research communications

Received 10 March 2021 Accepted 5 April 2021

Edited by J. Reibenspies, Texas A & M University, USA

Keywords: chiral crystallization; zinc(II); Hirsh-feld analysis; crystal structure.

CCDC reference: 2075457

Supporting information: this article has supporting information at journals.iucr.org/e

Chiral crystallization of a zinc(II) complex

Shabana Noor,^a Shintaro Suda,^b Tomoyuki Haraguchi,^b Fehmeeda Khatoon^c and Takashiro Akitsu^b*

^aDepartment of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi-110025, India, ^bDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and ^cDepartment of Applied, Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi - 110025, India. *Correspondence e-mail: akitsu2@rs.tus.ac.jp

The compound, $\{6,6'-\text{dimethoxy-}2,2'-[(4-azaheptane-1,7-diyl)bis(nitrilomethan$ $ylidyne)]diphenolato}zinc(II) methanol monosolvate, <math>[Zn(C_{22}H_{27}N_3O_4)]$ ·-CH₃OH, at 298 K crystallizes in the orthorhombic space group Pna2₁. The Zn atom is coordinated by a pentadentate Schiff base ligand in a distorted trigonalbipyramidal N₃O₂ geometry. The equatorial plane is formed by the two phenolic O and one amine N atom. The axial positions are occupied by two amine N atoms. The distorted bipyramidal geometry is also supported by the trigonality index (τ), which is found to be 0.85 for the molecule. In the crystal, methanol solvent molecule is connected to the complex molecule by an O-H···O hydrogen bond and the complex molecules are connected by weak supramolecular interactions, so achiral molecules generate a chiral crystal. The Hirshfeld surface analysis suggests that H···H contacts account for the largest percentage of all interactions.

1. Chemical context

Schiff bases and their coordination compounds play an important role in metal coordination chemistry owing to their thermal stability, relevant biological properties and high synthesis flexibility (Bartyzel, 2018; Siddiqui et al., 2006; Sacconi, 1966). These ligands are able to coordinate a wide variety of metal ions and to stabilize them in various oxidation states. The coordination geometry of the complexes depends upon the chemical structure of the chosen ligand, the coordination geometry preferred by the metal, the metal-to-ligand ratio, the reaction time and temperature (Thakurta et al., 2010; Fleck et al., 2013; Sanmartín et al., 2001; Khalaji et al., 2011). A number of zinc(II) complexes with different Schiff base ligands and their potential applications in sensing and as antibacterial and anticancer agents have been documented in the literature (Lui et al., 2019; Niu et al., 2015; Tang et al., 2013; AlDamen et al., 2016; Iksi et al., 2020). In addition, lanthanide Schiff base compounds are the subject of immense research interest because of their unique structures and their potential applications in advanced materials such as undoped semiconductors, magnetic, catalytic and florescent and non-linear optical materials (Li et al., 2016; Ishikawa et al., 2003; Long et al., 2018b).

In a previous work, we reported the crystal and molecular structure of a Cu^{II} complex based on Schiff base ligand N1,N3bis(3-methoxysalicylicylidene)diethylenetriamine where two Schiff base ligands join two Cu^{II} ions in a chelate–spacer– chelate mode, in which the protonated aliphatic secondary amine moieties represents the spacer to form a double helix (Noor *et al.*, 2018). In an another report, we redetermined the crystal structure of an organic–inorganic salt of an Mn^{II}–Schiff base ligand complex Mn($C_{18}H_{18}N_2O_4$)(H_2O_2]ClO₄ at 100 K. In contrast to crystal-structure determinations at room temperature (Akitsu *et al.*, 2005, Bermejo *et al.*, 2007), positional disorder of the ethylene bridge in the Schiff base and the perchlorate anion was not observed at 100 K (Noor *et al.* 2016). We now report the chiral crystallization on a zinc(II) complex.

2. Structural commentary

In the title compound (Fig. 1), the Zn atom is coordinated by a pentadentate Schiff base ligand in distorted trigonal-bipyramidal [ONNNO] geometry. The equatorial plane is formed by the two phenolic O [Zn-O3 = 2.001 (2) Å; Zn-O2 = 1.975 (2) Å] and one amine N [Zn-N2 = 2.152 (3) Å]. The axial positions are occupied by amine N atoms [Zn-N1 = 2.094 (2) Å, Zn-N3; 2.107 (2) Å]. The trigonality index (τ) for the complex is calculated as $\tau = (\beta - \alpha)/60$ where α and β are the main opposing angles in the coordination polyhedron (Addison *et al.*, 1984). For perfect square-pyramidal and

Figure 1 The molecular structure of the title compound, showing the atomlabelling scheme.

Table 1	
Hydrogen-bond geometry (Å, °).	

		• • • •					
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$			
$C13-H13A\cdots O2^{i}$	0.97	2.58	3.549 (6)	172			
C10−H10B···O5	0.97	2.50	3.340 (7)	144			
O5−H5A···O3	0.82	2.01	2.722 (5)	144			

Symmetry code: (i) $-x + 1, -y + 1, z + \frac{1}{2}$.

trigonal-bipyramidal coordination geometries, the values of τ are zero and unity, respectively. In the present complex, for Zn, $\beta = O2-Zn-O3 = 122.87 (10)^{\circ}$ and $\alpha = N1-Zn-N3 = 173.91 (12)^{\circ}$ so the trigonality index is 0.85. According to this value, the coordination geometry around the zinc ion is best described as distorted trigonal-bipyramidal. An intra-molecular O-H···O hydrogen bond is observed between the methoxy function and the oxygen atom in the six-membered ring (Table 1). This molecule has neither an asymmetric carbon nor a helical structure, so it is an achiral compound.

3. Supramolecular features

In the crystal, molecules are connected by $O-H\cdots O$ hydrogen bonds (Fig. 2, Table 1). In addition, weak supramolecular $C-H\cdots O$ interactions are found (Table 1 and Fig. 3).

4. Hirshfeld Surface analysis

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed with *Crystal-Explorer17.5* (Turner *et al.*, 2017). The fingerprint plot for this

Figure 2 A view of the O5-H5A···O3 and C10-H10B···O5 interactions (dashed lines).

Figure 3 A view of the C13-H13A \cdots O2 interaction (dashed lines).

structure shows typical 'wings' (Fig. 4i). The percentage contribution to the Hirshfeld surface area by close contacts with H atoms inside the surface and H atoms outside is 57.4%

(Fig. 4ii), for O atoms inside the surface and H atoms outside it is 9.1% (Fig. 4iii), for H atoms inside the surface and O atoms outside it is 8.5% (Fig. 4iv), for C atoms inside the surface and H atoms outside it is 14.5% (Fig. 4v), and for H atoms inside the surface and C atoms outside it is 8.2% (Fig. 4vi). Hirshfeld surface analysis of the $H \cdot \cdot \cdot O$ interaction clearly shows the close intermolecular contact near methanol, (d_i is 1.1 Å and d_e is 0.75 Å).

5. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.41, update November 2019; Groom et al., 2016) for similar structures returned three relevant entries: (2,2'-bipyridine- $\kappa^2 N, N'$ [N-(2-oxido-1-naphthylidene)threoninato- $\kappa^3 O^1, N, O^2$]copper(II) (BIZGIB; Qiu et al., 2008), diaqua(N-salicylidene-L-threoninato)copper(II) (SLCDCU; Korhonen & Hämäläinen, 1981) and [N-(3-methoxy-2-oxidobenzylidene- κO^2)threoninato- $\kappa^2 O^1$, N](1,10-phenanthroline- $\kappa^2 N$, N')copper(II) hemihydrate (UQUYUB; Jing et al., 2011). The metal atom in BIZGIB is five-coordinated by one N atom and two O atoms, and two N atoms from a distorted square-pyramidal 2,2-bipyridine ligand. In the crystal, a two-dimensional network is formed by a combination of intermolecular O-H...O and C-H···O hydrogen bonds. In SLCDCU, two molecules form square planes by two intermolecular hydrogen bonds. In UQUYUB, intermolecular O-H···O hydrogen bonds form a one-dimensional left-handed helical structure extending parallel to [001].

Figure 4

The three-dimensional Hirshfeld surface showing the intermolecular interactions plotted over d_{norm} and the two-dimensional fingerprint plots of the title compound, showing (i) all interactions, and delineated into (ii) $H \cdots H$, (iii) $O \cdots H$, (iv) $H \cdots O$, (v) $C \cdots H$ and (vi) $H \cdots C$ interactions.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$[Zn(C_{22}H_{27}N_3O_4)]\cdot CH_4O$
M _r	494.88
Crystal system, space group	Orthorhombic, Pna21
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.5937 (6), 11.4425 (5), 13.5794 (5)
$V(Å^3)$	2267.60 (16)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.12
Crystal size (mm)	$0.53 \times 0.49 \times 0.45$
Data collection	
Diffractometer	Bruker APEXIII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2017)
T_{\min}, T_{\max}	0.53, 0.63
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	28025, 6099, 4682
R _{int}	0.035
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.730
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.087, 1.04
No. of reflections	6099
No. of parameters	294
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.56, -0.47
Absolute structure	Flack x determined using 1852 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.006 (5)

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), shelXle (Hübschle et al., 2011) and SHELXTL (Sheldrick, 2008).

6. Synthesis and crystallization

The Schiff base ligand H_2L was prepared according to a reported procedure (Matar *et al.*, 2015) by a condensation reaction between 3-methoxy-2-hydroxybenzaldehyde (10 mmol, 1.52 mg) and dipropylenetriamine (5.0 mmol, 0.641 mL) in ethanol solution (30 cm³) under reflux conditions. After solvent removal, a yellow oil was obtained in 85% yield. ν (C=N) 1630 cm⁻¹.

The title compound was synthesized by the reaction of H_2L (1 mmol, 0.399 mg) with Zn(OAc)₂·2H₂O (1 mmol, 0.18 mg) in MeOH:H₂O (ν/ν , 10:1) (50 cm³) with a few drops of LiOH (1%). The reaction mixture was heated to 343 K for 1 h. The yellow solid obtained was filtered off and dried. ν (C=N) 1618 cm⁻¹. Single crystals suitable for X-ray crystallography were obtained several days after dissolving the solid in 40 cm³ of hot methanol.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were placed in geometrically calculated positions and refined using a riding model $[C-H = 0.95 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, C-H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms]. The O-bound H atom was located in a differenceFourier map and refined using a riding model [O-H = 0.82 Å]and $U_{iso}(H) = 1.5U_{eq}(O)]$.

Funding information

This work was partly supported by a Grant-in-Aid for Scientific Research (A) KAKENHI (20H00336).

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

Akitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. C61, m324– m328.

- AlDamen, M. A., Charef, N., Juwhari, H. K., Sweidan, K., Mubarak, M. S. & Peters, D. G. (2016). J. Chem. Crystallogr. 46, 411–420.
- Bartyzel, A. (2018). J. Therm. Anal. Calorim. 131, 1221-1236.
- Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). *Eur. J. Inorg. Chem.* pp. 3789–3797.
- Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fleck, M., Layek, M., Saha, R. & Bandyopadhyay, D. (2013). *Transition Met. Chem.* **38**, 715–724.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Iksi, S., Guemmout, F. E., Reguero, M., Masdeu-Bulto, A. M. & Ghnux, A. (2020). J Chem Crystallogr. https://doi.org/10.1007/ s10870-020-00865-y.
- Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. Y. & Kaizu, Y. (2003). J. Am. Chem. Soc. 125, 8694–8695.
- Jing, B., Li, L., Dong, J. & Li, J. (2011). Acta Cryst. E67, m536.
- Khalaji, A. D. & Triki, S. (2011). Russ. J. Coord. Chem. 37, 518– 522.
- Korhonen, K. & Hämäläinen, R. (1981). Acta Cryst. B37, 829-834.
- Li, B., Wen, H. M., Cui, Y., Zhou, W., Qian, G. & Chen, B. (2016). *Adv. Mater.* **28**, 8819–8860.
- Long, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D. & Larionova, J. (2018b). Coord. Chem. Rev. 363, 57–70.
- Lui, W., Li, G., Zhao, X. & Wang, L. (2019). *ChemistrySelect*, 4, **29**, 9317-9321.
- Matar, S. A., Talib, W. H., Mustafa, M. S., Mubarak, M. S. & AlDamen, M. A. (2015). *Arab. J. Chem.* **8**, 850–857.
- Niu, M. J., Li, Z., Chang, G. L., Kong, X. J., Hong, M. & Zhang, Q. F. (2015). PLOS ONE. https://doi.org/10.1317/journal.pone.0130922.
- Noor, S., Goddard, R., Kumar, S., Ahmad, N., Sabir, S., Mitra, P. & Seidel, R. (2018). *J. Chem. Crystallogr.* **48**, 164–169.
- Noor, S. W., Seidel, R. W., Goddard, R., Kumar, S. & Sabir, S. (2016). *IUCrData*, **1**, x161735.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746.
- Sacconi, L. (1966). Coord. Chem. Rev. 1, 126-132.
- Sanmartín, J., Bermejo, M. R., García-Deibe, A. M., Nascimento, O. & Costa-Filho, A. J. (2001). *Inorg. Chim. Acta*, **318**, 135–142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Siddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, W. (2006). *Molecules*, **11**, 206–211.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19– 32.

- Tang, B., Ma, H., Li, G., Wang, Y., Anwar, G., Shi, R. & Li, H. (2013).
- CrystEngComm, 15, 8069–8073.
 Thakurta, S., Rizzoli, C., Butcher, R. J., Gómez-García, C. J., Garribba, E. & Mitra, S. (2010). Inorg. Chim. Acta, 336, 1395–1403.
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer*17. University of Western Australia.

supporting information

Acta Cryst. (2021). E77, 542-546 [https://doi.org/10.1107/S2056989021003650]

Chiral crystallization of a zinc(II) complex

Shabana Noor, Shintaro Suda, Tomoyuki Haraguchi, Fehmeeda Khatoon and Takashiro Akitsu

Computing details

Data collection: *APEX3* (Bruker, 2017); cell refinement: *APEX3* (Bruker, 2017); data reduction: *SAINT* (Bruker, 2017); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016/6* (Sheldrick, 2015b); molecular graphics: *shelXle* (Hübschle *et al.*, 2011); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

{6,6'-Dimethoxy-2,2'-[(4-azaheptane-1,7-diyl)bis(nitrilomethanylidyne)]diphenolato}zinc(II) methanol monosolvate

Crystal data

$[Zn(C_{22}H_{27}N_{3}O_{4})] \cdot CH_{4}O$ $M_r = 494.88$
Orthorhombic, $Pna2_1$
a = 14.5937 (6) Å
b = 11.4425(5) Å
c = 13.5794(5) Å
$V = 2267.60 (16) Å^3$
Z = 4
F(000) = 1040
Data collection
Bruker APEXIII CCD

Bruker APEXIII CCD diffractometer Detector resolution: 7.3910 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{\min} = 0.53, T_{\max} = 0.63$ 28025 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.087$ S = 1.046099 reflections 294 parameters 1 restraint Primary atom site location: dual $D_x = 1.450 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3270 reflections $\theta = 2.2-23.9^{\circ}$ $\mu = 1.12 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.53 \times 0.49 \times 0.45 \text{ mm}$

6099 independent reflections 4682 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 31.2^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -21 \rightarrow 20$ $k = -16 \rightarrow 16$ $l = -18 \rightarrow 18$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0516P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.56$ e Å⁻³ $\Delta\rho_{min} = -0.47$ e Å⁻³ Extinction correction: SHELXL-2016/6 (Sheldrick 2015b)

Extinction coefficient: 0.0091 (12)

Absolute structure: Flack *x* determined using 1852 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.006 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.52170 (2)	0.52816 (3)	0.56294 (4)	0.04284 (12)
01	0.40493 (18)	0.1936 (2)	0.4333 (2)	0.0724 (8)
N1	0.65984 (15)	0.4787 (2)	0.5612 (3)	0.0493 (5)
C1	0.3627 (3)	0.1110 (5)	0.3702 (4)	0.0857 (13)
H1A	0.396883	0.10538	0.310017	0.129*
H1B	0.301217	0.135516	0.355979	0.129*
H1C	0.361408	0.036045	0.401999	0.129*
O2	0.48708 (13)	0.3687 (2)	0.52144 (19)	0.0520 (5)
N2	0.5413 (2)	0.5782 (3)	0.7143 (2)	0.0650 (8)
H2	0.529572	0.662482	0.715739	0.078*
C2	0.4980 (2)	0.1835 (3)	0.4463 (3)	0.0549 (8)
O3	0.53164 (12)	0.6620 (2)	0.46866 (16)	0.0457 (5)
N3	0.38225 (17)	0.5711 (2)	0.58014 (19)	0.0486 (6)
C3	0.5487 (3)	0.0903 (3)	0.4162 (3)	0.0693 (10)
H3	0.520034	0.028129	0.38465	0.083*
C4	0.6437 (3)	0.0868 (3)	0.4321 (3)	0.0720 (10)
H4	0.677466	0.021275	0.414127	0.086*
O4	0.58178 (14)	0.7754 (2)	0.30994 (16)	0.0545 (5)
C5	0.6856 (2)	0.1802 (3)	0.4741 (3)	0.0610 (8)
Н5	0.74875	0.179029	0.483288	0.073*
05	0.5841 (3)	0.8341 (4)	0.5950 (4)	0.140 (2)
H5A	0.581512	0.801846	0.541104	0.21*
C6	0.5391 (2)	0.2829 (3)	0.4930 (2)	0.0453 (6)
C7	0.6353 (2)	0.2785 (3)	0.5037 (2)	0.0479 (6)
C8	0.68830 (19)	0.3763 (3)	0.54147 (19)	0.0502 (7)
H8	0.750228	0.362278	0.552506	0.06*
C9	0.7273 (3)	0.5641 (4)	0.5954 (3)	0.0735 (11)
H9A	0.731688	0.625957	0.54678	0.088*
H9B	0.786656	0.526017	0.59861	0.088*
C10	0.7079 (3)	0.6176 (5)	0.6924 (4)	0.0995 (17)
H10A	0.763926	0.615887	0.730831	0.119*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H10B	0.692303	0.698978	0.681751	0.119*
C11	0.6358 (4)	0.5649 (5)	0.7506 (3)	0.0890 (14)
H11A	0.638748	0.597758	0.816366	0.107*
H11B	0.648732	0.48201	0.756321	0.107*
C13	0.4737 (4)	0.5284 (4)	0.7786 (4)	0.0809 (15)
H13A	0.488874	0.551024	0.845482	0.097*
H13B	0.47908	0.444052	0.774871	0.097*
C14	0.3754 (4)	0.5598 (5)	0.7606 (3)	0.0848 (14)
H14A	0.369652	0.644202	0.763231	0.102*
H14B	0.338813	0.527906	0.81384	0.102*
C15	0.3349 (3)	0.5172 (4)	0.6626 (3)	0.0708 (11)
H15A	0.340711	0.432901	0.658309	0.085*
H15B	0.270299	0.536678	0.659841	0.085*
C16	0.33585 (19)	0.6329 (3)	0.5196 (2)	0.0491 (7)
H16	0.273212	0.638729	0.531279	0.059*
C17	0.37116 (18)	0.6945 (3)	0.4351 (2)	0.0444 (6)
C18	0.46571 (18)	0.7052 (3)	0.4135 (2)	0.0395 (6)
C19	0.3057 (2)	0.7452 (3)	0.3712 (3)	0.0560 (8)
H19	0.243749	0.739602	0.386674	0.067*
C20	0.3314 (2)	0.8021 (3)	0.2878 (3)	0.0606 (8)
H20	0.287289	0.833751	0.246236	0.073*
C21	0.4235 (2)	0.8127 (3)	0.2647 (2)	0.0536 (8)
H21	0.440955	0.850523	0.207094	0.064*
C22	0.4898 (2)	0.7674 (3)	0.3267 (2)	0.0432 (6)
C23	0.6092 (3)	0.8324 (4)	0.2225 (3)	0.0684 (10)
H23A	0.585095	0.791083	0.166649	0.103*
H23B	0.674874	0.833728	0.218869	0.103*
H23C	0.586221	0.910978	0.222502	0.103*
C24	0.5060 (6)	0.8915 (6)	0.6115 (6)	0.123 (2)
H24A	0.519332	0.971869	0.626096	0.185*
H24B	0.47469	0.856789	0.666377	0.185*
H24C	0.467835	0.887306	0.554073	0.185*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.04857 (18)	0.04890 (19)	0.03106 (16)	0.00482 (12)	-0.00223 (18)	0.00193 (18)
01	0.0517 (13)	0.0781 (16)	0.0876 (19)	-0.0119 (13)	0.0060 (13)	-0.0318 (16)
N1	0.0489 (10)	0.0563 (13)	0.0427 (11)	-0.0010 (10)	-0.0077 (17)	0.0044 (15)
C1	0.075 (3)	0.101 (3)	0.081 (3)	-0.025 (2)	0.002 (2)	-0.032 (3)
O2	0.0430 (9)	0.0563 (12)	0.0568 (13)	0.0031 (9)	0.0028 (9)	-0.0092 (11)
N2	0.0852 (19)	0.073 (2)	0.0362 (14)	0.0177 (17)	-0.0110 (14)	-0.0066 (15)
C2	0.0546 (15)	0.057 (2)	0.0533 (19)	-0.0019 (15)	0.0102 (15)	-0.0081 (17)
O3	0.0393 (9)	0.0580 (13)	0.0399 (10)	0.0031 (9)	-0.0055 (8)	0.0109 (10)
N3	0.0498 (12)	0.0543 (13)	0.0416 (15)	0.0015 (11)	0.0116 (11)	0.0017 (11)
C3	0.078 (2)	0.056 (2)	0.073 (2)	-0.0023 (18)	0.011 (2)	-0.0154 (19)
C4	0.075 (2)	0.058 (2)	0.083 (3)	0.0167 (18)	0.013 (2)	-0.010(2)
O4	0.0462 (10)	0.0713 (14)	0.0459 (11)	-0.0025 (10)	-0.0006 (9)	0.0192 (11)

supporting information

C5	0.0577 (17)	0.065 (2)	0.0597 (19)	0.0159 (16)	0.0042 (15)	0.0035 (17)
05	0.152 (4)	0.088 (2)	0.181 (5)	0.016 (2)	-0.098 (4)	-0.033 (3)
C6	0.0496 (14)	0.0481 (16)	0.0383 (14)	0.0045 (13)	0.0059 (12)	-0.0011 (13)
C7	0.0490 (14)	0.0536 (16)	0.0411 (15)	0.0061 (14)	0.0025 (13)	0.0063 (13)
C8	0.0425 (12)	0.0681 (18)	0.0399 (18)	0.0039 (13)	-0.0036 (11)	0.0076 (13)
C9	0.068 (2)	0.072 (2)	0.080 (3)	-0.0142 (19)	-0.0219 (19)	0.007 (2)
C10	0.085 (3)	0.116 (4)	0.097 (4)	-0.006 (3)	-0.036 (3)	-0.028 (3)
C11	0.111 (4)	0.109 (3)	0.047 (2)	-0.009 (3)	-0.029 (2)	-0.002 (2)
C13	0.115 (4)	0.088 (4)	0.041 (2)	0.000(2)	0.009 (2)	0.0057 (19)
C14	0.108 (3)	0.099 (3)	0.047 (2)	0.027 (3)	0.028 (2)	0.010(2)
C15	0.074 (2)	0.075 (2)	0.063 (2)	-0.0035 (19)	0.026 (2)	0.0137 (19)
C16	0.0394 (12)	0.0556 (16)	0.0522 (15)	0.0033 (13)	0.0045 (13)	-0.0066 (15)
C17	0.0406 (13)	0.0490 (14)	0.0436 (14)	0.0035 (12)	-0.0033 (12)	-0.0017 (13)
C18	0.0405 (12)	0.0432 (14)	0.0347 (13)	0.0033 (11)	-0.0082 (10)	0.0015 (11)
C19	0.0407 (14)	0.0634 (19)	0.064 (2)	0.0070 (14)	-0.0124 (15)	-0.0038 (17)
C20	0.0544 (16)	0.0613 (19)	0.066 (2)	0.0089 (15)	-0.0237 (16)	0.0129 (17)
C21	0.0617 (18)	0.0544 (17)	0.0446 (16)	-0.0014 (15)	-0.0120 (15)	0.0125 (14)
C22	0.0459 (14)	0.0437 (15)	0.0401 (15)	-0.0009 (12)	-0.0065 (12)	0.0036 (13)
C23	0.064 (2)	0.083 (3)	0.058 (2)	-0.002 (2)	0.0065 (18)	0.026 (2)
C24	0.189 (6)	0.083 (4)	0.097 (4)	0.033 (4)	-0.034 (4)	-0.016 (3)

Geometric parameters (Å, °)

Zn1—O2	1.975 (2)	C9—C10	1.480 (7)
Zn1—O3	2.001 (2)	С9—Н9А	0.97
Zn1—N1	2.094 (2)	С9—Н9В	0.97
Zn1—N3	2.107 (2)	C10—C11	1.448 (7)
Zn1—N2	2.152 (3)	C10—H10A	0.97
O1—C2	1.375 (4)	C10—H10B	0.97
01—C1	1.416 (5)	C11—H11A	0.97
N1-C8	1.273 (4)	C11—H11B	0.97
N1-C9	1.462 (5)	C13—C14	1.499 (7)
C1—H1A	0.96	C13—H13A	0.97
C1—H1B	0.96	C13—H13B	0.97
C1—H1C	0.96	C14—C15	1.535 (7)
O2—C6	1.300 (4)	C14—H14A	0.97
N2-C13	1.435 (6)	C14—H14B	0.97
N2-C11	1.473 (6)	C15—H15A	0.97
N2—H2	0.98	C15—H15B	0.97
C2—C3	1.361 (5)	C16—C17	1.443 (4)
C2—C6	1.432 (5)	C16—H16	0.93
O3—C18	1.316 (3)	C17—C19	1.415 (4)
N3—C16	1.278 (4)	C17—C18	1.416 (4)
N3—C15	1.453 (4)	C18—C22	1.421 (4)
C3—C4	1.403 (6)	C19—C20	1.359 (5)
С3—Н3	0.93	C19—H19	0.93
C4—C5	1.357 (6)	C20—C21	1.386 (5)
C4—H4	0.93	C20—H20	0.93

supporting information

O4—C22	1.365 (4)	C21—C22	1.382 (4)
O4—C23	1.413 (4)	C21—H21	0.93
С5—С7	1.402 (4)	С23—Н23А	0.96
С5—Н5	0.93	С23—Н23В	0.96
O5—C24	1.334 (8)	С23—Н23С	0.96
O5—H5A	0.82	C24—H24A	0.96
C6—C7	1.413 (4)	C24—H24B	0.96
C7—C8	1.453 (5)	C24—H24C	0.96
С8—Н8	0.93		
O2—Zn1—O3	122.87 (10)	C9—C10—H10A	108.1
O2—Zn1—N1	89.63 (9)	C11—C10—H10B	108.1
O3—Zn1—N1	97.45 (10)	C9—C10—H10B	108.1
O2—Zn1—N3	90.01 (9)	H10A—C10—H10B	107.3
O3—Zn1—N3	87.84 (9)	C10—C11—N2	117.1 (4)
N1—Zn1—N3	173.91 (12)	C10—C11—H11A	108.0
O2—Zn1—N2	123.50 (13)	N2—C11—H11A	108.0
O_3 —Zn1—N2	113.44 (12)	C10—C11—H11B	108.0
N1 - Zn1 - N2	87.40 (13)	N2-C11-H11B	108.0
$N_3 = Zn_1 = N_2$	87 73 (11)	H11A—C11—H11B	107.3
$C_{2}=01=C_{1}$	1169(3)	N2-C13-C14	1176(4)
C8 - N1 - C9	117.5 (3)	N2-C13-H13A	107.9
C8-N1-Zn1	124 4 (2)	C14—C13—H13A	107.9
C9-N1-Zn1	1177(2)	N_{-C13} H13B	107.9
01-C1-H1A	109 5	C_{14} C_{13} H_{13B}	107.9
01—C1—H1B	109.5	H_{13A} $-C_{13}$ $-H_{13B}$	107.2
HIA_C1_HIB	109.5	C_{13} C_{14} C_{15}	107.2 1157(4)
01-C1-H1C	109.5	C_{13} C_{14} H_{14A}	108.4
HIA-CI-HIC	109.5	C15— $C14$ — $H14A$	108.4
HIB-C1-HIC	109.5	C13— $C14$ — $H14B$	108.4
C6-O2-Zn1	129 32 (19)	C15—C14—H14B	108.4
C13 - N2 - C11	1135(4)	H_{14A} $-C_{14}$ $-H_{14B}$	107.4
C13 = N2 = 7n1	112.6 (3)	N3-C15-C14	107.1 110.5(3)
$C_{11} = N_2 = Z_{n1}$	114.6 (3)	N3-C15-H15A	109 5
C13 - N2 - H2	105.0	C14—C15—H15A	109.5
C_{11} N_2 H_2	105.0	N3—C15—H15B	109.5
Zn1-N2-H2	105.0	C14—C15—H15B	109.5
C3-C2-O1	124.3 (4)	H15A—C15—H15B	108.1
C3—C2—C6	121.8 (3)	N3—C16—C17	126.3 (3)
01-C2-C6	113.8 (3)	N3—C16—H16	116.8
C18 - O3 - Zn1	126.77 (18)	С17—С16—Н16	116.8
C16 - N3 - C15	118.6 (3)	C19—C17—C18	119.8 (3)
C16—N3—Zn1	124.7 (2)	C19—C17—C16	116.5 (3)
C15—N3—Zn1	116.4 (2)	C18—C17—C16	123.7 (3)
C2—C3—C4	120.9 (4)	O3—C18—C17	124.3 (3)
С2—С3—Н3	119.6	O3—C18—C22	118.7 (2)
С4—С3—Н3	119.6	C17—C18—C22	117.1 (2)
C5—C4—C3	119.2 (3)	C20—C19—C17	121.3 (3)

C5—C4—H4	120.4	С20—С19—Н19	119.3
C3—C4—H4	120.4	С17—С19—Н19	119.3
C22—O4—C23	116.7 (2)	C19—C20—C21	119.9 (3)
C4—C5—C7	121.1 (3)	C19—C20—H20	120.0
С4—С5—Н5	119.5	C21—C20—H20	120.0
С7—С5—Н5	119.5	C22—C21—C20	120.5 (3)
С24—О5—Н5А	109.5	C22—C21—H21	119.7
O2—C6—C7	125.2 (3)	C20—C21—H21	119.7
O2—C6—C2	119.2 (3)	O4—C22—C21	124.1 (3)
C7—C6—C2	115.7 (3)	O4—C22—C18	114.5 (2)
C5—C7—C6	121.3 (3)	C21—C22—C18	121.4 (3)
C5—C7—C8	116.1 (3)	O4—C23—H23A	109.5
C6—C7—C8	122.6 (3)	O4—C23—H23B	109.5
N1—C8—C7	127.6 (3)	H23A—C23—H23B	109.5
N1—C8—H8	116.2	O4—C23—H23C	109.5
С7—С8—Н8	116.2	H23A—C23—H23C	109.5
N1-C9-C10	115.4 (4)	H23B—C23—H23C	109.5
N1—C9—H9A	108.4	O5—C24—H24A	109.5
С10—С9—Н9А	108.4	O5—C24—H24B	109.5
N1—C9—H9B	108.4	H24A—C24—H24B	109.5
С10—С9—Н9В	108.4	O5—C24—H24C	109.5
Н9А—С9—Н9В	107.5	H24A—C24—H24C	109.5
C11—C10—C9	116.9 (4)	H24B—C24—H24C	109.5
C11-C10-H10A	108.1		

Hydrogen-bond geometry (Å, °)

 D—H…A	D—H	H···A	D···A	D—H···A
C13—H13 <i>A</i> ···O2 ⁱ	0.97	2.58	3.549 (6)	172
C10—H10 <i>B</i> ····O5	0.97	2.50	3.340 (7)	144
O5—H5A···O3	0.82	2.01	2.722 (5)	144

Symmetry code: (i) -x+1, -y+1, z+1/2.