

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 16 March 2021
Accepted 22 March 2021

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; cobalt thiocyanate; 3-(aminomethyl)pyridine; layer structure; thermal properties.

CCDC reference: 2072509
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Synthesis, crystal structure and thermal properties of poly[bis[$\mu_{2}-3$-(aminomethyl)pyridine]bis(thiocyanato)cobalt(II)]

Christoph Krebs, Inke Jess and Christian Näther*

Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany. *Correspondence e-mail: cnaether@ac.uni-kiel.de

The reaction of $\mathrm{Co}(\mathrm{NCS})_{2}$ with 3-(aminomethyl)pyridine as coligand leads to the formation of crystals of the title compound, $\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]_{n}$, that were characterized by single-crystal X-ray analysis. In the crystal structure, the $\mathrm{Co}^{\mathrm{II}}$ cations are octahedrally coordinated by two terminal N -bonded thiocyanate anions as well as two pyridine and two amino N atoms of four symmetry-equivalent 3-(aminomethyl)pyridine coligands with all pairs of equivalent atoms in a trans position. The $\mathrm{Co}^{\mathrm{II}}$ cations are linked by the 3-(aminomethyl)pyridine coligands into layers parallel to the ac plane. These layers are further linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding into a three-dimensional network. The purity of the title compound was determined by X-ray powder diffraction and its thermal behavior was investigated by differential scanning calorimetry and thermogravimetry.

1. Chemical context

Coordination compounds based on thiocyanate anions show a variety of structures, that can be traced back to the versatile coordination behavior of this ligand (Buckingham, 1994, Wöhlert et al., 2014; Werner et al., 2015a). Even if the majority of compounds contain only terminal N-bonded ligands, there is a large number of compounds in which the metal cations are linked by these anionic ligands into networks of different dimensionality (Đaković et al., 2010; Kozísková et al., 1990; Kabešová et al., 1990; Prananto et al., 2017; Suckert et al., 2016; Wellm et al., 2018). In those cases where the metal cations are octahedrally coordinated, different isomers can additionally be found, in which the metal cations are either all-trans or cis-cis-trans coordinated (Böhme et al., 2020; Rams et al., 2017). Which kind of compound is observed depends among other things on the nature of the metal cation, because the synthesis of compounds with bridging anionic ligands is easier with chalcophilic cations such as, for example, $\mathrm{Cd}^{\mathrm{II}}$, whereas less chalcophilic metal cations such as $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}$ and especially $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$ in several cases lead to the formation of compounds with terminal N -bonded thiocyanate anions. This is of importance because this anionic ligand is able to mediate substantial magnetic exchange (Bassey et al., 2020; Mekuimemba et al., 2018; Palion-Gazda et al., 2015; Mousavi et al., 2020), which can lead to compounds that show a variety of magnetic properties. $\mathrm{Co}^{\text {II }}$ is of special importance because of its high magnetic anisotropy (Mautner et al., 2018; Jochim et al., 2020; Neumann et al., 2019). This led to a renewed interest into compounds in which the metal cations are linked by these anionic ligands into chains or layers and an increasing number
have been reported in the literature over the last decade (Jin et al., 2007; Shi et al., 2006; Mautner et al., 2018).

In our own investigations we are especially interested in transition-metal thiocyanate coordination polymers based on cobalt in which the metal cations are linked by μ-1,3-bridging anionic ligands into chains, because these compounds can show single-chain magnet (SCM) behavior. These are compounds in which the spins are ferromagnetically aligned along a chain with strong magnetic exchange within the chain and only weak interchain interactions to prevent 3D ordering (Sun et al., 2010; Miyasaka et al., 2005). In the course of this project we have prepared a large number of compounds with the general composition $M(\mathrm{NCS})_{2}(L)_{2}$ where L represents a pyridine derivative substituted at the 4-position (Werner et al., 2015b; Rams et al., 2017, 2020). In principle, SCM behavior can also be observed in 2D compounds if the ferromagnetic chains are linked into layers by bridging ligands that do not mediate strong magnetic exchange. Therefore, we became interested in 3-(aminomethyl)pyridine as it can coordinate to metal cations via the pyridine and the amino N atom and for which no cobalt(II) thiocyanate compounds had been reported. Therefore, we reacted $\mathrm{Co}(\mathrm{NCS})_{2}$ with 3-(aminomethyl)pyridine in different molar ratios, which always led to the formation of crystalline powders with the composition $\mathrm{Co}(\mathrm{NCS})_{2}(3-$ (aminomethylpyridine) $)_{2}$ (see Synthesis and crystallization). This composition indicated that either the organic coligand does not bridge neighboring metal centers or that only term-inal-coordinated thiocyanate anions are present. IR spectroscopic measurements reveal that the CN stretching vibration of the anionic ligand is observed at $2077 \mathrm{~cm}^{-1}$, which points to the presence of terminal N -bonded anionic ligands (Fig. S1). To prove these assumptions, single crystals were grown and characterized by single-crystal X-ray diffraction, which proves that this crystalline phase is isotypic to the corresponding Cd compound already reported in the literature, in which the $\mathrm{Cd}^{\mathrm{II}}$ or $\mathrm{Co}^{\mathrm{II}}$ cations are linked into layers by the 3-(aminomethyl)pyridine ligands (see Structural commentary). Comparison
of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure crystalline phase has been obtained (Fig. S2). For the more chalcophilic $\mathrm{Cd}^{\mathrm{II}}$ cations another compound with the composition $\mathrm{Cd}(\mathrm{NCS})_{2}$ (3-(aminomethylpyridine) is known, in which the $\mathrm{Cd}^{\mathrm{II}}$ cations are linked by bridging anionic ligands. With $\mathrm{Co}(\mathrm{NCS})_{2}$ we found no access to this compound in solution and, therefore, we tried to prepare a 3-(aminomethyl)-pyridine-deficient phase by thermal ligand removal from the title compound. Therefore, the title compound was investigated by thermogravimetry coupled to differential scanning calorimetry (TG-DSC). Upon heating at a rate of $8^{\circ} \mathrm{C} \mathrm{min}^{-1}$ the compound starts to decompose at about $215^{\circ} \mathrm{C}$ and upon further heating a steady mass loss with no discrete decomposition events is observed (Fig. S3). To increase the resolution a second TG-DSC measurement with $1^{\circ} \mathrm{C} \mathrm{min}^{-1}$ was performed, which does not improve the resolution significantly (Fig. S4). Based on these measurements, there is no indication for the formation of another currently unknown 3-(aminomethyl)pyridine-deficient compound.

2. Structural commentary

The asymmetric unit of the title compound, $\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}$, consists of one $\mathrm{Co}^{\mathrm{II}}$ cation that is located on a center of inversion as well as one thiocyanate anion and one 3-(aminomethyl)pyridine coligand in general positions (Fig. 1). The $\mathrm{Co}^{\mathrm{II}}$ cations are sixfold coordinated by two symmetry-equivalent terminal N -bonded anionic ligands as well as four symmetry-equivalent 3-(aminomethyl)pyridine coligands, of which two are coordinated through the pyridine N atom and two through the amino N atom to the cations, with each pair of identical atoms in the trans position to each other

Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: $\mathrm{A}=-x$, $-y+1,-z, \mathrm{~B}=\frac{1}{2}-x,-\frac{1}{2}-y, \frac{1}{2}-z, \mathrm{C}=-\frac{1}{2}+x, \frac{3}{2}-y,-\frac{1}{2}+z$. Color code: Co (red), N (blue) and S (orange).

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{Co} 1-\mathrm{N} 1$	$2.1038(16)$	$\mathrm{Co} 1-\mathrm{N} 11$	$2.2107(15)$
$\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.1821(15)$		
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Co} 1-\mathrm{N} 1$	$180.00(8)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 11$	$89.41(6)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2^{\text {iii }}$	$91.95(6)$	$\mathrm{N} 2^{\mathrm{iii}}-\mathrm{Co} 1-\mathrm{N} 11$	$89.67(6)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$88.05(6)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 11$	$90.33(6)$
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Co} 1-\mathrm{N} 11$	$90.59(6)$	$\mathrm{N} 11-\mathrm{Co} 1-\mathrm{N} 11^{\mathrm{ii}}$	180.0

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; \quad (ii) $\quad-x,-y+1,-z ; \quad$ (iii)
$x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.
(Fig. 1). The $\mathrm{Co}-\mathrm{N}$ bond lengths to the amino N atom are significantly shorter than those to the pyridine N atoms, indicating that this is the stronger interaction (Table 1). The bond angles around the $\mathrm{Co}^{\mathrm{II}}$ centers deviate by less than 1.95 (6) ${ }^{\circ}$ from the ideal values, which indicates that the octahedra are only slightly distorted (Table 1). This is also obvious from the octahedral angle variance of 1.6 and the mean octahedral quadratic elongation of 1.001 calculated using the method of Robinson (Robinson et al., 1971). The Co cations are linked by bridging 3-(aminomethyl)pyridine ligands into layers that are parallel to the $b c$ plane (Fig. 2). These layers are constructed of large rings that consist of four $\mathrm{Co}^{\mathrm{II}}$ cations and four 3-(aminomethyl)pyridine coligands (Fig. 2).

3. Supramolecular features

The $\mathrm{Co}(\mathrm{NCS})_{2}$ layers are arranged in stacks that elongate along the crystallographic a-axis direction (Fig. 2). The layers

Figure 2
Crystal structure of the title compound viewed along the crystallographic a axis. The H atoms are omitted for clarity.

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.95	2.69	$3.207(3)$	115
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.95	2.93	$3.696(2)$	138
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~N} 1$	0.95	2.66	$3.163(2)$	114
$\mathrm{~N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{~S} 1^{\text {iv }}$	0.91	2.87	$3.7430(17)$	162
$\mathrm{~N} 2-\mathrm{H} 2 N 2 \cdots \mathrm{~S} 1^{\mathrm{v}}$	0.91	2.65	$3.5044(17)$	157

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x,-y+1,-z$; (iv) $x, y, z+1$; (v)
$x-\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$.
are linked into a three-dimensional network by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding between the thiocyanate S atoms and the amino H atoms, in which the S atoms act as acceptors for two of these hydrogen bonds (Fig. 3 and Table 2). The $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}$ angles are close to linear, which indicates that this is a strong interaction. There are additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ intra- and intermolecular interactions, but their geometrical parameters indicate that these are not strong interactions (Table 2).

4. Database survey

In the Cambridge Structural Database (CSD version 5.42, last update November 2020; Groom et al., 2016) no cobalt thiocyanate compounds with 3-(aminomethyl)pyridine as coligand are reported. However, some compounds based on $\mathrm{Zn}(\mathrm{NCS})_{2}$ and $\mathrm{Cd}(\mathrm{NCS})_{2}$ are published, in which the cations are always octahedrally coordinated (Neumann et al., 2017). This includes $\mathrm{Cd}(\mathrm{NCS})_{2}[3-(\text { aminomethyl }) \text { pyridine }]_{2}$-tris[3-(aminomethyl)]pyridine solvate (QEKYOX), in which the $\mathrm{Cd}^{\mathrm{II}}$ cations are also linked into layers, that contain large pores, in

Figure 3
Crystal structure of the title compound viewed along the crystallographic b axis. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds are shown as dashed lines.
which additional 3-(aminomethyl)pyridine solvate molecules are embedded. The same report also describes $M(\mathrm{NCS})_{2}[3 \text {-(aminomethyl)pyridine }]_{2}[M=\mathrm{Cd}$ (QEKZEO), Zn (QEKYUD)], which is isotypic to the title compound. Finally, two compounds with the composition $M(\mathrm{NCS})_{2}[3-$ (aminomethyl)pyridine] $[M=\mathrm{Cd}$ (QEKZIS), Zn (QEKZAK)] are reported. The Zn compound consists of dimers, in which each two $\mathrm{Zn}^{\mathrm{II}}$ cations are linked by each two 3-(aminomethyl)pyridine ligands. In contrast, in the crystal structure of the Cd compound, the $\mathrm{Cd}^{\mathrm{II}}$ cations are linked into chains by the 3-(aminomethyl)pyridine ligands that are further connected into layers by μ-1,3-bridging thiocyanate anions. This compound is the only one which shows an cis-cis-trans coordination of the metal cations.

5. Synthesis and crystallization

Experimental details

Elemental analysis was performed using a EURO EA elemental analyzer fabricated by EURO VECTOR Instruments. The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson. The PXRD measurement was performed with $\mathrm{Cu} K \alpha_{1}$ radiation ($\lambda=1.540598 \AA$) using a Stoe Transmission Powder Diffraction System (STADI P) that is equipped with a MYTHEN 1 K detector and a Johanssontype Ge (111) monochromator. Thermogravimetry and differential scanning calorimetry (TG-DSC) measurements were performed in a dynamic nitrogen atmosphere in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles using a STA-PT 1600 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

Synthesis

3-(Aminomethyl)pyridine and $\mathrm{Co}(\mathrm{NCS})_{2}$ were purchased from Alfa Aesar. All chemicals were used without further purification. Single crystals were obtained by reacting 1 mmol $\mathrm{Co}(\mathrm{NCS})_{2}(175.1 \mathrm{mg})$ with 0.2 mmol 3-(aminomethyl)pyridine (216.3 mg) in 3 mL of ethanol. After approximately one week blue-colored crystals were obtained, which were suitable for single crystal X-ray analysis. For the synthesis of crystalline powders the same amounts of reactants were stirred in 1 mL of ethanol for 3 d . The blue-colored precipitate was filtered and dried in air. Yield: 70\%. Elemental analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{CoS}_{2}\left(391.4 \mathrm{~g} \mathrm{~mol}^{-1}\right) \mathrm{C} 42.96 \%$, $\mathrm{H} 4.12 \%$, $\mathrm{N} 21.47 \%$, S 16.39%, found: C 42.82%, H 4.01%, N 21.32%, S 16.29%. IR: $v=3282(m), 3245(m), 3161(w), 3058(w), 3049(w), 2979$ (w), 2955 (sh), 2946 (w), 2874 (vw), 2862 (sh), 2077 (vs), 2033 (w), 1603 (sh), 1595 (m), 1582 (m), 1480 (m), 1447 (w), 1429 (m), 1361 (w), 1344 (w), 1333 (w), 1248 (w), 1229 (w), 1191 (m), 1150 (m), 1136 (s), 1103 (m), 1053 (m), 1039 (w), 990 (s), $965(m), 943(w), 933(m), 895(w), 852(m), 841(s h), 807(s)$, 785 (m), 715 (s), 646 (m), 628 (m), $568(s), 509(w) \mathrm{cm}^{-1}$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were

Table 3
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
M_{r}	391.38
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	200
$a, b, c(\AA)$	$8.2442(4), 11.9186(4), 8.9204(4)$
$\beta\left({ }^{\circ}\right)$	$100.807(4)$
$V\left(\mathrm{~A}^{3}\right)$	$860.97(6)$
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.25
Crystal size (mm)	$0.20 \times 0.15 \times 0.12$
Data collection	STOE IPDS2
Diffractometer	Numerical $(X-A R E A ;$ Stoe \& Cie,
Absorption correction	$2002)$
	$0.709,0.886$
$T_{\text {min }}, T_{\text {max }}$	$13295,1871,1702$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.029
$R_{\text {int }}$	0.638
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.029,0.071,1.15$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	1871
No. of reflections	106
No. of parameters	$\mathrm{H}-\mathrm{atom}$ parameters constrained
H -atom treatment	
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	$0.30,-0.23$

Computer programs: X-AREA (Stoe \& Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015), DIAMOND (Brandenburg \& Putz, 1999) and publCIF (Westrip, 2010).
refined anisotropically. $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H} \mathrm{H}$ atoms were located in difference maps but positioned with idealized geometry and refined isotropically with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})(1.5$ for amino H atoms) using a riding model.

Funding information

This project was supported by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (grant No. NA 720/ 5-2).

References

Bassey, E. N., Paddison, J. A. M., Keyzer, E. N., Lee, J., Manuel, P., da Silva, I., Dutton, S. E., Grey, C. P. \& Cliffe, M. J. (2020). Inorg. Chem. 59, 11627-11639.
Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. \& Näther, C. (2020). Inorg. Chem. 59, 53255338.

Brandenburg, K. \& Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Buckingham, D. A. (1994). Coord. Chem. Rev. 135-136, 587-621.
Đaković, M., Jagličić, Z., Kozlevčar, B. \& Popović, Z. (2010). Polyhedron, 29, 1910-1917.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jin, Y., Che, Y. X. \& Zheng, J. M. (2007). J. Coord. Chem. 60, 20672074.

Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. \& Näther, C. (2020). Inorg. Chem. 59, 89718982.

Kabešová, M., Kožǐšková, Z. \& Dunaj-Jurčo, M. (1990). Collect. Czech. Chem. Commun. 55, 1184-1192.
Kozísková, Z., Kozisek, J. \& Kabesová, M. (1990). Polyhedron, 9, 1029-1034.
Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. \& Massoud, S. S. (2018). Polyhedron, 154, 436-442.
Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. \& Triki, S. (2018). Inorg. Chem. 57, 2184-2192.

Miyasaka, H. \& Clérac, R. (2005). Bull. Chem. Soc. Jpn, 78, 17251748.

Mousavi, M., Duhayon, C., Bretosh, K., Béreau, V. \& Sutter, J. P. (2020). Inorg. Chem. 59, 7603-7613.

Neumann, T., Germann, L. S., Moudrakovski, I., Dinnebier, R. E., dos Santos Cunha, C., Terraschke, H. \& Näther, C. (2017). Z. Anorg. Allg. Chem. 643, 1904-1912.
Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. \& Näther, C. (2019). Chem. Commun. 55, 2652-2655.
Palion-Gazda, J., Machura, B., Lloret, F. \& Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.
Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. \& Batten, S. R. (2017). Aust. J. Chem. 70, 516528.

Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. \& Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.

Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. \& Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 32323243.

Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567570.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shi, J.-M., Chen, J.-N. \& Liu, L.-D. (2006). Pol. J. Chem. 80, 19091913.

Stoe \& Cie (2002). X - A REA, Stoe \& Cie, Darmstadt, Germany.
Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. \& Näther, C. (2016). Dalton Trans. 45, 1819018201.

Sun, H. L., Wang, Z. M. \& Gao, S. (2010). Coord. Chem. Rev. 254, 1081-1100.
Wellm, C., Rams, M., Neumann, T., Ceglarska, M. \& Näther, C. (2018). Cryst. Growth Des. 18, 3117-3123.

Werner, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. \& Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 32363245.

Werner, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. \& Näther, C. (2015b). Dalton Trans. 44, 14149-14158.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. \& Näther, C. (2014). Cryst. Growth Des. 14, 1902-1913.

supporting information

Acta Cryst. (2021). E77, 428-432 [https://doi.org/10.1107/S2056989021003005]

Synthesis, crystal structure and thermal properties of poly[bis[μ_{2}-3-(aminomethyl)pyridine]bis(thiocyanato)cobalt(II)]

Christoph Krebs, Inke Jess and Christian Näther

Computing details

Data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$ (Stoe \& Cie, 2002); data reduction: X-AREA (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg \& Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[bis[μ_{2}-3-(aminomethyl)pyridine]bis(thiocyanato)cobalt(II)]

Crystal data

$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=391.38$
Monoclinic, $P 2_{1} / n$
$a=8.2442$ (4) Å
$b=11.9186$ (4) \AA
$c=8.9204$ (4) \AA
$\beta=100.807(4)^{\circ}$
$V=860.97(6) \AA^{3}$
$Z=2$

Data collection

STOE IPDS-2
diffractometer
ω scans
Absorption correction: numerical
(X-AREA; Stoe \& Cie, 2002)
$T_{\text {min }}=0.709, T_{\text {max }}=0.886$
13295 measured reflections
$F(000)=402$
$D_{\mathrm{x}}=1.510 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 13295 reflections
$\theta=2.9-27.0^{\circ}$
$\mu=1.25 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, light blue
$0.20 \times 0.15 \times 0.12 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.071$
$S=1.15$
1871 reflections
106 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

1871 independent reflections
1702 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-10 \rightarrow 10$
$k=-15 \rightarrow 15$
$l=-11 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0359 P)^{2}+0.3351 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.30$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Co1	0.000000	0.500000	0.000000	$0.02255(11)$
N1	$0.2001(2)$	$0.56371(13)$	$-0.08934(18)$	$0.0295(3)$
C1	$0.3105(2)$	$0.62263(15)$	$-0.0971(2)$	$0.0267(4)$
S1	$0.46298(6)$	$0.70951(4)$	$-0.10573(7)$	$0.03779(14)$
N11	$0.14044(19)$	$0.52941(12)$	$0.23318(17)$	$0.0259(3)$
C11	$0.1228(2)$	$0.46286(15)$	$0.3504(2)$	$0.0293(4)$
H11	0.044225	0.403768	0.332043	0.035^{*}
C12	$0.2131(3)$	$0.47585(16)$	$0.4966(2)$	$0.0314(4)$
H12	0.198637	0.425522	0.575614	0.038^{*}
C13	$0.3246(2)$	$0.56334(16)$	$0.5256(2)$	$0.0304(4)$
H13	0.388294	0.573805	0.625018	0.036^{*}
C14	$0.3425(2)$	$0.63566(14)$	$0.4080(2)$	$0.0260(4)$
C15	$0.2496(2)$	$0.61412(14)$	$0.2644(2)$	$0.0266(4)$
H15	0.263911	0.662217	0.183003	0.032^{*}
C16	$0.4576(2)$	$0.73543(15)$	$0.4332(2)$	$0.0296(4)$
H16A	0.561774	0.712435	0.500465	0.035^{*}
H16B	0.484490	0.758046	0.333897	0.035^{*}
N2	$0.38938(19)$	$0.83381(12)$	$0.50202(18)$	$0.0271(3)$
H1N2	0.389470	0.816364	0.601345	0.032^{*}
H2N2	0.281758	0.840369	0.455359	0.032^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.02203(18)$	$0.01854(17)$	$0.02615(17)$	$-0.00132(12)$	$0.00208(12)$	$0.00035(12)$
N1	$0.0261(8)$	$0.0300(8)$	$0.0322(8)$	$-0.0025(6)$	$0.0051(6)$	$0.0014(6)$
C1	$0.0269(9)$	$0.0261(8)$	$0.0271(9)$	$0.0034(7)$	$0.0047(7)$	$-0.0018(7)$
S1	$0.0301(3)$	$0.0337(3)$	$0.0503(3)$	$-0.0084(2)$	$0.0094(2)$	$-0.0046(2)$
N11	$0.0263(8)$	$0.0229(7)$	$0.0275(7)$	$-0.0014(6)$	$0.0021(6)$	$-0.0015(6)$
C11	$0.0305(10)$	$0.0230(8)$	$0.0345(10)$	$-0.0039(7)$	$0.0063(8)$	$-0.0023(7)$
C12	$0.0375(11)$	$0.0277(9)$	$0.0289(9)$	$-0.0021(7)$	$0.0065(8)$	$0.0028(7)$
C13	$0.0348(10)$	$0.0289(9)$	$0.0263(9)$	$-0.0005(8)$	$0.0031(7)$	$-0.0027(7)$
C14	$0.0260(9)$	$0.0212(8)$	$0.0307(9)$	$0.0004(7)$	$0.0052(7)$	$-0.0038(7)$
C15	$0.0289(9)$	$0.0210(8)$	$0.0289(9)$	$-0.0008(7)$	$0.0033(7)$	$0.0004(6)$
C16	$0.0282(9)$	$0.0248(9)$	$0.0350(9)$	$-0.0028(7)$	$0.0042(8)$	$-0.0045(7)$
N2	$0.0270(8)$	$0.0208(7)$	$0.0326(8)$	$-0.0016(6)$	$0.0036(6)$	$-0.0010(6)$

Geometric parameters (A, ${ }^{\circ}$)

Col-N1 ${ }^{\text {i }}$	2.1038 (16)	C12-C13	1.382 (3)
Col-N1	2.1038 (16)	C12-H12	0.9500
$\mathrm{Co1}-\mathrm{N} 2^{\text {ii }}$	2.1821 (15)	C13-C14	1.387 (3)
Col-N2 ${ }^{\text {iii }}$	2.1821 (15)	C13-H13	0.9500
Co1-N11	2.2107 (15)	C14-C15	1.388 (3)
Col-N11 ${ }^{\text {i }}$	2.2107 (15)	C14-C16	1.511 (2)
N1-C1	1.162 (2)	C15-H15	0.9500
C1-S1	1.6415 (19)	C16-N2	1.482 (2)
N11-C11	1.342 (2)	C16-H16A	0.9900
N11-C15	1.346 (2)	C16-H16B	0.9900
C11-C12	1.384 (3)	N2-H1N2	0.9100
C11-H11	0.9500	N2-H2N2	0.9100
N1-Col-N1	180.00 (8)	C13-C12-H12	120.6
$\mathrm{N} 1^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 2^{\text {ii }}$	88.05 (6)	C11-C12-H12	120.6
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2^{\text {ii }}$	91.95 (6)	C12-C13-C14	119.24 (18)
$\mathrm{N} 1^{\text {i- }} \mathrm{Col} 1-\mathrm{N} 2^{\text {iii }}$	91.95 (6)	C12-C13-H13	120.4
$\mathrm{N} 1-\mathrm{Co1}-\mathrm{N}^{\text {iii }}$	88.05 (6)	C14-C13-H13	120.4
$\mathrm{N} 2^{\text {iii }}-\mathrm{Co} 1-\mathrm{N} 2^{\text {iii }}$	180.0	C13-C14-C15	117.69 (17)
N1 ${ }^{\text {- }} \mathrm{Col} 1-\mathrm{N} 11$	90.59 (6)	C13-C14-C16	121.98 (17)
N1-Col-N11	89.41 (6)	C15-C14-C16	120.33 (16)
N2ii-Col-N11	89.67 (6)	N11-C15-C14	124.18 (17)
N2iii-Co1-N11	90.33 (6)	N11-C15-H15	117.9
N1-Col-N11 ${ }^{\text {i }}$	89.41 (6)	C14-C15-H15	117.9
$\mathrm{N} 1-\mathrm{Col}-\mathrm{N} 11^{\text {i }}$	90.59 (6)	N2-C16-C14	114.06 (15)
N2i-Col-N11 ${ }^{\text {i }}$	90.33 (6)	N2-C16-H16A	108.7
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{Co} 1-\mathrm{N} 11^{\text {i }}$	89.67 (6)	C14-C16-H16A	108.7
N11-Col-N11 ${ }^{\text {i }}$	180.0	N2-C16-H16B	108.7
C1-N1-Co1	156.84 (15)	C14-C16-H16B	108.7
N1-C1-S1	177.97 (17)	H16A-C16-H16B	107.6
C11-N11-C15	116.60 (16)	C16-N2-Col ${ }^{\text {iv }}$	121.54 (11)
C11-N11-Co1	121.68 (12)	C16-N2-H1N2	106.9
C15-N11-Col	121.71 (12)	$\mathrm{Col}^{\text {iv }}$ - $\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	106.9
N11-C11-C12	123.39 (17)	C16-N2-H2N2	106.9
N11-C11-H11	118.3	$\mathrm{Col}^{\text {iv }}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2$	106.9
C12-C11-H11	118.3	H1N2-N2-H2N2	106.7
C13-C12-C11	118.85 (17)		
C15-N11-C11-C12	-1.8 (3)	Co1-N11-C15-C14	-179.17 (13)
Co1-N11-C11-C12	177.39 (15)	C13-C14-C15-N11	1.8 (3)
N11-C11-C12-C13	1.7 (3)	C16-C14-C15-N11	-177.78 (17)
C11-C12-C13-C14	0.2 (3)	C13-C14-C16-N2	-79.6 (2)
C12-C13-C14-C15	-1.8 (3)	C15-C14-C16-N2	100.0 (2)

supporting information

$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 16$	$177.72(17)$	$\mathrm{C} 14-\mathrm{C} 16-\mathrm{N} 2-\mathrm{Co} 1^{\mathrm{iv}}$	$-164.90(12)$
$\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 15-\mathrm{C} 14$	$0.0(3)$		

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $x-1 / 2,-y+3 / 2, z-1 / 2$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iv) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.69	$3.207(3)$	115
$\mathrm{C} 12 — \mathrm{H} 12 \cdots \mathrm{~S} 1^{\text {iii }}$	0.95	2.93	$3.696(2)$	138
$\mathrm{C} 15 — \mathrm{H} 15 \cdots \mathrm{~N} 1$	0.95	2.66	$3.163(2)$	114
$\mathrm{~N} 2 — \mathrm{H} 1 N 2 \cdots \mathrm{~S} 1^{v}$	0.91	2.87	$3.7430(17)$	162
$\mathrm{~N} 2 — \mathrm{H} 2 N 2 \cdots \mathrm{~S} 1^{\text {vi }}$	0.91	2.65	$3.5044(17)$	157

Symmetry codes: (i) $-x,-y+1,-z$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (v) $x, y, z+1$; (vi) $x-1 / 2,-y+3 / 2, z+1 / 2$.

