

Received 17 March 2021 Accepted 2 April 2021

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; cycloaddition product; 1,3,4,8-tetrahydro-2*H*-pyrido[1,2a]pyrimidine; Hirshfeld surface analysis.

CCDC reference: 2075706

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 6-amino-8-(2,6-dichlorophenyl)-1,3,4,8-tetrahydro-2*H*-pyrido[1,2-*a*]pyrimidine-7,9-dicarbonitrile

Farid N. Naghiyev,^a Tatiana A. Tereshina,^b Victor N. Khrustalev,^{b,c} Mehmet Akkurt,^d Rovnag M. Rzayev,^e Anzurat A. Akobirshoeva^{f*} and İbrahim G. Mamedov^a

^aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, ^bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, ^cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and ^fAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan. *Correspondence e-mail: anzurat2003@mail.ru

In the molecular structure of the title compound, $C_{16}H_{13}Cl_2N_5$, the 1,4dihydropyridine ring of the 1,3,4,8-tetrahydro-2*H*-pyrido[1,2-*a*]pyrimidine ring system adopts a screw-boat conformation, while the 1,3-diazinane ring is puckered. In the crystal, intermolecular N-H···N and C-H···N hydrogen bonds form molecular sheets parallel to the (110) and ($\overline{110}$) planes, crossing each other. Adjacent molecules are further linked by C-H··· π interactions, which form zigzag chains propagating parallel to [100]. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from N···H/H···N (28.4%), H···H (24.5%), C···H/H···C (21.4%) and Cl···H/ H···Cl (16.1%) contacts.

1. Chemical context

Chemical transformations comprising carbon–carbon and carbon–heteroatom bond-formation reactions are fundamental tools in modern synthetic organic chemistry (Yadigarov *et al.*, 2009; Abdelhamid *et al.*, 2011; Khalilov *et al.*, 2011; Yin *et al.*, 2020). They are also used for the synthesis of valuable building blocks in medicinal chemistry, coordination chemistry and material science (Mahmoudi *et al.*, 2017, 2019; Viswanathan *et al.*, 2019).

Pyrido[1,2-a]pyrimidines constitute a valuable class of heterocycles because many of them possess broad biological activities, such as monoamine oxidase inhibition, antihypertensive, insecticide, serotonergic antagonist, analgesic, anti-inflammatory, cytoprotective, bronchodilatory, phosphodiesterase-inhibitory, antithrombotic, antiallergic, antiatherosclerotic and hypoglycaemic activities, as well as antitumor effects (Hermecz & Mészáros, 1988; Ukrainets et al., 2018). The pyrido [1,2-*a*] pyrimidine motif is incorporated into the structure of some marketed drugs, including the antiasthmatic agent pemirolast, the tranquilizer pirenperone, the antiallergic agent ramastine, and the psychotropic agents risperidone and paliperidone (Awouters et al., 1986; Blaton et al., 1995; Yahata et al., 2006; Riva et al., 2011). Over recent decades, a number of synthetic protocols for the synthesis of pyrido[1,2-a]pyrimidines have been reported, and these

approaches have focused on two-component reactions (Wu *et al.*, 2003; Pryadeina *et al.*, 2005). Multi-component reactions have developed as powerful tools for the design of complex molecules, natural products and drug-like molecules in a minimum number of synthetic steps (Abdelhamid *et al.*, 2014; McLaughlin *et al.*, 2014; Janssen *et al.*, 2018).

As part of our studies on the chemistry of bridgehead nitrogen heterocycles, as well as taking into account our ongoing structural studies (Mamedov *et al.*, 2013; Naghiyev *et al.*, 2020*a,b,c*; Naghiyev *et al.*, 2021), we report here the crystal structure and Hirshfeld surface analysis of the title compound, $C_{16}H_{13}Cl_2N_5$, obtained by an efficient three-component synthetic protocol.

2. Structural commentary

In the molecular structure of the title compound, (Fig. 1), the 1,4-dihydropyridine ring (N5/C6–C9/C9A) of the 1,3,4,8tetrahydro-2*H*-pyrido[1,2-*a*]pyrimidine ring system (N1/C2–C4/N5/C6–C9/C9A) adopts a screw-boat conformation with puckering parameters (Cremer & Pople, 1975) $Q_{\rm T}$ = 0.520 (3) Å, θ = 120.8 (3)° and φ = 270.4 (3)°, while the 1,3diazinane ring (N1/C2–C4/N5/C9A) is puckered [$Q_{\rm T}$ = 0.160 (3) Å, θ = 75.2 (11)° and φ = 169.4 (10)°]. The dichlorophenyl ring (C11–C16) makes a dihedral angle of

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

A view showing details of the intermolecular N-H···N and C-H···N hydrogen bonds in the unit cell of the title compound. The dichlorophenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (a) x, 1 - y, $-\frac{1}{2} + z$; (b) x, 1 - y, $\frac{1}{2} + z$; (c) $-\frac{1}{2} + x$, $-\frac{1}{2} + y$, z; (d) $\frac{1}{2} + x$, $\frac{1}{2} + y$, z; (e) $-\frac{1}{2} + x$, $\frac{3}{2} - y$, $-\frac{1}{2} + z$; (f) $-\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$; (g) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$].

 $80.82 (12)^{\circ}$ with the mean plane of the 1,3,4,8-tetrahydro-2*H*-pyrido[1,2-*a*]pyrimidine ring system.

3. Supramolecular features

In the crystal, intermolecular N-H···N hydrogen bonds between the amine functions as donor groups and the nitrile N atoms as acceptor groups and intermolecular C-H···N hydrogen bonds lead to the formation of sheets extending parallel to (110) and (110) (Table 1; Figs. 2, 3 and 4). These hydrogen-bonded sheets cross each other (Fig. 5). C-H··· π

Figure 3

A view along [100] showing the intermolecular $N-H \cdots N$ and $C-H \cdots N$ hydrogen bonds of the title compound. The dichlorophenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity.

research communications

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg3 is the centroid of the C11-C16 dichlorophenyl ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots N10^{i}$	0.85 (3)	2.43 (3)	3.152 (3)	143 (3)
$N6-H6A\cdots N17^{ii}$	0.85(4)	2.17 (3)	2.927 (3)	149 (3)
$N6-H6B\cdots N10^{iii}$	0.85(4)	2.16 (4)	2.953 (3)	156 (3)
C4-H4 B ···N17 ^{iv}	0.99	2.59	3.440 (4)	144
$C2-H2A\cdots Cg3^{iv}$	0.99	2.87	3.653 (3)	136

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $x, -y + 1, z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Figure 4

A view along [010] showing the intermolecular $N-H\cdots N$ and $C-H\cdots N$ hydrogen bonds of the title compound. The dichlorophenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 5

A view along [001] showing the intermolecular $N-H \cdots N$ and $C-H \cdots N$ hydrogen bonds of the title compound. The dichlorophenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity.

A view along [010] showing the $C-H\cdots\pi$ interactions in the title compound.

interactions (Table 1), which form zigzag chains propagating parallel to [100] (Fig. 6), are also involved in the packing.

4. Hirshfeld surface analysis

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed with *Crystal*-*Explorer17.5* (Turner *et al.*, 2017). Fig. 7(*a*) and Fig. 7(*b*) show the front and back sides of the three-dimensional Hirshfeld surface of the title molecule plotted over d_{norm} in the range -0.4776 to +1.4517 a.u., using a 'high standard' surface resolution colour-mapped over the normalized contact distance. The red, white and blue regions visible on the d_{norm} surfaces indicate contacts with distances shorter, longer and equal to the van der Waals separations. The red spots highlight the

Figure 7

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound plotted over d_{norm} in the range -0.4776 to +1.4517 a.u.

 Table 2

 Summary of short interatomic contacts (Å) in the title compound.

Contact	Distance	Symmetry operation
H6 <i>B</i> ···N10	2.16	$x, 1 - y, \frac{1}{2} + z$
$H1 \cdot \cdot \cdot N10$	2.43	$\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$
H4 <i>B</i> ····N17	2.59	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
$H6A \cdot \cdot \cdot N17$	2.16	$-\frac{1}{2} + x, -\frac{1}{2} + y, z$
N10···H15	2.81	-1 + x, y, z
H3 <i>B</i> · · ·H13	2.57	x, y, 1 + z

interatomic contacts, including the N–H···N and C–H···N hydrogen bonds.

The overall two-dimensional fingerprint plot for the title compound and those delineated into $N \cdots H/H \cdots N$, $H \cdots H$, $C \cdots H/H \cdots C$ and $Cl \cdots H/H \cdots Cl$ contacts are illustrated in

(a) All...All

Figure 8

The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into (b) $N \cdots H/H \cdots N$, (c) $H \cdots H$, (d) $C \cdots H/H \cdots C$ and (f) $C \cdots H/H \cdots Cl$ interactions [d_e and d_i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].

Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound.

Contact	Percentage contribution		
$N \cdots H/H \cdots N$	28.4		
$H \cdots H$	24.5		
$C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$	21.4		
$Cl \cdot \cdot \cdot H/H \cdot \cdot \cdot Cl$	16.1		
$Cl \cdot \cdot \cdot C/C \cdot \cdot \cdot Cl$	3.3		
Cl···Cl	2.5		
$Cl \cdot \cdot \cdot N/N \cdot \cdot \cdot Cl$	2.3		
$C \cdots N/N \cdots C$	0.8		
$\mathbf{C} \cdot \cdot \cdot \mathbf{C}$	0.6		
$N \cdots N$	0.2		

Fig. 8. Numerical details of the various contacts are given in Table 2 and their percentage contributions to the Hirshfeld surfaces are collated in Table 3. $N \cdots H/H \cdots N$ (28.4%), $H \cdots H$ (24.5%), $C \cdots H/H \cdots C$ (21.4%) and $Cl \cdots H/H \cdots Cl$ (16.1%) contribute significantly to the packing while $Cl \cdots C/C \cdots Cl$, $Cl \cdots Cl$, $Cl \cdots N/N \cdots Cl$, $C \cdots N/N \cdots C$, $C \cdots C$ and $N \cdots N$ contacts have a negligible directional impact.

The large number of $N \cdots H/H \cdots N$, $H \cdots H$, $C \cdots H/H \cdots C$ and $Cl \cdots H/H \cdots Cl$ interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar *et al.*, 2015).

5. Database survey

Four related compounds, which have the 1,3,4,8-tetrahydro-2*H*-pyrido[1,2-*a*]pyrimidine ring system of the title compound, were found in a search of the Cambridge Structural Database (CSD version 5.42, update of November 2020; Groom *et al.*, 2016): 9-(4-nitrobenzylidene)-8,9-dihydropyrido[2,3-*d*]pyrrolo[1,2-*a*]pyrimidin-5(7*H*)-one (refcode VAMBET; Khodjaniyazov & Ashurov, 2016), 11-(aminomethylidene)-8,9,10,11tetrahydropyrido[2',3':4,5]pyrimido[1,2-*a*]azepin-5(7*H*)-one (HECLUZ; Khodjaniyazov *et al.*, 2017), 7'-amino-1'*H*-spiro-[cycloheptane-1,2'-pyrimido[4,5-*d*]pyrimidin]-4'(3'*H*)-one (LEGLIU; Chen *et al.*, 2012) and 11-(2-oxopyrrolidin-1ylmethyl)-1,2,3,4,5,6,11,11a-octahydropyrido[2,1-*b*]quinazolin-6-one dihydrate (KUTPEV; Samarov *et al.*, 2010).

In the crystal of VAMBET, molecules are linked via C- $H \cdots O$ and $C - H \cdots N$ hydrogen bonds, forming layers parallel to (101). In the molecule of HECLUZ, the seven-membered pentamethylene ring adopts a twist-boat conformation. In the crystal, hydrogen bonds with 16-membered ring and three chain motifs are generated by N-H···N and N-H···O contacts. The amino group is located close to the nitrogen atoms, forming hydrogen bonds with $R_2^1(4)$ and $R_2^2(12)$ graphset motifs. This amino group also forms a hydrogen bond with the C=O oxygen atom of a molecule translated parallel to [100], which links the molecules into $R_4^4(16)$ rings. Hydrogenbonded chains are formed along [100] by alternating $R_2^2(12)$ and $R_4^4(16)$ rings. These chains are stabilized by intermolecular π - π stacking interactions observed between the pyridine and pyrimidine rings. In LEGLIU, the molecular structure is built up from two fused six-membered rings and one seven-

research communications

Table 4Experimental details.

Crystal data	
Chemical formula	C ₁₆ H ₁₃ Cl ₂ N ₅
M _r	346.21
Crystal system, space group	Monoclinic, Cc
Temperature (K)	100
a, b, c (Å)	8.6598 (2), 16.0275 (5), 11.6590 (3)
β (°)	90.7364 (9)
$V(Å^3)$	1618.08 (8)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.41
Crystal size (mm)	$0.30 \times 0.03 \times 0.03$
Data collection	
Diffractometer	Bruker D8 QUEST PHOTON-III
	CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.880, 0.980
No. of measured, independent and	21346, 5861, 4528
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.064
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.758
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.090, 1.03
No. of reflections	5861
No. of parameters	217
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	0.25, -0.32
Absolute structure	Flack x determined using 1774
	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
	(Parsons <i>et al.</i> , 2013).
Absolute structure parameter	0.27 (3)
1	

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

membered ring linked through a spiro C atom. The crystal packing is stabilized by intermolecular $N-H\cdots O$ hydrogen bonds between the two N-H groups and the ketone O atoms of the neighbouring molecules. In KUTPEV, water molecules are mutually $O-H\cdots O$ hydrogen bonded and form infinite chains propagating parallel to [010]. Neighbouring chains are linked by the quinazoline molecules by means of $O-H\cdots O$ hydrogen bonds, forming a two-dimensional network.

6. Synthesis and crystallization

To a dissolved mixture of 2-(2,6-dichlorobenzylidene)malononitrile (1.14 g; 5.1 mmol) and malononitrile (0.34 g; 5.2 mmol) in methanol (40 mL), 1,3-diaminopropane (0.38 g; 5.2 mmol) was added and was stirred at room temperature for 10 min. Then 25 mL of methanol were removed from the reaction mixture that was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol (yield 78%; m.p. 541–542 K).

¹H NMR (300 MHz, DMSO-*d*₆): 1.89 (*m*, 2H, CH₂); 3.13 (*m*, 2H, CH₂); 3.67 (*m*, 2H, CH₂); 5.31 (*s*, 1H, CH-Ar); 6.14 (*s*, 2H,

NH₂); 6.78 (*s*, 1H, NH); 7.25 (*t*, 1H, Ar-H, ${}^{3}J_{H-H} = 7,9$); 7.42 (*d*, 2H, 2Ar-H, ${}^{3}J_{H-H} = 7,8$). ${}^{13}C$ NMR (75 MHz, DMSO-*d*₆): 22.30 (CH₂), 36.32 (Ar-CH), 38.62 (CH₂), 42.92 (CH₂), 51.70 (=C_{quar}), 55.06 (=C_{quar}), 121.61 (CN), 122.04 (CN), 129.56 (3CH_{arom}), 138.25 (3C_{ar}), 152.11 (=C_{quar}), 154.17 (=C_{quar}).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The C-bound H atoms were placed in calculated positions (C-H = 0.95–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. All N-bound H atoms were located in a difference map [N1-H1 = 0.85 (3) Å, N6-H6A = 0.85 (4) Å and N6-H6B = 0.85 (4) Å] and they were refined with the constraint $U_{iso}(H) = 1.2U_{eq}(N)$.

Acknowledgements

Authors contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, VNK, FNN, TAT and AAA; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and IGM; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, RMR, AAA and FNN; supervision, IGM and MA.

Funding information

This work was supported by Baku State University, and RUDN University Strategic Academic Leadership Program.

References

- Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, 0744.
- Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474– 478.
- Awouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95–102.
- Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). *Acta Cryst.* C**51**, 533–535.
- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.
- Hermecz, I. & Mészáros, Z. (1988). Med. Res. Rev. 8, 203-230.
- Janssen, G. V., van den Heuvel, J. A. C., Megens, R. P., Benningshof, J. C. J. & Ovaa, H. (2018). *Bioorg. Med. Chem.* 26, 41–49.
- Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, 01146.
- Khodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452–455.
- Khodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). *Acta Cryst.* E**73**, 1497–1500.

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). *Inorg. Chim. Acta*, 461, 192–205.
- Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). *CrystEngComm*, **21**, 108–117.
- Mamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2013). *Magn. Reson. Chem.* **51**, 234–239.
- McLaughlin, E. C., Norman, M. W., Ko Ko, T. & Stolt, I. (2014). Tetrahedron Lett. 55, 2609–2611.
- Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020a). Acta Cryst. E76, 720–723.
- Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020b). *Molecules*, 25, 2235.
- Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). *Acta Cryst.* E77, 195–199.
- Naghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020c). *Acta Cryst.* E**76**, 1365–1368.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Pryadeina, M. V., Burgart, Y. V., Kodess, M. I. & Saloutin, V. I. (2005). *Russ. Chem. Bull.* 54, 2841–2845.

- Riva, R., Banfi, L., Castaldi, G., Ghislieri, D., Malpezzi, L., Musumeci, F., Tufaro, R. & Rasparini, M. (2011). *Eur. J. Org. Chem.* pp. 2319– 2325.
- Samarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, 0890.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, **11**, 19–32.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer*17. University of Western Australia.
- Ukrainets, I. V., Bereznyakova, N. L., Sim, G. & Davidenko, A. A. (2018). *Pharm. Chem. J.* **52**, 601–605.
- Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). *Eur. J. Med. Chem.* **166**, 291–303.
- Wu, Y.-J., He, H., Hu, S., Huang, Y., Scola, P. M., Grant-Young, K., Bertekap, R. L., Wu, D., Gao, Q., Li, Y., Klakouski, C. & Westphal, R. S. (2003). J. Med. Chem. 46, 4834–4837.
- Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). *Russ. J. Org. Chem.* 45, 1856–1858.
- Yahata, H., Saito, M., Sendo, T., Itoh, Y., Uchida, M., Hirakawa, T., Nakano, H. & Oishi, R. (2006). *Int. J. Cancer*, **118**, 2636–2638.
- Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.

supporting information

Acta Cryst. (2021). E77, 516-521 [https://doi.org/10.1107/S2056989021003583]

Crystal structure and Hirshfeld surface analysis of 6-amino-8-(2,6-dichlorophenyl)-1,3,4,8-tetrahydro-2*H*-pyrido[1,2-*a*]pyrimidine-7,9-dicarbonitrile

Farid N. Naghiyev, Tatiana A. Tereshina, Victor N. Khrustalev, Mehmet Akkurt, Rovnag M. Rzayev, Anzurat A. Akobirshoeva and İbrahim G. Mamedov

Computing details

Data collection: *APEX3* (Bruker, 2018); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

6-Amino-8-(2,6-dichlorophenyl)-1,3,4,8-tetrahydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile

Crystal data

 $C_{16}H_{13}Cl_2N_5$ $M_r = 346.21$ Monoclinic, Cc a = 8.6598 (2) Å b = 16.0275 (5) Å c = 11.6590 (3) Å $\beta = 90.7364$ (9)° V = 1618.08 (8) Å³ Z = 4

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.880, T_{\max} = 0.980$ 21346 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.090$ S = 1.025861 reflections 217 parameters 2 restraints F(000) = 712 $D_x = 1.421 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4611 reflections $\theta = 2.5-32.2^{\circ}$ $\mu = 0.41 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.30 \times 0.03 \times 0.03 \text{ mm}$

5861 independent reflections 4528 reflections with $I > 2\sigma(I)$ $R_{int} = 0.064$ $\theta_{max} = 32.6^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -13 \rightarrow 13$ $k = -24 \rightarrow 24$ $l = -17 \rightarrow 17$

Primary atom site location: difference Fourier map Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0315P)^2 + 0.2854P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} < 0.001$	Absolute structure: Flack x determined using
$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$	1774 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et
$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$	al., 2013).
	Absolute structure parameter: 0.27 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.48473 (9)	0.76604 (6)	0.16871 (7)	0.0429 (2)	
C12	0.69787 (9)	0.56058 (4)	0.51124 (7)	0.03080 (17)	
N1	0.5635 (3)	0.75406 (14)	0.7250 (2)	0.0199 (5)	
H1	0.604 (4)	0.801 (2)	0.709 (3)	0.024*	
C2	0.5218 (3)	0.73373 (16)	0.8418 (2)	0.0207 (5)	
H2A	0.4154	0.7528	0.8576	0.025*	
H2B	0.5934	0.7611	0.8969	0.025*	
C3	0.5326 (4)	0.63931 (17)	0.8531 (2)	0.0248 (6)	
H3A	0.6392	0.6206	0.8373	0.030*	
H3B	0.5064	0.6222	0.9321	0.030*	
C4	0.4209 (3)	0.59988 (16)	0.7681 (2)	0.0218 (5)	
H4A	0.4471	0.5401	0.7595	0.026*	
H4B	0.3151	0.6033	0.7990	0.026*	
N5	0.4232 (3)	0.64027 (13)	0.65394 (19)	0.0167 (4)	
C6	0.3418 (3)	0.60234 (14)	0.5649 (2)	0.0163 (5)	
N6	0.2511 (3)	0.53821 (15)	0.5930(2)	0.0236 (5)	
H6A	0.214 (4)	0.506 (2)	0.541 (3)	0.028*	
H6B	0.238 (4)	0.522 (2)	0.661 (3)	0.028*	
C7	0.3535 (3)	0.63028 (15)	0.4540 (2)	0.0155 (5)	
C8	0.4667 (3)	0.69614 (15)	0.4164 (2)	0.0167 (5)	
H8	0.4066	0.7379	0.3704	0.020*	
C9	0.5266 (3)	0.74104 (16)	0.5222 (2)	0.0179 (5)	
C9A	0.5062 (3)	0.71289 (15)	0.6322 (2)	0.0161 (5)	
C10	0.2600 (3)	0.59393 (15)	0.3682 (2)	0.0147 (5)	
N10	0.1851 (3)	0.56730 (13)	0.2941 (2)	0.0194 (5)	
C11	0.5914 (3)	0.66149 (18)	0.3380 (3)	0.0200 (5)	
C12	0.6051 (3)	0.6880 (2)	0.2246 (3)	0.0283 (6)	
C13	0.7126 (4)	0.6549 (3)	0.1492 (3)	0.0375 (8)	
H13	0.7167	0.6742	0.0723	0.045*	
C14	0.8127 (4)	0.5940 (2)	0.1873 (3)	0.0383 (8)	
H14	0.8869	0.5715	0.1367	0.046*	
C15	0.8058 (3)	0.56565 (19)	0.2989 (3)	0.0314 (7)	
H15	0.8746	0.5235	0.3254	0.038*	
C16	0.6971 (3)	0.59938 (18)	0.3718 (3)	0.0240 (6)	
C17	0.5995 (3)	0.81835 (17)	0.5040 (2)	0.0228 (6)	

supporting information

N17	0.6562 (4)	0.88	151 (16)	0.4841 (2)	0.0362 (7)	
Atomic displacement parameters $(Å^2)$						
	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Cl1	0.0391 (4)	0.0681 (6)	0.0215 (4)	-0.0012 (4)	0.0009 (3)	0.0190 (4)
Cl2	0.0305 (4)	0.0267 (3)	0.0353 (4)	0.0081 (3)	0.0050 (3)	0.0077 (3)
N1	0.0294 (12)	0.0147 (10)	0.0156 (11)	-0.0072 (9)	0.0006 (9)	0.0002 (8)
C2	0.0278 (14)	0.0215 (13)	0.0127 (12)	-0.0055 (10)	-0.0012 (10)	-0.0013 (10)
C3	0.0353 (16)	0.0207 (13)	0.0180 (14)	-0.0050 (11)	-0.0071 (12)	0.0033 (10)
C4	0.0328 (14)	0.0189 (12)	0.0136 (13)	-0.0088 (11)	-0.0029 (11)	0.0027 (9)
N5	0.0237 (11)	0.0145 (10)	0.0120 (10)	-0.0050 (8)	0.0000 (8)	0.0003 (7)
C6	0.0200 (12)	0.0127 (10)	0.0161 (12)	-0.0016 (9)	-0.0006 (9)	-0.0018 (9)
N6	0.0354 (13)	0.0211 (11)	0.0142 (11)	-0.0141 (10)	-0.0024 (10)	0.0009 (9)
C7	0.0179 (11)	0.0150 (11)	0.0137 (12)	-0.0006 (9)	0.0007 (9)	-0.0013 (9)
C8	0.0216 (13)	0.0135 (10)	0.0151 (12)	-0.0022 (9)	0.0001 (10)	0.0002 (9)
C9	0.0242 (13)	0.0149 (11)	0.0148 (13)	-0.0040 (9)	0.0029 (10)	-0.0025 (9)
C9A	0.0189 (12)	0.0131 (10)	0.0163 (12)	-0.0025 (9)	0.0001 (9)	-0.0007 (9)
C10	0.0179 (11)	0.0123 (10)	0.0140 (12)	0.0010 (9)	0.0034 (9)	0.0018 (8)
N10	0.0226 (11)	0.0193 (11)	0.0163 (12)	0.0030 (9)	-0.0013 (9)	-0.0016 (8)
C11	0.0220 (12)	0.0199 (11)	0.0181 (12)	-0.0082 (9)	0.0022 (10)	-0.0051 (9)
C12	0.0257 (15)	0.0417 (17)	0.0175 (15)	-0.0130 (13)	0.0008 (11)	-0.0018 (12)
C13	0.0281 (16)	0.067 (2)	0.0179 (15)	-0.0197 (16)	0.0048 (12)	-0.0117 (15)
C14	0.0248 (15)	0.053 (2)	0.038 (2)	-0.0131 (15)	0.0123 (13)	-0.0255 (16)
C15	0.0214 (14)	0.0300 (15)	0.043 (2)	-0.0064 (12)	0.0079 (13)	-0.0150 (14)
C16	0.0228 (14)	0.0229 (13)	0.0264 (15)	-0.0039 (10)	0.0037 (11)	-0.0039 (11)
C17	0.0329 (15)	0.0213 (12)	0.0144 (13)	-0.0073 (11)	0.0054 (11)	-0.0053 (10)
N17	0.064 (2)	0.0259 (12)	0.0189 (13)	-0.0208 (13)	0.0093 (12)	-0.0046 (10)

Geometric parameters (Å, °)

Cl1—C12	1.749 (4)	N6—H6B	0.85 (4)
Cl2—C16	1.741 (3)	C7—C10	1.406 (4)
N1-C9A	1.355 (3)	C7—C8	1.509 (3)
N1—C2	1.451 (3)	C8—C9	1.514 (4)
N1—H1	0.85 (3)	C8—C11	1.529 (4)
С2—С3	1.522 (4)	C8—H8	1.0000
C2—H2A	0.9900	C9—C9A	1.373 (4)
C2—H2B	0.9900	C9—C17	1.408 (4)
C3—C4	1.514 (4)	C10—N10	1.155 (3)
С3—НЗА	0.9900	C11—C12	1.395 (4)
С3—Н3В	0.9900	C11—C16	1.405 (4)
C4—N5	1.481 (3)	C12—C13	1.392 (4)
C4—H4A	0.9900	C13—C14	1.375 (5)
C4—H4B	0.9900	C13—H13	0.9500
N5—C6	1.387 (3)	C14—C15	1.380 (5)
N5—C9A	1.393 (3)	C14—H14	0.9500
C6—N6	1.337 (3)	C15—C16	1.385 (4)

supporting information

C6—C7	1.373 (4)	C15—H15	0.9500
N6—H6A	0.85 (4)	C17—N17	1.150 (3)
C9A—N1—C2	123.1 (2)	C7—C8—C9	108.2 (2)
C9A—N1—H1	114 (2)	C7—C8—C11	112.7 (2)
C2—N1—H1	121 (2)	C9—C8—C11	115.0 (2)
N1—C2—C3	106.8 (2)	С7—С8—Н8	106.8
N1—C2—H2A	110.4	С9—С8—Н8	106.8
C3—C2—H2A	110.4	С11—С8—Н8	106.8
N1—C2—H2B	110.4	C9A—C9—C17	119.5 (2)
C3—C2—H2B	110.4	C9A—C9—C8	123.9 (2)
H2A—C2—H2B	108.6	С17—С9—С8	116.4 (2)
C4—C3—C2	108.7 (2)	N1—C9A—C9	122.4 (2)
С4—С3—Н3А	110.0	N1—C9A—N5	116.5 (2)
С2—С3—НЗА	110.0	C9—C9A—N5	121.1 (2)
C4—C3—H3B	110.0	N10—C10—C7	176.6 (3)
С2—С3—Н3В	110.0	C12—C11—C16	114.7 (3)
H3A—C3—H3B	108.3	C12-C11-C8	121.7(3)
N5-C4-C3	113.0(2)	C16-C11-C8	123.5(3)
N5-C4-H4A	109.0	C_{13} C_{12} C_{11}	123.2(3)
C3-C4-H4A	109.0	C13 - C12 - C11	1159(3)
N5-C4-H4B	109.0	$C_{11} - C_{12} - C_{11}$	120.8(2)
C3-C4-H4B	109.0	C14-C13-C12	1193(3)
H4A - C4 - H4B	107.8	C14-C13-H13	120.3
C6-N5-C9A	1193(2)	C12-C13-H13	120.3
C6-N5-C4	117.9 (2)	C13 - C14 - C15	120.3 120.2(3)
C9A - N5 - C4	122.8 (2)	C13—C14—H14	119.9
N6—C6—C7	122.0(2) 122.1(2)	C15—C14—H14	119.9
N6-C6-N5	1166(2)	C14-C15-C16	119.2 (3)
C7-C6-N5	1212(2)	C14-C15-H15	120.4
C6—N6—H6A	121.2(2) 120(2)	C16—C15—H15	120.1
C6—N6—H6B	120(2) 124(2)	C_{15} C_{16} C_{11}	120.1 123.3(3)
H6A—N6—H6B	115(3)	C_{15} C_{16} C_{12}	125.5(3) 1160(3)
C6-C7-C10	119 1 (2)	$C_{11} - C_{16} - C_{12}$	120.6(2)
C6-C7-C8	123.9(2)	N17-C17-C9	120.0(2) 1769(3)
C10-C7-C8	123.9(2) 117.0(2)		170.7 (3)
010-07-00	117.0 (2)		
C9A—N1—C2—C3	46.5 (3)	C17—C9—C9A—N5	1745(3)
$N_1 - C_2 - C_3 - C_4$	-603(3)	C8 - C9 - C9A - N5	-1.8(4)
$C_2 = C_3 = C_4 = N_5$	432(3)	C6-N5-C9A-N1	170.2(2)
$C_2 = C_3 = C_4 = 1\sqrt{3}$	+3.2(3)	C4 N5 $C9A$ N1	-115(4)
C_{3} C_{4} N_{5} C_{9}	-71(4)	C6-N5-C9A-C9	-9.1(4)
C_{0} N5 C6 N6	-173.0(2)	C_{4} N5 C_{4} C9	9.1(+) 160.2(2)
C_{4} N5 C_{6} N6	86(4)	C_{7} C_{7} C_{8} C_{11} C_{12}	109.2(2) 116 $4(3)$
CQA = N5 = C6 = C7	6.0(+)	$C_{1} = C_{0} = C_{11} = C_{12}$	-1180(2)
$C_{A} = 103 - C_{A} - C_{A}$	-172.0(2)	$C_{7} = C_{8} = C_{11} = C_{12}$	-615(3)
$ \begin{array}{c} \mathbf{U}_{\mathbf{T}} \\ \mathbf{U}_{$	1/2.0(2)	$C_{1} = C_{0} = C_{11} = C_{10}$	(1.3(3))
10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	(+,1)	$C_{1} = C_{1}	11(4)
$N_{3} - C_{0} - C_{1} - C_{10}$	-1/5.2(2)	U10-U11-U12-U13	1.1 (4)

NG CG C7 C9	172 2 (2)	C9 C11 C12 C12	17(0(2)
No	-1/3.2(2)	C8-C11-C12-C13	-1/6.9(3)
N5—C6—C7—C8	7.4 (4)	C16—C11—C12—C11	-179.0 (2)
C6—C7—C8—C9	-16.0 (3)	C8—C11—C12—Cl1	3.0 (4)
C10—C7—C8—C9	166.6 (2)	C11—C12—C13—C14	-1.0 (5)
C6—C7—C8—C11	112.3 (3)	Cl1—C12—C13—C14	179.1 (2)
C10—C7—C8—C11	-65.1 (3)	C12-C13-C14-C15	0.5 (5)
С7—С8—С9—С9А	13.2 (3)	C13—C14—C15—C16	-0.2 (5)
С11—С8—С9—С9А	-113.8 (3)	C14-C15-C16-C11	0.4 (4)
C7—C8—C9—C17	-163.2 (2)	C14—C15—C16—Cl2	-179.4 (2)
C11—C8—C9—C17	69.8 (3)	C12-C11-C16-C15	-0.8 (4)
C2—N1—C9A—C9	169.2 (3)	C8—C11—C16—C15	177.2 (3)
C2—N1—C9A—N5	-10.1 (4)	C12—C11—C16—Cl2	179.0 (2)
C17—C9—C9A—N1	-4.7 (4)	C8—C11—C16—Cl2	-3.1 (4)
C8—C9—C9A—N1	179.0 (3)		

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C11–C16 dichlorophenyl ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…N10 ⁱ	0.85 (3)	2.43 (3)	3.152 (3)	143 (3)
N6—H6A···N17 ⁱⁱ	0.85 (4)	2.17 (3)	2.927 (3)	149 (3)
N6—H6B···N10 ⁱⁱⁱ	0.85 (4)	2.16 (4)	2.953 (3)	156 (3)
C4—H4 B ···N17 ^{iv}	0.99	2.59	3.440 (4)	144
C2—H2 A ···Cg3 ^{iv}	0.99	2.87	3.653 (3)	136

Symmetry codes: (i) x+1/2, -y+3/2, z+1/2; (ii) x-1/2, y-1/2, z; (iii) x, -y+1, z+1/2; (iv) x-1/2, -y+3/2, z+1/2.