Crystal structure of $\{N^1, N^3$ -bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methylidene]-2,2-dimethylpropane-1,3-diamine}bis(thiocyanato)iron(II)

Kateryna Znovjyak,^a Maksym Seredyuk,^a* Sergey O. Malinkin,^a Iryna O. Golenya,^a Vladimir M. Amirkhanov,^a Sergiu Shova^b and Nurullo U. Mulloev^c*

^aDepartment of Chemistry, Taras Shevchenko National University of Kviv, Volodymyrska Street 64, Kviv, 01601, Ukraine, ^bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular, Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania, and ^cThe Faculty of Physics, Tajik National University, Rudaki Avenue 17, Dushanbe, 734025, Tajikistan. *Correspondence e-mail: mlseredyuk@gmail.com, voruch@eml.ru

The unit cell of the title compound, $[Fe^{II}(NCS)_2(C_{19}H_{32}N_8)]$, consists of two charge-neutral complex molecules. In the complex molecule, the tetradentate N^{1} , N^{3} -bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methylene]-2,2-dimethylligand propane-1,3-diamine coordinates to the Fe^{II} ion through the N atoms of the 1,2,3-triazole and aldimine groups. Two thiocyanate anions, also coordinated through their N atoms, complete the coordination sphere of the central Fe ion. In the crystal, neighbouring molecules are linked through weak C-H···C/S/N interactions into a three-dimensional network. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be $H \cdots H 50.8\%$, $H \cdots C/C \cdots H 14.3\%$, $H \cdots S/S \cdots H 20.5\%$ and $H \cdots N/N \cdots H$ 12.1%. The average Fe-N bond distance is 2.170 Å, indicating the high-spin state of the Fe^{II} ion, which does not change upon cooling, as demonstrated by low-temperature magnetic susceptibility measurements. DFT calculations of energy frameworks at the B3LYP/6–31 G(d,p) theory level were performed to account for the interactions involved in the crystal structure.

1. Chemical context

An interesting class of coordination compounds exhibiting spin-state switching between low- and high-spin states is represented by Fe^{II} complexes based on Schiff bases derived from N-substituted 1,2,3-triazole aldehydes (Hagiwara et al., 2014, 2016, 2020; Hora & Hagiwara, 2017). In all of the chargeneutral mononuclear complexes of this kind described so far, the thiocyanate anions occupy the axial position in the coordination sphere and thus are in a trans-configuration (Hagiwara & Okada, 2016; Hagiwara et al., 2017).

3,5

3,0

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 19 April 2021 Accepted 24 April 2021

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela

Keywords: iron(II) complex; thiocyanate complex; high-spin state; trigonal distortion; magnetism: energy frameworks: crystal structure.

CCDC reference: 2079827

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Having interest in functional 3*d* metal complexes formed by polydentate ligands (Seredyuk *et al.*, 2006, 2007, 2011, 2012, 2015, 2016; Valverde-Muñoz *et al.*, 2020), we report here a continuation of our ongoing exploration of new Fe^{II} *cis*complexes with thiocyanate anions and tetradentate ligands N^1, N^3 -bis[(1-*R*-1*H*-1,2,3-triazol-4-yl)methylene]-2,2-dimethylpropane-1,3-diamine, and report below structural and magnetic investigations of a new complex with *R* = *tert*-butyl.

2. Structural commentary

The Fe^{II} ion of the title complex has a distorted trigonalprismatic N₆ coordination environment formed by the four N atoms of the tetradentate Schiff-base ligand and the two NCS⁻ counter-ions (Fig. 1). The average bond length, $\langle Fe-N \rangle =$ 2.170 (4) Å, is typical for high-spin complexes with an $[FeN_6]$ chromophore (Gütlich & Goodwin, 2004). The N-Fe-N' angle between the cis-aligned thiocyanate N atoms is 91.91 (8)°. The average trigonal distortion parameters, $\Sigma =$ $\Sigma_1^{12}(|90 - \varphi_i|)$, where φ_i is the angle N-Fe-N' (Drew *et al.*, 1995), $\Theta = \Sigma_1^{24}(|60 - \theta_i|)$, where θ_i is the angle generated by superposition of two opposite faces of an octahedron (Chang et al., 1990) are 127.8 and 438.2°, respectively. The values reveal a great deviation of the coordination environment from an ideal octahedron (where $\Sigma = \Theta = 0$), and are significantly larger than those of similar [FeN₆] high-spin *trans*-complexes (Hagiwara et al., 2017). With the aid of continuous shape measurements (CShM), the closest shape of a coordination polyhedron and its distortion can be determined numerically

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C4 - H4B \cdots C21^{i}$	0.97	2.84	3 786 (4)	166
$C5-H5\cdots S1^{ii}$	0.93	2.99	3.718 (4)	137
$C7-H7\cdots S1^{i}$	0.93	2.90	3.764 (4)	155
$C13-H13\cdots S1^{iii}$	0.93	2.99	3.724 (4)	137
$C13-H13\cdots C20^{iii}$	0.93	2.75	3.558 (4)	146
$C15-H15\cdots S1^{iii}$	0.93	2.84	3.573 (4)	137
$C17 - H17A \cdot \cdot \cdot S2^{iv}$	0.96	2.94	3.873 (4)	166
$C17 - H17B \cdot \cdot \cdot S2^{v}$	0.96	2.94	3.850 (4)	158

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x + 1, y, z; (iii) -x, -y + 1, -z + 1; (iv) x, y - 1, z; (v) -x, -y + 1, -z.

(Kershaw Cook *et al.*, 2015). The calculated CShM value relative to ideal O_h symmetry is 3.829, while it is 6.709 relative to the ideal D_{3h} trigonal-prismatic symmetry. Hence, the polyhedron is closer to the former geometry, but is still appreciably distorted, as indicated by the calculated value (for an ideal polyhedron CShM = 0). The volume of the [FeN₆] coordination polyhedron is 12.60 Å³.

3. Supramolecular features

In the lattice, neighbouring complex molecules form a threedimensional supramolecular network (Fig. 2) through the weak $C-H\cdots X$ hydrogen bonds (Table 1). No strong hydrogen bonding or stacking interactions are observed between the complex molecules in the crystal lattice.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2

The packing of molecules into the three-dimensional network held together by weak $C-H\cdots C/S$ bonding (dashed cyan lines).

all---all

2.8

(a)

Figure 3

Two projections of d_{norm} mapped on Hirshfeld surfaces, showing the intermolecular interactions within the molecule. Red areas represent regions where contacts are shorter than the sum of the van der Waals radii, blue areas represent regions where contacts are larger than the sum of van der Waals radii, and white areas are regions where contacts are close to the sum of van der Waals radii.

4. Hirshfeld surface and 2D fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2017), with a standard resolution of the three-dimensional d_{norm} surfaces plotted over a fixed colour scale of -0.1141 (red) to 1.9978 (blue) a.u. The pale-red spots symbolize short contacts and negative d_{norm} values on the surface correspond to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 3. The Hirshfeld surfaces mapped over d_{norm} are shown for the $H \cdots H$, $H \cdots C/C \cdots H$, $H \cdots S/S \cdots H$, and $H \cdots N/$ $N \cdot \cdot \cdot H$ contacts, and the two-dimensional fingerprint plots are presented in Fig. 4, associated with their relative contributions to the Hirshfeld surface. At 50.8%, the largest contribution to the overall crystal packing is from $H \cdots H$ interactions, which are located in the middle region of the fingerprint plot. $H \cdot \cdot \cdot C/$ $C \cdots H$ contacts contribute 14.3%, and the $H \cdots S/S \cdots H$ contacts contribute 20.5% to the Hirshfeld surface, both resulting in a pair of characteristic wings. The H ··· N/N ··· H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 12.1% contribution to the Hirshfeld surface.

5. Energy frameworks

The energy frameworks, calculated using the wave function at the B3LYP/6-3G(d,p) level of theory for the title compound, including the electrostatic potential forces (E_{ele}), the dispersion forces (E_{dis}) and the total energy diagrams (E_{tot}), are shown in Fig. 5*a*. The cylindrical radii, adjusted to the same scale factor of 80, are proportional to the relative strength of the corresponding energies (Turner *et al.*, 2017; Tan *et al.*, 2019). It can be seen that the major contribution to the intermolecular interactions is from Coulomb forces (E_{ele}), reflecting dipole–dipole interactions of the asymmetric complex *cis*-molecules in the lattice. According to the calculations, the most repulsive interaction is due to the anion-to-

(a) The overall two-dimensional fingerprint plot and those decomposed into specified interactions. (b) Hirshfeld surface representations with the function d_{norm} plotted onto the surface for the different interactions.

research communications

(a) The calculated energy frameworks, showing the electrostatic potential forces ($E_{\rm ele}$), the dispersion forces ($E_{\rm dis}$) and the total energy diagrams ($E_{\rm tot}$). Yellow coloured tubes correspond to the repulsive interactions; (b) the strongest repulsive and attractive interactions between neighbouring complex molecules.

Table 2	
Comparison of the distortion parameters (Å, °) for the indicate	d Fe ^{II}
complexes.	

	<Fe $-$ N $>$	Σ	Θ	$CShM(O_h)$	$CShM(D_{3h})$
Title compound	2.170	127.8	438.2	3.829	6.709
IQEFAO	2.167	127.40	481.9	4.269	5.671
CUWQAP	2.186	149.38	453.2	6.285	4.008
CABLOH	1.899	178.16	725.74	12.735	0.525
BUNSAF	2.218	201.07	703.65	13.084	1.887
OWIHAE	2.202	206.57	894.48	16.909	0.602
OTANOO ^a	2.191	183.24	697.3	12.065	1.098

Note: (a) Parameters averaged over five independent complex cations.

anion alignment of neighbouring complex molecules ($E_{tot} = 65.3 \text{ kJ mol}^{-1}$) while the ligand-to-anion alignment gives the most attractive one ($E_{tot} = -223.9 \text{ kJ mol}^{-1}$) (Fig. 5b). The colour-coded interaction mappings within a radius of 3.8 Å of a central reference molecule for the title compound together with full details of the various contributions to the total energy (E_{tot}) are given in the Supporting Information.

6. Magnetic properties

Variable-temperature magnetic susceptibility measurements were performed on single crystals (10 mg) of the title compound using a Quantum Design MPMS2 superconducting quantum interference device (SQUID) susceptometer operating at 1 T. Experimental susceptibilities were corrected for the diamagnetism of the holder (gelatine capsule) and of the constituent atoms by the application of Pascal's constants. The magnetic behaviour of the compound is shown in Fig. 6 in the form of $\chi_M T$ versus T (χ_M is the molar magnetic susceptibility and T is the temperature). At 300 K, the $\chi_M T$ value is close to 3.51 cm³ K mol⁻¹, and on cooling the value remains constant

 $\chi_{\rm M}T$ versus T plot for the title compound.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$[Fe(NCS)_2(C_{19}H_{32}N_8)]$
M _r	544.53
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	250
a, b, c (Å)	9.4768 (5), 10.8151 (5), 15.2493 (7)
α, β, γ (°)	102.267 (4), 102.813 (4), 103.291 (4)
$V(Å^3)$	1424.90 (13)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.70
Crystal size (mm)	$0.4 \times 0.2 \times 0.2$
Data collection	
Diffractometer	Rigaku Oxford Diffraction
	Xcalibur, Eos
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.865, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10732, 5016, 4188
R _{int}	0.025
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.095, 1.04
No. of reflections	5016
No. of parameters	315
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.46, -0.40

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

down to 30 K. The decrease of $\chi_{\rm M}T$ below 30 K is attributed to the zero-field splitting of the high-spin (S = 2) Fe^{II} centres (Kahn, 1993), which corroborates with the observed long average Fe–N bond length and the large geometric distortion of the coordination polyhedron of the central Fe^{II} ion.

7. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) reveals five similar Fe^{II} thiocyanate complexes, derivatives of a 1.3-diamine and *N*-substituted 1.2.3-triazole aldehvdes: DURXEV, ADAQUU, ADAREF and solvatomorphs ADAROP and ADARUV (Hagiwara et al., 2017, Hagiwara & Okada, 2016). These complexes show hysteretic spin crossover with variation of the Fe-N distances in the range 1.931-1.959 Å for the low-spin state and 2.154–2.169 Å for the highspin state of the Fe^{II} ions. The reported pseudo-trigonalprismatic complexes with an [FeN₆] chromophore are formed by structurally hindered rigid hexadentate ligands favouring trigonal geometry of the central Fe^{II} ion: CABLOH (Voloshin et al., 2001), BUNSAF (El Hajj et al., 2009), OWIHAE (Seredyuk et al., 2011), OTANOO (Stock et al., 2016). The recently reported by us cis-complexes CUWQAP and IQEFAO have similar strongly distorted coordination environment of the central Fe^{II} ion (Znovjyak et al., 2020, 2021). Table 2 collates the distortion parameters Σ , Θ and CShM for the pseudo-trigonal-prismatic complexes mentioned above.

8. Synthesis and crystallization

The synthesis of the title compound is identical to that reported by us recently for similar thiocyanate complexes (Znovjyak *et al.*, 2020, 2021). The ligand of the title compound was obtained *in situ* by condensation of 2,2-dimethyl-1,3propanediamine (24 μ L, 0.20 mmol) with 1-*tert*-butyl-1*H*-1,2,3-triazole-4-carbaldehyde (63 mg, 0.45 mmol) in boiling methanol (5 ml) over 5 min and subsequently reacted with [Fe(py)₄(NCS)₂] (100 mg, 0.20 mmol) and ascorbic acid (11 mg, 0.06 mmol) in boiling methanol (5 ml). The formed yellow solution was slowly cooled to ambient temperature. Yellow–orange crystals then precipitated and were subsequently filtered off. Elemental analysis calculated (%) for C₂₁H₃₂FeN₁₀S₂: C, 46.32; H, 5.92; N, 25.72; S, 11.78. Found: C, 46.40; H, 6.10; N, 26.18; S, 11.80. IR ν (cm⁻¹, KBr): 1611 (C=N), 2071, 2116 (NCS).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geometrically (C-H = 0.93–0.97 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm C}$ -methyl).

Acknowledgements

Author contributions are as follows: Conceptualization, NUM and MS; methodology, KZ; formal analysis, NUM; synthesis, SOM; magnetic measurements, IAG; single-crystal measurements, SS; writing (original draft), NUM and MS; writing (review and editing of the manuscript), NUM, MS, KZ, SOM, IOG, TYS and SS; visualization and DFT calculations, VMA; funding acquisition, KZ.

References

- Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). *J. Am. Chem. Soc.* **112**, 6814–6827.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.
- El Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). *Inorg. Chem.* **48**, 10416–10423.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.
- Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). *Cryst. Growth Des.* **17**, 6006–6019.
- Hagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950–952.
- Hagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). *Inorg. Chem.* **59**, 9866–9880.
- Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815-818.
- Hagiwara, H., Tanaka, T. & Hora, S. (2016). *Dalton Trans.* **45**, 17132–17140.
- Hora, S. & Hagiwara, H. (2017). Inorganics, 5, 49.

Kahn, O. (1993). Molecular Magnetism. New York: Wiley-VCH.

research communications

- Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). *Coord. Chem. Rev.* 289–290, 2–12.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65-71.
- Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). *Hyperfine Interact.* **166**, 385–390.
- Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976.
- Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). *Dalton Trans.* pp. 3183–3194.
- Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). *Inorg. Chem.* 54, 7424–7432.
- Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). *Inorg. Chem.* 55, 5254–5265.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer 17.5*. University of Western Australia.
- Valverde-Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638.
- Voloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Antipin, M. Y. & Polshin, E. V. (2001). *Polyhedron*, **20**, 2721–2733.
- Znovjyak, K., Seredyuk, M., Malinkin, S. O., Golenya, I. A., Sliva, T. Y., Shova, S. & Mulloev, N. U. (2021). *Acta Cryst.* E77, 495–499.
- Znovjyak, K., Seredyuk, M., Malinkin, S. O., Shova, S. & Soliev, L. (2020). Acta Cryst. E76, 1661–1664.

Acta Cryst. (2021). E77, 573-578 [https://doi.org/10.1107/S2056989021004412]

Crystal structure of {*N*¹,*N*³-bis[(1-*tert*-butyl-1*H*-1,2,3-triazol-4-yl)methylidene]-2,2-dimethylpropane-1,3-diamine}bis(thiocyanato)iron(II)

Kateryna Znovjyak, Maksym Seredyuk, Sergey O. Malinkin, Iryna O. Golenya, Vladimir M. Amirkhanov, Sergiu Shova and Nurullo U. Mulloev

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

 $\{N^1, N^3$ -Bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methylidene]-2,2-dimethylpropane-1,3-diamine}bis(thiocyanato)iron(II)

Crystal data $[Fe(NCS)_2(C_{19}H_{32}N_8)]$ $M_r = 544.53$ Triclinic, P1 a = 9.4768 (5) Åb = 10.8151 (5) Åc = 15.2493 (7) Å $\alpha = 102.267 (4)^{\circ}$ $\beta = 102.813 (4)^{\circ}$ $\gamma = 103.291 (4)^{\circ}$ $V = 1424.90(13) \text{ Å}^3$ Data collection Rigaku Oxford Diffraction Xcalibur, Eos diffractometer Detector resolution: 16.1593 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) $T_{\rm min} = 0.865, T_{\rm max} = 1.000$ 10732 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.095$ S = 1.045016 reflections Z = 2 F(000) = 572 $D_x = 1.269 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3729 reflections $\theta = 2.0-26.8^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 250 K Prism, orange $0.4 \times 0.2 \times 0.2 \text{ mm}$

5016 independent reflections 4188 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -10 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -18 \rightarrow 18$

315 parameters0 restraintsPrimary atom site location: dualHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0371P)^2 + 0.545P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	0.23066 (4)	0.71954 (3)	0.39637 (2)	0.03412 (12)
S1	-0.02770 (8)	0.91016 (6)	0.59945 (5)	0.04605 (18)
S2	0.18981 (11)	0.99900 (8)	0.18833 (5)	0.0709 (3)
N1	0.4279 (2)	0.81942 (18)	0.51741 (13)	0.0362 (5)
N2	0.4378 (2)	0.70935 (19)	0.34658 (14)	0.0382 (5)
N3	0.4618 (2)	0.6739 (2)	0.26556 (14)	0.0422 (5)
N4	0.6061 (2)	0.73984 (19)	0.27554 (14)	0.0397 (5)
N5	0.2174 (2)	0.57207 (18)	0.47997 (13)	0.0347 (4)
N6	0.1170 (2)	0.52968 (18)	0.29454 (13)	0.0359 (5)
N7	0.0625 (2)	0.48742 (19)	0.20347 (14)	0.0399 (5)
N8	0.0220 (2)	0.35431 (18)	0.18153 (13)	0.0386 (5)
N9	0.0762 (3)	0.7799 (2)	0.46068 (16)	0.0504 (6)
N10	0.2124 (2)	0.8439 (2)	0.31141 (15)	0.0466 (5)
C1	0.3934 (4)	0.7358 (3)	0.74168 (19)	0.0664 (9)
H1A	0.488965	0.795885	0.780643	0.100*
H1B	0.375591	0.655489	0.760243	0.100*
H1C	0.314239	0.775546	0.748319	0.100*
C2	0.5250 (3)	0.6455 (3)	0.6288 (2)	0.0570 (7)
H2A	0.522605	0.621296	0.564042	0.086*
H2B	0.513695	0.568366	0.651321	0.086*
H2C	0.619922	0.709544	0.664560	0.086*
C3	0.3958 (3)	0.7047 (2)	0.63914 (16)	0.0427 (6)
C4	0.4194 (3)	0.8373 (2)	0.61365 (16)	0.0405 (6)
H4A	0.336116	0.872821	0.620707	0.049*
H4B	0.512065	0.900330	0.656164	0.049*
C5	0.5577 (3)	0.8462 (2)	0.50359 (17)	0.0406 (6)
Н5	0.644384	0.894529	0.552199	0.049*
C6	0.5647 (3)	0.7985 (2)	0.40914 (16)	0.0370 (6)
C7	0.6733 (3)	0.8177 (2)	0.36351 (17)	0.0430 (6)
H7	0.772226	0.872582	0.387956	0.052*
C8	0.6700 (3)	0.7264 (3)	0.19420 (18)	0.0487 (7)
С9	0.5645 (4)	0.6141 (4)	0.1149 (2)	0.1047 (15)
H9A	0.550373	0.534196	0.134109	0.157*
H9B	0.606340	0.604349	0.062876	0.157*
H9C	0.468901	0.631363	0.096737	0.157*
C10	0.6890 (6)	0.8558 (4)	0.1695 (3)	0.1240 (18)

H10A	0.592928	0.873393	0.155227	0.186*
H10B	0.727368	0.850811	0.116084	0.186*
H10C	0.758785	0.925718	0.221622	0.186*
C11	0.8222 (4)	0.7048 (5)	0.2252 (3)	0.1079 (15)
H11A	0.887477	0.779295	0.275755	0.162*
H11B	0.865439	0.695136	0.173773	0.162*
H11C	0.810879	0.626152	0.245908	0.162*
C12	0.2433 (3)	0.6048 (2)	0.58150 (16)	0.0436 (6)
H12A	0.235390	0.523925	0.600421	0.052*
H12B	0.163402	0.639851	0.596548	0.052*
C13	0.1634 (3)	0.4524 (2)	0.43216 (17)	0.0388 (6)
H13	0.155551	0.384125	0.460660	0.047*
C14	0.1140 (3)	0.4256 (2)	0.33115 (16)	0.0343 (5)
C15	0.0539 (3)	0.3127 (2)	0.25822 (17)	0.0416 (6)
H15	0.038598	0.225792	0.261304	0.050*
C16	-0.0388 (3)	0.2749 (3)	0.08089 (17)	0.0479 (7)
C17	-0.1268 (4)	0.1368 (3)	0.0764 (2)	0.0696 (9)
H17A	-0.060908	0.096972	0.110571	0.104*
H17B	-0.166885	0.084533	0.012288	0.104*
H17C	-0.208368	0.141301	0.103520	0.104*
C18	0.0941 (4)	0.2720 (4)	0.0434 (2)	0.0891 (12)
H18A	0.146877	0.360201	0.045494	0.134*
H18B	0.059447	0.217558	-0.020213	0.134*
H18C	0.161008	0.236346	0.080741	0.134*
C19	-0.1432 (5)	0.3412 (3)	0.0304 (2)	0.0919 (13)
H19A	-0.226092	0.341066	0.056965	0.138*
H19B	-0.181430	0.293743	-0.034808	0.138*
H19C	-0.088105	0.430716	0.037174	0.138*
C20	0.0333 (3)	0.8349 (2)	0.51828 (18)	0.0367 (6)
C21	0.2028 (3)	0.9064 (2)	0.25931 (17)	0.0390 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0342 (2)	0.03043 (19)	0.0383 (2)	0.01036 (15)	0.01232 (16)	0.00759 (15)
S1	0.0547 (4)	0.0404 (4)	0.0486 (4)	0.0136 (3)	0.0264 (3)	0.0117 (3)
S2	0.0981 (7)	0.0621 (5)	0.0433 (4)	0.0113 (5)	0.0066 (4)	0.0230 (4)
N1	0.0387 (12)	0.0299 (10)	0.0377 (11)	0.0076 (9)	0.0129 (9)	0.0052 (9)
N2	0.0317 (11)	0.0383 (11)	0.0399 (12)	0.0052 (9)	0.0124 (9)	0.0040 (9)
N3	0.0318 (11)	0.0451 (12)	0.0424 (12)	0.0044 (9)	0.0111 (10)	0.0040 (10)
N4	0.0324 (11)	0.0432 (12)	0.0388 (12)	0.0054 (9)	0.0116 (9)	0.0059 (10)
N5	0.0328 (11)	0.0337 (11)	0.0369 (11)	0.0075 (9)	0.0115 (9)	0.0087 (9)
N6	0.0359 (11)	0.0324 (10)	0.0390 (12)	0.0085 (9)	0.0124 (9)	0.0090 (9)
N7	0.0447 (12)	0.0340 (11)	0.0402 (12)	0.0093 (9)	0.0125 (10)	0.0104 (9)
N8	0.0447 (12)	0.0324 (11)	0.0361 (11)	0.0068 (9)	0.0119 (9)	0.0082 (9)
N9	0.0538 (14)	0.0530 (14)	0.0625 (15)	0.0297 (12)	0.0297 (12)	0.0242 (12)
N10	0.0500 (14)	0.0437 (12)	0.0516 (14)	0.0159 (11)	0.0188 (11)	0.0181 (11)
C1	0.079 (2)	0.072 (2)	0.0385 (16)	0.0090 (17)	0.0176 (15)	0.0089 (15)

C2	0.0541 (18)	0.0564 (18)	0.0582 (18)	0.0216 (14)	0.0080 (15)	0.0133 (15)
C3	0.0466 (15)	0.0469 (15)	0.0328 (13)	0.0131 (12)	0.0118 (12)	0.0075 (11)
C4	0.0392 (14)	0.0411 (14)	0.0360 (13)	0.0102 (11)	0.0125 (11)	-0.0006 (11)
C5	0.0345 (14)	0.0369 (13)	0.0413 (14)	0.0027 (11)	0.0086 (11)	0.0031 (11)
C6	0.0312 (13)	0.0359 (13)	0.0377 (13)	0.0042 (10)	0.0091 (11)	0.0046 (11)
C7	0.0322 (14)	0.0458 (15)	0.0391 (14)	-0.0006 (11)	0.0081 (11)	0.0022 (12)
C8	0.0420 (15)	0.0608 (17)	0.0390 (14)	0.0065 (13)	0.0173 (12)	0.0078 (13)
C9	0.079 (3)	0.138 (4)	0.056 (2)	-0.011 (2)	0.0318 (19)	-0.025 (2)
C10	0.209 (6)	0.103 (3)	0.096 (3)	0.043 (3)	0.095 (4)	0.051 (3)
C11	0.063 (2)	0.195 (5)	0.072 (2)	0.055 (3)	0.034 (2)	0.014 (3)
C12	0.0479 (15)	0.0437 (15)	0.0394 (14)	0.0078 (12)	0.0188 (12)	0.0114 (12)
C13	0.0397 (14)	0.0334 (13)	0.0429 (14)	0.0056 (11)	0.0123 (11)	0.0147 (11)
C14	0.0328 (13)	0.0313 (12)	0.0388 (13)	0.0076 (10)	0.0121 (11)	0.0096 (10)
C15	0.0528 (16)	0.0313 (13)	0.0401 (14)	0.0090 (12)	0.0134 (12)	0.0121 (11)
C16	0.0617 (18)	0.0425 (15)	0.0342 (14)	0.0104 (13)	0.0118 (13)	0.0069 (12)
C17	0.094 (3)	0.0498 (17)	0.0418 (16)	-0.0047 (17)	0.0119 (16)	0.0000 (14)
C18	0.088 (3)	0.103 (3)	0.059 (2)	0.004 (2)	0.039 (2)	-0.006 (2)
C19	0.117 (3)	0.079 (2)	0.057 (2)	0.032 (2)	-0.017 (2)	0.0112 (18)
C20	0.0338 (13)	0.0346 (13)	0.0487 (15)	0.0130 (11)	0.0141 (12)	0.0202 (12)
C21	0.0364 (14)	0.0363 (13)	0.0354 (14)	0.0057 (11)	0.0075 (11)	-0.0003 (12)

Geometric parameters (Å, °)

Fe1—N1	2.182 (2)	C4—H4B	0.9700
Fe1—N2	2.2733 (19)	С5—Н5	0.9300
Fe1—N5	2.2422 (19)	C5—C6	1.445 (3)
Fe1—N6	2.1619 (19)	C6—C7	1.367 (3)
Fe1—N9	2.082 (2)	С7—Н7	0.9300
Fe1—N10	2.066 (2)	C8—C9	1.489 (4)
S1-C20	1.623 (3)	C8—C10	1.507 (4)
S2—C21	1.628 (3)	C8—C11	1.502 (4)
N1—C4	1.462 (3)	С9—Н9А	0.9600
N1—C5	1.273 (3)	С9—Н9В	0.9600
N2—N3	1.300 (3)	С9—Н9С	0.9600
N2—C6	1.361 (3)	C10—H10A	0.9600
N3—N4	1.347 (3)	C10—H10B	0.9600
N4—C7	1.345 (3)	C10—H10C	0.9600
N4—C8	1.491 (3)	C11—H11A	0.9600
N5—C12	1.463 (3)	C11—H11B	0.9600
N5—C13	1.264 (3)	C11—H11C	0.9600
N6—N7	1.307 (3)	C12—H12A	0.9700
N6-C14	1.356 (3)	C12—H12B	0.9700
N7—N8	1.348 (3)	C13—H13	0.9300
N8—C15	1.338 (3)	C13—C14	1.451 (3)
N8—C16	1.498 (3)	C14—C15	1.370 (3)
N9—C20	1.156 (3)	C15—H15	0.9300
N10-C21	1.149 (3)	C16—C17	1.513 (4)
C1—H1A	0.9600	C16—C18	1.498 (4)

C1—H1B	0.9600	C16—C19	1.519 (4)
C1—H1C	0.9600	C17—H17A	0.9600
C1—C3	1.535 (3)	C17—H17B	0.9600
C2—H2A	0.9600	C17—H17C	0.9600
C2—H2B	0.9600	C18—H18A	0.9600
C2—H2C	0.9600	C18—H18B	0.9600
C2—C3	1.529 (4)	C18—H18C	0.9600
C3-C4	1.545 (3)	C19—H19A	0.9600
C_{3} C_{12}	1.5 15 (3) 1 531 (3)	C19—H19B	0.9600
C4H4A	0.9700	C19H19C	0.9600
	0.9700	enjemije	0.9000
N1—Fe1—N2	73.16(7)	N4—C7—H7	127.5
N1—Fe1—N5	78.59 (7)	С6—С7—Н7	127.5
N5—Fe1—N2	102.76(7)	N4—C8—C10	106.5(2)
N6—Fe1—N1	141.68(7)	N4	107.9(2)
N6-Fe1-N2	86 29 (7)	C9 - C8 - N4	107.9(2) 109.4(2)
N6—Fe1—N5	74.84(7)	C9 - C8 - C10	109.1(2) 111.6(3)
NO Fel NI	05 38 (8)	C_{9} C_{8} C_{11}	111.0(3) 111.7(3)
NO Fel N2	164 70 (8)	$C_{2} = C_{3} = C_{11}$	111.7(3) 100 5 (3)
$NO = E_{0} I = NS$	104.79 (8) 84 21 (8)	$C_{1} = C_{2} = C_{10}$	109.5 (5)
N9 - FeI - N5	04.21(0) 108 70(8)	$C_{0} = C_{0} = H_{0} P_{0}$	109.5
$N10 E_{2}1 N1$	100.70(8) 108.25(8)	$C_{0} = C_{0} = H_{0}C_{0}$	109.5
N10 $Fe1$ $N2$	108.55(8)		109.5
NIO—FeI—N2	82.59 (8)	H9A—C9—H9B	109.5
N10—Fe1—N5	1/2.39 (8)	H9A—C9—H9C	109.5
NIO—Fel—N6	100.36 (8)	H9B—C9—H9C	109.5
N10—Fe1—N9	91.91 (8)	C8—C10—H10A	109.5
C4—N1—Fe1	122.55 (15)	C8—C10—H10B	109.5
C5—N1—Fe1	118.20 (16)	C8—C10—H10C	109.5
C5—N1—C4	118.5 (2)	H10A—C10—H10B	109.5
N3—N2—Fe1	135.06 (16)	H10A—C10—H10C	109.5
N3—N2—C6	110.07 (19)	H10B—C10—H10C	109.5
C6—N2—Fe1	110.64 (15)	C8—C11—H11A	109.5
N2—N3—N4	106.56 (18)	C8—C11—H11B	109.5
N3—N4—C8	120.84 (19)	C8—C11—H11C	109.5
C7—N4—N3	110.97 (19)	H11A-C11-H11B	109.5
C7—N4—C8	128.1 (2)	H11A—C11—H11C	109.5
C12—N5—Fe1	124.97 (15)	H11B—C11—H11C	109.5
C13—N5—Fe1	115.10 (16)	N5—C12—C3	115.17 (19)
C13—N5—C12	119.2 (2)	N5—C12—H12A	108.5
N7—N6—Fe1	135.88 (15)	N5—C12—H12B	108.5
N7—N6—C14	109.98 (18)	C3—C12—H12A	108.5
C14—N6—Fe1	113.70 (15)	C3—C12—H12B	108.5
N6—N7—N8	106.35 (18)	H12A—C12—H12B	107.5
N7—N8—C16	119.69 (19)	N5—C13—H13	121.3
C15—N8—N7	111.10 (19)	N5-C13-C14	117.4 (2)
C15—N8—C16	129.1 (2)	C14—C13—H13	121.3
C20—N9—Fe1	158.0 (2)	N6—C14—C13	118.2 (2)
C21—N10—Fe1	175.3 (2)	N6-C14-C15	107.5 (2)
			···- (-)

H1A—C1—H1B	109.5	C15—C14—C13	134.2 (2)
H1A—C1—H1C	109.5	N8—C15—C14	105.1 (2)
H1B—C1—H1C	109.5	N8—C15—H15	127.5
C3—C1—H1A	109.5	C14—C15—H15	127.5
C3—C1—H1B	109.5	N8—C16—C17	108.3(2)
C3—C1—H1C	109.5	N8—C16—C19	107.8 (2)
H2A—C2—H2B	109.5	C17—C16—C19	110.0 (3)
H2A—C2—H2C	109.5	C18—C16—N8	107.2 (2)
H2B—C2—H2C	109.5	C18—C16—C17	110.8 (3)
C3—C2—H2A	109.5	C18—C16—C19	112.5 (3)
C3—C2—H2B	109.5	C16—C17—H17A	109.5
C3—C2—H2C	109.5	C16—C17—H17B	109.5
C1 - C3 - C4	105.5 106.4 (2)	C16-C17-H17C	109.5
C_{2} C_{3} C_{1}	100.1(2) 109.7(2)	H17A - C17 - H17B	109.5
$C_2 = C_3 = C_4$	109.7(2) 111.0(2)	H17A - C17 - H17C	109.5
$C_2 = C_3 = C_4$	111.0(2) 110.4(2)	H17B_C17_H17C	109.5
$C_1^2 = C_3^2 = C_1^2$	106.8(2)	$C_{16} C_{18} H_{18A}$	109.5
$C_{12} = C_{3} = C_{1}$	100.8(2)	C_{10} C_{10} H_{10} H_{10} H_{10}	109.5
C12 - C3 - C4	112.4(2) 110.80(10)	C16 - C18 - H18C	109.5
N1 - C4 - C3	100.5		109.5
NI-C4-H4A	109.5	H18A - C18 - H18B	109.5
NI = C4 = H4B	109.5	H18A-C18-H18C	109.5
$C_3 - C_4 - H_4 A$	109.5	HI8B—CI8—HI8C	109.5
C3—C4—H4B	109.5	C16—C19—H19A	109.5
H4A—C4—H4B	108.1	C16—C19—H19B	109.5
N1—C5—H5	121.4	C16—C19—H19C	109.5
N1—C5—C6	117.1 (2)	H19A—C19—H19B	109.5
С6—С5—Н5	121.4	H19A—C19—H19C	109.5
N2—C6—C5	117.0 (2)	H19B—C19—H19C	109.5
N2—C6—C7	107.4 (2)	N9—C20—S1	179.2 (2)
C7—C6—C5	135.5 (2)	N10—C21—S2	178.1 (2)
N4—C7—C6	105.0 (2)		
	(-)		a a (a)
Fe1—N1—C4—C3	72.0 (2)	N7—N6—C14—C15	0.0 (3)
Fe1—N1—C5—C6	-4.9 (3)	N7—N8—C15—C14	1.3 (3)
Fe1—N2—N3—N4	154.24 (17)	N7—N8—C16—C17	-159.3 (2)
Fe1—N2—C6—C5	20.5 (3)	N7—N8—C16—C18	81.1 (3)
Fe1—N2—C6—C7	-161.09 (17)	N7—N8—C16—C19	-40.3 (3)
Fe1—N5—C12—C3	-55.6 (3)	C1—C3—C4—N1	178.3 (2)
Fe1—N5—C13—C14	-1.4 (3)	C1—C3—C12—N5	174.3 (2)
Fe1—N6—N7—N8	172.44 (16)	C2—C3—C4—N1	59.1 (3)
Fe1—N6—C14—C13	9.3 (3)	C2—C3—C12—N5	-66.5 (3)
Fe1—N6—C14—C15	-173.69 (16)	C4—N1—C5—C6	165.5 (2)
N1C5	-11.6 (3)	C4—C3—C12—N5	58.0 (3)
N1—C5—C6—C7	170.7 (3)	C5—N1—C4—C3	-97.9 (3)
N2—N3—N4—C7	-0.1 (3)	C5—C6—C7—N4	178.3 (3)
N2—N3—N4—C8	-177.5 (2)	C6—N2—N3—N4	0.4 (3)
N2—C6—C7—N4	0.4 (3)	C7—N4—C8—C9	171.2 (3)
N3—N2—C6—C5	-178.9 (2)	C7—N4—C8—C10	-68.0 (4)

N3—N2—C6—C7	-0.5 (3)	C7—N4—C8—C11	49.5 (4)
N3—N4—C7—C6	-0.2 (3)	C8—N4—C7—C6	177.0 (2)
N3—N4—C8—C9	-11.8 (4)	C12-N5-C13-C14	169.1 (2)
N3—N4—C8—C10	108.9 (3)	C12—C3—C4—N1	-65.1 (3)
N3—N4—C8—C11	-133.5 (3)	C13—N5—C12—C3	134.8 (2)
N5-C13-C14-N6	-5.3 (3)	C13—C14—C15—N8	175.5 (3)
N5-C13-C14-C15	178.7 (3)	C14—N6—N7—N8	0.8 (2)
N6—N7—N8—C15	-1.3 (3)	C15—N8—C16—C17	25.7 (4)
N6—N7—N8—C16	-177.2 (2)	C15—N8—C16—C18	-94.0 (3)
N6-C14-C15-N8	-0.7 (3)	C15—N8—C16—C19	144.7 (3)
N7—N6—C14—C13	-177.0 (2)	C16—N8—C15—C14	176.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
C4—H4 <i>B</i> ···C21 ⁱ	0.97	2.84	3.786 (4)	166
C5—H5…S1 ⁱⁱ	0.93	2.99	3.718 (4)	137
C7—H7···S1 ⁱ	0.93	2.90	3.764 (4)	155
C13—H13…S1 ⁱⁱⁱ	0.93	2.99	3.724 (4)	137
C13—H13…C20 ⁱⁱⁱ	0.93	2.75	3.558 (4)	146
C15—H15…S1 ⁱⁱⁱ	0.93	2.84	3.573 (4)	137
C17—H17 A ····S2 ^{iv}	0.96	2.94	3.873 (4)	166
C17—H17 B ···S2 ^v	0.96	2.94	3.850 (4)	158
C15—H15···S1 ⁱⁱⁱ C17—H17 A ···S2 ^{iv} C17—H17 B ···S2 ^v	0.93 0.96 0.96	2.84 2.94 2.94	3.573 (4) 3.873 (4) 3.850 (4)	137 166 158

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*, *y*-1, *z*; (v) -*x*, -*y*+1, -*z*.