

Received 6 April 2021 Accepted 21 April 2021

Edited by M. Weil, Vienna University of Technology, Austria

**Keywords:** crystal structure; C—H··· $\pi$ (ring) interaction; dihydroimidazole; Hirshfeld surface analysis.

CCDC reference: 2079158

**Supporting information**: this article has supporting information at journals.iucr.org/e

# Crystal structure, Hirshfeld surface analysis and interaction energy calculation of 1-decyl-2,3-dihydro-1*H*-benzimidazol-2-one

Younesse Ait Elmachkouri,<sup>a,b</sup> Asmaa Saber,<sup>b</sup> Ezaddine Irrou,<sup>a,b</sup> Bushra Amer,<sup>c</sup>\* Joel T. Mague,<sup>d</sup> Tuncer Hökelek,<sup>e</sup> Mohamed Labd Taha,<sup>a</sup> Nada Kheira Sebbar<sup>a,b</sup> and El Mokhtar Essassi<sup>b</sup>

<sup>a</sup>Laboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, <sup>b</sup>Laboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, <sup>c</sup>Faculty of Medicine and Health Sciences, Sana'a University, San'a, Yemen, <sup>d</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, and <sup>e</sup>Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey. \*Correspondence e-mail: Bushraamer2014@gmail.com

The title molecule,  $C_{17}H_{26}N_2O$ , adopts an L-shaped conformation, with the straight *n*-decyl chain positioned nearly perpendicular to the dihydrobenzimidazole moiety. The dihydrobenzimidazole portion is not quite planar as there is a dihedral angle of 1.20 (6)° between the constituent planes. In the crystal, N-H···O hydrogen bonds form inversion dimers, which are connected into the three-dimensional structure by C-H···O hydrogen bonds and C-H··· $\pi$ (ring) interactions. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H···H (75.9%), H···C/C···H (12.5%) and H···O/O···H (7.0%) interactions. Based on computational chemistry using the CE-B3LYP/6-31 G(d,p) energy model, C-H···O hydrogen bond energies are -74.9 (for N-H···O) and -42.7 (for C-H···O) kJ mol<sup>-1</sup>.

## 1. Chemical context

Benzimidazol-2-one derivatives constitute an important class of heterocyclic systems. They are used as precursors for the preparation of novel N-substituted benzimidazol-2-one derivatives with potential biological and pharmacological properties (Lakhrissi *et al.*, 2008; Saber *et al.*, 2019; Mamedov *et al.*, 2017), including antitumor (Khodarahmi *et al.*, 2005), antibacterial (Saber *et al.*, 2020*a*; Vira *et al.*, 2010), anti-HIV (Barreca *et al.*, 2007), and antitrichinellosis (Mavrova *et al.*, 2005) activities.





In continuation of our investigations on the synthesis, physico-chemical characterization and biological properties of novel N-substituted benzimidazol-2-one derivatives, we have



Figure 1

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

studied the reaction of 1-bromodecane with 1-isopropenyl-1*H*-1,3-benzimidazol-2(3*H*)-one under phase-transfer catalysis conditions (Saber *et al.*, 2020*b*; Srhir *et al.*, 2020), We report herein the synthesis, and the molecular and crystal structures along with the Hirshfeld surface analysis and the intermolecular interaction energies of the title compound,  $C_{17}H_{26}N_2O$ , (I).

#### 2. Structural commentary

The title molecule adopts an L-shaped conformation with the straight *n*-decyl chain arranged nearly perpendicular to the dihydrobenzimidazole portion, as indicated by the C1-N2-



Figure 2

A portion of one chain viewed along the *c*-axis direction with  $N-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds depicted, respectively, by blue and black dashed lines. H atoms not involved in hydrogen bonding were omitted for clarity.

| Table 1       |                  |
|---------------|------------------|
| Hydrogen-bond | geometry (Å, °). |

Cg2 is the centroid of the C1-C6 ring.

| $D - \mathbf{H} \cdots A$                                             | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------------------------|------------|-------------------------|--------------|--------------------------------------|
| $N1-H1\cdotsO1^{ii}$ $C8-H8A\cdotsO1^{viii}$ $C17-H17C\cdots Cg2^{v}$ | 0.923 (16) | 1.932 (16)              | 2.8393 (12)  | 167.0 (13)                           |
|                                                                       | 0.995 (13) | 2.573 (13)              | 3.4648 (12)  | 149.1 (9)                            |
|                                                                       | 1.00 (2)   | 2.985 (19)              | 3.6656 (17)  | 126.0 (14)                           |

Symmetry codes: (ii) -x, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 1; (viii) x, y - 1, z.

C8–C9 torsion angle of  $-75.91 (12)^{\circ}$  (Fig. 1). The dihydrobenzimidazole portion is not planar, as indicated by the dihedral angle of 1.20 (6)° between the constituent planes.

#### 3. Supramolecular features

In the crystal of (I), inversion dimers are formed by N1–H1···O1 hydrogen bonds (Table 1) that are linked into chains extending parallel to the *b* axis by C8–H8A···O1 hydrogen bonds (Table 1, Fig. 2). The alkyl groups extend from both sides of the chain and intercalate with alkyl groups of adjacent chains while linking them together through C17–H17C···Cg2 interactions (Table 2, Fig. 3).

#### 4. Hirshfeld surface analysis

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried out using *Crystal Explorer 17.5* (Turner *et al.*, 2017). A view of the three-dimensional Hirshfeld surface of (I), plotted over  $d_{norm}$  and the electrostatic potential map are shown in Fig. 4a and b, respectively. The shape-index of the HS reveals that there are no  $\pi$ - $\pi$  interactions in (I), as shown in Fig. 4c. The overall two-



#### Figure 3

Packing viewed along the *b*-axis direction with hydrogen bonds depicted as in Fig. 2 and  $C-H\cdots\pi(ring)$  interactions by green dashed lines. H atoms not involved in hydrogen bonding were omitted for clarity.

dimensional fingerprint plot, Fig. 5*a*, and those delineated into H···H, H···C/C···H, H···O/O···H, H···N/N···H, C···O/ O···C, N···O/O···N, C···N/N···C and C···C contacts (McKinnon *et al.*, 2007) are illustrated in Fig. 5*b*-*i*, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H···H (Table 2) contributing 75.9% to the overall crystal packing, which is reflected in Fig. 5*b* as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at  $d_e = d_i = 1.08$  Å. In the presence of C-H··· $\pi$  interactions, the pair of characteristic wings are seen in the fingerprint plot (Fig. 5*c*) delineated into H···C/C···H contacts (12.5% contribution; Table 2), with the tips at  $d_e + d_i = 2.66$  Å. The



 Table 2

 Selected interatomic distances (Å).

|                                  | · · · ·     |                                     |          |
|----------------------------------|-------------|-------------------------------------|----------|
| $O1 \cdot \cdot \cdot C1^i$      | 3.2784 (12) | H9 <i>B</i> ···H11 <i>B</i>         | 2.53 (2) |
| $O1 \cdot \cdot \cdot N1^{ii}$   | 2.8394 (11) | $H10A \cdots H12A$                  | 2.55 (2) |
| C4· · ·O1 <sup>iii</sup>         | 3.2820 (14) | H10B···H12B                         | 2.58 (2) |
| O1· · · H8B                      | 2.486 (11)  | $H11A \cdots H13A$                  | 2.58 (2) |
| O1· · ·H1 <sup>ii</sup>          | 1.934 (16)  | $H11A \cdots H16A^{v}$              | 2.43 (2) |
| $O1 \cdot \cdot \cdot H8A^{iv}$  | 2.571 (11)  | H11 <i>B</i> ···H13 <i>B</i>        | 2.51 (2) |
| H4· · ·O1 <sup>iii</sup>         | 2.417 (13)  | $H12A \cdots H14A$                  | 2.55 (2) |
| $N1 \cdots H8A^{iv}$             | 2.878 (12)  | $H12A \cdots H15A^{v}$              | 2.57 (2) |
| $N1 \cdot \cdot \cdot H8B^{i}$   | 2.949 (12)  | H12 <i>B</i> ···H14 <i>B</i>        | 2.53 (2) |
| $N2 \cdot \cdot \cdot H10A$      | 2.843 (14)  | H13A···H15A                         | 2.55 (2) |
| $C7 \cdot \cdot \cdot C7^{i}$    | 3.2937 (14) | $H13A \cdots H14A^{v}$              | 2.52 (2) |
| $C2 \cdot \cdot \cdot H17C^{v}$  | 2.90 (2)    | H13B···H15B                         | 2.57 (2) |
| $C7 \cdot \cdot \cdot H1^{ii}$   | 2.828 (16)  | $H13B \cdot \cdot \cdot H16B^{vii}$ | 2.47 (2) |
| $C7 \cdots H8A^{iv}$             | 2.774 (11)  | $H14A \cdots H16A$                  | 2.51 (2) |
| $H2 \cdot \cdot \cdot H9A$       | 2.572 (19)  | $H14B \cdot \cdot \cdot H16B$       | 2.56 (2) |
| $H2 \cdot \cdot \cdot H17A^{vi}$ | 2.34 (2)    | $H14B \cdot \cdot \cdot H16B^{vii}$ | 2.54 (2) |
| H8B···H10B                       | 2.507 (18)  | $H15A \cdots H17A$                  | 2.60 (2) |
| $H9A \cdots H11A$                | 2.550 (19)  | H15 <i>B</i> ···H17 <i>B</i>        | 2.54 (2) |
|                                  |             |                                     |          |

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x, -y + 1, -z + 1; (iii)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (iv) x, y + 1, z; (v) -x + 1, -y + 1, -z + 1; (vi) -x + 1, -y, -z + 1; (vii)  $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$ .

pair of the scattered points of spikes in the fingerprint plot delineated into  $H \cdots O/O \cdots H$  contacts, Fig. 5*d*, with a 7.0% contribution to the HS, has a distribution of points with the tips at  $d_e + d_i = 1.83$  Å. The  $H \cdots N/N \cdots H$  contacts, Fig. 5*e*, with a 2.3% contribution to the HS have the tips at  $d_e + d_i = 2.92$  Å. The  $C \cdots O/O \cdots C$  contacts, Fig. 5*f*, with a 1.2% contribution to the HS appear as a pair of scattered points of



#### Figure 5

(a) View of the three-dimensional Hirshfeld surface of the title compound, plotted over  $d_{\text{norm}}$  in the range of -0.5871 to 1.6590 a.u. (b) View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range -0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. (c) Hirshfeld surface of the title compound plotted over shape-index.

The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b)  $H \cdots H$ , (c)  $H \cdots C/C \cdots H$ , (d)  $H \cdots O/O \cdots H$ , (e)  $H \cdots N/N \cdots H$ , (f)  $C \cdots O/O \cdots C$ , (g)  $N \cdots O/O \cdots N$ , (h)  $C \cdots N/N \cdots C$  and (i)  $C \cdots C$  interactions. The  $d_i$  and  $d_e$  values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Figure 4



Figure 6

The Hirshfeld surface representations with the function  $d_{\text{norm}}$  plotted onto the surface for (a)  $\text{H} \cdots \text{H}$ , (b)  $\text{H} \cdots \text{C/C} \cdots \text{H}$  and (c)  $\text{H} \cdots \text{O/O} \cdots \text{H}$  interactions.

spikes with the tips at  $d_e + d_i = 3.25$  Å. Finally, the N···O/ O···N (Fig. 5g), N···C/C···N (Fig. 5h) and C···C (Fig. 5i) contacts have 0.6%, 0.3% and 0.3% contributions, respectively, to the HS with low-density distributions of points.

The Hirshfeld surface representations with the function  $d_{\text{norm}}$  plotted onto the surface are shown for the H···H, H···C/C···H and H···O/O···H interactions in Fig. 6a-c, respectively.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H...H, H...C/C...H and H...O/O...H interactions suggest that van der Waals interactions play the major role in the crystal packing (Hathwar *et al.*, 2015).

#### 5. Interaction energy calculations

The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in *Crystal Explorer 17.5* (Turner *et al.*, 2017), where a cluster of molecules is used by applying crystallographic symmetry operations with respect to a selected central molecule within a default radius of 3.8 Å (Turner *et al.*, 2014). The total intermolecular energy ( $E_{tot}$ ) is the sum of electrostatic ( $E_{ele}$ ), polarization ( $E_{pol}$ ), dispersion ( $E_{dis}$ ) and exchange-repulsion ( $E_{rep}$ ) energies (Turner *et al.*, 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie *et al.*, 2017). Hydrogen-bonding interaction energies (in kJ mol<sup>-1</sup>) were calculated as -91.9 ( $E_{ele}$ ), -21.4 ( $E_{pol}$ ), -14.5 ( $E_{dis}$ ), 82.1 ( $E_{rep}$ ) and -74.9 ( $E_{tot}$ ) for N1–H1···O1 and -9.2 ( $E_{ele}$ ), -0.6 ( $E_{pol}$ ), -65.8 ( $E_{dis}$ ), 39.9 ( $E_{rep}$ ) and -42.7 ( $E_{tot}$ ) for C8– H8A···O1.

#### 6. Database survey

A search of the Cambridge Structural Database (CSD2021, updated to 2 February, 2021; Groom *et al.*, 2016) using the fragment below, where X = Y = H,  $R = (CH_2)_4C$ , found nine

similar structures. These are IJUGIE  $[X = Y = H, R = (CH_2)_8CH_3$ ; Ouzidan *et al.*, 2011*a*], SECBUZ  $[X = Y = H, R = (CH_2)_{11}CH_3$ ; Belaziz *et al.*, 2012*b*], ZANXET  $[X = Y = H, R = (CH_2)_7CH_3$ ; Belaziz *et al.*, 2012*a*], OCAJIN  $[X = H, Y = Cl, R = (CH_2)_8CH_3$ ; Kandri Rodi *et al.*, 2011], ULEDEV  $[X = H, Y = NO_2, R = (CH_2)_9CH_3$ ; Ouzidan *et al.*, 2011*b*], ULEPIL  $[X = H, Y = NO_2, R = (CH_2)_9CH_3$ ; Ouzidan *et al.*, 2011*c*], ULEZAN  $[X = H, Y = NO_2, R = (CH_2)_9CH_3$ ; Ouzidan *et al.*, 2011*c*], ULEZAN  $[X = H, Y = NO_2, R = (CH_2)_8CH_3$ ; Ouzidan *et al.*, 2011*d*], QUDJAC  $[X = NO_2, Y = H, R = (CH_2)_8CH_3$ ; Venkatraman & Fronczek, 2015] and YAGQII  $[X = NO_2, Y = H, R = (CH_2)_9CH_3$ ; Ouzidan *et al.*, 2011*e*]. In all of these molecules, the long alkyl substituent has a straight shape rather than being folded back on itself. This is likely driven by packing considerations as straight alkyl chains can efficiently intercalate, thereby minimizing void space in the crystal.



#### 7. Synthesis and crystallization

The title compound was prepared in two steps. In the first step, 1-bromodecane (11.4 mmol) was added to a mixture of 1-isopropenyl-1*H*-1,3-benzimidazol-2(3*H*)-one (5.7 mmol), potassium hydroxide (5.7 mmol) and tetra-n-butyl ammonium bromide (0.15 mmol) in  $CH_2Cl_2$  (15 ml). Stirring was continued at room temperature for 48 h. The formed salts were removed by filtration, and the filtrate was concentrated under reduced pressure. The residue obtained was purified by recrystallization from ethanol to obtain 1-(prop-1-en-2-yl)-3decyl-2,3dihydro-1H-benzimidazol-2(3H)-one in 82% yield. In the second step, 1-(prop-1-en-2-yl)-3-decyl-2,3-dihydro-1Hbenzimidazol-2-one (7.0 mmol) was dissolved in a mixture of dimethylformamide (DMF; 10 ml) and cold sulfuric acid  $(15 \text{ ml}, 50\%_{\text{wt}})$ . The reaction mixture was stirred at room temperature for 12 h. The precipitate obtained was filtered off and washed with water and subsequently dried. The resulting residue was purified by recrystallization from ethanol to obtain colourless crystals in 75% yield.

<sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ): 0.87 (t, 3H, CH<sub>3</sub>); 1.25–1.67 (m, 16H, CH<sub>2</sub>); 2.80–3.04 (m, 2H, CH<sub>2</sub>); 6.99–7.12 (m, 4H, H<sub>arom</sub>); 10.58 (s,1H, NH). <sup>13</sup>C NMR (75 MHz, DMSO- $d_6$ ): 14.14 (CH<sub>3</sub>); 22.70, 26.90, 28.44, 29.31, 29.51, 29.56, 29.74, 31.90, 41.44 (CH<sub>2</sub>); 107.84, 108.45, 121.20, 121.65 (CH<sub>arom</sub>); 128.52, 129.64 (Cq), 153.43 (C=O).

#### 8. Refinement

Crystal, data collection and refinement details are presented in Table 3. Hydrogen atoms were located in difference-Fourier maps and were freely refined. Table 3Experimental details.

. .

| Crystal data                                                               |                                         |
|----------------------------------------------------------------------------|-----------------------------------------|
| Chemical formula                                                           | $C_{17}H_{26}N_2O$                      |
| M <sub>r</sub>                                                             | 274.40                                  |
| Crystal system, space group                                                | Monoclinic, $P2_1/c$                    |
| Temperature (K)                                                            | 150                                     |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                         | 17.3256 (5), 5.5662 (2), 16.7244 (5)    |
| $\beta$ (°)                                                                | 97.433 (1)                              |
| $V(\dot{A}^3)$                                                             | 1599.31 (9)                             |
| Ζ                                                                          | 4                                       |
| Radiation type                                                             | Cu Ka                                   |
| $\mu (\mathrm{mm}^{-1})$                                                   | 0.55                                    |
| Crystal size (mm)                                                          | $0.26 \times 0.17 \times 0.10$          |
| Data collection                                                            |                                         |
| Diffractometer                                                             | Bruker D8 VENTURE PHOTON<br>100 CMOS    |
| Absorption correction                                                      | Numerical (SADABS; Krause et al., 2015) |
| $T_{\min}, T_{\max}$                                                       | 0.88, 0.95                              |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 11457, 3082, 2857                       |
| R <sub>int</sub>                                                           | 0.028                                   |
| $(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$                         | 0.618                                   |
| Refinement                                                                 |                                         |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.041, 0.101, 1.08                      |
| No. of reflections                                                         | 3082                                    |
| No. of parameters                                                          | 286                                     |
| H-atom treatment                                                           | All H-atom parameters refined           |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$ | 0.19, -0.26                             |
|                                                                            |                                         |

Computer programs: APEX3 and SAINT (Bruker, 2016), SAINT (Bruker, 2016), SHELXT/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and publCIF (Westrip, 2010).

#### Acknowledgements

Author contribution are as follows. Conceptualization, AS, MLT, NKS; methodology, BA and YAE; investigation, YAE, IE, JTM and TH; writing (original draft), JTM, TH and NKS; writing (review and editing of the manuscript), YAE and IE; visualization, MLT and EME; resources, EME and AS; supervision, BA and NKS.

#### **Funding information**

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

#### References

- Barreca, M. L., Rao, A., De Luca, L., Iraci, N., Monforte, A. M., Maga, G., De Clercq, E., Pannecouque, C., Balzarini, J. & Chimirri, A. (2007). *Bioorg. Med. Chem. Lett.* 17, 1956–1960.
- Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012a). Acta Cryst. E68, 01276.
- Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012b). Acta Cryst. E68, 03069.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*, Crystal Impact GbR, Bonn, Germany.

- Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138. Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, 03340o3341. Khodarahmi, G. A., Chen, C. S., Hakimelahi, G. H., Tseng, C. T. & Chern, J. W. (2005). J. Iran. Chem. Soc. 2, 124-134. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10. Lakhrissi, B., Benksim, A., Massoui, M., Essassi, E. M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421-433. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587. Mamedov, V. A., Zhukova, N. A. & Sinyashin, O. G. (2017). Mendeleev Commun. 27, 1-11. Mavrova, A. T., Anichina, K. K., Vuchev, D. I., Tsenov, J. A., Kondeva, M. S. & Micheva, M. K. (2005). Bioorg. Med. Chem. 13, 5550-5559. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816. Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283. Ouzidan, Y., Kandri Rodi, Y., Essassi, E. M., El Ammari, L., Fronczek, F. R. & Venkatraman, R. (2011d). Acta Cryst. E67, 0669. Ouzidan, Y., Kandri Rodi, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011e). Acta Cryst. E67, o2937. Ouzidan, Y., Kandri Rodi, Y., Ladeira, S., Essassi, E. M. & Ng, S. W. (2011c). Acta Cryst. E67, 0613. Ouzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011b). Acta Cryst. E67, o558. Saber, A., Sebbar, N. K. & Essassi, E. M. (2019). J. Mar. Chem. Heterocycl. 18, 1–50. Saber, A., Sebbar, N. K., Hökelek, T., Labd Taha, M., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020a). Acta Cryst. E76, 95-101.
- Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, E. M. (2020b). J. Mol. Struct. 1200, 127174.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Srhir, M., Sebbar, N. K., Hökelek, T., Moussaif, A., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020). Acta Cryst. E76, 370–376.
- Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. The University of Western Australia.
- Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.
- Venkatraman, R. & Fronczek, F. R. (2015). CSD Communication (refcode QUDJAC). CCDC, Cambridge, England.
- Vira, J. J., Patel, D. R., Bhimani, N. V. & Ajudia, P. A. (2010). *Pharma Chem.* 2, 178–183.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

## supporting information

Acta Cryst. (2021). E77, 559-563 [https://doi.org/10.1107/S2056989021004291]

Crystal structure, Hirshfeld surface analysis and interaction energy calculation of 1-decyl-2,3-dihydro-1*H*-benzimidazol-2-one

## Younesse Ait Elmachkouri, Asmaa Saber, Ezaddine Irrou, Bushra Amer, Joel T. Mague, Tuncer Hökelek, Mohamed Labd Taha, Nada Kheira Sebbar and El Mokhtar Essassi

## **Computing details**

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXT/5* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015*b*); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

1-Decyl-2,3-dihydro-1H-benzimidazol-2-one

 $C_{17}H_{26}N_{2}O$   $M_{r} = 274.40$ Monoclinic,  $P2_{1}/c$  a = 17.3256 (5) Å b = 5.5662 (2) Å c = 16.7244 (5) Å  $\beta = 97.433 (1)^{\circ}$   $V = 1599.31 (9) Å^{3}$  Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer Radiation source: INCOATEC I $\mu$ S micro–focus source Mirror monochromator Detector resolution: 10.4167 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: numerical (*SADABS*; Krause *et al.*, 2015)

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.041$  $wR(F^2) = 0.101$ S = 1.083082 reflections 286 parameters 0 restraints F(000) = 600  $D_x = 1.140 \text{ Mg m}^{-3}$ Cu K\alpha radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9927 reflections  $\theta = 2.6-72.4^{\circ}$   $\mu = 0.55 \text{ mm}^{-1}$  T = 150 KParallelepiped, colourless  $0.26 \times 0.17 \times 0.10 \text{ mm}$ 

 $T_{\min} = 0.88, T_{\max} = 0.95$ 11457 measured reflections
3082 independent reflections
2857 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.028$   $\theta_{\text{max}} = 72.3^{\circ}, \theta_{\text{min}} = 5.6^{\circ}$   $h = -19 \rightarrow 21$   $k = -6 \rightarrow 6$   $l = -20 \rightarrow 17$ 

Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined  $w = 1/[\sigma^2(F_o^2) + (0.0505P)^2 + 0.3296P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$   $\begin{array}{l} \Delta\rho_{\rm max}=0.19~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.26~{\rm e}~{\rm \AA}^{-3} \end{array}$ 

Extinction correction: *SHELXL 2018/3* (Sheldrick, 2015*b*),  $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0415 (17)

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x           | У             | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|---------------|-------------|-----------------------------|--|
| 01   | 0.04776 (4) | 0.28130 (13)  | 0.44474 (4) | 0.0303 (2)                  |  |
| N1   | 0.05137 (5) | 0.31336 (16)  | 0.58449 (5) | 0.0277 (2)                  |  |
| H1   | 0.0208 (9)  | 0.449 (3)     | 0.5834 (8)  | 0.049 (4)*                  |  |
| N2   | 0.11079 (5) | 0.00636 (15)  | 0.53573 (5) | 0.0257 (2)                  |  |
| C1   | 0.11866 (6) | -0.02174 (17) | 0.61924 (6) | 0.0255 (2)                  |  |
| C2   | 0.15374 (6) | -0.20007 (19) | 0.66878 (7) | 0.0303 (3)                  |  |
| H2   | 0.1796 (8)  | -0.337 (3)    | 0.6474 (8)  | 0.039 (3)*                  |  |
| C3   | 0.15165 (7) | -0.1745 (2)   | 0.75149 (7) | 0.0337 (3)                  |  |
| H3   | 0.1783 (8)  | -0.300(2)     | 0.7883 (8)  | 0.042 (4)*                  |  |
| C4   | 0.11570 (7) | 0.0218 (2)    | 0.78254 (7) | 0.0332 (3)                  |  |
| H4   | 0.1157 (8)  | 0.039 (2)     | 0.8423 (8)  | 0.037 (3)*                  |  |
| C5   | 0.07947 (6) | 0.19953 (19)  | 0.73228 (6) | 0.0302 (3)                  |  |
| Н5   | 0.0528 (7)  | 0.334 (2)     | 0.7533 (7)  | 0.033 (3)*                  |  |
| C6   | 0.08152 (6) | 0.17382 (17)  | 0.65026 (6) | 0.0261 (2)                  |  |
| C7   | 0.06765 (6) | 0.20902 (17)  | 0.51435 (6) | 0.0253 (2)                  |  |
| C8   | 0.13586 (6) | -0.16239 (18) | 0.47772 (6) | 0.0284 (3)                  |  |
| H8A  | 0.1186 (7)  | -0.327 (2)    | 0.4909 (7)  | 0.031 (3)*                  |  |
| H8B  | 0.1074 (7)  | -0.116 (2)    | 0.4234 (8)  | 0.030 (3)*                  |  |
| C9   | 0.22347 (6) | -0.16205 (19) | 0.47500 (7) | 0.0308 (3)                  |  |
| H9A  | 0.2512 (8)  | -0.205 (2)    | 0.5293 (8)  | 0.035 (3)*                  |  |
| H9B  | 0.2344 (8)  | -0.290 (2)    | 0.4382 (8)  | 0.035 (3)*                  |  |
| C10  | 0.25501 (6) | 0.0740 (2)    | 0.44707 (7) | 0.0325 (3)                  |  |
| H10A | 0.2498 (8)  | 0.199 (3)     | 0.4881 (8)  | 0.042 (4)*                  |  |
| H10B | 0.2229 (8)  | 0.128 (2)     | 0.3965 (8)  | 0.038 (3)*                  |  |
| C11  | 0.33982 (7) | 0.0550 (2)    | 0.43186 (7) | 0.0355 (3)                  |  |
| H11A | 0.3717 (8)  | -0.020(2)     | 0.4812 (8)  | 0.041 (3)*                  |  |
| H11B | 0.3434 (8)  | -0.060 (3)    | 0.3859 (8)  | 0.042 (4)*                  |  |
| C12  | 0.37542 (7) | 0.2942 (2)    | 0.41212 (8) | 0.0371 (3)                  |  |
| H12A | 0.3739 (8)  | 0.409 (3)     | 0.4593 (8)  | 0.044 (4)*                  |  |
| H12B | 0.3426 (8)  | 0.369 (3)     | 0.3659 (8)  | 0.040 (3)*                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

## supporting information

| C13  | 0.45872 (7) | 0.2725 (2) | 0.39272 (8)  | 0.0374 (3) |
|------|-------------|------------|--------------|------------|
| H13A | 0.4913 (9)  | 0.197 (3)  | 0.4389 (9)   | 0.045 (4)* |
| H13B | 0.4594 (8)  | 0.161 (3)  | 0.3467 (9)   | 0.044 (4)* |
| C14  | 0.49438 (7) | 0.5123 (2) | 0.37418 (8)  | 0.0383 (3) |
| H14A | 0.4944 (9)  | 0.622 (3)  | 0.4218 (9)   | 0.050 (4)* |
| H14B | 0.4604 (8)  | 0.589 (3)  | 0.3278 (8)   | 0.042 (4)* |
| C15  | 0.57697 (7) | 0.4932 (2) | 0.35263 (8)  | 0.0383 (3) |
| H15A | 0.6106 (9)  | 0.409 (3)  | 0.3983 (9)   | 0.047 (4)* |
| H15B | 0.5772 (8)  | 0.385 (3)  | 0.3040 (8)   | 0.044 (4)* |
| C16  | 0.61285 (7) | 0.7340 (2) | 0.33601 (8)  | 0.0416 (3) |
| H16A | 0.6112 (9)  | 0.842 (3)  | 0.3852 (9)   | 0.054 (4)* |
| H16B | 0.5799 (10) | 0.814 (3)  | 0.2910 (9)   | 0.053 (4)* |
| C17  | 0.69572 (9) | 0.7119 (3) | 0.31580 (10) | 0.0540 (4) |
| H17A | 0.7312 (11) | 0.646 (3)  | 0.3640 (11)  | 0.072 (5)* |
| H17B | 0.6977 (10) | 0.598 (3)  | 0.2673 (10)  | 0.066 (5)* |
| H17C | 0.7161 (11) | 0.872 (4)  | 0.3005 (11)  | 0.076 (5)* |
|      |             |            |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| 01  | 0.0355 (4) | 0.0285 (4) | 0.0273 (4) | 0.0019 (3)  | 0.0055 (3) | 0.0041 (3)  |
| N1  | 0.0307 (4) | 0.0240 (4) | 0.0289 (5) | 0.0026 (3)  | 0.0066 (3) | 0.0010 (3)  |
| N2  | 0.0292 (4) | 0.0237 (4) | 0.0251 (4) | 0.0005 (3)  | 0.0063 (3) | 0.0006 (3)  |
| C1  | 0.0261 (5) | 0.0245 (5) | 0.0264 (5) | -0.0041 (4) | 0.0051 (4) | -0.0002(4)  |
| C2  | 0.0343 (5) | 0.0253 (5) | 0.0315 (6) | 0.0005 (4)  | 0.0049 (4) | 0.0011 (4)  |
| C3  | 0.0391 (6) | 0.0307 (6) | 0.0307 (6) | -0.0021 (4) | 0.0022 (4) | 0.0053 (4)  |
| C4  | 0.0376 (6) | 0.0359 (6) | 0.0267 (6) | -0.0055 (4) | 0.0061 (4) | 0.0006 (4)  |
| C5  | 0.0329 (5) | 0.0288 (5) | 0.0301 (6) | -0.0031 (4) | 0.0087 (4) | -0.0032 (4) |
| C6  | 0.0255 (5) | 0.0246 (5) | 0.0284 (5) | -0.0035 (4) | 0.0049 (4) | 0.0012 (4)  |
| C7  | 0.0255 (5) | 0.0231 (5) | 0.0279 (5) | -0.0033 (4) | 0.0061 (4) | 0.0011 (4)  |
| C8  | 0.0337 (5) | 0.0235 (5) | 0.0288 (5) | -0.0009 (4) | 0.0071 (4) | -0.0030 (4) |
| C9  | 0.0340 (6) | 0.0294 (6) | 0.0299 (6) | 0.0050 (4)  | 0.0072 (4) | 0.0000 (4)  |
| C10 | 0.0321 (5) | 0.0309 (6) | 0.0355 (6) | 0.0020 (4)  | 0.0080 (5) | 0.0003 (4)  |
| C11 | 0.0336 (6) | 0.0365 (6) | 0.0376 (6) | 0.0025 (5)  | 0.0090 (5) | 0.0021 (5)  |
| C12 | 0.0339 (6) | 0.0375 (6) | 0.0408 (7) | -0.0002 (5) | 0.0081 (5) | 0.0009 (5)  |
| C13 | 0.0347 (6) | 0.0385 (6) | 0.0399 (7) | 0.0005 (5)  | 0.0086 (5) | 0.0020 (5)  |
| C14 | 0.0355 (6) | 0.0377 (7) | 0.0423 (7) | -0.0010 (5) | 0.0070 (5) | -0.0013 (5) |
| C15 | 0.0366 (6) | 0.0370 (6) | 0.0423 (7) | -0.0022 (5) | 0.0081 (5) | -0.0007 (5) |
| C16 | 0.0389 (6) | 0.0401 (7) | 0.0454 (7) | -0.0055 (5) | 0.0037 (5) | -0.0002 (5) |
| C17 | 0.0432 (7) | 0.0588 (9) | 0.0612 (9) | -0.0130 (6) | 0.0111(7)  | 0.0003(7)   |

Geometric parameters (Å, °)

| 01—C7 | 1.2378 (12) | C10—H10A | 0.988 (14)  |
|-------|-------------|----------|-------------|
| N1—C7 | 1.3706 (13) | C10—H10B | 0.996 (14)  |
| N1—C6 | 1.3920 (13) | C11—C12  | 1.5214 (16) |
| N1—H1 | 0.923 (16)  | C11—H11A | 1.021 (14)  |
| N2—C7 | 1.3747 (13) | C11—H11B | 1.009 (14)  |
|       |             |          |             |

| N2—C1                 | 1.3944 (13) | C12—C13                     | 1.5245 (16) |
|-----------------------|-------------|-----------------------------|-------------|
| N2—C8                 | 1.4564 (12) | C12—H12A                    | 1.017 (14)  |
| C1—C2                 | 1.3823 (14) | C12—H12B                    | 0.989 (14)  |
| C1—C6                 | 1.3981 (14) | C13—C14                     | 1.5197 (16) |
| C2—C3                 | 1.3958 (16) | C13—H13A                    | 0.990 (15)  |
| С2—Н2                 | 0.974 (14)  | C13—H13B                    | 0.990 (15)  |
| C3—C4                 | 1.3910 (16) | C14—C15                     | 1.5239 (16) |
| С3—Н3                 | 1.003 (14)  | C14—H14A                    | 1.004 (16)  |
| C4—C5                 | 1.3940 (16) | C14—H14B                    | 1.007 (14)  |
| C4—H4                 | 1.004 (13)  | C15—C16                     | 1.5182 (17) |
| C5—C6                 | 1.3841 (15) | C15—H15A                    | 1.014 (15)  |
| С5—Н5                 | 0.970 (13)  | C15—H15B                    | 1.013 (15)  |
| C8—C9                 | 1.5246 (15) | C16—C17                     | 1.5221 (19) |
| C8—H8A                | 0.995 (13)  | C16—H16A                    | 1.020 (16)  |
| C8—H8B                | 1.009 (13)  | C16—H16B                    | 0.989 (16)  |
| C9—C10                | 1.5195 (15) | С17—Н17А                    | 1.017 (19)  |
| C9—H9A                | 1.000 (13)  | C17—H17B                    | 1.033 (18)  |
| C9—H9B                | 0.974 (13)  | C17—H17C                    | 1.00 (2)    |
| C10—C11               | 1.5269 (15) |                             | 1.00 (2)    |
|                       | 110203 (10) |                             |             |
| O1···N2 <sup>i</sup>  | 3.2324 (11) | H8B…H10B                    | 2.507 (18)  |
| O1…C1 <sup>i</sup>    | 3.2784 (12) | H9A…H11A                    | 2.550 (19)  |
| 01…N1 <sup>ii</sup>   | 2.8394 (11) | H9B…H11B                    | 2.53 (2)    |
| C4…O1 <sup>iii</sup>  | 3.2820 (14) | H10A…H12A                   | 2.55 (2)    |
| O1…H8B                | 2.486 (11)  | H10B…H12B                   | 2.58 (2)    |
| 01…H1 <sup>ii</sup>   | 1.934 (16)  | H11A···H13A                 | 2.58 (2)    |
| O1…H8A <sup>iv</sup>  | 2.571 (11)  | H11A…H16A <sup>v</sup>      | 2.43 (2)    |
| H4…O1 <sup>iii</sup>  | 2.417 (13)  | H11B…H13B                   | 2.51 (2)    |
| N1…C2 <sup>iv</sup>   | 3.4382 (14) | H12A…H14A                   | 2.55 (2)    |
| N1…C8 <sup>i</sup>    | 3.3820 (14) | H12A…H15A <sup>v</sup>      | 2.57 (2)    |
| N2····C7 <sup>i</sup> | 3.3206 (14) | H12B…H14B                   | 2.53 (2)    |
| N1…H8A <sup>iv</sup>  | 2.878 (12)  | H13A…H15A                   | 2.55 (2)    |
| N1…H8B <sup>i</sup>   | 2.949 (12)  | H13A…H14A <sup>v</sup>      | 2.52 (2)    |
| N2…H10A               | 2.843 (14)  | H13B…H15B                   | 2.57 (2)    |
| C7····C8 <sup>i</sup> | 3.5550 (15) | H13B····H16B <sup>vii</sup> | 2.47 (2)    |
| C7····C7 <sup>i</sup> | 3.2937 (14) | H14A…H16A                   | 2.51 (2)    |
| C2…H17C <sup>v</sup>  | 2.90 (2)    | H14B…H16B                   | 2.56 (2)    |
| C7…H1 <sup>ii</sup>   | 2.828 (16)  | H14B…H16B <sup>vii</sup>    | 2.54 (2)    |
| C7…H8A <sup>iv</sup>  | 2.774 (11)  | H15A…H17A                   | 2.60 (2)    |
| Н2…Н9А                | 2.572 (19)  | H15B…H17B                   | 2.54 (2)    |
| H2…H17A <sup>vi</sup> | 2.34 (2)    |                             |             |
|                       |             |                             |             |
| C7—N1—C6              | 110.01 (9)  | H10A—C10—H10B               | 106.7 (11)  |
| C7—N1—H1              | 120.8 (9)   | C12—C11—C10                 | 113.68 (10) |
| C6—N1—H1              | 129.0 (9)   | C12—C11—H11A                | 109.9 (8)   |
| C7—N2—C1              | 109.39 (8)  | C10—C11—H11A                | 109.0 (8)   |
| C7—N2—C8              | 123.71 (8)  | C12—C11—H11B                | 109.0 (8)   |
| C1—N2—C8              | 126.57 (8)  | C10-C11-H11B                | 109.0 (8)   |
|                       |             |                             |             |

| C2-C1-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 131.25 (9)             | H11A—C11—H11B                                        | 106.0 (11)              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------|-------------------------|
| C2—C1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.63 (9)             | C11—C12—C13                                          | 113.47 (10)             |
| N2—C1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.11 (8)             | C11—C12—H12A                                         | 109.2 (8)               |
| C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.07 (10)            | C13—C12—H12A                                         | 109.6 (8)               |
| С1—С2—Н2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.9 (8)              | C11—C12—H12B                                         | 109.1 (8)               |
| С3—С2—Н2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.0 (8)              | C13—C12—H12B                                         | 109.3 (8)               |
| C4—C3—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.36 (10)            | H12A—C12—H12B                                        | 105.9 (11)              |
| С4—С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.8 (8)              | C14—C13—C12                                          | 113.26 (10)             |
| С2—С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.9 (8)              | C14—C13—H13A                                         | 109.1 (8)               |
| C3-C4-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.38 (10)            | C12—C13—H13A                                         | 109.1 (8)               |
| C3—C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.4(7)               | C14—C13—H13B                                         | 110.2 (8)               |
| C5-C4-H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.3 (7)              | C12—C13—H13B                                         | 108.7(8)                |
| C6-C5-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.19(10)             | H13A—C13—H13B                                        | 106.1(12)               |
| C6-C5-H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1209(7)                | $C_{13}$ $C_{14}$ $C_{15}$                           | 113 93 (10)             |
| C4-C5-H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.9(7)<br>121.9(7)   | C13— $C14$ — $H14A$                                  | 109 3 (9)               |
| $C_{5}$ $C_{6}$ $N_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.9(7)<br>132 10(10) | C15— $C14$ — $H14A$                                  | 109.5(9)                |
| $C_{5} - C_{6} - C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121 36 (9)             | C13 $C14$ $H14B$                                     | 109.1 (9)               |
| N1 - C6 - C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 106 55 (9)             | C15 - C14 - H14B                                     | 108.0(8)<br>108.7(8)    |
| 01 - C7 - N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100.55(0)              | $H_{14} - C_{14} - H_{14}B$                          | 106.9(12)               |
| O1 C7 N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.06 (0)             | $C_{16}$ $C_{15}$ $C_{14}$                           | 100.9(12)<br>113.62(10) |
| N1 C7 N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.90 (9)             | C16 $C15$ $H15A$                                     | 113.02(10)<br>100.7(0)  |
| $\frac{1}{1} - \frac{1}{2} - \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.00(0)<br>113.76(0) | C14 $C15$ $H15A$                                     | 109.7(9)<br>108.7(8)    |
| $N_2 = C_0 = C_7$<br>$N_2 = C_8 = H_8 \Lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 113.70(9)<br>108.7(7)  | C16 $C15$ $H15R$                                     | 108.7 (8)               |
| $N_2 = C_0 = H_0 A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.7(7)               | C14 $C15$ $H15P$                                     | 109.3(8)<br>100.4(8)    |
| $C_{2}$ $C_{2$ | 109.7(7)<br>106.2(7)   | $U_{14} = U_{13} = H_{15B}$                          | 109.4(6)<br>105.7(12)   |
| $N_2 - C_0 - H_0 B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.3(7)               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 103.7(12)<br>112.05(11) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.2(7)               | C15 - C16 - U16A                                     | 112.93(11)              |
| $n_0A - C_0 - n_0B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.0(10)<br>114.16(0) | C13 - C16 - H16A                                     | 108.4(9)                |
| C10 - C9 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 114.10(9)              | C1/-C10-HI0A                                         | 110.0 (9)               |
| $C_{10}$ $C_{9}$ $H_{9A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.6 (7)              | C13 - C16 - H16B                                     | 109.0 (9)               |
| $C_{0}$ $C_{0}$ $H_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.0 (8)              |                                                      | 109.6 (9)               |
| C10—C9—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.2 (8)              | H16A—C16—H16B                                        | 106.0 (13)              |
| С8—С9—Н9В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/.1 (8)              | C16-C17-H17A                                         | 110.1 (11)              |
| H9A—C9—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106.9 (11)             | CI6—CI7—HI7B                                         | 110.6 (10)              |
| C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.56 (9)             | HI/A—CI/—HI/B                                        | 108.8 (14)              |
| C9—C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.9 (8)              | CI6—CI/—HI/C                                         | 111.0 (11)              |
| CII—CIO—HIOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.9 (8)              | H17A—C17—H17C                                        | 109.1 (15)              |
| С9—С10—Н10В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.7 (8)              | H17B—C17—H17C                                        | 107.1 (14)              |
| C11—C10—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.8 (8)              |                                                      |                         |
| C7—N2—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 177.13 (10)            | C6—N1—C7—O1                                          | 177.92 (9)              |
| C8—N2—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.56 (17)              | C6—N1—C7—N2                                          | -2.09 (11)              |
| C7—N2—C1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.02 (11)             | C1-N2-C7-O1                                          | -177.48 (9)             |
| C8—N2—C1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -175.60 (9)            | C8—N2—C7—O1                                          | -3.68 (15)              |
| N2—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 179.89 (10)            | C1—N2—C7—N1                                          | 2.53 (11)               |
| C6—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.06 (15)             | C8—N2—C7—N1                                          | 176.33 (8)              |
| C1—C2—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.11 (16)              | C7—N2—C8—C9                                          | 111.38 (11)             |
| C2—C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.78 (17)              | C1—N2—C8—C9                                          | -75.91 (12)             |
| C3—C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.69 (16)             | N2-C8-C9-C10                                         | -63.87 (12)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                      | . /                     |

## supporting information

| C4—C5—C6—N1                | 179.37 (10)              | C8—C9—C10—C11                      | -170.56 (9)                |
|----------------------------|--------------------------|------------------------------------|----------------------------|
| C4—C5—C6—C1<br>C7—N1—C6—C5 | -0.26(15)<br>-178.81(10) | C9—C10—C11—C12<br>C10—C11—C12—C13  | -174.11(10)<br>-177.01(10) |
| C7—N1—C6—C1                | 0.86 (11)                | C11-C12-C13-C14                    | -179.20 (10)               |
| C2-C1-C6-C5                | 1.17 (15)                | C12—C13—C14—C15                    | -178.58 (10)               |
| N2-C1-C6-C5<br>C2-C1-C6-N1 | -179.58(9)<br>-178.55(9) | C13-C14-C15-C16<br>C14-C15-C16-C17 | -1/8./2(11)<br>179.15(11)  |
| N2—C1—C6—N1                | 0.70 (10)                |                                    |                            |

Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) x, -y+1/2, z+1/2; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y, -z+1; (vii) -x+1, y-1/2, -z+1/2.

### Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

| <i>D</i> —H··· <i>A</i>     | <i>D</i> —Н | H···A      | D····A      | D—H…A      |
|-----------------------------|-------------|------------|-------------|------------|
| N1—H1…O1 <sup>ii</sup>      | 0.923 (16)  | 1.932 (16) | 2.8393 (12) | 167.0 (13) |
| C8—H8A···O1 <sup>viii</sup> | 0.995 (13)  | 2.573 (13) | 3.4648 (12) | 149.1 (9)  |
| C17—H17 $C$ ··· $Cg2^{v}$   | 1.00 (2)    | 2.985 (19) | 3.6656 (17) | 126.0 (14) |

Symmetry codes: (ii) -*x*, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (viii) *x*, *y*-1, *z*.