OPEN ACCESS

Crystal structures of (*E*)-2-amino-4-methylsulfanyl-6-oxo-1-(1-phenylethylideneamino)-1,6-dihydropyrimidine-5-carbonitrile and (*E*)-2-amino-4methylsulfanyl-6-oxo-1-[1-(pyridin-2-yl)ethylideneamino]-1,6-dihydropyrimidine-5-carbonitrile

Reham A. Mohamed-Ezzat,^a Galal H. Elgemeie^b and Peter G. Jones^{c*}

^aChemistry of Natural & Microbial Products Department, National Research Center, Cairo, Egypt, ^bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and ^cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany. *Correspondence e-mail: p.jones@tu-bs.de

The title compounds **3a**, $C_{14}H_{13}N_5OS$, and **3b**, $C_{13}H_{12}N_6OS$, both show an *E* configuration about the N=C bond and a planar NH₂ group. The molecules, which only differ in the presence of a phenyl (in **3a**) or pyridyl (in **3b**) substituent, are closely similar except for the different orientations of these groups. The amino hydrogen atoms form classical hydrogen bonds; in **3a** the acceptors are the oxygen atom and the cyano nitrogen atom, leading to ribbons of molecules parallel to the *b* axis, whereas in **3b** the acceptors are the oxygen atom and the pyridyl nitrogen, leading to a layer structure perpendicular to ($\overline{101}$).

1. Chemical context

Dimethyl *N*-cyanodithioiminocarbonate (2) is an important starting material for the synthesis of various classes of heterocycles (Elgemeie & Mohamed, 2014), *e.g.* azoles, azines and azoloazines (Thomae *et al.*, 2009). It has been used effectively in the synthesis of a range of antibacterial (Paget *et al.*, 2006), anticancer (Hu *et al.*, 2014) and other biologically significant products (Marsault *et al.*, 2007).

Pyrimidinones are multipurpose heterocyclic compounds that are common in nucleic acids and find diverse applications in drug planning (Elgemeie *et al.*, 2019; Elgemeie & Mohamed, 2019); they are important in pharmaceutical chemistry because of their pharmacological potential (Galmarini *et al.*, 2003). Research in the pharmaceutical chemistry of pyrimidone derivatives has become an active field, since several pyrimidinone-based compounds have been extensively used as clinical drugs to treat numerous types of viruses with high therapeutic effectiveness (Simons *et al.*, 2005); their biotic profile and synthetic availability have been attractive in their design and development as possible chemotherapeutics. In particular, pyrimidinone derivatives have recently become significant in the improvement of anti-coronavirus agents (Pruijssers *et al.*, 2019).

In order to access this class of compounds, a variety of new synthetic methods has been developed (Xu *et al.*, 2004). Recently, we have designed the syntheses of several pyrimidinone derivatives starting from activated nitriles (Elgemeie *et al.*, 2015*a*,*b*; Abu-Zaied *et al.*, 2020, 2021). As part of this program, the reactions of 2-cyano-N'-(1-phenylethylidene)-

Received 7 April 2021 Accepted 17 April 2021

ISSN 2056-9890

Edited by J. Reibenspies, Texas A & M University, USA

CRYSTALLOGRAPHIC

COMMUNICATIONS

Keywords: crystal structure; pyrimidinones; hydrogen bonds.

CCDC references: 2078221; 2078220

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

acetohydrazide (1a) or 2-cyano-N'-(1-(pyridin-2-yl)ethylidene)acetohydrazide (1b) with 2 in KOH/EtOH were studied. These reactions gave products that were crystallized from DMF and identified by X-ray crystallography as the title compounds (3a,b). ¹H NMR spectra of 3a showed SCH₃ protons at δ 2.55 ppm and the free NH₂ protons at δ 8.52 ppm. The formation of 3 from 1 and 2 is assumed to proceed *via* initial addition of the active methylene group of 1 to the double bond of 2, followed by elimination of CH₃SH and cyclization *via* addition of the NH group to the cyano group.

2. Structural commentary

The structure determinations confirm the expected chemical structures of **3a** and **3b**; the respective molecules are shown in Figs. 1 and 2. In both compounds, the configuration about the double bond N2=C7 is E and the amino group is planar. The pyrimidine ring dimensions are closely similar; *e.g.* the shortest bonds are C2-N3, the narrowest angles are at C6 (which bears the oxo substituent) and the widest angles are at C4 (which bears the methylthio group). These and a selection of other dimensions are presented in Tables 1 and 2.

Figure 1

The structure of compound 3a in the crystal. Ellipsoids correspond to 50% probability levels.

Table 1	
Selected geometric parameters (Å, °)	for 3a.

0	1 (/ /	/	
N1-N2	1.4248 (17)	C4-S1	1.7522 (16)
C2-N3	1.333 (2)	S1-C16	1.7918 (19)
C7-N2-N1	114.40 (13)	C4-S1-C16	101.93 (8)
N3-C4-C5	124.02 (14)	N1-C6-C5	112.55 (12)
N1-N2-C7-C9 N2-C7-C9-C10	176.69 (12) -166.23 (15)	N2-C7-C9-C14	12.1 (2)

Table 2

Selected geometric parameters	(Å,	°)	for 3b.	
-------------------------------	-----	----	---------	--

		•	
N1-N2	1.4191 (16)	C4-S1	1.7473 (14)
C2-N3	1.3286 (17)	S1-C15	1.8023 (16)
C7-N2-N1	115.53 (11)	C4-S1-C15	102.47 (7)
N3-C4-C5	124.29 (12)	N1-C6-C5	112.65 (11)
N1-N2-C7-C9	-177.94 (10)	N2-C7-C9-C13	1.27 (18)
N2-C7-C9-N5	-178.88 (12)		

The compounds differ chemically only in the phenyl/pyridyl substituents. A least-squares fit of the two molecules shows a moderate difference in the orientation of these groups (Fig. 3, Tables 1 and 2); this may be associated with the role of the pyridyl nitrogen as a hydrogen-bond acceptor in **3b** (see below).

Figure 2

The structure of compound **3b** in the crystal. Ellipsoids correspond to 50% probability levels.

Figure 3

A least-squares fit of the molecules of 3a (solid bonds) and 3b (dashed bonds; molecule inverted with respect to the deposited coordinates). Only the fitted atoms are labelled; their r.m.s. deviation is 0.16 Å.

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for 3a.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N6-H061\cdots O1^{i}$	0.84 (2)	2.24 (3)	2.9899 (17)	149 (2)
$N6 - H062 \cdots N4^i$	0.84(2)	2.33 (2)	3.054 (2)	144 (2)
$C8-H8A\cdots O1^{ii}$	0.98	2.52	3.279 (2)	134
$N6-H062\cdots N2$	0.84 (2)	2.25 (2)	2.6273 (19)	108 (2)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Whereas the immediate substituent atoms of the pyrimidine rings lie close to the ring plane for **3a** [maximum deviation of 0.103 (2) Å for N6], the substituents O1 and C15 of **3b** are more significantly displaced [by 0.203 (2) and 0.179 (3) Å, respectively, to the same side of the ring]. The interplanar angles between the six-membered rings are 56.49 (6)° for **3a** and 63.12 (3)° for **3b**.

Intramolecular hydrogen bonds $N6-H062\cdots N2$ (not shown explicitly in Figs. 1 and 2) are observed in both molecules (Tables 3 and 4).

3. Supramolecular features

In both structures, the hydrogen atoms of the amino groups act as hydrogen bond donors (Tables 3 and 4). In **3a**, neighbouring molecules are connected *via* the same 2_1 operator, leading to ribbons of molecules parallel to the *b* axis (Fig. 4). In **3b**, one hydrogen bond is formed *via* a 2_1 and one *via* an *n* glide operator, leading to layers parallel to ($\overline{101}$) (Fig. 5).

4. Database survey

A search of the Cambridge Database (ConQuest Version 2.0.5) for 6-oxopyrimidines with the same substitution pattern (N at C2, S at C4, cyano at C5 and N at N1) revealed only our previous structures (Elgemeie *et al.*, 2015*a*,*b*; refcodes WUSMAA and WUSMUU); the substituents at N1 were NH-SO₂-*p*-C₆H₄Br and N=CH-2-tht, respectively.

Figure 4

Packing diagram of compound **3a** viewed perpendicular to (102) in the region $z \simeq 0.25$. Dashed lines indicate classical hydrogen bonds. Hydrogen atoms not involved in such bonds are omitted for clarity.

Table 4			
Hydrogen-bond geometry	(Å,	°) for	3b .

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N6-H061···N5 ⁱ	0.86 (2)	2.26 (2)	3.0122 (17)	146.2 (17)
$N6-H062\cdotsO1^{ii}$	0.853 (19)	2.307 (19)	3.0886 (15)	152.4 (17)
$C10-H10\cdots O1^{iii}$	0.95	2.40	3.2351 (17)	147
N6−H062···N2	0.853 (19)	2.228 (18)	2.6091 (17)	107.1 (14)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$ (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ (iii) -x, -y + 1, -z.

5. Synthesis and crystallization

General procedure for the synthesis of compounds 3: A mixture of the appropriate 2-cyano-N'-(1-arylethylidene)-acetohydrazide (1) (0.01 mol), dimethyl N-cyanodithioimino-carbonate (2) (0.01 mol) and anhydrous potassium hydroxide (0.01 mol) was refluxed in ethanol (10 mL). The reaction mixture was then poured onto ice-water; the solid product thus formed was filtered off and recrystallized from DMF.

3a: According to the general procedure, 2-cyano-*N*'-(1phenylethylidene)acetohydrazide (**1a**) was refluxed with **2** for 3 h. Compound **3a** was afforded as a pale-yellow solid (92%); m.p. 498–501 K; IR (cm⁻¹) υ 3719 and 3437 (NH₂), 2202 (CN) and 1657 (C=O). ¹H NMR (400 MHz, DMSO-*d*₆): δ 2.20 (*s*, 3H, CH₃), 2.55 (*s*, 3H, SCH₃), 8.52 (*s*, *br*, 2H, NH₂), 8.045– 8.065 (*d*, *J* = 8 Hz, 2H, 2 CH), 7.59–7.62 (*m*, 1H, CH), 7.50–7.54 (*m*, 2H, 2 CH). Analysis calculated for C₁₄H₁₃N₅OS (299.35): C, 56.17; H, 4.38; N, 23.40; O, 5.34; S, 10.71%. Found: C, 55.89; H, 4.25; N, 23.15; S, 10.52%.

3b: According to the general procedure, 2-cyano-*N*'-(1-(pyridin-2-yl)ethylidene)acetohydrazide (**1b**) was refluxed with **2** for 30 min. Compound **3b** was afforded as a buff solid (80%); m.p. 649–652 K; IR (cm⁻¹) υ 3774 (NH₂), 2172 (CN) and 1635 (C=O). ¹H NMR (400 MHz, DMSO-*d*₆): δ 2.20 (*s*, 3H, CH₃), 2.51 (*s*, 3H, SCH₃), 8.54 (*s*, *br*, 2H, NH₂), 8.73–8.74 (*d*, *J* = 4 Hz, 1H, CH), 8.29–8.31 (*d*, *J* = 8 Hz, 1H, CH), 7.95–8.00 (*t*, 1H, CH); 7.59–7.63 (*t*, *J* = 8 Hz, 1H, CH). Analysis calculated for C₁₃H₁₂N₆OS (300.34): C, 51.99; H, 4.03; N, 27.98; O, 5.33; S, 10.68. Found: C, 51.73; H, 4.22; N, 27.71; S, 10.39%.

Crystals of **3a** proved to be almost all twinned, by 180° rotation about **c***. Data were collected from a twinned crystal, but the refinement using the 'HKLF 5' method was no better than satisfactory (*wR*₂ *ca* 0.11). Finally, an untwinned crystal

Packing diagram of compound **3b** viewed perpendicular to ($\overline{101}$). Dashed lines indicate classical hydrogen bonds. Hydrogen atoms not involved in such bonds are omitted for clarity.

research communications

Table 5 Experimental details.

	3a	3b
Crystal data		
Chemical formula	$C_{14}H_{12}N_5OS$	$C_{12}H_{12}N_6OS$
М.	299.35	300.35
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$
Temperature (K)	100	100
a, b, c (Å)	12.15369 (18), 14.9466 (2), 7.68691 (16)	13.4774 (5), 7.6797 (3), 14.2755 (6)
β (°)	91.7607 (16)	112.401 (5)
$V(A^3)$	1395.72 (4)	1366.04 (10)
Z	4	4
Radiation type	Cu Ka	Cu Ka
$\mu (\mathrm{mm}^{-1})$	2.12	2.19
Crystal size (mm)	$0.2 \times 0.2 \times 0.02$	$0.12 \times 0.08 \times 0.02$
Data collection		
Diffractometer	Rigaku XtaLAB Synergy, Single source at home/near, HyPix	Rigaku XtaLAB Synergy, Single source at home/near, HyPix
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2021)	Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T_{\min}, \hat{T}_{\max}	0.636, 1.000	0.782, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	104992, 2958, 2842	54131, 2905, 2813
R _{int}	0.061	0.042
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.634	0.633
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.106, 1.06	0.036, 0.097, 1.07
No. of reflections	2958	2905
No. of parameters	200	200
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({ m e} \; { m \AA}^{-3})$	0.40, -0.35	0.33, -0.39

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and XP (Siemens, 1994).

was discovered. Despite its less regular reflection shape, the results proved to be slightly better in terms of the wR_2 value, and the results quoted here are for this untwinned crystal.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The NH hydrogen atoms were refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137; C–H 0.98 Å, H–C–H 109.5 °). The hydrogens of the aromatic rings were included using a riding model starting from calculated positions (C–H_{aromatic} 0.95 Å). The U(H) values were fixed at 1.5 (for the methyl H) or 1.2 times the equivalent U_{iso} value of the parent carbon atoms.

References

- Abu-Zaied, M. A., Elgemeie, G. H. & Mahmoud, N. M. (2021). Nucleosides Nucleotides Nucleic Acids, 40, 336–356.
- Abu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2020). Am. Chem. Soc. (Omega), 5, 20042–20050.
- Elgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 12–87.
- Elgemeie, G. H. & Mohamed, R. A. (2014). *Heterocycl. Commun.* **20**, 257–269, 313–331.

Elgemeie, G. H. & Mohamed, R. A. (2019). J. Carbohydr. Chem. 38, 20–66.

- Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015b). Acta Cryst. E71, 1322–1324.
- Elgemeie, G. H., Salah, A. M., Mohamed, R. A. & Jones, P. G. (2015a). Acta Cryst. E71, 1319–1321.
- Galmarini, C. M., Jordheim, L. & Dumontet, C. (2003). Expert Rev. Anticancer Ther. 3, 717–728.
- Hu, Z., Ou, L., Li, S. & Yang, L. (2014). Med. Chem. Res. 23, 3029–3038.
- Marsault, E., Benakli, K., Beaubien, S., Saint-Louis, C., Déziel, R. & Fraser, G. (2007). *Bioorg. Med. Chem. Lett.* 17, 4187–4190.
- Paget, S. D., Boggs, C. M., Foleno, B. D., Goldschmidt, R. M., Hlasta, D. J., Weidner-Wells, M. A., Werblood, H. M., Bush, K. & Macielag, M. J. (2006). *Bioorg. Med. Chem. Lett.* 16, 4537–4542.
- Pruijssers, A. J. & Denison, M. R. (2019). Curr. Opin. Virol. 35, 57-62.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Inc., Madison, Wisconsin, USA.
- Simons, C., Wu, Q. & Htar, T. (2005). Curr. Top. Med. Chem. 5, 1191– 1203.
- Thomae, D., Perspicace, E., Xu, Z., Henryon, D., Schneider, S., Hesse, S., Kirsch, G. & Seck, P. (2009). *Tetrahedron*, **65**, 2982–2988.
- Xu, Y.-Z., Zhang, X., Wu, H.-C., Massey, A. & Karran, P. (2004). Bioorg. Med. Chem. Lett. 14, 995–997.

Acta Cryst. (2021). E77, 547-550 [https://doi.org/10.1107/S2056989021004126]

Crystal structures of (*E*)-2-amino-4-methylsulfanyl-6-oxo-1-(1-phenylethylideneamino)-1,6-dihydropyrimidine-5-carbonitrile and (*E*)-2-amino-4-methylsulfanyl-6-oxo-1-[1-(pyridin-2-yl)ethylideneamino]-1,6-dihydropyrimidine-5carbonitrile

Reham A. Mohamed-Ezzat, Galal H. Elgemeie and Peter G. Jones

Computing details

For both structures, data collection: *CrysAlis PRO* (Rigaku OD, 2021); cell refinement: *CrysAlis PRO* (Rigaku OD, 2021); data reduction: *CrysAlis PRO* (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL2018/3* (Sheldrick, 2015b).

 $(\textit{E})\-2-Amino\-4-methyl sulfanyl\-6-oxo\-1-(1-phenylethyl ideneamino)\-1,6-dihydropyrimidine\-5-carbonitrile\ (3a)$

Crystal data

C₁₄H₁₃N₅OS $M_r = 299.35$ Monoclinic, $P2_1/c$ a = 12.15369 (18) Å b = 14.9466 (2) Å c = 7.68691 (16) Å $\beta = 91.7607$ (16)° V = 1395.72 (4) Å³ Z = 4

Data collection

Rigaku XtaLAB Synergy, Single source at home/near, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) $T_{\min} = 0.636, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.106$ S = 1.06 F(000) = 624 $D_x = 1.425 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 58984 reflections $\theta = 3.6-77.1^{\circ}$ $\mu = 2.12 \text{ mm}^{-1}$ T = 100 KPlate, pale yellow $0.2 \times 0.2 \times 0.02 \text{ mm}$

104992 measured reflections 2958 independent reflections 2842 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 77.7^{\circ}, \theta_{min} = 3.6^{\circ}$ $h = -15 \rightarrow 15$ $k = -18 \rightarrow 18$ $l = -9 \rightarrow 9$

2958 reflections 200 parameters 0 restraints Primary atom site location: dual Hydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0516P)^2 + 0.8822P]$	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 5.1729 (0.0067) x - 0.7702 (0.0093) y + 6.8408 (0.0022) z = 3.9095 (0.0048)

* -0.0400 (0.0011) N1 * 0.0328 (0.0011) C2 * -0.0019 (0.0010) N3 * -0.0193 (0.0011) C4 * 0.0105 (0.0011) C5 * 0.0178 (0.0010) C6 0.0930 (0.0023) N2 0.1026 (0.0023) N6 -0.0462 (0.0020) S1 -0.0028 (0.0025) C15 0.0557 (0.0021) O1

Rms deviation of fitted atoms = 0.0241

-2.6471 (0.0093) x + 12.8703 (0.0066) y - 3.4786 (0.0058) z = 3.0019 (0.0051)

Angle to previous plane (with approximate esd) = 56.485 (0.063)

* -0.0047 (0.0012) C9 * 0.0009 (0.0013) C10 * 0.0043 (0.0015) C11 * -0.0056 (0.0015) C12 * 0.0016 (0.0015) C13 * 0.0034 (0.0013) C14

Rms deviation of fitted atoms = 0.0038

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.47431 (10)	0.36271 (8)	0.24782 (18)	0.0248 (3)
N2	0.37697 (11)	0.37729 (8)	0.34251 (18)	0.0264 (3)
C2	0.53906 (13)	0.43583 (10)	0.2177 (2)	0.0253 (3)
N6	0.50093 (13)	0.51489 (9)	0.2657 (2)	0.0299 (3)
H061	0.5387 (18)	0.5609 (17)	0.251 (3)	0.043 (6)*
H062	0.441 (2)	0.5174 (16)	0.319 (3)	0.050 (7)*
N3	0.63513 (11)	0.43021 (8)	0.13939 (17)	0.0252 (3)
C4	0.67045 (12)	0.34825 (10)	0.1009 (2)	0.0240 (3)
S1	0.79679 (3)	0.33529 (3)	-0.00002 (6)	0.03105 (14)
C5	0.61368 (12)	0.26976 (9)	0.1394 (2)	0.0238 (3)
C6	0.50952 (13)	0.27387 (9)	0.2196 (2)	0.0241 (3)
01	0.45193 (9)	0.21063 (7)	0.26161 (15)	0.0286 (3)
C7	0.28666 (13)	0.35750 (9)	0.2578 (2)	0.0260 (3)
C8	0.27945 (15)	0.32587 (13)	0.0737 (2)	0.0376 (4)
H8A	0.343475	0.347475	0.011570	0.056*
H8B	0.211966	0.349048	0.017032	0.056*
H8C	0.278191	0.260323	0.071499	0.056*
С9	0.18442 (13)	0.36712 (10)	0.3563 (2)	0.0275 (3)
C10	0.08665 (16)	0.33019 (13)	0.2925 (3)	0.0387 (4)
H10	0.084914	0.300421	0.183268	0.046*
C11	-0.00923 (16)	0.33629 (15)	0.3871 (3)	0.0472 (5)
H11	-0.075770	0.310997	0.341450	0.057*
C12	-0.00802 (16)	0.37845 (15)	0.5449 (3)	0.0459 (5)
H12	-0.073084	0.381751	0.610018	0.055*
C13	0.08929 (16)	0.41639 (15)	0.6092 (3)	0.0458 (5)
H13	0.090130	0.446323	0.718242	0.055*

C14	0.18491 (15)	0.41128 (12)	0.5170 (2)	0.0351 (4)	
H14	0.250819	0.437667	0.562552	0.042*	
N4	0.68678 (12)	0.11352 (9)	0.0616(2)	0.0315 (3)	
C15	0.65497 (12)	0.18367 (10)	0.0965 (2)	0.0256 (3)	
C16	0.83220 (16)	0.44877 (12)	-0.0485 (3)	0.0419 (4)	
H16A	0.792700	0.467742	-0.155236	0.063*	
H16B	0.911681	0.453120	-0.064728	0.063*	
H16C	0.811591	0.487512	0.048102	0.063*	

Atomic displacement parameters ((Å ²)
----------------------------------	-------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0263 (6)	0.0142 (6)	0.0343 (7)	0.0000 (5)	0.0071 (5)	-0.0012 (5)
N2	0.0272 (6)	0.0182 (6)	0.0342 (7)	0.0009 (5)	0.0066 (5)	-0.0017 (5)
C2	0.0304 (8)	0.0157 (7)	0.0300 (8)	-0.0013 (6)	0.0013 (6)	0.0014 (6)
N6	0.0334 (7)	0.0140 (6)	0.0427 (8)	-0.0005 (5)	0.0080 (6)	-0.0015 (5)
N3	0.0277 (6)	0.0172 (6)	0.0307 (7)	-0.0014 (5)	0.0036 (5)	0.0010 (5)
C4	0.0250 (7)	0.0202 (7)	0.0268 (8)	-0.0008 (5)	0.0001 (6)	0.0017 (6)
S1	0.0273 (2)	0.0258 (2)	0.0404 (3)	0.00045 (14)	0.00645 (16)	0.00140 (15)
C5	0.0268 (7)	0.0155 (7)	0.0292 (8)	0.0015 (5)	0.0020 (6)	0.0003 (5)
C6	0.0281 (7)	0.0151 (6)	0.0293 (8)	0.0011 (5)	0.0024 (6)	0.0004 (5)
01	0.0321 (6)	0.0147 (5)	0.0395 (6)	-0.0013 (4)	0.0085 (5)	0.0017 (4)
C7	0.0326 (8)	0.0133 (6)	0.0323 (8)	0.0012 (6)	0.0022 (6)	0.0009 (6)
C8	0.0372 (9)	0.0407 (10)	0.0347 (9)	0.0056 (7)	-0.0016 (7)	-0.0074 (7)
C9	0.0293 (8)	0.0177 (7)	0.0357 (8)	0.0006 (6)	0.0024 (6)	0.0042 (6)
C10	0.0386 (10)	0.0376 (10)	0.0398 (10)	-0.0085 (7)	-0.0007 (8)	0.0043 (8)
C11	0.0309 (9)	0.0582 (13)	0.0523 (12)	-0.0121 (8)	-0.0017 (8)	0.0152 (10)
C12	0.0310 (9)	0.0529 (12)	0.0544 (12)	0.0046 (8)	0.0113 (8)	0.0105 (9)
C13	0.0400 (10)	0.0495 (11)	0.0485 (11)	0.0038 (9)	0.0118 (8)	-0.0079 (9)
C14	0.0317 (8)	0.0314 (8)	0.0423 (10)	0.0003 (7)	0.0055 (7)	-0.0062 (7)
N4	0.0328 (7)	0.0215 (7)	0.0404 (8)	0.0024 (5)	0.0059 (6)	0.0005 (6)
C15	0.0254 (7)	0.0206 (7)	0.0310 (8)	-0.0006 (6)	0.0029 (6)	0.0020 (6)
C16	0.0404 (10)	0.0290 (9)	0.0571 (12)	-0.0104 (7)	0.0146 (8)	-0.0067 (8)

Geometric parameters (Å, °)

N1—C2	1.3705 (19)	C11—C12	1.367 (3)
N1-C6	1.4138 (18)	C12—C13	1.389 (3)
N1—N2	1.4248 (17)	C13—C14	1.382 (3)
N2C7	1.293 (2)	N4—C15	1.152 (2)
C2—N6	1.326 (2)	N6—H061	0.84 (2)
C2—N3	1.333 (2)	N6—H062	0.84 (2)
N3—C4	1.3343 (19)	C8—H8A	0.9800
C4—C5	1.397 (2)	C8—H8B	0.9800
C4—S1	1.7522 (16)	C8—H8C	0.9800
S1—C16	1.7918 (19)	C10—H10	0.9500
C5—C15	1.424 (2)	C11—H11	0.9500
C5—C6	1.427 (2)	C12—H12	0.9500

C6—O1	1.2253 (18)	C13—H13	0.9500
С7—С9	1.482 (2)	C14—H14	0.9500
C7—C8	1.492 (2)	C16—H16A	0.9800
C9—C10	1.386 (2)	C16—H16B	0.9800
C9—C14	1.401 (2)	C16—H16C	0.9800
C10—C11	1.395 (3)		
C2—N1—C6	123.03 (13)	C13—C14—C9	119.84 (17)
C2—N1—N2	117.02 (12)	N4—C15—C5	178.96 (16)
C6—N1—N2	118.81 (11)	C2—N6—H061	120.0 (16)
C7—N2—N1	114.40 (13)	C2—N6—H062	119.2 (17)
N6-C2-N3	120.02 (14)	H061—N6—H062	121 (2)
N6-C2-N1	117.16 (14)	C7—C8—H8A	109.5
N3—C2—N1	122.79 (13)	С7—С8—Н8В	109.5
C2—N3—C4	116.77 (13)	H8A—C8—H8B	109.5
N3—C4—C5	124.02 (14)	C7—C8—H8C	109.5
N3—C4—S1	119.47 (11)	H8A—C8—H8C	109.5
C5—C4—S1	116.49 (11)	H8B—C8—H8C	109.5
C4—S1—C16	101.93 (8)	С9—С10—Н10	119.7
C4—C5—C15	122.01 (14)	C11—C10—H10	119.7
C4—C5—C6	120.40 (13)	C12—C11—H11	119.8
C15—C5—C6	117.57 (13)	C10-C11-H11	119.8
O1-C6-N1	120.40 (13)	C11—C12—H12	120.3
O1—C6—C5	127.05 (13)	C13—C12—H12	120.3
N1—C6—C5	112.55 (12)	C14—C13—H13	119.5
N2—C7—C9	115.63 (14)	C12—C13—H13	119.5
N2—C7—C8	125.04 (15)	C13—C14—H14	120.1
C9—C7—C8	119.32 (15)	C9—C14—H14	120.1
C10—C9—C14	118.69 (16)	S1—C16—H16A	109.5
С10—С9—С7	120.25 (16)	S1—C16—H16B	109.5
C14—C9—C7	121.04 (15)	H16A—C16—H16B	109.5
C9—C10—C11	120.68 (19)	S1—C16—H16C	109.5
C12—C11—C10	120.41 (18)	H16A—C16—H16C	109.5
C11—C12—C13	119.33 (18)	H16B—C16—H16C	109.5
C14—C13—C12	121.04 (19)		
C2—N1—N2—C7	118.94 (15)	N2—N1—C6—C5	-173.87 (13)
C6—N1—N2—C7	-72.88 (18)	C4—C5—C6—O1	-179.25 (16)
C6—N1—C2—N6	-173.38 (14)	C15—C5—C6—O1	2.5 (3)
N2—N1—C2—N6	-5.7 (2)	C4—C5—C6—N1	1.4 (2)
C6—N1—C2—N3	8.5 (2)	C15—C5—C6—N1	-176.89 (14)
N2—N1—C2—N3	176.15 (14)	N1—N2—C7—C9	176.69 (12)
N6—C2—N3—C4	177.46 (15)	N1—N2—C7—C8	-2.8 (2)
N1—C2—N3—C4	-4.5 (2)	N2-C7-C9-C10	-166.23 (15)
C2—N3—C4—C5	-0.7 (2)	C8—C7—C9—C10	13.2 (2)
C2—N3—C4—S1	-179.30 (11)	N2-C7-C9-C14	12.1 (2)
N3—C4—S1—C16	-7.90 (16)	C8—C7—C9—C14	-168.47 (16)
C5—C4—S1—C16	173.40 (13)	C14—C9—C10—C11	-0.5 (3)

N3—C4—C5—C15	-179.67 (15)	C7—C9—C10—C11	177.85 (16)
S1—C4—C5—C15	-1.0 (2)	C9—C10—C11—C12	-0.4 (3)
N3—C4—C5—C6	2.1 (3)	C10—C11—C12—C13	1.0 (3)
S1—C4—C5—C6	-179.25 (12)	C11—C12—C13—C14	-0.7 (3)
C2—N1—C6—O1	174.16 (15)	C12—C13—C14—C9	-0.1 (3)
C2—N1—C6—O1	174.16 (15)	C12—C13—C14—C9	-0.1 (3)
N2—N1—C6—O1	6.7 (2)	C10—C9—C14—C13	0.7 (3)
C2—N1—C6—C5	-6.5 (2)	C7—C9—C14—C13	-177.59 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N6—H061…O1 ⁱ	0.84 (2)	2.24 (3)	2.9899 (17)	149 (2)
$N6$ — $H062$ ··· $N4^{i}$	0.84 (2)	2.33 (2)	3.054 (2)	144 (2)
C8—H8A····O1 ⁱⁱ	0.98	2.52	3.279 (2)	134
N6—H062…N2	0.84 (2)	2.25 (2)	2.6273 (19)	108 (2)

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) x, -y+1/2, z-1/2.

 $(\textit{E})\-2-Amino\-4-methyl sulfanyl-6-oxo\-1-[1-(pyridin\-2-yl)ethyl ideneamino]\-1,6-dihydropyrimidine\-5-carbonitrile$

(3b)

Crystal data

 $C_{13}H_{12}N_6OS$ $M_r = 300.35$ Monoclinic, $P2_1/n$ a = 13.4774 (5) Å b = 7.6797 (3) Å c = 14.2755 (6) Å $\beta = 112.401$ (5)° V = 1366.04 (10) Å³ Z = 4

Data collection

Rigaku XtaLAB Synergy, Single source at home/near, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) $T_{\min} = 0.782, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.097$ S = 1.072905 reflections 200 parameters 0 restraints Primary atom site location: dual F(000) = 624 $D_x = 1.460 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 27720 reflections $\theta = 3.9-77.3^{\circ}$ $\mu = 2.19 \text{ mm}^{-1}$ T = 100 KPlate, orange $0.12 \times 0.08 \times 0.02 \text{ mm}$

54131 measured reflections 2905 independent reflections 2813 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 77.6^\circ, \theta_{min} = 3.8^\circ$ $h = -17 \rightarrow 17$ $k = -9 \rightarrow 9$ $l = -18 \rightarrow 18$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 0.8192P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.39 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 6.6755 (0.0064) x + 6.5784 (0.0022) y + 0.7860 (0.0078) z = 2.0405 (0.0036)

* 0.0570 (0.0009) N1 * -0.0128 (0.0009) C2 * -0.0287 (0.0009) N3 * 0.0218 (0.0009) C4 * 0.0224 (0.0009) C5 * -0.0598 (0.0009) C6 -0.2034 (0.0018) O1 -0.1436 (0.0019) N2 -0.0415 (0.0019) N6 0.0815 (0.0018) S1 -0.1786 (0.0031) C15 Rms deviation of fitted atoms = 0.0383

6.7262 (0.0067) x + 6.5062 (0.0024) y - 0.3110 (0.0086) z = 4.9821 (0.0009)

Angle to previous plane (with approximate esd) = 63.117 (0.033)

* -0.0062 (0.0009) C9 * -0.0031 (0.0009) N5 * 0.0095 (0.0010) C10 * -0.0064 (0.0011) C11 * -0.0026 (0.0011) C12 * 0.0087 (0.0010) C13

Rms deviation of fitted atoms = 0.0066

Fractiona	l atomic co	oordinates o	and	isotropic o	or equival	ent	isotropic	displ	lacement	parameters	(A^2))
-----------	-------------	--------------	-----	-------------	------------	-----	-----------	-------	----------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.24070 (9)	0.52162 (15)	0.34716 (8)	0.0181 (2)	
N2	0.25298 (10)	0.51485 (15)	0.25281 (9)	0.0200 (2)	
C2	0.32652 (10)	0.58859 (17)	0.42667 (10)	0.0180 (3)	
N6	0.40369 (9)	0.66515 (16)	0.40482 (9)	0.0210(2)	
H061	0.4563 (16)	0.711 (3)	0.4535 (15)	0.034 (5)*	
H062	0.3927 (14)	0.680 (2)	0.3424 (15)	0.026 (4)*	
N3	0.33350 (9)	0.58187 (16)	0.52197 (8)	0.0202 (2)	
C4	0.25208 (11)	0.50497 (18)	0.53832 (10)	0.0211 (3)	
S1	0.25540 (3)	0.50264 (6)	0.66187 (3)	0.03285 (13)	
C5	0.16475 (10)	0.42545 (18)	0.46300 (10)	0.0202 (3)	
C6	0.15960 (10)	0.41990 (17)	0.36111 (10)	0.0186 (3)	
01	0.09466 (7)	0.34075 (13)	0.28923 (7)	0.0216 (2)	
C7	0.17715 (10)	0.58645 (17)	0.17779 (10)	0.0182 (3)	
C8	0.08130 (10)	0.68105 (18)	0.17933 (10)	0.0201 (3)	
H8A	0.016282	0.615319	0.140383	0.030*	
H8B	0.077686	0.796660	0.149146	0.030*	
H8C	0.086858	0.693400	0.249489	0.030*	
C9	0.19145 (10)	0.57067 (17)	0.07948 (10)	0.0189 (3)	
N5	0.11472 (9)	0.64664 (16)	-0.00075 (8)	0.0220 (3)	
C10	0.12509 (11)	0.6336 (2)	-0.09027 (11)	0.0259 (3)	
H10	0.072632	0.688318	-0.147422	0.031*	
C11	0.20768 (12)	0.5451 (2)	-0.10409 (11)	0.0279 (3)	
H11	0.210358	0.537126	-0.169500	0.034*	
C12	0.28675 (12)	0.4679 (2)	-0.02112 (12)	0.0262 (3)	
H12	0.344761	0.406811	-0.028270	0.031*	
C13	0.27859 (11)	0.48252 (18)	0.07219 (11)	0.0227 (3)	
H13	0.331879	0.432958	0.130782	0.027*	
C14	0.08272 (11)	0.33814 (19)	0.48529 (10)	0.0227 (3)	
N4	0.01756 (10)	0.26795 (19)	0.50465 (10)	0.0308 (3)	
C15	0.38704 (14)	0.5880 (3)	0.73425 (12)	0.0390 (4)	

H15A	0.393874	0.704706	0.709543	0.058*
H15B	0.441562	0.511218	0.726668	0.058*
H15C	0.397265	0.594636	0.805906	0.058*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0166 (5)	0.0247 (6)	0.0125 (5)	0.0003 (4)	0.0049 (4)	0.0006 (4)
N2	0.0198 (5)	0.0264 (6)	0.0136 (5)	0.0002 (4)	0.0064 (4)	-0.0001 (4)
C2	0.0157 (6)	0.0207 (6)	0.0162 (6)	0.0028 (5)	0.0045 (5)	0.0002 (5)
N6	0.0180 (5)	0.0300 (6)	0.0141 (5)	-0.0032 (5)	0.0051 (4)	-0.0004 (5)
N3	0.0187 (5)	0.0270 (6)	0.0146 (5)	-0.0012 (4)	0.0059 (4)	0.0002 (4)
C4	0.0206 (6)	0.0266 (7)	0.0161 (6)	-0.0004 (5)	0.0071 (5)	0.0005 (5)
S1	0.0295 (2)	0.0535 (3)	0.0176 (2)	-0.01433 (17)	0.01126 (16)	-0.00596 (15)
C5	0.0181 (6)	0.0250 (7)	0.0177 (6)	-0.0004 (5)	0.0068 (5)	0.0009 (5)
C6	0.0153 (6)	0.0214 (6)	0.0172 (6)	0.0028 (5)	0.0040 (5)	0.0017 (5)
01	0.0189 (4)	0.0266 (5)	0.0164 (4)	-0.0019 (4)	0.0034 (4)	-0.0010 (4)
C7	0.0172 (6)	0.0201 (6)	0.0162 (6)	-0.0032 (5)	0.0050 (5)	-0.0006 (5)
C8	0.0185 (6)	0.0232 (6)	0.0173 (6)	0.0008 (5)	0.0053 (5)	0.0010 (5)
C9	0.0183 (6)	0.0204 (6)	0.0171 (6)	-0.0035 (5)	0.0059 (5)	-0.0020 (5)
N5	0.0177 (5)	0.0300 (6)	0.0164 (5)	-0.0025 (5)	0.0042 (4)	0.0001 (4)
C10	0.0208 (6)	0.0387 (8)	0.0156 (6)	-0.0042 (6)	0.0041 (5)	0.0003 (6)
C11	0.0279 (7)	0.0399 (8)	0.0175 (6)	-0.0050 (6)	0.0102 (6)	-0.0047 (6)
C12	0.0254 (7)	0.0300 (7)	0.0262 (7)	-0.0011 (6)	0.0133 (6)	-0.0040 (6)
C13	0.0223 (7)	0.0239 (7)	0.0215 (7)	0.0002 (5)	0.0077 (5)	0.0012 (5)
C14	0.0208 (6)	0.0270 (7)	0.0191 (6)	-0.0003 (5)	0.0061 (5)	0.0000 (5)
N4	0.0256 (6)	0.0353 (7)	0.0330 (7)	-0.0034 (5)	0.0128 (5)	0.0028 (6)
C15	0.0344 (8)	0.0639 (12)	0.0189 (7)	-0.0177 (8)	0.0104 (6)	-0.0091 (7)

Geometric parameters (Å, °)

N1—C2	1.3747 (17)	N5-C10	1.3412 (18)
N1C6	1.4179 (17)	C10—C11	1.381 (2)
N1—N2	1.4191 (16)	C11—C12	1.389 (2)
N2—C7	1.2883 (18)	C12—C13	1.382 (2)
C2—N3	1.3286 (17)	C14—N4	1.1503 (19)
C2—N6	1.3312 (17)	N6—H061	0.86 (2)
N3—C4	1.3425 (17)	N6—H062	0.853 (19)
C4—C5	1.3963 (19)	C8—H8A	0.9800
C4—S1	1.7473 (14)	C8—H8B	0.9800
S1—C15	1.8023 (16)	C8—H8C	0.9800
C5—C14	1.4287 (18)	C10—H10	0.9500
C5—C6	1.4303 (18)	C11—H11	0.9500
C6—O1	1.2263 (16)	C12—H12	0.9500
С7—С8	1.4896 (18)	C13—H13	0.9500
С7—С9	1.4925 (17)	C15—H15A	0.9800
C9—N5	1.3486 (17)	C15—H15B	0.9800
C9—C13	1.3934 (19)	C15—H15C	0.9800

C2—N1—C6	122.76 (11)	C13—C12—C11	118.05 (14)
C2—N1—N2	115.57 (10)	C12—C13—C9	119.36 (13)
C6—N1—N2	119.21 (10)	N4—C14—C5	179.05 (15)
C7—N2—N1	115.53 (11)	C2—N6—H061	118.1 (13)
N3—C2—N6	120.03 (12)	C2—N6—H062	117.7 (12)
N3—C2—N1	122.68 (12)	H061—N6—H062	123.4 (18)
N6-C2-N1	117.28 (12)	С7—С8—Н8А	109.5
C2—N3—C4	116.84 (11)	C7—C8—H8B	109.5
N3—C4—C5	124.29 (12)	H8A—C8—H8B	109.5
N3—C4—S1	118.15 (10)	C7—C8—H8C	109.5
C5—C4—S1	117.56 (10)	H8A—C8—H8C	109.5
C4—S1—C15	102.47 (7)	H8B—C8—H8C	109.5
C4—C5—C14	122.04 (12)	N5—C10—H10	118.1
C4—C5—C6	119.75 (12)	C11—C10—H10	118.1
C14—C5—C6	118.08 (12)	C10-C11-H11	120.4
O1—C6—N1	119.88 (12)	C12—C11—H11	120.4
O1—C6—C5	127.47 (12)	C13—C12—H12	121.0
N1—C6—C5	112.65 (11)	C11—C12—H12	121.0
N2—C7—C8	127.85 (12)	C12—C13—H13	120.3
N2—C7—C9	113.66 (12)	С9—С13—Н13	120.3
C8—C7—C9	118.49 (11)	S1—C15—H15A	109.5
N5—C9—C13	122.82 (12)	S1—C15—H15B	109.5
N5—C9—C7	115.56 (12)	H15A—C15—H15B	109.5
C13—C9—C7	121.62 (12)	S1—C15—H15C	109.5
C10—N5—C9	116.89 (12)	H15A—C15—H15C	109.5
N5-C10-C11	123.73 (13)	H15B—C15—H15C	109.5
C10—C11—C12	119.12 (13)		
C2—N1—N2—C7	-127.19 (13)	N2—N1—C6—C5	173.52 (11)
C6—N1—N2—C7	70.10 (15)	C4—C5—C6—O1	172.14 (13)
C6—N1—C2—N3	-8.6 (2)	C14—C5—C6—O1	-3.8 (2)
N2—N1—C2—N3	-170.61 (12)	C4—C5—C6—N1	-8.43 (18)
C6—N1—C2—N6	172.59 (12)	C14—C5—C6—N1	175.67 (12)
N2—N1—C2—N6	10.56 (17)	N1—N2—C7—C8	2.8 (2)
N6-C2-N3-C4	179.06 (12)	N1—N2—C7—C9	-177.94 (10)
N1-C2-N3-C4	0.26 (19)	N2—C7—C9—N5	-178.88 (12)
C2—N3—C4—C5	3.3 (2)	C8—C7—C9—N5	0.50 (17)
C2—N3—C4—S1	-177.08 (10)	N2—C7—C9—C13	1.27 (18)
N3—C4—S1—C15	-7.55 (14)	C8—C7—C9—C13	-179.35 (12)
C5-C4-S1-C15	172.11 (12)	C13—C9—N5—C10	0.3 (2)
N3—C4—C5—C14	176.96 (13)	C7—C9—N5—C10	-179.57 (12)
S1—C4—C5—C14	-2.67 (19)	C9—N5—C10—C11	1.3 (2)
N3—C4—C5—C6	1.2 (2)	N5-C10-C11-C12	-1.6 (2)
S1—C4—C5—C6	-178.41 (10)	C10-C11-C12-C13	0.4 (2)
C2—N1—C6—O1	-168.41 (12)	C11—C12—C13—C9	1.0 (2)
N2—N1—C6—O1	-7.00 (18)	N5-C9-C13-C12	-1.4 (2)
C2—N1—C6—C5	12.11 (17)	C7—C9—C13—C12	178.41 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N6—H061…N5 ⁱ	0.86 (2)	2.26 (2)	3.0122 (17)	146.2 (17)
N6—H062…O1 ⁱⁱ	0.853 (19)	2.307 (19)	3.0886 (15)	152.4 (17)
C10—H10…O1 ⁱⁱⁱ	0.95	2.40	3.2351 (17)	147
N6—H062…N2	0.853 (19)	2.228 (18)	2.6091 (17)	107.1 (14)

Symmetry codes: (i) *x*+1/2, -*y*+3/2, *z*+1/2; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) -*x*, -*y*+1, -*z*.