396 (4)	-0.0482(8)	0.1260 (4)	0.052 (3)
H58	0.202989	-0.065319	0.106163	0.062*
C59	0.2471 (4)	0.0462 (9)	0.1531 (4)	0.051(2)
H59	0.214942	0.090974	0.152273	0.061*
C60	0.2999 (4)	0.0761 (7)	0.1808 (3)	0.038 (2)
C61	0.3043 (4)	0.1850 (7)	0.2036 (3)	0.040 (2)
C62	0.2853 (4)	0.2068 (7)	0.2452 (3)	0.041 (2)
C63	0.2845 (4)	0.3103 (8)	0.2625 (4)	0.052 (2)
H63	0.270172	0.324800	0.290286	0.063*
C64	0.3049 (4)	0.3914 (8)	0.2387 (4)	0.050(2)
H64	0.305709	0.462204	0.251004	0.060*
C65	0.3242 (4)	0.3736(7)	0.1976 (4)	0.051 (2)
Н65	0.337491	0.431394	0.181520	0.061*
C66	0.3239 (4)	0.2710(7)	0.1802 (4)	0.044(2)
C67	0.2525 (6)	0.1374 (10)	0.3121 (4)	0.070 (3)
H67A	0.218638	0.183715	0.307596	0.105*
H67B	0.285073	0.172065	0.334161	0.105*
H67C	0.244473	0.068721	0.325783	0.105*
C68	0.3657 (5)	0.3256 (9)	0.1159 (4)	0.068 (3)
H68A	0.376332	0.296503	0.087230	0.102*
H68B	0.399909	0.353722	0.138478	0.102*
H68C	0.337692	0.383396	0.106079	0.102*
C69	0.4678 (4)	-0.0396(7)	0.1926 (3)	0.041(2)
H69	0.458485	-0.117645	0.192114	0.049*
C70	0.5302 (4)	-0.0252(8)	0.2206 (4)	0.056 (3)
H70A	0.534730	-0.049412	0.254429	0.067*
H70B	0.540854	0.051437	0.221069	0.067*
C71	0.5697 (4)	-0.0910(8)	0.1962 (5)	0.071 (4)

H71A	0.610169	-0.077509	0.213111	0.085*
H71B	0.561906	-0.168218	0.199365	0.085*
C72	0.5613 (5)	-0.0634 (8)	0.1429 (5)	0.071 (4)
H72A	0.576272	0.009536	0.140059	0.085*
H72B	0.583877	-0.113960	0.128011	0.085*
C73	0.4995 (5)	-0.0681 (9)	0.1153 (5)	0.069 (4)
H73A	0.486483	-0.143518	0.112594	0.083*
H73B	0.496094	-0.040098	0.082154	0.083*
C74	0.4611 (4)	-0.0027 (7)	0.1402 (3)	0.048 (2)
H74A	0.420620	-0.010943	0.122242	0.057*
H74B	0.471363	0.074001	0.139774	0.057*
C75	0.4208 (5)	-0.0479 (9)	0.2776 (4)	0.057 (3)
H75	0.462643	-0.061847	0.290921	0.069*
C76	0.3946 (6)	-0.1572 (8)	0.2695 (4)	0.061 (3)
H76A	0.413062	-0.196718	0.247087	0.073*
H76B	0.353463	-0.149391	0.253436	0.073*
C77	0.3998 (8)	-0.2226 (10)	0.3145 (5)	0.100 (5)
H77A	0.375486	-0.287293	0.306663	0.120*
H77B	0.440066	-0.246404	0.326290	0.120*
C78	0.3830 (9)	-0.1643 (11)	0.3516 (6)	0.131 (8)
H78A	0.391791	-0.208200	0.381419	0.157*
H78B	0.340910	-0.154361	0.342031	0.157*
C79	0.4115 (8)	-0.0526 (13)	0.3637 (5)	0.105 (6)
H79A	0.393233	-0.013570	0.386334	0.126*
H79B	0.452864	-0.060859	0.379026	0.126*
C80	0.4034 (10)	0.0097 (10)	0.3158 (5)	0.127 (8)
H80A	0.362459	0.029214	0.304421	0.152*
H80B	0.425722	0.077068	0.322131	0.152*
S1A	0.24408 (13)	0.2219 (2)	0.52100 (11)	0.0607 (7)
S2A	0.24474 (12)	0.0341 (3)	0.46694 (11)	0.0639 (7)
F1A	0.3480 (4)	0.2976 (7)	0.5371 (3)	0.112 (3)
F2A	0.2805 (5)	0.4110 (6)	0.5073 (3)	0.110 (3)
F3A	0.3042 (3)	0.2920 (6)	0.4621 (3)	0.086 (2)
F4A	0.3499 (3)	-0.0314 (6)	0.4807 (3)	0.081 (2)
F5A	0.2957 (4)	-0.0660(7)	0.4113 (3)	0.092 (2)
F6A	0.3264 (4)	0.0971 (6)	0.4288 (3)	0.095 (3)
O1A	0.1904 (4)	0.2535 (8)	0.4885 (4)	0.096 (3)
O2A	0.2535 (5)	0.2361 (7)	0.5724 (3)	0.092 (3)
O3A	0.2090 (4)	0.0861 (8)	0.4249 (3)	0.086 (3)
O4A	0.2313 (4)	-0.0722 (7)	0.4819 (3)	0.085 (3)
N1A	0.2676 (4)	0.1084 (7)	0.5117 (4)	0.065 (3)
C1A	0.2971 (6)	0.3084 (10)	0.5070 (5)	0.068 (3)
C2A	0.3075 (6)	0.0072 (11)	0.4477 (4)	0.073 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Aul	0.03350 (16)	0.02516 (16)	0.03426 (18)	0.00089 (14)	0.01226 (13)	-0.00147 (14)

Au2	0.03692 (18)	0.03095 (17)	0.0360 (2)	0.00151 (15)	0.01285 (14)	-0.00129 (14)
Au3	0.03603 (18)	0.02896 (17)	0.0372 (2)	0.00002 (14)	0.01056 (14)	-0.00228 (14)
P1	0.0365 (10)	0.0263 (9)	0.0337 (11)	0.0014 (9)	0.0129 (9)	-0.0010 (8)
P2	0.0391 (11)	0.0341 (11)	0.0385 (12)	0.0042 (9)	0.0117 (9)	0.0010 (9)
P3	0.0416 (12)	0.0316 (10)	0.0361 (12)	-0.0012 (9)	0.0095 (9)	0.0005 (9)
O1	0.057 (4)	0.045 (4)	0.053 (4)	0.007 (3)	0.017 (3)	0.001 (3)
O2	0.045 (3)	0.041 (3)	0.037 (3)	0.000 (3)	0.006 (3)	-0.005 (3)
O3	0.043 (3)	0.045 (3)	0.038 (4)	0.001 (3)	0.005 (3)	0.001 (3)
O4	0.074 (7)	0.098 (8)	0.201 (13)	-0.002 (6)	0.070 (8)	0.033 (8)
O5	0.078 (6)	0.059 (5)	0.070 (5)	0.008 (4)	0.006 (4)	0.012 (4)
O6	0.064 (4)	0.052 (4)	0.046 (4)	-0.008(3)	0.025 (3)	-0.006 (3)
07	0.061 (4)	0.056 (4)	0.057 (4)	0.002 (4)	0.028 (4)	0.008 (4)
C1	0.027 (4)	0.028 (4)	0.025 (4)	-0.002(3)	0.004 (3)	0.000 (3)
C2	0.040 (5)	0.035 (5)	0.043 (5)	-0.003 (4)	0.017 (4)	0.001 (4)
C3	0.041 (5)	0.027 (4)	0.033 (5)	-0.003 (4)	0.009 (4)	0.000 (3)
C4	0.039 (5)	0.031 (4)	0.041 (5)	0.002 (4)	0.011 (4)	-0.001 (4)
C5	0.043 (5)	0.045 (5)	0.045 (5)	-0.011 (4)	0.017 (4)	0.000 (4)
C6	0.044 (5)	0.048 (5)	0.040 (5)	-0.010 (4)	0.013 (4)	0.003 (4)
C7	0.048 (5)	0.028 (4)	0.041 (5)	-0.003 (4)	0.005 (4)	-0.006 (4)
C8	0.035 (4)	0.030 (4)	0.032 (4)	-0.004 (3)	0.005 (3)	-0.007 (3)
C9	0.033 (4)	0.028 (4)	0.043 (5)	0.005 (3)	0.013 (4)	0.005 (4)
C10	0.044 (5)	0.018 (4)	0.042 (5)	0.002 (3)	0.013 (4)	0.002 (3)
C11	0.058 (6)	0.029 (4)	0.045 (5)	0.008 (4)	0.018 (4)	0.005 (4)
C12	0.046 (5)	0.032 (4)	0.069 (7)	0.009 (4)	0.030 (5)	0.000 (4)
C13	0.034 (5)	0.038 (5)	0.059 (6)	0.003 (4)	0.006 (4)	0.001 (4)
C14	0.040 (5)	0.028 (4)	0.040 (5)	-0.002 (4)	0.006 (4)	0.001 (4)
C15	0.074 (7)	0.050 (6)	0.048 (6)	-0.006 (6)	0.009 (5)	-0.009(5)
C16	0.051 (6)	0.062 (6)	0.050 (6)	-0.004 (5)	0.006 (5)	0.001 (5)
C17	0.044 (5)	0.029 (4)	0.035 (5)	-0.005 (4)	0.017 (4)	-0.003 (4)
C18	0.060 (6)	0.040 (5)	0.039 (5)	0.004 (4)	0.023 (4)	-0.002(4)
C19	0.081 (8)	0.047 (6)	0.047 (6)	-0.005 (6)	0.025 (5)	-0.018 (5)
C20	0.066 (7)	0.055 (6)	0.049 (6)	-0.009 (6)	0.012 (5)	-0.013 (5)
C21	0.055 (6)	0.068 (7)	0.047 (6)	-0.004(5)	0.010 (5)	-0.008(5)
C22	0.037 (5)	0.044 (5)	0.052 (6)	0.000 (4)	0.011 (4)	-0.006 (4)
C23	0.037 (4)	0.027 (4)	0.044 (5)	0.000 (4)	0.018 (4)	0.002 (4)
C24	0.055 (5)	0.026 (4)	0.042 (5)	-0.006 (4)	0.011 (4)	-0.002 (4)
C25	0.045 (5)	0.041 (5)	0.055 (6)	0.011 (4)	0.016 (4)	0.004 (4)
C26	0.036 (5)	0.054 (5)	0.041 (5)	0.006 (4)	0.013 (4)	0.001 (4)
C27	0.036 (5)	0.054 (6)	0.052 (6)	0.001 (4)	0.008 (4)	0.009 (5)
C28	0.040 (5)	0.033 (4)	0.039 (5)	0.001 (4)	0.005 (4)	0.007 (4)
C29	0.045 (5)	0.046 (5)	0.031 (5)	-0.001 (4)	0.010 (4)	0.000 (4)
C30	0.056 (6)	0.053 (6)	0.046 (6)	0.010 (5)	0.019 (5)	-0.007 (5)
C31	0.067 (7)	0.060 (6)	0.048 (6)	0.007 (6)	0.018 (5)	-0.001 (5)
C32	0.075 (8)	0.063 (7)	0.045 (6)	0.009 (6)	0.017 (5)	-0.002 (5)
C33	0.065 (7)	0.057 (6)	0.056 (7)	0.016 (5)	0.024 (5)	-0.007 (5)
C34	0.058 (6)	0.039 (5)	0.054 (6)	0.006 (5)	0.024 (5)	-0.004 (5)
C35	0.051 (6)	0.068 (7)	0.041 (6)	0.018 (5)	0.019 (4)	-0.011 (5)
C36	0.050 (6)	0.074 (8)	0.095 (10)	0.003 (6)	0.031 (6)	-0.007 (7)

C37	0.057 (8)	0.099 (11)	0.121 (13)	-0.007 (8)	0.035 (8)	-0.021 (10)
C38	0.046 (7)	0.124 (12)	0.076 (9)	0.019 (8)	0.017 (6)	-0.031 (9)
C39	0.048 (6)	0.084 (8)	0.055 (7)	0.019 (6)	0.022 (5)	-0.011 (6)
C40	0.044 (6)	0.082 (8)	0.051 (6)	0.011 (6)	0.015 (5)	-0.018 (6)
C41	0.16 (2)	0.23 (3)	0.18 (2)	0.042 (19)	0.101 (19)	0.11 (2)
C42	0.099 (11)	0.094 (11)	0.114 (13)	0.007 (9)	0.001 (10)	0.042 (10)
C43	0.045 (5)	0.029 (4)	0.057 (6)	0.002 (4)	0.015 (4)	-0.001 (4)
C44	0.043 (5)	0.046 (5)	0.048 (6)	0.000 (4)	0.015 (4)	0.002 (4)
C45	0.067 (7)	0.046 (6)	0.049 (6)	-0.006 (5)	0.019 (5)	0.004 (5)
C46	0.083 (8)	0.030 (5)	0.061 (7)	0.000 (5)	0.014 (6)	0.003 (5)
C47	0.077 (7)	0.035 (5)	0.059 (7)	0.004 (5)	0.027 (6)	-0.003 (5)
C48	0.068 (7)	0.032 (5)	0.052 (6)	0.000 (5)	0.030 (5)	0.004 (4)
C49	0.048 (5)	0.040 (5)	0.043 (5)	-0.001 (4)	0.021 (4)	-0.007 (4)
C50	0.039 (5)	0.051 (6)	0.067 (7)	0.006 (5)	0.018 (5)	0.008 (5)
C51	0.037 (5)	0.064 (7)	0.081 (8)	-0.001 (5)	0.013 (5)	0.003 (6)
C52	0.047 (6)	0.055 (6)	0.066 (7)	-0.023 (5)	0.017 (5)	-0.005 (5)
C53	0.058 (6)	0.040 (5)	0.072 (7)	-0.011 (5)	0.019 (5)	-0.007(5)
C54	0.052 (6)	0.036 (5)	0.060(7)	-0.003 (4)	0.016 (5)	0.000 (4)
C55	0.040 (5)	0.036 (5)	0.039 (5)	-0.002(4)	0.012 (4)	0.001 (4)
C56	0.045 (5)	0.036 (5)	0.048 (6)	-0.004 (4)	0.014 (4)	-0.001 (4)
C57	0.047 (5)	0.045 (5)	0.054 (6)	-0.006 (4)	0.016 (5)	-0.007(4)
C58	0.050 (6)	0.062 (6)	0.045 (6)	-0.011 (5)	0.013 (5)	-0.015 (5)
C59	0.036 (5)	0.063 (6)	0.052 (6)	0.004 (5)	0.009 (4)	-0.001(5)
C60	0.043 (5)	0.039 (5)	0.036 (5)	-0.003 (4)	0.018 (4)	0.001 (4)
C61	0.031 (4)	0.047 (5)	0.042 (5)	-0.002 (4)	0.009 (4)	-0.003 (4)
C62	0.033 (4)	0.045 (5)	0.046 (5)	-0.002 (4)	0.013 (4)	-0.001 (4)
C63	0.052 (6)	0.046 (5)	0.061 (7)	0.000 (5)	0.020 (5)	-0.002(5)
C64	0.051 (6)	0.041 (5)	0.056 (6)	0.013 (4)	0.009 (5)	-0.005 (5)
C65	0.043 (5)	0.035 (5)	0.073 (7)	0.004 (4)	0.010 (5)	0.009 (5)
C66	0.040 (5)	0.041 (5)	0.051 (6)	-0.002 (4)	0.014 (4)	0.012 (4)
C67	0.091 (9)	0.073 (8)	0.054 (7)	-0.031 (7)	0.032 (6)	-0.002 (6)
C68	0.081 (8)	0.070 (8)	0.062 (7)	0.005 (6)	0.036 (6)	0.016 (6)
C69	0.043 (5)	0.025 (4)	0.055 (6)	0.005 (4)	0.011 (4)	-0.006(4)
C70	0.040 (5)	0.047 (6)	0.075 (8)	0.008 (5)	0.005 (5)	0.000 (5)
C71	0.042 (6)	0.028 (5)	0.147 (13)	0.004 (4)	0.031 (7)	0.015 (6)
C72	0.083 (9)	0.036 (5)	0.111 (11)	-0.010 (6)	0.059 (8)	-0.026 (6)
C73	0.074 (8)	0.048 (6)	0.099 (10)	-0.021 (6)	0.048 (7)	-0.026 (6)
C74	0.051 (6)	0.043 (5)	0.051 (6)	0.000 (4)	0.015 (5)	-0.006 (4)
C75	0.063 (7)	0.057 (6)	0.049 (6)	-0.012 (5)	0.007 (5)	0.011 (5)
C76	0.095 (9)	0.035 (5)	0.060 (7)	-0.001 (5)	0.033 (6)	0.011 (5)
C77	0.164 (17)	0.055 (8)	0.088 (11)	0.003 (9)	0.045 (11)	0.026 (7)
C78	0.24 (2)	0.061 (9)	0.136 (15)	0.039 (12)	0.134 (17)	0.041 (9)
C79	0.173 (17)	0.110 (12)	0.054 (8)	0.010 (12)	0.068 (10)	0.011 (8)
C80	0.28 (3)	0.047 (7)	0.090 (11)	0.004 (11)	0.108 (14)	0.000(7)
S1A	0.0655 (17)	0.0536 (15)	0.0668 (19)	0.0006 (13)	0.0234 (14)	-0.0011 (13)
S2A	0.0580 (16)	0.0746 (18)	0.0583 (17)	0.0027 (15)	0.0125 (13)	-0.0114 (15)
F1A	0.091 (6)	0.132 (7)	0.092 (6)	-0.038 (5)	-0.019 (5)	0.025 (5)
F2A	0.175 (9)	0.061 (4)	0.113 (7)	-0.006 (5)	0.070 (7)	0.000 (5)

F3A	0.100 (6)	0.092 (5)	0.071 (5)	0.003 (5)	0.032 (4)	0.013 (4)
F4A	0.075 (5)	0.094 (5)	0.070 (5)	0.024 (4)	0.008 (4)	-0.002 (4)
F5A	0.108 (6)	0.103 (6)	0.063 (5)	0.015 (5)	0.018 (4)	-0.026 (4)
F6A	0.114 (7)	0.091 (6)	0.095 (6)	-0.014 (5)	0.055 (5)	0.002 (5)
O1A	0.068 (6)	0.091 (7)	0.125 (9)	0.025 (5)	0.014 (6)	-0.010 (6)
O2A	0.144 (9)	0.073 (6)	0.073 (6)	-0.010 (6)	0.055 (6)	-0.019 (5)
O3A	0.082 (6)	0.110(7)	0.056 (5)	0.033 (5)	-0.005 (4)	-0.008(5)
O4A	0.115 (8)	0.065 (5)	0.086 (6)	-0.025 (5)	0.049 (6)	-0.018 (5)
N1A	0.060 (6)	0.064 (6)	0.068 (6)	-0.004 (5)	0.007 (5)	-0.014 (5)
C1A	0.075 (8)	0.067 (7)	0.060 (8)	-0.001 (7)	0.008 (6)	-0.001 (6)
C2A	0.089 (9)	0.074 (8)	0.048 (7)	0.007 (7)	0.000 (6)	0.004 (6)

Geometric parameters (Å, °)

Au1—Au2	3.3005 (5)	C41—H41B	0.9800
Au1—Au3	3.1909 (5)	C41—H41C	0.9800
Au1—P1	2.280 (2)	C42—H42A	0.9800
Au1—C1	2.094 (8)	C42—H42B	0.9800
Au2—Au3	3.2101 (5)	C42—H42C	0.9800
Au2—P2	2.281 (2)	C43—H43	1.0000
Au2—C1	2.098 (7)	C43—C44	1.539 (12)
Au3—P3	2.273 (2)	C43—C48	1.536 (13)
Au3—C1	2.090 (7)	C44—H44A	0.9900
P1—C3	1.840 (8)	C44—H44B	0.9900
P1—C17	1.846 (8)	C44—C45	1.520 (13)
P1—C23	1.837 (8)	C45—H45A	0.9900
P2—C29	1.833 (9)	C45—H45B	0.9900
P2—C43	1.852 (8)	C45—C46	1.516 (14)
P2—C49	1.853 (9)	C46—H46A	0.9900
P3—C55	1.835 (9)	C46—H46B	0.9900
P3—C69	1.854 (9)	C46—C47	1.526 (14)
P3—C75	1.847 (10)	C47—H47A	0.9900
O1—C2	1.176 (10)	C47—H47B	0.9900
O2—C10	1.366 (10)	C47—C48	1.534 (12)
O2—C15	1.427 (11)	C48—H48A	0.9900
O3—C14	1.368 (10)	C48—H48B	0.9900
O3—C16	1.441 (11)	C49—H49	1.0000
O4—C36	1.397 (16)	C49—C50	1.546 (13)
O4—C41	1.278 (18)	C49—C54	1.523 (12)
O5—C40	1.360 (13)	C50—H50A	0.9900
O5—C42	1.438 (14)	C50—H50B	0.9900
O6—C62	1.376 (11)	C50—C51	1.541 (14)
O6—C67	1.432 (12)	C51—H51A	0.9900
O7—C66	1.378 (11)	C51—H51B	0.9900
O7—C68	1.422 (12)	C51—C52	1.503 (14)
C1—C2	1.282 (12)	C52—H52A	0.9900
С3—С4	1.385 (11)	C52—H52B	0.9900
С3—С8	1.409 (11)	C52—C53	1.524 (14)

C4—H4	0.9500	С53—Н53А	0.9900
C4—C5	1.373 (12)	С53—Н53В	0.9900
С5—Н5	0.9500	C53—C54	1.537 (13)
C5—C6	1.364 (13)	С54—Н54А	0.9900
С6—Н6	0.9500	C54—H54B	0.9900
C6—C7	1.394 (12)	C55—C56	1.395 (12)
С7—Н7	0.9500	C55—C60	1.412 (12)
C7—C8	1.394 (12)	С56—Н56	0.9500
C8—C9	1.486 (11)	C56—C57	1.383 (13)
C9—C10	1.401 (12)	С57—Н57	0.9500
C9—C14	1.389 (11)	С57—С58	1.359 (14)
C10—C11	1.390 (12)	С58—Н58	0.9500
C11—H11	0.9500	C58—C59	1.395 (14)
C11—C12	1.374 (13)	С59—Н59	0.9500
С12—Н12	0.9500	C59—C60	1.375 (12)
C12—C13	1.365 (13)	C60—C61	1.499 (12)
С13—Н13	0.9500	C61—C62	1.390 (12)
C13—C14	1.390 (12)	C61—C66	1.404 (12)
C15—H15A	0.9800	C62—C63	1.386 (13)
С15—Н15В	0.9800	C63—H63	0.9500
С15—Н15С	0.9800	C63—C64	1.372 (14)
C16—H16A	0.9800	C64—H64	0.9500
С16—Н16В	0.9800	C64—C65	1.372 (14)
C16—H16C	0.9800	С65—Н65	0.9500
С17—Н17	1.0000	C65—C66	1.374 (13)
C17—C18	1.533 (11)	C67—H67A	0.9800
C17—C22	1.527 (12)	C67—H67B	0.9800
C18—H18A	0.9900	C67—H67C	0.9800
C18—H18B	0.9900	C68—H68A	0.9800
C18 - C19	1 523 (13)	C68—H68B	0.9800
C19—H19A	0.9900	C68—H68C	0.9800
C19—H19B	0.9900	C69—H69	1 0000
C19 $C20$	1.522 (15)	C69—C70	1.529 (12)
C20—H20A	0.9900	C69—C74	1.529(12) 1.530(13)
C20—H20B	0.9900	C70—H70A	0.9900
C_{20} C_{21}	1 520 (14)	C70—H70B	0.9900
C21—H21A	0.9900	C70—C71	1 539 (14)
C21—H21B	0.9900	C71—H71A	0.9900
C_{21} C_{22}	1 535 (13)	C71 - H71B	0.9900
C22—H22A	0.9900	C71 - C72	1.520(17)
C22—H22B	0.9900	C72 - H72A	0.9900
C23—H23	1 0000	C72 H72R	0.9900
C_{23} C_{24}	1.551 (11)	C72 - C73	1.504(17)
C23—C28	1 531 (11)	С73—Н73А	0.9900
C24—H24A	0.9900	C73—H73B	0.9900
C24—H24B	0.9900	C73—C74	1 524 (13)
$C_{24} = 112 + D$ $C_{24} = C_{25}$	1 541 (12)	C74_H74A	0 0000
$C_{24} = C_{25}$	0.0000	C74 H74B	0.0000
$C_{LJ} = \Pi_{LJ} \Pi$	0.7700		0.7700

C25—H25B	0.9900	С75—Н75	1.0000
C25—C26	1.533 (13)	C75—C76	1.497 (14)
C26—H26A	0.9900	C75—C80	1.444 (16)
C26—H26B	0.9900	С76—Н76А	0.9900
C26—C27	1.529 (13)	С76—Н76В	0.9900
C27—H27A	0.9900	C76—C77	1.498 (15)
С27—Н27В	0.9900	С77—Н77А	0.9900
C27—C28	1.524 (11)	С77—Н77В	0.9900
C28—H28A	0.9900	С77—С78	1.416 (19)
C28—H28B	0.9900	C78—H78A	0.9900
C29—C30	1.421 (13)	C78—H78B	0.9900
C29—C34	1.389 (13)	C78—C79	1.56 (2)
С30—Н30	0.9500	С79—Н79А	0.9900
C30—C31	1.376 (14)	С79—Н79В	0.9900
C31—H31	0.9500	C79—C80	1.539 (18)
$C_{31} - C_{32}$	1.391 (14)	C80—H80A	0.9900
C32—H32	0.9500	C80—H80B	0.9900
C_{32} C_{33}	1 368 (15)	SIA-OIA	1 450 (9)
C33—H33	0.9500	SIA-02A	1.136(9) 1 436(9)
C_{33} C_{34}	1 383 (14)	SIA-NIA	1.130(9) 1.570(10)
C_{34} C_{35}	1 496 (14)	SIA-CIA	1.370(10) 1 784(13)
$C_{35} = C_{36}$	1 366 (16)	S2A-O3A	1 448 (8)
$C_{35} - C_{40}$	1 376 (16)	S2A-04A	1 453 (9)
$C_{36} - C_{37}$	1 376 (18)	S2A—N1A	1.566 (9)
C37—H37	0.9500	S2A—C2A	1.255(3)
C37 - C38	140(2)	F1A—C1A	1.721(14)
C38—H38	0.9500	F2A—C1A	1.321(11) 1 342(14)
C_{38} C_{39}	1 356 (17)	F3A—C1A	1.346(14)
C39—H39	0.9500	F4A—C2A	1.301(13)
C_{39} C_{40}	1 386 (14)	F5A—C2A	1.360(14)
C41—H41A	0.9800	F6A—C2A	1 368 (14)
	0.9000		1.500 (11)
Au3—Au1—Au2	59.247 (11)	P2—C43—H43	108.8
P1—Au1—Au2	138.37 (5)	C44—C43—P2	109.0 (6)
P1—Au1—Au3	133.55 (5)	C44—C43—H43	108.8
C1—Au1—Au2	38.1 (2)	C48—C43—P2	111.4 (6)
C1—Au1—Au3	40.3 (2)	C48—C43—H43	108.8
C1—Au1—P1	172.5 (2)	C48—C43—C44	110.0 (8)
Au3—Au2—Au1	58.675 (11)	C43—C44—H44A	109.4
P2—Au2—Au1	132.86 (6)	C43—C44—H44B	109.4
P2—Au2—Au3	141.89 (6)	H44A—C44—H44B	108.0
C1—Au2—Au1	38.0 (2)	C45—C44—C43	111.0 (8)
C1—Au2—Au3	39.9 (2)	C45—C44—H44A	109.4
C1—Au2—P2	170.9 (2)	C45—C44—H44B	109.4
Au1—Au3—Au2	62.077 (11)	C44—C45—H45A	109.4
P3—Au3—Au1	136.88 (6)	C44—C45—H45B	109.4
P3—Au3—Au2	134.46 (6)	H45A—C45—H45B	108.0
C1—Au3—Au1	40.3 (2)	C46—C45—C44	111.4 (8)

C1—Au3—Au2	40.1 (2)	C46—C45—H45A	109.4
C1— $Au3$ — $P3$	173.3 (2)	C46—C45—H45B	109.4
C3 - P1 - Au1	1722(3)	C45—C46—H46A	109.6
$C_3 = P_1 = C_1 T_1$	104.8(4)	C45-C46-H46B	109.6
C17 - P1 - Au1	1085(3)	$C_{45} - C_{46} - C_{47}$	109.0 110.2(9)
C_{23} P_{1} Δu_{1}	1101(3)	H46A - C46 - H46B	108.1
C_{23} P_1 C_3	104.3(4)	C47 $C46$ $H46A$	100.1
$C_{23} = 1 = C_{17}$	104.3(4)	C47 = C46 = H46R	109.0
$C_{23} = 1 = C_{17}$	103.8(4) 121.8(3)	$C_{47} = C_{40} = 1140B$	109.0
$C_{29} = 12 = Au_2$	121.0(3)	C46 = C47 = H47R	109.1
$C_{29} = P_2 = C_{43}$	104.3(4)	C40 - C47 - H47B	109.1
$C_{29} = P_2 = C_{49}$	104.8 (4)	(46-(4)-(48))	112.4 (9)
C43—P2—Au2	112.2 (3)	H4/A - C4/-H4/B	107.9
C43—P2—C49	108.7 (4)	C48 - C47 - H47A	109.1
C49—P2—Au2	104.0 (3)	C48—C47—H47B	109.1
C55—P3—Au3	121.0 (3)	C43—C48—H48A	109.7
C55—P3—C69	104.2 (4)	C43—C48—H48B	109.7
C55—P3—C75	105.0 (4)	C47—C48—C43	109.9 (8)
C69—P3—Au3	110.1 (3)	C47—C48—H48A	109.7
C75—P3—Au3	111.6 (4)	C47—C48—H48B	109.7
C75—P3—C69	103.4 (5)	H48A—C48—H48B	108.2
C10—O2—C15	117.5 (7)	P2—C49—H49	105.9
C14—O3—C16	117.1 (7)	C50—C49—P2	118.2 (7)
C41—O4—C36	124.5 (14)	С50—С49—Н49	105.9
C40—O5—C42	116.7 (10)	C54—C49—P2	109.6 (6)
C62—O6—C67	116.4 (8)	С54—С49—Н49	105.9
C66—O7—C68	116.7 (8)	C54—C49—C50	110.5 (8)
Au1—C1—Au2	103.9 (3)	С49—С50—Н50А	109.7
Au3—C1—Au1	99.4 (3)	C49—C50—H50B	109.7
Au3—C1—Au2	100.1 (3)	H50A—C50—H50B	108.2
C2-C1-Au1	116.3 (6)	C51-C50-C49	109.7 (8)
$C_2 - C_1 - A_{11}^2$	115.6 (6)	C51—C50—H50A	109.7
$C_2 = C_1 = A_{113}$	118.8 (6)	$C_{51} = C_{50} = H_{50R}$	109.7
01-C2-C1	178.9 (10)	C_{50} C_{50} C_{51} C_{50} C_{51} C	109.4
C_{4} C_{3} P_{1}	117.5 (6)	C50-C51-H51R	109.4
$C_4 = C_3 = C_8$	117.3(0) 118.2(8)	$H_{51A} = C_{51} = H_{51B}$	109.4
$C_{4}^{8} = C_{3}^{2} = C_{3}^{1}$	110.2(0) 122.8(6)	$C_{52} C_{51} C_{50}$	100.0
$C_{0} = C_{0} = C_{0}$	123.8 (0)	$C_{52} = C_{51} = C_{50}$	111.4 (9)
C_{5} C_{4} C_{2}	110.0	C52—C51—H51R	109.4
C_{3}	122.9 (8)	C52—C51—H51B	109.4
C3-C4-H4	118.0	C51—C52—H52A	109.4
C4—C5—H5	120.4	C51—C52—H52B	109.4
C6—C5—C4	119.3 (9)	C51—C52—C53	111.0 (8)
С6—С5—Н5	120.4	H52A—C52—H52B	108.0
С5—С6—Н6	120.1	C53—C52—H52A	109.4
C5—C6—C7	119.7 (9)	C53—C52—H52B	109.4
С7—С6—Н6	120.1	С52—С53—Н53А	109.2
С6—С7—Н7	119.3	С52—С53—Н53В	109.2
C8—C7—C6	121.4 (8)	C52—C53—C54	112.2 (9)
С8—С7—Н7	119.3	H53A—C53—H53B	107.9

C3—C8—C9	124.3 (8)	С54—С53—Н53А	109.2
C7—C8—C3	118.5 (8)	С54—С53—Н53В	109.2
C7—C8—C9	117.2 (7)	C49—C54—C53	110.1 (8)
C10—C9—C8	121.7 (8)	C49—C54—H54A	109.6
C14—C9—C8	119.9 (8)	C49—C54—H54B	109.6
C14—C9—C10	118.2 (8)	С53—С54—Н54А	109.6
O2—C10—C9	114.5 (7)	С53—С54—Н54В	109.6
O2—C10—C11	124.8 (8)	H54A—C54—H54B	108.2
С11—С10—С9	120.7 (8)	C56—C55—P3	118.8 (7)
C10—C11—H11	120.6	C56—C55—C60	118.6 (8)
C12—C11—C10	118.9 (9)	C60—C55—P3	122.5 (7)
C12—C11—H11	120.6	C55—C56—H56	119.0
С11—С12—Н12	119.0	C57—C56—C55	122.0 (9)
C13 - C12 - C11	122.1 (9)	C57—C56—H56	119.0
C13—C12—H12	119.0	C56—C57—H57	120.5
C12—C13—H13	120.5	C58—C57—C56	119.0 (9)
C12-C13-C14	119.0 (9)	С58—С57—Н57	120.5
C14—C13—H13	120.5	C57—C58—H58	119.9
03-C14-C9	115.0 (8)	C57 - C58 - C59	120 3 (9)
03-C14-C13	123.9 (8)	C59-C58-H58	119.9
C9-C14-C13	121.1 (8)	C58-C59-H59	119.1
02—C15—H15A	109 5	C60 - C59 - C58	1217(9)
02-C15-H15B	109.5	C60—C59—H59	119.1
Ω^2 —C15—H15C	109.5	$C_{55} - C_{60} - C_{61}$	124 5 (8)
H15A—C15—H15B	109.5	C59 - C60 - C55	118.3 (9)
H15A - C15 - H15C	109.5	C_{59} C_{60} C_{61}	117.0 (8)
H15B-C15-H15C	109.5	C62 - C61 - C60	122.8 (8)
O3—C16—H16A	109.5	C62-C61-C66	118.0 (9)
03—C16—H16B	109.5	C_{66} C_{61} C_{60}	119.0(8)
03-C16-H16C	109.5	O6—C62—C61	115.3 (8)
H16A—C16—H16B	109.5	Q6—C62—C63	123.3 (8)
H16A—C16—H16C	109.5	C63 - C62 - C61	121.4 (9)
H16B—C16—H16C	109.5	C62—C63—H63	120.8
P1—C17—H17	106.6	C64-C63-C62	118.4(10)
C18—C17—P1	116.5 (6)	C64—C63—H63	120.8
C18—C17—H17	106.6	C63—C64—H64	118.9
C22—C17—P1	109.7 (6)	C65 - C64 - C63	122.2 (9)
C22—C17—H17	106.6	C65 - C64 - H64	118.9
C_{22} C_{17} C_{18}	110.1 (7)	C64—C65—H65	120.5
C17—C18—H18A	109.5	C64—C65—C66	119.0 (9)
C17—C18—H18B	109.5	C66—C65—H65	120.5
H18A—C18—H18B	108.1	07—C66—C61	114.4 (8)
C19 - C18 - C17	110.8 (8)	$C_{65} - C_{66} - O_{7}$	124.5 (9)
C19—C18—H18A	109.5	C65—C66—C61	121.0 (9)
C19—C18—H18B	109.5	O6—C67—H67A	109.5
C18—C19—H19A	109.3	O6—C67—H67B	109.5
C18—C19—H19B	109.3	O6—C67—H67C	109.5
H19A—C19—H19B	107.9	Н67А—С67—Н67В	109.5

C20—C19—C18	111.7 (8)	Н67А—С67—Н67С	109.5
С20—С19—Н19А	109.3	Н67В—С67—Н67С	109.5
C20—C19—H19B	109.3	O7—C68—H68A	109.5
C19—C20—H20A	109.1	O7—C68—H68B	109.5
C19—C20—H20B	109.1	O7—C68—H68C	109.5
H20A—C20—H20B	107.9	H68A—C68—H68B	109.5
C21—C20—C19	112.3 (9)	H68A—C68—H68C	109.5
C21—C20—H20A	109.1	H68B—C68—H68C	109.5
C21—C20—H20B	109.1	Р3—С69—Н69	108.0
C20—C21—H21A	109.6	C70—C69—P3	111.2 (7)
C20—C21—H21B	109.6	С70—С69—Н69	108.0
C20—C21—C22	110.5 (8)	C70—C69—C74	109.6 (8)
H21A—C21—H21B	108.1	C74—C69—P3	111.8 (6)
C22—C21—H21A	109.6	С74—С69—Н69	108.0
C22—C21—H21B	109.6	С69—С70—Н70А	109.8
C17—C22—C21	112.5 (8)	С69—С70—Н70В	109.8
C17—C22—H22A	109.1	C69—C70—C71	109.6 (9)
C17—C22—H22B	109.1	H70A—C70—H70B	108.2
C21—C22—H22A	109.1	С71—С70—Н70А	109.8
C21—C22—H22B	109.1	С71—С70—Н70В	109.8
H22A—C22—H22B	107.8	С70—С71—Н71А	109.2
P1—C23—H23	108.3	С70—С71—Н71В	109.2
C24—C23—P1	110.5 (6)	H71A—C71—H71B	107.9
C24—C23—H23	108.3	C72—C71—C70	112.2 (9)
C28—C23—P1	112.5 (5)	С72—С71—Н71А	109.2
С28—С23—Н23	108.3	С72—С71—Н71В	109.2
C28—C23—C24	108.8 (7)	С71—С72—Н72А	109.0
C23—C24—H24A	109.6	С71—С72—Н72В	109.0
C23—C24—H24B	109.6	H72A—C72—H72B	107.8
H24A—C24—H24B	108.1	C73—C72—C71	113.1 (10)
C25—C24—C23	110.1 (7)	С73—С72—Н72А	109.0
C25—C24—H24A	109.6	С73—С72—Н72В	109.0
C25—C24—H24B	109.6	С72—С73—Н73А	109.3
C24—C25—H25A	109.4	С72—С73—Н73В	109.3
С24—С25—Н25В	109.4	C72—C73—C74	111.5 (9)
H25A—C25—H25B	108.0	Н73А—С73—Н73В	108.0
C26—C25—C24	111.3 (7)	С74—С73—Н73А	109.3
C26—C25—H25A	109.4	С74—С73—Н73В	109.3
С26—С25—Н25В	109.4	С69—С74—Н74А	109.5
C25—C26—H26A	109.3	С69—С74—Н74В	109.5
С25—С26—Н26В	109.3	C73—C74—C69	110.8 (9)
H26A—C26—H26B	108.0	С73—С74—Н74А	109.5
C27—C26—C25	111.4 (8)	С73—С74—Н74В	109.5
C27—C26—H26A	109.3	H74A—C74—H74B	108.1
C27—C26—H26B	109.3	Р3—С75—Н75	104.2
	100.2	C76_C75_P3	1157(8)
C26—C27—H27A	109.5	0/0-0/5-15	115.7(0)
С26—С27—Н27А С26—С27—Н27В	109.3	C76—C75—H75	104.2

C28—C27—C26	111.7 (7)	С80—С75—Н75	104.2
С28—С27—Н27А	109.3	C80—C75—C76	112.5 (11)
C28—C27—H27B	109.3	С75—С76—Н76А	108.6
C23—C28—H28A	109.5	С75—С76—Н76В	108.6
C23—C28—H28B	109.5	C75—C76—C77	114.8 (11)
C27—C28—C23	110.7 (7)	H76A—C76—H76B	107.5
C27—C28—H28A	109.5	С77—С76—Н76А	108.6
C27—C28—H28B	109.5	С77—С76—Н76В	108.6
H28A—C28—H28B	108.1	С76—С77—Н77А	109.2
C30—C29—P2	117.2 (7)	С76—С77—Н77В	109.2
C34—C29—P2	124.2 (7)	H77A—C77—H77B	107.9
C34—C29—C30	118.4 (9)	C78—C77—C76	112.0 (12)
С29—С30—Н30	119.5	С78—С77—Н77А	109.2
C31—C30—C29	121.1 (10)	С78—С77—Н77В	109.2
С31—С30—Н30	119.5	С77—С78—Н78А	108.3
C30—C31—H31	120.4	C77—C78—H78B	108.3
C30—C31—C32	119.3 (11)	C77—C78—C79	115.9 (13)
C32—C31—H31	120.4	H78A—C78—H78B	107.4
C31—C32—H32	120.2	C79—C78—H78A	108.3
C_{33} C_{32} C_{31}	119.7 (10)	C79—C78—H78B	108.3
C33—C32—H32	120.2	C78—C79—H79A	110.2
C32—C33—H33	118.9	C78—C79—H79B	110.2
C32—C33—C34	122.1 (10)	H79A—C79—H79B	108.5
С34—С33—Н33	118.9	C80—C79—C78	107.5 (13)
C_{29} C_{34} C_{35}	122.3 (9)	C80—C79—H79A	110.2
C33—C34—C29	119.2 (10)	C80—C79—H79B	110.2
C33—C34—C35	118.5 (9)	C75—C80—C79	114.5 (12)
C36—C35—C34	119.7 (11)	C75—C80—H80A	108.6
C36—C35—C40	117.7 (11)	С75—С80—Н80В	108.6
C40—C35—C34	122.3 (10)	С79—С80—Н80А	108.6
C35—C36—O4	117.6 (12)	С79—С80—Н80В	108.6
C35—C36—C37	123.3 (14)	H80A—C80—H80B	107.6
C37—C36—O4	119.0 (13)	01A—\$1A—N1A	116.1 (6)
С36—С37—Н37	121.7	O1A—S1A—C1A	105.4 (6)
C36—C37—C38	116.7 (14)	02A—S1A—01A	121.1 (6)
С38—С37—Н37	121.7	O2A—S1A—N1A	107.9 (6)
С37—С38—Н38	119.0	O2A—S1A—C1A	101.7 (6)
C39—C38—C37	122.0 (13)	N1A—S1A—C1A	101.8 (6)
С39—С38—Н38	119.0	O3A—S2A—O4A	121.5 (6)
С38—С39—Н39	120.6	O3A—S2A—N1A	115.4 (6)
C38—C39—C40	118.7 (13)	O3A—S2A—C2A	102.3 (6)
С40—С39—Н39	120.6	O4A—S2A—N1A	111.2 (5)
O5—C40—C35	114.2 (10)	O4A—S2A—C2A	100.6 (6)
O5—C40—C39	124.3 (12)	N1A—S2A—C2A	101.8 (6)
C35—C40—C39	121.4 (12)	S2A—N1A—S1A	126.9 (7)
O4—C41—H41A	109.5	F1A—C1A—S1A	113.1 (9)
O4—C41—H41B	109.5	F1A—C1A—F2A	108.9 (11)
O4—C41—H41C	109.5	F1A—C1A—F3A	106.9 (11)
			. /

H41A—C41—H41B	109.5	F2A—C1A—S1A	110.4 (9)
H41A—C41—H41C	109.5	F2A—C1A—F3A	104.9 (10)
H41B—C41—H41C	109.5	F3A—C1A—S1A	112.2 (9)
O5—C42—H42A	109.5	F4A—C2A—S2A	115.4 (9)
O5—C42—H42B	109.5	F4A—C2A—F5A	106.6 (11)
O5-C42-H42C	109.5	F4A—C2A—F6A	108.2(12)
H42A—C42—H42B	109.5	F5A—C2A—S2A	109.1 (9)
H42A - C42 - H42C	109.5	F5A-C2A-F6A	106.3(10)
H42B-C42-H42C	109.5	F6A - C2A - S2A	110.8 (9)
11120 012 11120	107.5		110.0 ())
$A_{11} = P_1 = C_3 = C_4$	161.8 (5)	C34 - C35 - C40 - 05	4 4 (14)
Au1 P1 C3 C4	-26.2(8)	$C_{34} = C_{35} = C_{40} = C_{39}$	-178.6(9)
$A_{\rm H}1$ P1 C17 C18	-170.1.(6)	$C_{35}^{35} = C_{36}^{36} = C_{37}^{37} = C_{38}^{38}$	-2(2)
Au1 P1 C17 C22	170.1(0)	$C_{36} = C_{35} = C_{37} = C_{38}$	$\frac{2}{179} \frac{2}{2} \frac{10}{10}$
Au1 $-1 - C17 - C22$	03.9 (0) 48 8 (6)	$C_{30} = C_{35} = C_{40} = C_{30}$	-2.8(16)
Au1 $-F1-C23-C24$	40.0(0)	$C_{30} = C_{33} = C_{40} = C_{39}$	-3.8(10)
Au1 - P1 - C23 - C28	-73.0(6)	$C_{30} = C_{37} = C_{38} = C_{39}$	-1(2)
$Au_2 - P_2 - C_2 - C_3 0$	-1/6.5(6)	$C_3/-C_{38}-C_{39}-C_{40}$	1.1 (18)
Au2—P2—C29—C34	-0.7 (10)	$C_{38} - C_{39} - C_{40} - O_{5}$	177.9 (10)
Au2—P2—C43—C44	-65.2 (7)	C38—C39—C40—C35	1.2 (16)
Au2—P2—C43—C48	56.4 (7)	C40—C35—C36—O4	-178.5 (11)
Au2—P2—C49—C50	-168.7 (7)	C40—C35—C36—C37	4.4 (18)
Au2—P2—C49—C54	63.7 (7)	C41—O4—C36—C35	122 (2)
Au3—P3—C55—C56	153.7 (6)	C41—O4—C36—C37	-61 (3)
Au3—P3—C55—C60	-29.8 (9)	C42—O5—C40—C35	175.4 (11)
Au3—P3—C69—C70	48.3 (7)	C42—O5—C40—C39	-1.5 (17)
Au3—P3—C69—C74	-74.5 (7)	C43—P2—C29—C30	55.1 (8)
Au3—P3—C75—C76	173.0 (8)	C43—P2—C29—C34	-129.1 (8)
Au3—P3—C75—C80	39.9 (13)	C43—P2—C49—C50	-48.9 (8)
P1—C3—C4—C5	172.4 (7)	C43—P2—C49—C54	-176.6 (7)
P1—C3—C8—C7	-171.8 (6)	C43—C44—C45—C46	-57.7 (12)
P1—C3—C8—C9	8.8 (12)	C44—C43—C48—C47	-56.1 (11)
P1-C17-C18-C19	178.0 (7)	C44—C45—C46—C47	55.9 (12)
P1—C17—C22—C21	-174.4 (7)	C45—C46—C47—C48	-55.7 (12)
P1—C23—C24—C25	176.7 (6)	C46—C47—C48—C43	56.2 (12)
P1-C23-C28-C27	-177.4 (6)	C48—C43—C44—C45	57.5 (10)
P2-C29-C30-C31	172.5 (8)	C49—P2—C29—C30	-59.2(8)
P_{2} C_{29} C_{34} C_{33}	-170.3(8)	C49 - P2 - C29 - C34	116.6 (9)
$P_{2}^{2} = C_{2}^{2} = C_{3}^{2} + C_{3}^{2}$	170.3(0)	C49 P2 C43 C44	-179.7(6)
$P_{2}^{-}C_{43}^{-}C_{44}^{-}C_{45}^{-}$	12.0(11) 180.0(7)	C49 P2 C43 C48	-581(8)
P_{2} C43 C48 C47	-1771(7)	C49 - C50 - C51 - C52	57 7 (12)
$P_2 = C_{49} = C_{50} = C_{51}$	177.1(7)	$C_{49} = C_{50} = C_{51} = C_{52}$	57.0 (11)
$P_2 = C_{49} = C_{50} = C_{51}$	-1711(7)	C_{50} C_{51} C_{52} C_{53}	-55.9(13)
$P_{2} = C_{4} = C_{54} = C_{55}$	171.1(7)	$C_{50} = C_{51} = C_{52} = C_{53}$	55.9(13)
$P_{3} = C_{55} = C_{50} = C_{57} = C_$	-175 A (7)	$C_{51} - C_{52} - C_{53} - C_{54}$	-55.0(12)
$P_{2} = C_{2} = C_{2$	-1/3.4(/)	C_{32} C_{33} C_{34} C_{49} C_{54} C_{50} C_{51}	-33.3(11)
r_{3} — c_{33} — c_{00} — c_{01}	9.0 (12)	$C_{34} - C_{49} - C_{50} - C_{51}$	-38.2(11)
r_{3} — C_{0} — C_{0} — C_{1}	1/0.8 (/)	C_{33} P_{3} C_{09} C_{10}	1/9.4 (/)
P3-C69-C/4-C/3	-176.1 (7)	C55—P3—C69—C/4	56.6 (7)
РЗ—С75—С76—С77	177.2 (10)	C55—P3—C75—C76	40.3 (10)

P3-C75-C80-C79	-174.0 (12)	C55—P3—C75—C80	-92.8 (12)
O2-C10-C11-C12	178.6 (8)	C55—C56—C57—C58	-1.3 (15)
O4—C36—C37—C38	-179.3 (12)	C55—C60—C61—C62	-105.9 (11)
O6—C62—C63—C64	180.0 (9)	C55—C60—C61—C66	79.5 (12)
C3—P1—C17—C18	57.9 (7)	C56—C55—C60—C59	1.1 (13)
C3—P1—C17—C22	-68.1 (7)	C56—C55—C60—C61	-174.5 (8)
C3—P1—C23—C24	-178.5 (6)	C56—C57—C58—C59	-0.4 (15)
C3—P1—C23—C28	59.7 (7)	C57—C58—C59—C60	2.6 (16)
C3—C4—C5—C6	-0.8 (14)	C58—C59—C60—C55	-2.9(15)
C3—C8—C9—C10	75.4 (11)	C58—C59—C60—C61	173.0 (9)
C3—C8—C9—C14	-110.5 (10)	C59—C60—C61—C62	78.5 (12)
C4—C3—C8—C7	0.2 (12)	C59—C60—C61—C66	-96.1 (10)
C4—C3—C8—C9	-179.2(8)	C60—C55—C56—C57	1.0 (14)
C4—C5—C6—C7	1.7 (14)	C60—C61—C62—O6	4.7 (13)
C5—C6—C7—C8	-1.7 (13)	C60—C61—C62—C63	-173.3 (9)
C6—C7—C8—C3	0.7 (12)	C60—C61—C66—O7	-4.1 (12)
C6-C7-C8-C9	-179.8(8)	C60—C61—C66—C65	174.6 (9)
C7—C8—C9—C10	-104.1(9)	C61 - C62 - C63 - C64	-2.2(15)
C7-C8-C9-C14	70.1 (10)	C62-C61-C66-O7	-178.9(8)
C8-C3-C4-C5	-0.2(13)	C62 - C61 - C66 - C65	-0.3(14)
C8-C9-C10-O2	-3.3(11)	C62 - C63 - C64 - C65	2.1 (15)
C8-C9-C10-C11	177.1 (7)	C63—C64—C65—C66	-1.1(15)
C8-C9-C14-O3	2.8 (11)	C64—C65—C66—O7	178.6 (9)
C8-C9-C14-C13	-176.9(8)	C64—C65—C66—C61	0.1 (14)
C9-C10-C11-C12	-1.9(12)	C_{66} — C_{61} — C_{62} — O_{6}	179.3 (8)
C10-C9-C14-O3	177.1 (7)	C66-C61-C62-C63	1.3 (14)
C10-C9-C14-C13	-2.5(12)	C67—O6—C62—C61	172.9 (9)
C10—C11—C12—C13	0.3 (14)	C67—O6—C62—C63	-9.2(14)
C11—C12—C13—C14	0.1 (14)	C68—O7—C66—C61	-175.1 (9)
C12—C13—C14—O3	-178.5 (8)	C68—O7—C66—C65	6.3 (14)
C12—C13—C14—C9	1.1 (13)	C69—P3—C55—C56	29.3 (8)
C14-C9-C10-O2	-177.5(7)	C69 - P3 - C55 - C60	-154.2(7)
C14—C9—C10—C11	2.9 (12)	C69—P3—C75—C76	-68.7(10)
C15—O2—C10—C9	-172.4 (7)	C69—P3—C75—C80	158.2 (12)
C15—O2—C10—C11	7.2 (12)	C69—C70—C71—C72	55.0 (12)
C16—O3—C14—C9	170.5 (8)	C70—C69—C74—C73	60.1 (10)
C16—O3—C14—C13	-9.8 (12)	C70—C71—C72—C73	-51.6 (12)
C17—P1—C3—C4	-74.6 (7)	C71—C72—C73—C74	51.4 (12)
C17—P1—C3—C8	97.4 (7)	C72—C73—C74—C69	-55.8 (12)
C17—P1—C23—C24	-68.2 (7)	C74—C69—C70—C71	-59.1 (10)
C17—P1—C23—C28	170.0 (6)	C75—P3—C55—C56	-79.1 (8)
C17—C18—C19—C20	56.0 (11)	C75—P3—C55—C60	97.4 (8)
C18—C17—C22—C21	56.1 (10)	C75—P3—C69—C70	-71.0(8)
C18—C19—C20—C21	-54.9 (12)	C75—P3—C69—C74	166.2 (7)
C19—C20—C21—C22	53.1 (12)	C75—C76—C77—C78	49 (2)
C20—C21—C22—C17	-54.4 (12)	C76—C75—C80—C79	51 (2)
C22—C17—C18—C19	-56.2 (10)	C76—C77—C78—C79	-51 (2)
C23—P1—C3—C4	36.4 (8)	C77—C78—C79—C80	52 (2)
	× /		\[

C23—P1—C3—C8	-151.5(7)	C78—C79—C80—C75	-51(2)
C23—P1—C17—C18	-52.0 (7)	C80—C75—C76—C77	-48.9 (17)
C23—P1—C17—C22	-178.0 (6)	O1A—S1A—N1A—S2A	10.1 (11)
C23—C24—C25—C26	56.7 (10)	O1A—S1A—C1A—F1A	173.3 (10)
C24—C23—C28—C27	59.8 (9)	O1A—S1A—C1A—F2A	51.0 (10)
C24—C25—C26—C27	-53.5 (10)	O1A—S1A—C1A—F3A	-65.6 (10)
C25—C26—C27—C28	53.8 (11)	O2A—S1A—N1A—S2A	149.6 (8)
C26—C27—C28—C23	-57.6 (10)	O2A—S1A—C1A—F1A	46.2 (11)
C28—C23—C24—C25	-59.4 (9)	O2A—S1A—C1A—F2A	-76.1 (10)
C29—P2—C43—C44	68.8 (7)	O2A—S1A—C1A—F3A	167.3 (9)
C29—P2—C43—C48	-169.6 (7)	O3A—S2A—N1A—S1A	17.2 (10)
C29—P2—C49—C50	62.4 (8)	O3A—S2A—C2A—F4A	173.8 (10)
C29—P2—C49—C54	-65.3 (8)	O3A—S2A—C2A—F5A	-66.3 (10)
C29—C30—C31—C32	-0.4 (16)	O3A—S2A—C2A—F6A	50.4 (10)
C29—C34—C35—C36	85.6 (13)	O4A—S2A—N1A—S1A	-126.4 (8)
C29—C34—C35—C40	-99.8 (12)	O4A—S2A—C2A—F4A	-60.4 (11)
C30—C29—C34—C33	5.4 (15)	O4A—S2A—C2A—F5A	59.5 (9)
C30—C29—C34—C35	-172.3 (10)	O4A—S2A—C2A—F6A	176.2 (8)
C30—C31—C32—C33	2.5 (17)	N1A—S1A—C1A—F1A	-65.1 (11)
C31—C32—C33—C34	-0.5 (18)	N1A—S1A—C1A—F2A	172.6 (9)
C32—C33—C34—C29	-3.5 (17)	N1A—S1A—C1A—F3A	56.0 (10)
C32—C33—C34—C35	174.3 (11)	N1A—S2A—C2A—F4A	54.2 (11)
C33—C34—C35—C36	-92.2 (13)	N1A—S2A—C2A—F5A	174.1 (8)
C33—C34—C35—C40	82.5 (13)	N1A—S2A—C2A—F6A	-69.2 (9)
C34—C29—C30—C31	-3.5 (15)	C1A—S1A—N1A—S2A	-103.8 (9)
C34—C35—C36—O4	-3.6 (16)	C2A—S2A—N1A—S1A	127.1 (8)
C34—C35—C36—C37	179.3 (12)		