OPEN ACCESS

phenyl)-1-(4-methylphenyl)-2,5-dioxo-1,2,5,6,7,8hexahydroguinoline-3-carbonitrile

Crystal structures of 1-(4-chlorophenyl)-4-(4-

methylphenyl)-2,5-dioxo-1,2,5,6,7,8-hexahydro-

quinoline-3-carboxylic acid and 4-(4-methoxy-

Omyma A. Abd Allah,^a Manpreet Kaur,^b Mehmet Akkurt,^c Shaaban K. Mohamed, death Asmaa H. A. Tamam, Sahar M. I. Elgarhy and Jerry P. Jasinskib

^aChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and ^fFaculty of Science, Department of Bio Chemistry, Beni Suef University, Beni Suef, Egypt. *Correspondence e-mail: shaabankamel@yahoo.com

In the title compounds $C_{23}H_{21}CIN_2O_3$ [I, namely 1-(4-chlorophenyl)-4-(4methylphenyl)-3,8-dioxo-1,2,5,6,7,8-hexahydroquine-3-carboxylic acid] and C₂₄H₂₂N₂O₃ [II, namely 4-(4-methoxyphenyl)-1-(4-methylphenyl)-2,5-dioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile], each of the cyclohexene and dihydropyridine rings of the 1,2,5,6,7,8-hexahydroquinoline moieties adopts a twisted-boat conformation. The asymmetric units of both compounds I and II consist of two independent molecules (A and B). In IIA, three carbon atoms of the cyclohexene ring are disordered over two sets of sites in a 0.670 (11):0.330 (11) occupancy ratio. In the crystal of I, molecules are linked through classical N-H...O hydrogen bonds, forming inversion dimers with an $R_2^2(8)$ ring motif and with their molecular planes parallel to the crystallographic (020) plane. Non-classical $C-H \cdots O$ hydrogen-bonding interactions connect the dimers, resulting in a three-dimensional network. In the crystal of II, molecules are linked by C-H···N, C-H···O and C-H··· π interactions, forming a three-dimensional network.

1. Chemical context

Ouinoline and its derivatives have for some time attracted the attention of both synthetic and biological chemists as a result of their diverse chemical and pharmacological properties (Kumar et al., 2009). There are a number of natural products bearing the quinoline skeleton that are used as a medicine or employed as lead molecule for the development of new and potent therapeutics (Venkat Reddy et al., 2009). Quinoline derivatives fused with various heterocycles have already demonstrated potent anticancer activity (Afzal et al., 2015). In addition, it has been found that various quinoline compounds show anti-tuberculosis (TB) activity (Muscia et al., 2014), antiinflammatory activity (Psomas & Kessissoglou, 2013), anticonvulsant effects (Guo et al., 2009), and anti-malarial parasite effects (Abdel-Gawad et al., 2005). Furthermore, quinolones have been proved to be very effective in many antimicrobial and antioxidant investigations (Praveen et al., 2010). In this context, we report herein the crystal structures of two derivatives of hexahydroquinoline.

Received 12 January 2021

Edited by C. Schulzke, Universität Greifswald, Germany

Keywords: crystal structure; cyclohexene ring; dihydropyridine ring; hexahydroquinoline ring; dimer

CCDC references: 2064688; 2064687

Supporting information: this article has supporting information at journals.iucr.org/e

ISSN 2056-9890

2. Structural commentary

Compound I crystallizes in the orthorhombic space group *Pbca* with Z = 16, while compound **II** crystallizes in the monoclinic space group $P2_1/c$ with Z = 8. The asymmetric units of both compounds (I and II) each comprise two molecules (A and B). As shown in Figs. 1 and 2, the cyclohexene (C4–C9) and dihydropyridine (N1/C1-C4/C9) rings of the 1,2,5,6,7,8hexahydroquinoline moieties (N1/C1-C9) each adopt a twisted-boat conformation. The puckering parameters (Cremer & Pople, 1975) of the cyclohexene rings are $Q_{\rm T}$ = 0.441 (3) Å, $\theta = 123.3$ (3)°, and $\varphi = 1.3$ (3)° for IA, $Q_{\rm T} =$ 0.450 (2) Å, $\theta = 122.0$ (3)°, and $\varphi = 4.3$ (3)° for IB, $Q_{\rm T} =$ 0.352 (8) Å, $\theta = 60.7 (11)^{\circ}$, and $\varphi = 188.1 (13)^{\circ}$ for **II**A (major component of the disorder), and $Q_{\rm T} = 0.446$ (2) Å, $\theta =$ 123.5 (3)°, and $\varphi = 355.2$ (3)° for **II**B. The puckering parameters of the dihydropyridine rings are $Q_{\rm T} = 0.4929$ (18) Å, θ = 64.2 (2)°, and φ = 150.6 (2)° for IA, $Q_{\rm T}$ = 0.4529 (18) Å, θ = 61.1 (2)°, and $\varphi = 139.9$ (3)° for IB, $Q_{\rm T} = 0.422$ (2) Å, $\theta =$ 58.9 (3)°, and $\varphi = 138.4$ (3)° for **II**A and $Q_{\rm T} = 0.437$ (2) Å, $\theta =$ 62.5 (3)°, and $\varphi = 142.1$ (3)° for **II**B.

3. Supramolecular features

In the crystal of **I**, two molecules are linked by a pair of intermolecular N-H···O hydrogen bonds with an $R_2^2(8)$ ring

motif (Bernstein *et al.*, 1995; Table 1), forming an inversion dimer (Fig. 3). These assemble into a three-dimensional network *via* C-H···O interactions. In the crystal of **II**, molecules are linked by non-classical C-H···O, C-H···N and C-H··· π interactions, resulting in a three-dimensional network (Table 2 and Figs. 4 and 5). In the crystals of the two compounds (**I** and **II**) π - π -stacking interactions are not observed despite the presence of two aromatic rings in every molecule.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom *et al.*, 2016) for the 4-phenyl-2,3,4,6,7,8-hexahydroquinolin-5(1*H*)-one moiety resulted in six closely related hits, *viz.* 2-amino-4-(4-chloro-

Figure 1

The molecular structure of I with the atom-numbering scheme and with displacement ellipsoids drawn at the 30% probability level.

Table 1			
Hydrogen-bond	geometry	(Å,	$^{\circ}$) for I .

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N24 - H242 \dots O24^{i}$	0.88(2)	2 12 (3)	2070(2)	164(2)
$N2B - H2B1 \cdots O2A^{ii}$	0.86(2)	2.12(3) 2.26(2)	3.055(2)	154(2)
$N2A - H2A1 \cdots O3B$	0.86(2)	2.06(2)	2.865 (2)	156 (2)
$N2B - H2B2 \cdots O3A$	0.85 (3)	2.04 (3)	2.847 (2)	159 (2)
$C8A - H8AB \cdots O2B^{ii}$	0.97	2.50	3.392 (2)	153
$C6B - H6BB \cdots O1B^{iii}$	0.97	2.57	3.430 (2)	148
$C14A - H14A \cdots O1A^{iv}$	0.93	2.54	3.393 (3)	153
$C17B - H17B \cdots O1B^{v}$	0.93	2.52	3.424 (3)	164

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, z$; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

Table 2 Hydrogen-bond geometry (Å, °) for II.

Cg4 and Cg9 are the centroids of the C10A–C15A and C16B–C21B rings, respectively.

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C21A - H21A \cdots N2B^{i}$	0.95	2.65	3.258 (4)	123
$C14B - H14B \cdots O3A^{ii}$	0.95	2.65	3.417 (3)	139
$C3A - H3A \cdots O1B$	1.00	2.37	3.171 (2)	136
$C23B - H23E \cdots Cg9^{iii}$	0.98	2.93	3.868 (3)	160
$C23B-H23F\cdots Cg4^{iv}$	0.98	2.74	3.710 (3)	169

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) x, y - 1, z; (iii) -x + 2, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z + 1.

phenyl)-1-(4-methylphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile (HUYVUU; Mohamed *et al.*, 2015), methyl-2,7,7-trimethyl-4-(3-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (TEJQII; Morales *et al.*, 1996), 3-acetyl-2,7,7-trimethyl-4-phenyl-1,4,5,6,7,8-hexahydro-5-quinolone (TEJQOO; Morales *et al.*, 1996), 4-(4-chlorophenyl)-8-methyl-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (AZOWAO; Asiri *et al.*, 2011), 8-methyl-2-oxo-4-(thiophen-2-yl)-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile

Figure 3 The crystal packing of I viewed down the b axis showing intermolecular hydrogen bonds as dashed lines.

Figure 4

A view of the C-H··· π interactions in **II** shown as dashed lines. [Symmetry codes: (a) 1 - x, 1 - y, 1 - z; (b) 2 - x, 1 - y, 1 - z].

(XECCAL; Asiri *et al.*, 2012) and ethyl-2,7,7-trimethyl-5oxo-4-phenyl-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (XAYVEA; Kurbanova *et al.*, 2012).

In compounds I and II, the observed bond lengths and bond angles are in good agreement with the reported experimental values as found in the structures of HUYVUU, TEJQII, TEJQOO, AZOWAO, XECCAL and XAYVEA. The metrical parameters are, hence, unremarkable.

The angles between the planes of the two benzene rings in **I** and **II** are 52.64 (11)° for **I**A, 33.78 (12)° for **I**B, 21.80 (11)° for **II**A and 19.39 (11)° for **II**B, respectively. These angles are notably distinct, even for the two independent molecules in each structure. They are all also significantly larger than the value of $11.52 (7)^{\circ}$ found in HUYVUU (the only other example with two benzene rings amongst the related struc-

The crystal packing of **II** viewed down the b axis showing the intermolecular hydrogen bonds as dashed lines.

research communications

 Table 3

 Experimental details.

	Ш	П
Crystal data		
Chemical formula	Ca2Ha1CINaOa	$C_{24}H_{22}N_2O_2$
м	408.87	386.43
Crystal system, space group	Orthorhombic. Pbca	Monoclinic. $P2_1/c$
Temperature (K)	173	173
a, b, c (Å)	27.9446 (4), 8.4311 (1), 35.0101 (5)	10.3486 (2), 13.9969 (3), 27.5353 (5)
$\alpha, \beta, \gamma(\circ)$	90, 90, 90	90, 93,797 (2), 90
$V(A^3)$	8248.51 (19)	3979.69 (14)
Z	16	8
Radiation type	Cu Κα	Cu Κα
$\mu (\text{mm}^{-1})$	1.86	0.69
Crystal size (mm)	$0.16\times0.10\times0.05$	$0.12 \times 0.08 \times 0.04$
Data collection		
Diffractometer	Rigaku Oxford Diffraction Xcalibur, Eos, Gemini	Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T_{\min}, \dot{T}_{\max}	0.614, 1.000	0.945, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	64509, 7983, 6950	15107, 7579, 5380
R _{int}	0.043	0.027
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.615	0.615
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.132, 1.04	0.049, 0.139, 1.04
No. of reflections	7983	7579
No. of parameters	541	555
No. of restraints	0	36
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} \; ({ m e} \; { m \AA}^{-3})$	0.66, -0.55	0.25, -0.16

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015b), SHELXL (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009).

tures). Intermolecular interactions can be weaker or stronger based on the presence or absence or difference of functional groups and the molecular environment, depending on the crystal system, which all affect the molecular conformation. The observed difference in the angles between the two benzene rings may be attributed to these factors.

5. Synthesis and crystallization

1-(4-Chlorophenyl)-4-(4-methylphenyl)-3,8-dioxo-1,2,5,6,-7,8-hexahydroquine-3-carboxlic acid, I

A solution of 2-amino-4-(4-chlorophenyl)-1-(4-methylphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile (2.0 g, 0.0051 mol) in conc. H_2SO_4 (20 mL) was stirred for 4 h at room temperature. Then the reaction mixture was poured into ice-cold water. The formed precipitate was collected, filtered off, washed with water and recrystallized from ethanol as pale-yellow crystals; yield 73%, m.p. 518 K.

4-(4-Methoxyphenyl)-1-(4-methyl-phenyl)-2,5-dioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile, II

To a solution of 1,3-cyclohexanedione (3.36 g, 0.03 mol) and *p*-toluidine (3.21 g, 0.03 mol) in ethanol (40 ml), a catalytic amount of triethylamine was added and the mixture was heated under reflux for 3 h. Ethyl-(2Z)-2-cyano-3-(4-methoxyphenyl)acrylate (6.93 g, 0.03 mol) was added to the reaction mixture while refluxing for another 3 h. The reaction

mixture was then cooled to room temperature. The precipitate that formed was filtered off, dried and recrystallized from ethanol solution as orange crystals; yield 67%, m.p. 525 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For I, the hydrogen atoms of the NH₂ group were found in the difference-Fourier map and refined freely. All C-bound H atoms were positioned geometrically (C-H = 0.93-0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C$ -methyl). For II, all H atoms were positioned geometrically (C-H = 0.95-1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ -methyl). For II, twenty reflections (4 15 10, 3 15 13, 3 14 16, 3 16 7, 3 16 8, 1 3 8, 2 3 0, 2 16 3, 2 4 10, 2 15 11, 0 14 8, 10 7 13, 1 16 11, 2 1 5, 3 16 4, 8 13 7, 1 16 4, 0 15 3, 1 16 10, 2 16 11) were omitted as clear outlier data. In IIA, atoms C6A, C7A and C8A of the cyclohexane ring are disordered over two sets of sites in a 0.670 (11):0.330 (11) occupancy ratio. The coordinates and the U^{ij} components of the C6A, C7A, C8A and the C6AA, C7AA and C8AA atoms were restrained using SADI and SIMU instructions.

K values, which are large only for weak reflections with an F_c/F_{cmax} ratio less than 0.005 and less than 0.015 for I and II, respectively, were observed as 2.713 for I and 5.559 for II.

JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffract-ometer.

References

- Abdel-Gawad, S. M., El-Gaby, M. S. A., Heiba, H. I., Aly, H. M. & Ghorab, M. M. (2005). *Jnl Chin. Chem. Soc.* **52**, 1227–1236.
- Afzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). *Eur. J. Med. Chem.* 97, 871–910.
- Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Badahdah, K. O. & Ng, S. W. (2011). *Acta Cryst.* E67, o2597.
- Asiri, A. M., Faidallah, H. M., Saqer, A. A. A., Ng, S. W. & Tiekink, E. R. T. (2012). *Acta Cryst.* E68, o2291–o2292.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354– 1358.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Kumar, S., Bawa, S. & Gupta, H. (2009). *Mini Rev. Med. Chem.* 9, 1648–1654.
- Kurbanova, M. M., Huseynov, E. Z., Gurbanov, A. V., Maharramov, A. M. & Ng, S. W. (2012). Acta Cryst. E68, 02233.
- Mohamed, S. K., Akkurt, M., Jasinski, J. P., Allah, O. A. A. A. & Albayati, M. R. (2015). Acta Cryst. E71, 0949–0950.
- Morales, A. D., García-Granda, S., Navarro, M. S., Diviú, A. M. & Pérez-Barquero, R. E. (1996). Acta Cryst. C52, 2356–2359.
- Muscia, G. C., Buldain, G. Y. & Asís, S. E. (2014). Eur. J. Med. Chem. 73, 243–249.
- Praveen, C., DheenKumar, P., Muralidharan, D. & Perumal, P. T. (2010). Bioorg. Med. Chem. Lett. 20, 7292–7296.
- Psomas, G. & Kessissoglou, D. P. (2013). *Dalton Trans.* 42, 6252–6276.
- Guo, L. J., Wei, C. X., Jia, J. H., Zhao, L. M. & Quan, Z. S. (2009). *Eur. J. Med. Chem.* 44, 954–958.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Venkat Reddy, G., Ravi Kanth, S., Maitraie, D., Narsaiah, B., Shanthan Rao, P., Hara Kishore, K., Murthy, U. S., Ravi, B., Ashok Kumar, B. & Parthasarathy, T. (2009). *Eur. J. Med. Chem.* 44, 1570– 1578.

Acta Cryst. (2021). E77, 351-355 [https://doi.org/10.1107/S2056989021002140]

Crystal structures of 1-(4-chlorophenyl)-4-(4-methylphenyl)-2,5dioxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylic acid and 4-(4-methoxyphenyl)-1-(4-methylphenyl)-2,5-dioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile

Omyma A. Abd Allah, Manpreet Kaur, Mehmet Akkurt, Shaaban K. Mohamed, Asmaa H. A. Tamam, Sahar M. I. Elgarhy and Jerry P. Jasinski

Computing details

For both structures, data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015a); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

1-(4-Chlorophenyl)-4-(4-methylphenyl)-2,5-dioxo-1,2,5,6,7,8-hexahydroquinoline-3-carboxylic acid (I)

Crystal data

$C_{23}H_{21}ClN_2O_3$ $M_r = 408.87$ Orthorhombic, <i>Pbca</i> a = 27.9446 (4) Å b = 8.4311 (1) Å c = 35.0101 (5) Å	$D_x = 1.317 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 21280 reflections $\theta = 4.0-71.5^{\circ}$ $\mu = 1.86 \text{ mm}^{-1}$ T = 173 K
$V = 8248.51 (19) Å^{3}$ Z = 16 F(000) = 3424	Prism, pale yellow $0.16 \times 0.10 \times 0.05 \text{ mm}$
Data collection	
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 16.0416 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015)	$T_{\min} = 0.614, T_{\max} = 1.000$ 64509 measured reflections 7983 independent reflections 6950 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 71.5^{\circ}, \theta_{min} = 4.1^{\circ}$ $h = -29 \rightarrow 34$ $k = -10 \rightarrow 6$ $l = -42 \rightarrow 42$
Refinement	
Refinement on F^2 Least-squares matrix: full	$R[F^2 > 2\sigma(F^2)] = 0.050$ wR(F^2) = 0.132

S = 1.04	H atoms treated by a mixture of independent
7983 reflections	and constrained refinement
541 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0636P)^2 + 5.5774P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: dual	$(\Delta/\sigma)_{\rm max} < 0.001$
Hydrogen site location: mixed	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1A	0.82611 (2)	0.31975 (8)	0.40005 (2)	0.0615 (2)	
O1A	0.67114 (5)	0.01077 (15)	0.52217 (4)	0.0322 (3)	
O2A	0.55412 (5)	0.09204 (16)	0.52328 (3)	0.0296 (3)	
O3A	0.58223 (5)	0.60354 (17)	0.44478 (4)	0.0410 (3)	
N1A	0.65291 (5)	0.26677 (17)	0.53641 (4)	0.0243 (3)	
N2A	0.53741 (6)	0.0761 (2)	0.46051 (5)	0.0317 (4)	
C1A	0.64987 (6)	0.1309 (2)	0.51400 (5)	0.0238 (3)	
C2A	0.61843 (6)	0.1434 (2)	0.47878 (5)	0.0226 (3)	
H2A	0.6294	0.0641	0.4603	0.027*	
C3A	0.62358 (6)	0.3088 (2)	0.46017 (5)	0.0240 (3)	
H3AA	0.5998	0.3194	0.4397	0.029*	
C4A	0.61353 (6)	0.4304 (2)	0.49046 (5)	0.0249 (4)	
C5A	0.59223 (7)	0.5801 (2)	0.47852 (6)	0.0312 (4)	
C6A	0.58550 (10)	0.7071 (3)	0.50809 (7)	0.0469 (5)	
H6AA	0.6119	0.7813	0.5065	0.056*	
H6AB	0.5563	0.7649	0.5025	0.056*	
C7A	0.58272 (10)	0.6436 (3)	0.54805 (7)	0.0498 (6)	
H7AA	0.5526	0.5879	0.5513	0.060*	
H7AB	0.5832	0.7316	0.5659	0.060*	
C8A	0.62403 (8)	0.5307 (2)	0.55737 (5)	0.0340 (4)	
H8AA	0.6535	0.5905	0.5596	0.041*	
H8AB	0.6180	0.4790	0.5817	0.041*	
C9A	0.62920 (6)	0.4077 (2)	0.52666 (5)	0.0241 (3)	
C10A	0.67368 (6)	0.3265 (2)	0.44312 (5)	0.0253 (4)	
C11A	0.68482 (8)	0.2534 (3)	0.40888 (6)	0.0398 (5)	
H11A	0.6608	0.2039	0.3949	0.048*	
C12A	0.73127 (9)	0.2530 (3)	0.39512 (7)	0.0476 (6)	
H12A	0.7384	0.2024	0.3722	0.057*	
C13A	0.76677 (7)	0.3277 (2)	0.41543 (6)	0.0368 (4)	
C14A	0.75649 (8)	0.4059 (3)	0.44857 (6)	0.0434 (5)	
H14A	0.7805	0.4579	0.4621	0.052*	
C15A	0.70993 (8)	0.4069 (3)	0.46177 (6)	0.0395 (5)	

H15A	0.7027	0.4632	0.4839	0.047*
C16A	0.68490 (6)	0.2579 (2)	0.56903 (5)	0.0268 (4)
C17A	0.67007 (7)	0.1859 (2)	0.60237 (5)	0.0341 (4)
H17A	0.6388	0.1494	0.6049	0.041*
C18A	0.70240 (8)	0.1686 (3)	0.63213 (6)	0.0440 (5)
H18A	0.6923	0.1219	0.6548	0.053*
C19A	0.74938 (9)	0.2194 (3)	0.62881 (6)	0.0452 (5)
C20A	0.76314 (8)	0.2944 (3)	0.59536 (7)	0.0448 (5)
H20A	0.7942	0.3326	0.5930	0.054*
C21A	0.73132 (7)	0.3134 (3)	0.56536 (6)	0.0375(4)
H21A	0.7411	0.3630	0.5429	0.045*
C22A	0.56659 (6)	0.10306 (19)	0.48956 (5)	0.0228(3)
C23A	0.78526(12)	0 1889 (5)	0.66044 (9)	0.0773(10)
H23A	0 7691	0.1890	0.6846	0.116*
H23R	0.8092	0.2707	0.6602	0.116*
H23C	0.8002	0.0878	0.6565	0.116*
CliB	0.6002 0.69954 (3)	0.51675 (14)	0.0505	0.0960(4)
OIB	0.07754(5) 0.47607(5)	0.31073(14) 0.76223(15)	0.24090(2) 0.20218(4)	0.0334(3)
01B 02B	0.47007(5) 0.43042(5)	0.70223(13) 0.68018(10)	0.29210(4) 0.37411(4)	0.0334(3)
02B 03B	0.43042(5)	0.08918(19) 0.18004(16)	0.37411(4) 0.38310(4)	0.0401(3)
NIR	0.34920(3) 0.45537(5)	0.18004(10) 0.50503(17)	0.36317(4) 0.30323(4)	0.0370(3)
ND	0.43337(3)	0.30393(17)	0.30323(4) 0.41537(5)	0.0240(3)
N2D C1D	0.49180(7)	0.7000(2)	0.41337(3) 0.21185(5)	0.0333(4)
	0.47972(0)	0.0448(2)	0.31183(3)	0.0240(3)
C2B	0.50872 (6)	0.64104 (19)	0.34849 (5)	0.0219 (3)
H2B	0.5323	0.7270	0.3476	0.026*
C3B	0.53578(6)	0.4824 (2)	0.35275 (5)	0.0228 (3)
H3BA	0.5485	0.4757	0.3788	0.027*
C4B	0.50099 (6)	0.3490 (2)	0.34697 (5)	0.0238 (3)
C5B	0.51222 (7)	0.1969 (2)	0.36457 (5)	0.0303 (4)
C6B	0.47826 (9)	0.0613 (2)	0.35856 (6)	0.0448 (5)
H6BA	0.4766	-0.0005	0.3819	0.054*
H6BB	0.4909	-0.0069	0.3387	0.054*
C7B	0.42824 (9)	0.1114 (3)	0.34759 (6)	0.0432 (5)
H7BA	0.4126	0.1589	0.3695	0.052*
H7BB	0.4099	0.0188	0.3401	0.052*
C8B	0.42911 (7)	0.2300 (2)	0.31484 (6)	0.0345 (4)
H8BA	0.4389	0.1766	0.2916	0.041*
H8BB	0.3972	0.2720	0.3109	0.041*
C9B	0.46301 (6)	0.3640 (2)	0.32309 (5)	0.0247 (3)
C10B	0.57756 (6)	0.4789 (2)	0.32494 (5)	0.0255 (4)
C11B	0.62165 (7)	0.5355 (3)	0.33652 (6)	0.0432 (5)
H11B	0.6260	0.5660	0.3618	0.052*
C12B	0.65946 (9)	0.5476 (4)	0.31115 (8)	0.0608 (8)
H12B	0.6890	0.5862	0.3192	0.073*
C13B	0.65256 (8)	0.5013 (3)	0.27362 (7)	0.0505 (6)
C14B	0.60972 (8)	0.4409 (3)	0.26148 (6)	0.0376 (4)
H14B	0.6058	0.4080	0.2363	0.045*
C15B	0.57242 (7)	0.4297 (2)	0.28716 (5)	0.0296 (4)

H15B	0.5433	0.3884	0.2791	0.035*	
C16B	0.41761 (6)	0.5176 (2)	0.27496 (5)	0.0280 (4)	
C17B	0.42624 (8)	0.4736 (3)	0.23774 (6)	0.0410 (5)	
H17B	0.4561	0.4357	0.2305	0.049*	
C18B	0.38942 (9)	0.4867 (4)	0.21121 (6)	0.0557 (7)	
H18B	0.3950	0.4580	0.1859	0.067*	
C19B	0.34492 (9)	0.5414 (4)	0.22167 (7)	0.0554 (7)	
C20B	0.33726 (7)	0.5846 (3)	0.25939 (6)	0.0449 (5)	
H20B	0.3073	0.6209	0.2668	0.054*	
C21B	0.37358 (7)	0.5744 (3)	0.28612 (6)	0.0344 (4)	
H21B	0.3683	0.6055	0.3113	0.041*	
C22B	0.47312 (6)	0.6765 (2)	0.38092 (5)	0.0262 (4)	
C23B	0.30543 (12)	0.5582 (7)	0.19237 (10)	0.1053 (16)	
H23D	0.2808	0.4815	0.1975	0.158*	
H23E	0.3183	0.5407	0.1673	0.158*	
H23F	0.2921	0.6630	0.1938	0.158*	
H2A2	0.5079 (9)	0.045 (3)	0.4652 (6)	0.031 (6)*	
H2B1	0.4729 (9)	0.732 (3)	0.4330 (7)	0.037 (6)*	
H2A1	0.5470 (9)	0.085 (3)	0.4374 (7)	0.038 (6)*	
H2B2	0.5214 (10)	0.689 (3)	0.4200 (7)	0.043 (7)*	

Atomic displacement parameters $(Å^2)$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1A	0.0364 (3)	0.0663 (4)	0.0816 (5)	-0.0009 (3)	0.0225 (3)	-0.0174 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1A	0.0331 (7)	0.0261 (7)	0.0375 (7)	0.0074 (5)	-0.0058 (5)	-0.0021 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2A	0.0288 (6)	0.0351 (7)	0.0251 (6)	-0.0052 (5)	0.0032 (5)	-0.0055 (5)
N1A 0.0246 (7) 0.0238 (7) 0.0246 (7) 0.0008 (6) -0.0018 (6) -0.0010 (6)N2A 0.0252 (8) 0.0441 (10) 0.0259 (8) -0.0092 (7) -0.0025 (6) 0.0044 (7)C1A 0.0209 (8) 0.0230 (8) 0.0276 (8) -0.0008 (7) 0.0020 (6) 0.0006 (7)C2A 0.0230 (8) 0.0270 (8) 0.0240 (8) 0.0002 (6) 0.0005 (6) -0.0021 (6)C3A 0.0257 (8) 0.0230 (8) 0.0233 (8) -0.0006 (7) -0.0023 (6) 0.0007 (6)C4A 0.0243 (8) 0.0215 (8) 0.0288 (9) -0.0019 (7) 0.0021 (7) 0.0003 (7)C5A 0.0297 (9) 0.0249 (9) 0.0391 (10) 0.0003 (7) -0.0009 (8) 0.0030 (8)C6A 0.0615 (15) 0.0252 (10) 0.542 (13) 0.0112 (10) -0.0046 (11) -0.0017 (9)C7A 0.0705 (16) 0.0353 (11) 0.0437 (12) 0.0156 (11) 0.0062 (11) -0.0097 (9)C8A 0.0460 (11) 0.0265 (9) 0.0294 (9) -0.0005 (8) 0.0023 (8) -0.0046 (7)C9A 0.0236 (8) 0.0205 (8) 0.0229 (8) -0.0013 (7) 0.0002 (7) 0.0032 (6)C11A 0.0460 (11) 0.0250 (8) 0.0229 (8) -0.0013 (7) 0.0002 (7) 0.0032 (6)C11A 0.0481 (10) 0.0529 (13) 0.0423 (12) -0.0075 (11) 0.0142 (10) -0.0070 (10)C12A 0.0474 (13) 0.0529 (13) 0.0423 (12) <td< td=""><td>O3A</td><td>0.0462 (8)</td><td>0.0361 (8)</td><td>0.0406 (8)</td><td>0.0084 (6)</td><td>-0.0093 (6)</td><td>0.0078 (6)</td></td<>	O3A	0.0462 (8)	0.0361 (8)	0.0406 (8)	0.0084 (6)	-0.0093 (6)	0.0078 (6)
N2A $0.0252 (8)$ $0.0441 (10)$ $0.0259 (8)$ $-0.0092 (7)$ $-0.0025 (6)$ $0.0044 (7)$ C1A $0.0209 (8)$ $0.0230 (8)$ $0.0276 (8)$ $-0.0008 (7)$ $0.0020 (6)$ $0.0006 (7)$ C2A $0.0230 (8)$ $0.0207 (8)$ $0.0240 (8)$ $0.0002 (6)$ $0.0005 (6)$ $-0.0021 (6)$ C3A $0.0257 (8)$ $0.0230 (8)$ $0.0233 (8)$ $-0.0006 (7)$ $-0.0023 (6)$ $0.0007 (6)$ C4A $0.0243 (8)$ $0.0215 (8)$ $0.0288 (9)$ $-0.0019 (7)$ $0.0021 (7)$ $0.0003 (7)$ C5A $0.0297 (9)$ $0.0249 (9)$ $0.0391 (10)$ $0.0003 (7)$ $-0.0009 (8)$ $0.0030 (8)$ C6A $0.0615 (15)$ $0.0252 (10)$ $0.0542 (13)$ $0.0112 (10)$ $-0.0046 (11)$ $-0.0017 (9)$ C7A $0.0705 (16)$ $0.0353 (11)$ $0.0437 (12)$ $0.0156 (11)$ $0.0062 (11)$ $-0.0097 (9)$ C8A $0.0460 (11)$ $0.0265 (9)$ $0.0294 (9)$ $-0.0005 (8)$ $0.0033 (8)$ $-0.0046 (7)$ C9A $0.0236 (8)$ $0.0205 (8)$ $0.0229 (8)$ $-0.0013 (7)$ $0.0022 (7)$ $0.0032 (6)$ C11A $0.0480 (11)$ $0.0425 (12)$ $0.0305 (10)$ $-0.0114 (10)$ $0.0021 (8)$ $-0.0116 (9)$ C12A $0.0474 (13)$ $0.0529 (13)$ $0.0423 (12)$ $-0.0075 (11)$ $0.0142 (10)$ $-0.0205 (10)$ C13A $0.0316 (10)$ $0.0423 (11)$ $-0.015 (8)$ $0.0097 (8)$ $-0.0003 (8)$ C14A $0.0335 (11)$ $0.0631 (14)$ $0.0326 (10)$ $-0.0129 (9)$	N1A	0.0246 (7)	0.0238 (7)	0.0246 (7)	0.0008 (6)	-0.0018 (6)	-0.0010 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2A	0.0252 (8)	0.0441 (10)	0.0259 (8)	-0.0092 (7)	-0.0025 (6)	0.0044 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1A	0.0209 (8)	0.0230 (8)	0.0276 (8)	-0.0008(7)	0.0020 (6)	0.0006 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2A	0.0230 (8)	0.0207 (8)	0.0240 (8)	0.0002 (6)	0.0005 (6)	-0.0021 (6)
C4A 0.0243 (8) 0.0215 (8) 0.0288 (9) -0.0019 (7) 0.0021 (7) 0.0003 (7)C5A 0.0297 (9) 0.0249 (9) 0.0391 (10) 0.0003 (7) -0.0009 (8) 0.0030 (8)C6A 0.0615 (15) 0.0252 (10) 0.0542 (13) 0.0112 (10) -0.0046 (11) -0.0017 (9)C7A 0.0705 (16) 0.0353 (11) 0.0437 (12) 0.0156 (11) 0.0062 (11) -0.0097 (9)C8A 0.0460 (11) 0.0265 (9) 0.0294 (9) -0.0005 (8) 0.0033 (8) -0.0046 (7)C9A 0.0236 (8) 0.0205 (8) 0.0229 (8) -0.0013 (7) 0.0002 (7) -0.0032 (6)C10A 0.0281 (9) 0.0250 (8) 0.0229 (8) -0.0013 (7) 0.0002 (7) 0.0032 (6)C11A 0.0408 (11) 0.0482 (12) 0.0305 (10) -0.0114 (10) 0.0021 (8) -0.0116 (9)C12A 0.0474 (13) 0.0529 (13) 0.0423 (12) -0.0075 (11) 0.0142 (10) -0.0205 (14)C13A 0.0316 (10) 0.0366 (10) 0.0423 (11) -0.0015 (8) 0.0097 (8) -0.0003 (8)C14A 0.0335 (11) 0.0631 (14) 0.0336 (10) -0.0129 (9) 0.0060 (8) -0.0105 (9)C16A 0.0271 (9) 0.0274 (9) 0.0257 (8) 0.0025 (7) -0.0035 (7) -0.0027 (7)C17A 0.0283 (9) 0.0425 (11) 0.0314 (9) 0.0042 (8) 0.0018 (7) 0.0034 (8)C16A 0.0271 (9) 0.0274 (9) 0.0282	C3A	0.0257 (8)	0.0230 (8)	0.0233 (8)	-0.0006 (7)	-0.0023 (6)	0.0007 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4A	0.0243 (8)	0.0215 (8)	0.0288 (9)	-0.0019 (7)	0.0021 (7)	0.0003 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5A	0.0297 (9)	0.0249 (9)	0.0391 (10)	0.0003 (7)	-0.0009 (8)	0.0030 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6A	0.0615 (15)	0.0252 (10)	0.0542 (13)	0.0112 (10)	-0.0046 (11)	-0.0017 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7A	0.0705 (16)	0.0353 (11)	0.0437 (12)	0.0156 (11)	0.0062 (11)	-0.0097 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8A	0.0460 (11)	0.0265 (9)	0.0294 (9)	-0.0005 (8)	0.0033 (8)	-0.0046 (7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C9A	0.0236 (8)	0.0205 (8)	0.0283 (8)	-0.0028 (6)	0.0028 (7)	-0.0003 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10A	0.0281 (9)	0.0250 (8)	0.0229 (8)	-0.0013 (7)	0.0002 (7)	0.0032 (6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C11A	0.0408 (11)	0.0482 (12)	0.0305 (10)	-0.0114 (10)	0.0021 (8)	-0.0116 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C12A	0.0474 (13)	0.0529 (13)	0.0423 (12)	-0.0075 (11)	0.0142 (10)	-0.0205 (10)
C14A 0.0335 (11) 0.0631 (14) 0.0336 (10) -0.0162 (10) 0.0034 (8) -0.0070 (10) C15A 0.0371 (11) 0.0538 (13) 0.0275 (9) -0.0129 (9) 0.0060 (8) -0.0105 (9) C16A 0.0271 (9) 0.0274 (9) 0.0257 (8) 0.0025 (7) -0.0035 (7) -0.0027 (7) C17A 0.0283 (9) 0.0425 (11) 0.0314 (9) 0.0042 (8) 0.0018 (7) 0.0034 (8) C18A 0.0493 (12) 0.0545 (13) 0.0282 (10) 0.0092 (10) -0.0039 (9) 0.0052 (9)	C13A	0.0316 (10)	0.0366 (10)	0.0423 (11)	-0.0015 (8)	0.0097 (8)	-0.0003 (8)
C15A0.0371 (11)0.0538 (13)0.0275 (9)-0.0129 (9)0.0060 (8)-0.0105 (9)C16A0.0271 (9)0.0274 (9)0.0257 (8)0.0025 (7)-0.0035 (7)-0.0027 (7)C17A0.0283 (9)0.0425 (11)0.0314 (9)0.0042 (8)0.0018 (7)0.0034 (8)C18A0.0493 (12)0.0545 (13)0.0282 (10)0.0092 (10)-0.0039 (9)0.0052 (9)	C14A	0.0335 (11)	0.0631 (14)	0.0336 (10)	-0.0162 (10)	0.0034 (8)	-0.0070 (10)
C16A0.0271 (9)0.0274 (9)0.0257 (8)0.0025 (7)-0.0035 (7)-0.0027 (7)C17A0.0283 (9)0.0425 (11)0.0314 (9)0.0042 (8)0.0018 (7)0.0034 (8)C18A0.0493 (12)0.0545 (13)0.0282 (10)0.0092 (10)-0.0039 (9)0.0052 (9)	C15A	0.0371 (11)	0.0538 (13)	0.0275 (9)	-0.0129 (9)	0.0060 (8)	-0.0105 (9)
C17A0.0283 (9)0.0425 (11)0.0314 (9)0.0042 (8)0.0018 (7)0.0034 (8)C18A0.0493 (12)0.0545 (13)0.0282 (10)0.0092 (10)-0.0039 (9)0.0052 (9)	C16A	0.0271 (9)	0.0274 (9)	0.0257 (8)	0.0025 (7)	-0.0035 (7)	-0.0027 (7)
C18A 0.0493 (12) 0.0545 (13) 0.0282 (10) 0.0092 (10) -0.0039 (9) 0.0052 (9)	C17A	0.0283 (9)	0.0425 (11)	0.0314 (9)	0.0042 (8)	0.0018 (7)	0.0034 (8)
	C18A	0.0493 (12)	0.0545 (13)	0.0282 (10)	0.0092 (10)	-0.0039 (9)	0.0052 (9)

C19A	0.0477 (12)	0.0477 (13)	0.0402 (11)	0.0084 (10)	-0.0178 (10)	-0.0065 (10)
C20A	0.0309 (10)	0.0487 (13)	0.0548 (13)	-0.0066 (9)	-0.0126 (9)	-0.0066 (10)
C21A	0.0344 (10)	0.0422 (11)	0.0360 (10)	-0.0079 (9)	-0.0036 (8)	0.0021 (9)
C22A	0.0242 (8)	0.0162 (7)	0.0279 (8)	0.0010 (6)	0.0011 (7)	-0.0010 (6)
C23A	0.0704 (19)	0.097 (2)	0.0647 (18)	0.0068 (17)	-0.0403 (16)	0.0008 (17)
Cl1B	0.0615 (4)	0.1578 (9)	0.0687 (5)	-0.0455 (5)	0.0382 (4)	-0.0341 (5)
O1B	0.0397 (7)	0.0276 (7)	0.0327 (7)	-0.0015 (6)	-0.0062 (6)	0.0098 (5)
O2B	0.0275 (7)	0.0539 (9)	0.0388 (7)	0.0046 (6)	0.0030 (6)	-0.0066 (7)
O3B	0.0484 (8)	0.0321 (7)	0.0322 (7)	0.0089 (6)	-0.0075 (6)	0.0075 (6)
N1B	0.0254 (7)	0.0244 (7)	0.0241 (7)	-0.0002 (6)	-0.0039 (6)	0.0020 (6)
N2B	0.0365 (9)	0.0389 (9)	0.0251 (8)	0.0098 (7)	0.0016 (7)	-0.0039 (7)
C1B	0.0247 (8)	0.0236 (8)	0.0238 (8)	0.0017 (7)	0.0013 (6)	0.0018 (7)
C2B	0.0234 (8)	0.0186 (8)	0.0236 (8)	0.0000 (6)	-0.0015 (6)	0.0001 (6)
C3B	0.0274 (8)	0.0218 (8)	0.0192 (7)	0.0037 (7)	-0.0041 (6)	-0.0011 (6)
C4B	0.0306 (9)	0.0204 (8)	0.0204 (8)	0.0023 (7)	0.0010 (6)	0.0000 (6)
C5B	0.0455 (11)	0.0231 (9)	0.0222 (8)	0.0049 (8)	0.0009 (8)	0.0004 (7)
C6B	0.0723 (16)	0.0214 (9)	0.0407 (11)	-0.0050 (10)	-0.0097 (11)	0.0064 (8)
C7B	0.0568 (14)	0.0321 (10)	0.0406 (11)	-0.0195 (10)	-0.0031 (10)	0.0044 (9)
C8B	0.0390 (10)	0.0299 (10)	0.0347 (10)	-0.0085 (8)	-0.0055 (8)	0.0011 (8)
C9B	0.0301 (9)	0.0219 (8)	0.0220 (8)	0.0003 (7)	0.0022 (7)	0.0001 (6)
C10B	0.0260 (8)	0.0245 (8)	0.0258 (8)	0.0036 (7)	-0.0020 (7)	-0.0021 (7)
C11B	0.0329 (10)	0.0629 (14)	0.0338 (10)	-0.0063 (10)	-0.0015 (8)	-0.0183 (10)
C12B	0.0325 (11)	0.093 (2)	0.0563 (15)	-0.0212 (13)	0.0061 (10)	-0.0279 (14)
C13B	0.0378 (12)	0.0696 (16)	0.0441 (12)	-0.0095 (11)	0.0146 (10)	-0.0107 (11)
C14B	0.0399 (11)	0.0463 (11)	0.0267 (9)	0.0032 (9)	0.0028 (8)	-0.0048 (8)
C15B	0.0283 (9)	0.0348 (10)	0.0256 (9)	0.0016 (8)	-0.0032 (7)	-0.0033 (7)
C16B	0.0280 (9)	0.0304 (9)	0.0257 (9)	-0.0013 (7)	-0.0049 (7)	0.0034 (7)
C17B	0.0364 (11)	0.0569 (13)	0.0296 (10)	0.0075 (10)	-0.0037 (8)	-0.0046 (9)
C18B	0.0534 (14)	0.0867 (19)	0.0269 (10)	0.0080 (13)	-0.0111 (10)	-0.0080 (11)
C19B	0.0399 (12)	0.089 (2)	0.0375 (12)	0.0031 (13)	-0.0149 (10)	0.0056 (12)
C20B	0.0261 (10)	0.0658 (15)	0.0429 (12)	0.0036 (10)	-0.0041 (8)	0.0047 (10)
C21B	0.0305 (10)	0.0441 (11)	0.0287 (9)	-0.0003 (8)	-0.0008 (7)	0.0028 (8)
C22B	0.0301 (9)	0.0193 (8)	0.0291 (9)	0.0029 (7)	0.0021 (7)	0.0013 (6)
C23B	0.0598 (19)	0.202 (5)	0.0542 (18)	0.023 (3)	-0.0332 (15)	-0.004 (2)

Geometric parameters (Å, °)

Cl1A—C13A	1.745 (2)	Cl1B—C13B	1.746 (2)	
O1A—C1A	1.209 (2)	O1B—C1B	1.210 (2)	
O2A—C22A	1.234 (2)	O2B—C22B	1.221 (2)	
O3A—C5A	1.230 (2)	O3B—C5B	1.232 (2)	
N1A—C1A	1.391 (2)	N1B—C1B	1.387 (2)	
N1A—C9A	1.403 (2)	N1B—C9B	1.400 (2)	
N1A—C16A	1.452 (2)	N1B—C16B	1.450 (2)	
N2A—C22A	1.323 (2)	N2B—C22B	1.329 (2)	
N2A—H2A2	0.88 (2)	N2B—H2B1	0.85 (3)	
N2A—H2A1	0.86 (3)	N2B—H2B2	0.85 (3)	
C1A—C2A	1.518 (2)	C1B—C2B	1.518 (2)	

C2A—C22A	1.535 (2)	C2B—C22B	1.539 (2)
C2A—C3A	1.546 (2)	C2B—C3B	1.544 (2)
C2A—H2A	0.9800	C2B—H2B	0.9800
C3A—C4A	1.502 (2)	C3B—C4B	1.500 (2)
C3A—C10A	1.529 (2)	C3B—C10B	1.521 (2)
СЗА—НЗАА	0.9800	СЗВ—НЗВА	0.9800
C4A—C9A	1.355 (3)	C4B—C9B	1.357 (2)
C4A—C5A	1.456 (3)	C4B—C5B	1.457 (2)
C5A—C6A	1.501 (3)	C5B—C6B	1.500 (3)
C6A—C7A	1.500 (3)	C6B—C7B	1.510 (3)
С6А—Н6АА	0.9700	C6B—H6BA	0.9700
С6А—Н6АВ	0.9700	C6B—H6BB	0.9700
C7A—C8A	1.532 (3)	C7B—C8B	1.522 (3)
С7А—Н7АА	0.9700	C7B—H7BA	0.9700
C7A—H7AB	0.9700	C7B—H7BB	0.9700
С8А—С9А	1.500(2)	C8B—C9B	1.503 (3)
С8А—Н8АА	0.9700	C8B—H8BA	0.9700
С8А—Н8АВ	0.9700	C8B—H8BB	0.9700
C10A—C15A	1.383 (3)	C10B—C11B	1.382 (3)
C10A—C11A	1.383 (3)	C10B—C15B	1.394 (2)
C11A—C12A	1.385 (3)	C11B—C12B	1.384 (3)
C11A—H11A	0.9300	C11B—H11B	0.9300
C12A—C13A	1.373 (3)	C12B—C13B	1.384 (3)
C12A—H12A	0.9300	C12B—H12B	0.9300
C13A—C14A	1.365 (3)	C13B—C14B	1.369 (3)
C14A—C15A	1.381 (3)	C14B—C15B	1.380 (3)
C14A—H14A	0.9300	C14B—H14B	0.9300
C15A—H15A	0.9300	C15B—H15B	0.9300
C16A—C17A	1.379 (3)	C16B—C17B	1.376 (3)
C16A—C21A	1.385 (3)	C16B—C21B	1.377 (3)
C17A—C18A	1.387 (3)	C17B—C18B	1.391 (3)
C17A—H17A	0.9300	C17B—H17B	0.9300
C18A—C19A	1.386 (4)	C18B—C19B	1.376 (4)
C18A—H18A	0.9300	C18B—H18B	0.9300
C19A—C20A	1.385 (3)	C19B—C20B	1.386 (3)
C19A—C23A	1.516 (3)	C19B—C23B	1.513 (3)
C20A—C21A	1.386 (3)	C20B—C21B	1.383 (3)
C20A—H20A	0.9300	C20B—H20B	0.9300
C21A—H21A	0.9300	C21B—H21B	0.9300
С23А—Н23А	0.9600	C23B—H23D	0.9600
C23A—H23B	0.9600	C23B—H23E	0.9600
C23A—H23C	0.9600	C23B—H23F	0.9600
C1A—N1A—C9A	122.11 (14)	C1B—N1B—C9B	122.57 (14)
C1A—N1A—C16A	116.03 (14)	C1B—N1B—C16B	116.61 (14)
C9A—N1A—C16A	121.72 (14)	C9B—N1B—C16B	120.53 (14)
C22A—N2A—H2A2	118.9 (14)	C22B—N2B—H2B1	117.2 (16)
C22A—N2A—H2A1	121.2 (16)	C22B—N2B—H2B2	122.7 (17)

H2A2—N2A—H2A1	120 (2)	H2B1—N2B—H2B2	120 (2)
O1A—C1A—N1A	121.78 (16)	O1B—C1B—N1B	121.69 (16)
O1A—C1A—C2A	122.32 (16)	O1B—C1B—C2B	122.89 (16)
N1A—C1A—C2A	115.90 (14)	N1B—C1B—C2B	115.34 (14)
C1A—C2A—C22A	109.34 (14)	C1B—C2B—C22B	105.92 (14)
C1A—C2A—C3A	110.54 (14)	C1B—C2B—C3B	111.19(13)
C22A—C2A—C3A	113.03 (14)	C22B—C2B—C3B	114.42 (13)
C1A—C2A—H2A	107.9	C1B—C2B—H2B	108.4
C22A—C2A—H2A	107.9	C22B—C2B—H2B	108.4
C3A—C2A—H2A	107.9	C3B—C2B—H2B	108.4
C4A—C3A—C10A	112.35 (14)	C4B—C3B—C10B	113.37 (14)
C4A—C3A—C2A	107.50 (14)	C4B—C3B—C2B	108.59 (14)
C10A - C3A - C2A	109.75 (14)	C10B-C3B-C2B	109.32 (14)
С4А—С3А—НЗАА	109.1	C4B—C3B—H3BA	108.5
C10A—C3A—H3AA	109.1	C10B—C3B—H3BA	108.5
C2A-C3A-H3AA	109.1	C2B-C3B-H3BA	108.5
C9A - C4A - C5A	121 53 (16)	C9B-C4B-C5B	120.72 (16)
C9A - C4A - C3A	120.26 (16)	C9B-C4B-C3B	120.72(10) 121.35(15)
C_{5A} C_{4A} C_{3A}	117 73 (16)	C5B-C4B-C3B	117 59 (15)
O3A - C5A - C4A	120 51 (18)	O3B-C5B-C4B	120.41(17)
O3A - C5A - C6A	121.28 (18)	O3B-C5B-C6B	120.11(17) 121.21(17)
C4A - C5A - C6A	118 12 (17)	C4B-C5B-C6B	121.21(17) 118.37(17)
C7A - C6A - C5A	113 28 (18)	C5B-C6B-C7B	110.37(17) 114 10(17)
C7A - C6A - H6AA	108.9	C5B-C6B-H6BA	108 7
C_{5A} C_{6A} H_{6AA}	108.9	C7B-C6B-H6BA	108.7
C7A - C6A - H6AB	108.9	C5B-C6B-H6BB	108.7
C_{5A} C_{6A} H_{6AB}	108.9	C7B-C6B-H6BB	108.7
H6AA - C6A - H6AB	107.7	H6BA—C6B—H6BB	107.6
C6A - C7A - C8A	112 44 (19)	C6B-C7B-C8B	107.0
C6A - C7A - H7AA	109.1	C6B - C7B - H7BA	109.4
C8A - C7A - H7AA	109.1	C8B-C7B-H7BA	109.1
C6A - C7A - H7AB	109.1	C6B - C7B - H7BB	109.4
C8A - C7A - H7AB	109.1	C8B-C7B-H7BB	109.4
H7AA - C7A - H7AB	107.8	H7BA C7B H7BB	109.4
C94 - C84 - C74	110.44(17)	C9B - C8B - C7B	111.05 (16)
C9A - C8A - H8AA	109.6	C9B-C8B-H8BA	109.4
C7A - C8A - H8AA	109.6	C7B-C8B-H8BA	109.4
C9A - C8A - H8AB	109.6	C9B C8B H8BB	109.4
C7A - C8A - H8AB	109.6	C7B $C8B$ $H8BB$	109.4
H8AA = C8A = H8AB	108.1	H8BA_C8B_H8BB	109.4
$C_{4A} = C_{0A} = N_{1A}$	120.00 (15)	CAB COB NIB	120.31 (16)
C4A - C9A - C8A	122.00 (15)	C4B-C9B-C8B	120.31(10) 122.79(16)
N1A C9A C8A	122.01(10) 117.15(15)	NIB COB CSB	122.79(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117.13(13) 117.57(17)	$\begin{array}{c} \text{C11B} \text{C10B} \text{C15B} \\ \end{array}$	110.31(13) 118.23(17)
C15A - C10A - C3A	122 30 (16)	C11B - C10B - C3B	110.23(17) 110.34(16)
$C_{11}A = C_{10}A = C_{2}A$	122.30 (10)	C15B $C10B$ $C3B$	122 30 (16)
C10A C11A C12A	120.04(10) 120.04(10)	C10B C11B C12P	122.30(10) 121 18(10)
C10A = C11A = U11A	120.90 (19)	C10D - C11D - U11D	121.10(19)
CIUA-CIIA-fIIIA	119.3		119.4

a			
C12A—C11A—H11A	119.5	C12B—C11B—H11B	119.4
C13A—C12A—C11A	119.72 (19)	C11B—C12B—C13B	118.8 (2)
C13A—C12A—H12A	120.1	C11B—C12B—H12B	120.6
C11A—C12A—H12A	120.1	C13B—C12B—H12B	120.6
C14A—C13A—C12A	120.63 (19)	C14B—C13B—C12B	121.4 (2)
C14A—C13A—C11A	118.75 (17)	C14B—C13B—C11B	118.84 (18)
C12A—C13A—C11A	120.60 (16)	C12B—C13B—C11B	119.73 (18)
C13A—C14A—C15A	119.05 (19)	C13B—C14B—C15B	118.95 (19)
C13A—C14A—H14A	120.5	C13B—C14B—H14B	120.5
C15A—C14A—H14A	120.5	C15B—C14B—H14B	120.5
C14A—C15A—C10A	121.97 (19)	C14B—C15B—C10B	121.35 (18)
C14A—C15A—H15A	119.0	C14B—C15B—H15B	119.3
C10A—C15A—H15A	119.0	C10B—C15B—H15B	119.3
C17A—C16A—C21A	120.58 (17)	C17B—C16B—C21B	121.26 (18)
C17A—C16A—N1A	120.22 (16)	C17B—C16B—N1B	120.03 (17)
C21A—C16A—N1A	119.08 (16)	C21B—C16B—N1B	118.71 (16)
C16A—C17A—C18A	119.10 (19)	C16B—C17B—C18B	118.8 (2)
C16A—C17A—H17A	120.4	C16B—C17B—H17B	120.6
C18A—C17A—H17A	120.4	C18B—C17B—H17B	120.6
C19A—C18A—C17A	121.4 (2)	C19B—C18B—C17B	121.2 (2)
C19A—C18A—H18A	119.3	C19B—C18B—H18B	119.4
C17A—C18A—H18A	119.3	C17B—C18B—H18B	119.4
C20A—C19A—C18A	118.36 (19)	C18B—C19B—C20B	118.8 (2)
C20A—C19A—C23A	120.7 (2)	C18B—C19B—C23B	120.7 (3)
C18A—C19A—C23A	120.9 (2)	C20B—C19B—C23B	120.6 (3)
C19A—C20A—C21A	121.0 (2)	C21B—C20B—C19B	121.0 (2)
C19A—C20A—H20A	119.5	C21B-C20B-H20B	119.5
C21A—C20A—H20A	119.5	C19B—C20B—H20B	119.5
C16A—C21A—C20A	119.4 (2)	C16B—C21B—C20B	119.03 (19)
C16A—C21A—H21A	120.3	C16B—C21B—H21B	120.5
C20A—C21A—H21A	120.3	C20B—C21B—H21B	120.5
O2A—C22A—N2A	123.25 (16)	O2B—C22B—N2B	123.20 (17)
O2A—C22A—C2A	121.21 (15)	O2B—C22B—C2B	120.30 (16)
N2A—C22A—C2A	115.49 (15)	N2B—C22B—C2B	116.41 (16)
C19A—C23A—H23A	109.5	C19B—C23B—H23D	109.5
C19A—C23A—H23B	109.5	C19B—C23B—H23E	109.5
H23A—C23A—H23B	109.5	H23D—C23B—H23E	109.5
C19A—C23A—H23C	109.5	C19B—C23B—H23F	109.5
H23A—C23A—H23C	109.5	H23D—C23B—H23F	109.5
H23B—C23A—H23C	109.5	H23E—C23B—H23F	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
$N2A$ — $H2A2$ ···O2 A^{i}	0.88 (2)	2.12 (3)	2.979 (2)	164 (2)
$N2B$ — $H2B1$ ···O2 A^{ii}	0.86 (2)	2.26 (2)	3.055 (2)	154 (2)
N2 <i>A</i> —H2 <i>A</i> 1···O3 <i>B</i>	0.86 (2)	2.06 (2)	2.865 (2)	156 (2)
N2 <i>B</i> —H2 <i>B</i> 2···O3 <i>A</i>	0.85 (3)	2.04 (3)	2.847 (2)	159 (2)

C3 <i>A</i> —H3 <i>AA</i> ···O3 <i>A</i>	0.98	2.45	2.793 (2)	100
$C8A$ — $H8AB$ ···· $O2B^{ii}$	0.97	2.50	3.392 (2)	153
C6 <i>B</i> —H6 <i>BB</i> ···O1 <i>B</i> ⁱⁱⁱ	0.97	2.57	3.430 (2)	148
$C14A$ — $H14A$ ···O1 A^{iv}	0.93	2.54	3.393 (3)	153
$C17A$ — $H17A$ ··· $O2B^{ii}$	0.93	2.48	3.110 (2)	125
C17B—H17B····O1 B^{v}	0.93	2.52	3.424 (3)	164

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) -x+3/2, y+1/2, z; (v) -x+1, y-1/2, -z+1/2.

4-(4-Methoxyphenyl)-1-(4-methylphenyl)-2,5-dioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (II)

Crystal data

1

$C_{24}H_{22}N_2O_3$	F(000) = 1632
$M_r = 386.43$	$D_{\rm x} = 1.290 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
a = 10.3486 (2) Å	Cell parameters from 3849 reflections
b = 13.9969(3) Å	$\theta = 4.3 - 70.8^{\circ}$
c = 27.5353(5) Å	$\mu = 0.69 \text{ mm}^{-1}$
$\beta = 93.797 \ (2)^{\circ}$	T = 173 K
V = 3979.69 (14) Å ³	Irregular, orange
Z = 8	$0.12 \times 0.08 \times 0.04 \text{ mm}$

Data collection

Rigaku Oxford Diffraction Xcalibur, Eos,	15107 measured reflections
Gemini	7579 independent reflections
diffractometer	5380 reflections with $I > 2\sigma(I)$
Detector resolution: 16.0416 pixels mm ⁻¹	$R_{\rm int} = 0.027$
ω scans	$\theta_{\rm max} = 71.4^{\circ}, \theta_{\rm min} = 3.5^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 12$
(CrysAlisPro; Rigaku OD, 2015)	$k = -10 \rightarrow 16$
$T_{\min} = 0.945, \ T_{\max} = 1.000$	$l = -26 \rightarrow 33$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.139$	$w = 1/[\sigma^2(F_o^2) + (0.0628P)^2 + 0.1965P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
7579 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
555 parameters	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
36 restraints	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
O1A	0.36261 (17)	0.53971 (14)	0.33466 (6)	0.0704 (5)	
O2A	0.78343 (15)	0.78301 (13)	0.24000 (6)	0.0635 (4)	

O3A	0.5360(2)	0.99458 (16)	0.43140 (8)	0.0866 (6)	
N1A	0.40024 (16)	0.60665 (14)	0.26190 (6)	0.0490 (4)	
N2A	0.6257 (3)	0.56408 (18)	0.41665 (8)	0.0773 (6)	
C1A	0.4369 (2)	0.57641 (15)	0.30847 (7)	0.0502 (5)	
C2A	0.5814 (2)	0.58943 (16)	0.32306 (7)	0.0499 (5)	
H2A	0.628554	0.537522	0.306612	0.060*	
C3A	0.63700 (18)	0.68516 (15)	0.30610(7)	0.0462 (4)	
H3A	0.733419	0.678557	0.307960	0.055*	
C4A	0.59327 (19)	0.69818 (15)	0.25308 (7)	0.0440 (4)	
C5A	0.6773 (2)	0.75536 (16)	0.22368 (8)	0.0509 (5)	
C6A	0.6240 (7)	0.7794 (6)	0.1737 (2)	0.093 (3)	0.670(11)
H6A1	0.647523	0.846564	0.167295	0.112*	0.670 (11)
H6A2	0.669856	0.739274	0.150722	0.112*	0.670 (11)
C7A	0.4928 (5)	0.7699 (5)	0.16172 (18)	0.0727 (19)	0.670 (11)
H7A1	0.478234	0.768970	0.125825	0.087*	0.670 (11)
H7A2	0.447588	0.826567	0.173844	0.087*	0.670 (11)
C8A	0.4343 (10)	0.6823 (10)	0.1818 (3)	0.058 (3)	0.670 (11)
H8A1	0.454564	0.627035	0.161223	0.070*	0.670(11)
H8A2	0.338993	0.689814	0.180160	0.070*	0.670 (11)
C6AA	0.6417 (13)	0.7776 (12)	0.1706 (4)	0.081 (6)	0.330 (11)
H6A3	0.609006	0.843920	0.167569	0.097*	0.330 (11)
H6A4	0.719692	0.772369	0.151825	0.097*	0.330(11)
C7AA	0.5411 (9)	0.7106 (9)	0.1504 (2)	0.062 (3)	0.330 (11)
H7A3	0.587817	0.655632	0.137269	0.074*	0.330 (11)
H7A4	0.496696	0.743252	0.122131	0.074*	0.330(11)
C8AA	0.4327 (18)	0.668 (2)	0.1804 (5)	0.054 (5)	0.330 (11)
H8A3	0.354750	0.708882	0.177077	0.064*	0.330 (11)
H8A4	0.408875	0.603398	0.167990	0.064*	0.330 (11)
C9A	0.48142 (19)	0.66155 (15)	0.23353 (7)	0.0454 (4)	
C10A	0.60548 (19)	0.76995 (15)	0.33746 (7)	0.0453 (4)	
C11A	0.6939 (2)	0.79817 (18)	0.37505 (8)	0.0580 (5)	
H11A	0.773514	0.764736	0.380089	0.070*	
C12A	0.6683 (2)	0.8734 (2)	0.40504 (9)	0.0664 (6)	
H12A	0.730490	0.891710	0.430239	0.080*	
C13A	0.5529 (2)	0.92254 (17)	0.39877 (9)	0.0594 (6)	
C14A	0.4648 (2)	0.89723 (17)	0.36131 (9)	0.0588 (5)	
H14A	0.385742	0.931387	0.356279	0.071*	
C15A	0.4919 (2)	0.82139 (17)	0.33077 (8)	0.0528 (5)	
H15A	0.430961	0.804786	0.304833	0.063*	
C16A	0.2677 (2)	0.58533 (16)	0.24393 (7)	0.0478 (5)	
C17A	0.2392 (2)	0.50222 (18)	0.21912 (10)	0.0633 (6)	
H17A	0.305254	0.456910	0.214024	0.076*	
C18A	0.1124 (3)	0.48517 (19)	0.20156 (10)	0.0689(7)	
H18A	0.092331	0.427678	0.184344	0.083*	
C19A	0.0151 (2)	0.55004 (18)	0.20862 (8)	0.0574 (5)	
C20A	0.0455 (2)	0.63227 (18)	0.23423 (8)	0.0568 (5)	
H20A	-0.020731	0.677108	0.239908	0.068*	
C21A	0.1721 (2)	0.65056 (16)	0.25189 (7)	0.0521 (5)	
		· · ·			

H21A	0.192371	0.707754	0.269352	0.062*
C22A	0.6045 (2)	0.57437 (17)	0.37597 (8)	0.0578 (5)
C23A	0.4110 (3)	1.0295 (3)	0.43679 (13)	0.0962 (10)
H23A	0.378518	1.060752	0.406571	0.144*
H23B	0.413342	1.075712	0.463558	0.144*
H23C	0.353668	0.976341	0.444030	0.144*
C24A	-0.1230(3)	0.5333(2)	0.18813 (11)	0.0803 (8)
H24A	-0.183518	0.561316	0.210066	0.120*
H24B	-0.139106	0.464541	0.185086	0.120*
H24C	-0.135458	0 563409	0.156018	0.120*
01B	0 88611 (15)	0.55891(11)	0.33264 (6)	0.0597(4)
01B 02B	1,17002(16)	0.19933(11)	0.42029 (6)	0.0597(1) 0.0623(4)
03B	0.61297(18)	0.19933(11) 0.20781(13)	0.49274(7)	0.0025(1)
N1B	1.05243(16)	0.20701(13) 0.52114(12)	0.49274(7) 0.38701(6)	0.0733(3) 0.0442(4)
ND	0.7586(3)	0.32114(12) 0.37087(10)	0.33701(0) 0.27435(0)	0.0442(4)
N2D C1P	0.7580(3)	0.37087(19) 0.50067(15)	0.27433(3) 0.24012(7)	0.0800(8)
CIB	0.90338(19)	0.30007(13)	0.34912(7)	0.0443(4)
C2B	0.9722 (2)	0.40016 (16)	0.32852(7)	0.0473 (5)
H2B	1.045585	0.39944 /	0.306669	0.05/*
C3B	0.99990 (19)	0.32262 (14)	0.36769(7)	0.0445 (4)
H3B	1.028406	0.263711	0.350848	0.053*
C4B	1.11285 (18)	0.35722 (14)	0.40066 (6)	0.0409 (4)
C5B	1.19280 (19)	0.28396 (15)	0.42658 (7)	0.0459 (4)
C6B	1.3012 (2)	0.31731 (17)	0.46160 (8)	0.0566 (5)
H6BA	1.372469	0.270099	0.462105	0.068*
H6BB	1.269539	0.320138	0.494725	0.068*
C7B	1.3531 (2)	0.41394 (17)	0.44876 (8)	0.0546 (5)
H7BA	1.398831	0.408795	0.418402	0.066*
H7BB	1.416456	0.435436	0.475017	0.066*
C8B	1.2457 (2)	0.48714 (16)	0.44186 (7)	0.0496 (5)
H8BA	1.213782	0.503444	0.473927	0.060*
H8BB	1.280653	0.546139	0.427828	0.060*
C9B	1.13513 (18)	0.45094 (14)	0.40896 (6)	0.0409 (4)
C10B	0.88665 (18)	0.29520 (14)	0.39738 (7)	0.0438 (4)
C11B	0.8175 (2)	0.36257 (15)	0.42189 (8)	0.0490 (5)
H11B	0.834148	0.428504	0.417023	0.059*
C12B	0.7244 (2)	0.33612 (16)	0.45338 (8)	0.0529 (5)
H12B	0.677947	0.383529	0.469731	0.064*
C13B	0.6998 (2)	0.24062 (16)	0.46077 (8)	0.0524(5)
C14B	0.7626 (2)	0.17243 (16)	0.43470 (9)	0.0596 (6)
H14B	0 742172	0 106745	0 438278	0.072*
C15B	0.8550(2)	0 19959 (16)	0.40346(8)	0.0552(5)
H15B	0.897639	0 152078	0 385788	0.066*
C16B	1 05339 (19)	0.61852 (14)	0.40490(7)	0.000
C17B	1 0002 (2)	0.64075(17)	0 44792 (8)	0.0499(4)
H17R	0.964595	0.591877	0.466862	0.0571(5)
C18P	0.0088 (2)	0.371022 0.73470 (10)	0.46352 (0)	0.071
	0.9900 (3)	0.75777(17) 0.740205	0.402561	0.0039(0)
	1.0478 (2)	0.147373	0.475501	0.079°
U17D	1.04/0(2)	0.00/03(1/)	0.43003(9)	0.0393(0)

C20B	1.1019 (3)	0.78322 (18)	0.39393 (10)	0.0700 (7)
H20B	1.137513	0.831935	0.374852	0.084*
C21B	1.1056 (3)	0.68946 (17)	0.37820 (8)	0.0617 (6)
H21B	1.144360	0.674336	0.348844	0.074*
C22B	0.8523 (2)	0.38295 (17)	0.29799 (8)	0.0599 (6)
C23B	0.5890 (3)	0.2675 (2)	0.53236 (9)	0.0676 (6)
H23D	0.541756	0.324436	0.520484	0.101*
H23E	0.671532	0.286706	0.549044	0.101*
H23F	0.537152	0.232836	0.555109	0.101*
C24B	1.0432 (3)	0.9097 (2)	0.45374 (13)	0.0892 (9)
H24D	0.989531	0.913847	0.481671	0.134*
H24E	1.006030	0.950037	0.427298	0.134*
H24F	1.131171	0.931536	0.463385	0.134*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0649 (10)	0.0884 (13)	0.0588 (9)	-0.0090 (9)	0.0108 (8)	0.0254 (9)
O2A	0.0504 (9)	0.0733 (11)	0.0676 (10)	-0.0076 (8)	0.0095 (7)	0.0054 (8)
O3A	0.0840 (13)	0.0771 (13)	0.0989 (14)	-0.0122 (10)	0.0082 (11)	-0.0350 (11)
N1A	0.0440 (9)	0.0576 (10)	0.0458 (9)	-0.0023 (7)	0.0052 (7)	0.0081 (7)
N2A	0.1003 (18)	0.0772 (15)	0.0541 (12)	0.0104 (13)	0.0028 (11)	0.0156 (10)
C1A	0.0551 (12)	0.0493 (11)	0.0472 (10)	0.0038 (9)	0.0099 (9)	0.0094 (9)
C2A	0.0532 (12)	0.0510 (12)	0.0457 (10)	0.0118 (9)	0.0045 (9)	0.0089 (9)
C3A	0.0378 (9)	0.0527 (11)	0.0482 (10)	0.0077 (8)	0.0025 (8)	0.0105 (9)
C4A	0.0429 (10)	0.0475 (11)	0.0425 (10)	0.0094 (8)	0.0077 (8)	0.0061 (8)
C5A	0.0464 (11)	0.0552 (12)	0.0522 (11)	0.0016 (9)	0.0115 (9)	0.0026 (9)
C6A	0.095 (5)	0.129 (6)	0.055 (4)	-0.062 (4)	-0.002(3)	0.049 (4)
C7A	0.069 (3)	0.097 (4)	0.051 (2)	-0.014 (3)	-0.0021 (19)	0.029 (2)
C8A	0.058 (4)	0.069 (5)	0.046 (4)	-0.003 (3)	-0.009 (3)	0.002 (2)
C6AA	0.065 (7)	0.122 (12)	0.058 (8)	0.023 (7)	0.014 (6)	-0.023 (7)
C7AA	0.066 (5)	0.084 (7)	0.035 (3)	-0.013 (5)	0.008 (3)	0.006 (3)
C8AA	0.052 (8)	0.075 (9)	0.037 (7)	-0.018 (6)	0.024 (6)	0.010 (5)
C9A	0.0445 (10)	0.0503 (11)	0.0421 (10)	0.0058 (8)	0.0088 (8)	0.0049 (8)
C10A	0.0411 (10)	0.0502 (11)	0.0445 (10)	-0.0005 (8)	0.0026 (8)	0.0100 (8)
C11A	0.0454 (11)	0.0657 (14)	0.0616 (13)	0.0010 (10)	-0.0051 (10)	0.0044 (11)
C12A	0.0593 (14)	0.0718 (16)	0.0664 (14)	-0.0142 (12)	-0.0085 (11)	-0.0072 (12)
C13A	0.0596 (13)	0.0534 (13)	0.0660 (13)	-0.0135 (10)	0.0094 (11)	-0.0063 (10)
C14A	0.0508 (12)	0.0572 (13)	0.0686 (14)	0.0063 (10)	0.0046 (10)	0.0008 (11)
C15A	0.0466 (11)	0.0570 (12)	0.0538 (11)	0.0030 (9)	-0.0048 (9)	0.0006 (9)
C16A	0.0449 (10)	0.0540 (12)	0.0451 (10)	-0.0013 (9)	0.0082 (8)	0.0076 (9)
C17A	0.0542 (13)	0.0550 (13)	0.0811 (16)	0.0032 (10)	0.0071 (11)	-0.0048 (12)
C18A	0.0643 (15)	0.0568 (14)	0.0847 (17)	-0.0078 (11)	-0.0007 (13)	-0.0096 (12)
C19A	0.0530 (12)	0.0643 (14)	0.0552 (12)	-0.0051 (10)	0.0048 (10)	0.0117 (10)
C20A	0.0523 (12)	0.0664 (14)	0.0523 (11)	0.0096 (10)	0.0085 (9)	0.0076 (10)
C21A	0.0571 (12)	0.0535 (12)	0.0459 (10)	0.0008 (10)	0.0055 (9)	0.0016 (9)
C22A	0.0637 (14)	0.0543 (13)	0.0555 (13)	0.0103 (10)	0.0039 (10)	0.0096 (10)
C23A	0.090 (2)	0.094 (2)	0.106 (2)	0.0119 (18)	0.0168 (18)	-0.0366 (19)

C24A	0.0576(15)	0.005(2)	0.0873(10)	-0.0087(14)	-0.0062(13)	0.0000(16)
01R	0.0570(13)	0.095(2)	0.0873(19)	0.003 (14)	-0.0118(7)	0.0090(10)
	0.0348(9)	0.0300(9)	0.0001(9)	0.0093(7)	0.0118(7)	0.0031(7)
O2B	0.0607 (9)	0.04/9 (9)	0.0773 (10)	0.0092 (7)	-0.0046 (8)	0.0018 (7)
O3B	0.0720 (11)	0.0662 (11)	0.0845 (12)	-0.0222 (9)	0.0214 (9)	-0.0025 (9)
N1B	0.0465 (9)	0.0438 (9)	0.0420 (8)	0.0044 (7)	0.0004 (7)	-0.0016 (7)
N2B	0.0919 (17)	0.0799 (16)	0.0825 (15)	-0.0069 (13)	-0.0364 (14)	-0.0028 (12)
C1B	0.0426 (10)	0.0496 (11)	0.0412 (9)	0.0033 (8)	0.0011 (8)	0.0045 (8)
C2B	0.0483 (11)	0.0565 (12)	0.0367 (9)	0.0033 (9)	-0.0003 (8)	-0.0037 (8)
C3B	0.0472 (10)	0.0443 (10)	0.0418 (9)	0.0072 (8)	0.0007 (8)	-0.0078 (8)
C4B	0.0386 (9)	0.0482 (11)	0.0361 (9)	0.0049 (8)	0.0049 (7)	-0.0014 (8)
C5B	0.0437 (10)	0.0489 (12)	0.0453 (10)	0.0067 (8)	0.0062 (8)	-0.0010 (8)
C6B	0.0526 (12)	0.0586 (13)	0.0572 (12)	0.0100 (10)	-0.0076 (10)	0.0048 (10)
C7B	0.0434 (11)	0.0633 (14)	0.0558 (11)	0.0018 (9)	-0.0065 (9)	-0.0036 (10)
C8B	0.0485 (11)	0.0517 (12)	0.0478 (10)	0.0006 (9)	-0.0023 (9)	-0.0035 (9)
C9B	0.0402 (9)	0.0487 (11)	0.0342 (8)	0.0048 (8)	0.0051 (7)	-0.0017 (7)
C10B	0.0409 (9)	0.0455 (10)	0.0439 (9)	0.0006 (8)	-0.0058 (8)	-0.0040 (8)
C11B	0.0501 (11)	0.0409 (10)	0.0562 (11)	-0.0020 (8)	0.0052 (9)	-0.0017 (9)
C12B	0.0498 (11)	0.0520 (12)	0.0575 (12)	-0.0008 (9)	0.0070 (9)	-0.0061 (9)
C13B	0.0458 (11)	0.0551 (12)	0.0557 (11)	-0.0101 (9)	-0.0001 (9)	0.0018 (9)
C14B	0.0625 (13)	0.0432 (11)	0.0726 (14)	-0.0109 (10)	0.0000 (11)	-0.0026 (10)
C15B	0.0570 (13)	0.0439 (11)	0.0641 (13)	0.0013 (9)	-0.0010 (10)	-0.0111 (9)
C16B	0.0420 (10)	0.0467 (11)	0.0428 (9)	0.0054 (8)	0.0006 (8)	0.0003 (8)
C17B	0.0657 (14)	0.0561 (13)	0.0573 (12)	-0.0059 (11)	0.0186 (10)	-0.0036 (10)
C18B	0.0691 (15)	0.0678 (16)	0.0625 (14)	0.0010 (12)	0.0173 (12)	-0.0212 (12)
C19B	0.0551 (12)	0.0513 (13)	0.0697 (14)	0.0069 (10)	-0.0090 (11)	-0.0095 (11)
C20B	0.0912 (19)	0.0468 (13)	0.0725 (15)	-0.0048 (12)	0.0084 (14)	0.0094 (11)
C21B	0.0829 (16)	0.0534 (13)	0.0507 (12)	0.0017 (12)	0.0184 (11)	0.0030 (10)
C22B	0.0708 (15)	0.0574 (13)	0.0497 (11)	0.0034 (11)	-0.0101 (11)	-0.0021 (10)
C23B	0.0629 (14)	0.0806 (17)	0.0601 (13)	-0.0064 (13)	0.0093 (11)	0.0109 (12)
C24B	0.093 (2)	0.0580 (16)	0.114 (2)	0.0077 (15)	-0.0134 (18)	-0.0221 (16)
	~ /	× /		× /	× /	``'

Geometric parameters (Å, °)

O1A—C1A	1.204 (3)	C23A—H23B	0.9800	
O2A—C5A	1.222 (3)	C23A—H23C	0.9800	
O3A—C13A	1.369 (3)	C24A—H24A	0.9800	
O3A—C23A	1.400 (4)	C24A—H24B	0.9800	
N1A—C1A	1.380 (3)	C24A—H24C	0.9800	
N1A—C9A	1.412 (3)	O1B—C1B	1.209 (2)	
N1A—C16A	1.458 (3)	O2B—C5B	1.218 (3)	
N2A—C22A	1.136 (3)	O3B—C13B	1.378 (3)	
C1A—C2A	1.533 (3)	O3B—C23B	1.409 (3)	
C2A—C22A	1.476 (3)	N1B—C1B	1.376 (3)	
C2A—C3A	1.543 (3)	N1B—C9B	1.412 (3)	
C2A—H2A	1.0000	N1B—C16B	1.449 (3)	
C3A—C4A	1.510 (3)	N2B—C22B	1.145 (3)	
C3A—C10A	1.516 (3)	C1B—C2B	1.522 (3)	
СЗА—НЗА	1.0000	C2B—C22B	1.471 (3)	

C4A—C9A	1.345 (3)	C2B—C3B	1.544 (3)
C4A—C5A	1.465 (3)	C2B—H2B	1.0000
C5A—C6A	1.487 (6)	C3B—C4B	1.511 (3)
C5A—C6AA	1.515 (13)	C3B—C10B	1.522 (3)
C6A—C7A	1.382 (7)	C3B—H3B	1.0000
C6A—H6A1	0.9900	C4B—C9B	1.349 (3)
C6A—H6A2	0.9900	C4B—C5B	1.472 (3)
C7A—C8A	1 490 (10)	C5B—C6B	1504(3)
C7A—H7A1	0.9900	C6B—C7B	1.501(3)
C7A—H7A2	0.9900	C6B—H6BA	0.9900
C8A - C9A	1 503 (7)	C6B—H6BB	0.9900
C8A—H8A1	0.9900	C7B-C8B	1.514(3)
C8A = H8A2	0.9900	C7B—H7BA	0.9900
C6A A - C7A A	1 481 (13)	C7B-H7BB	0.9900
	0.0000	CSB COB	1.500(3)
C64 A - H644	0.9900	C8B - H8BA	0.9900
	1 556 (13)	C8B H8BB	0.9900
C7AA H7A3	0.0000	$C_{0}D_{-1}D_{0}D_{-1}D_{0}D_{-1}D_{0}D_{0}D_{0}D_{0}D_{0}D_{0}D_{0}D_{0$	1.396(3)
C7AA H7AA	0.9900	C10B - C15B	1.300(3) 1.301(3)
C^{AA}	0.9900 1 518 (14)	C_{11} C_{12} C	1.391(3) 1.398(3)
C8AA H8A3	0.0000	C11B H11B	0.9500
	0.9900	C12P C13P	1.378(3)
$C_{0}AA = 10A4$	1 380 (3)	C12D = C13D	1.378(3)
C10A = C11A	1.360(3) 1.202(2)	C12D— $C12DC12D$ — $C14D$	0.9300
$C_{11A} = C_{12A}$	1.392(3) 1.375(4)	C13D - C14D	1.362(3) 1.281(3)
C11A - C12A	1.575 (4)	C14D - C13D	1.381(3)
C12A = C12A	0.9300	$C14D$ — $\Pi14D$ C15D $U15D$	0.9500
C12A = C13A	1.579 (4)	CISD—HISB CI6P C21P	0.9300
C12A $C12A$ $C14A$	0.9300	C16D - C21B	1.300(3) 1.274(2)
C13A - C14A	1.377(3)	C10D - C17D	1.3/4(3) 1.295(2)
C14A = C13A	1.394 (3)	C17D U17D	1.383(3)
C15A = H15A	0.9300	C1/D— $H1/B$	0.9300
CISA—IIISA	0.9300		1.570 (4)
C1(A = C21A	1.371(3)		0.9300
C10A - C21A	1.374(3)	C19B—C20B	1.3/8(4) 1.50((2))
C17A - C18A	1.388 (4)	C19B—C24B	1.300(3)
C1/A - H1/A	0.9500	C20B-C21B	1.383 (4)
C18A—C19A	1.380 (4)	C20B—H20B	0.9500
CI8A—HI8A	0.9500	C21B—H21B	0.9500
C19A—C20A	1.375 (4)	C23B—H23D	0.9800
C19A—C24A	1.519 (3)	C23B—H23E	0.9800
C20A—C21A	1.391 (3)	C23B—H23F	0.9800
C20A—H20A	0.9500	C24B—H24D	0.9800
C21A—H21A	0.9500	C24B—H24E	0.9800
С23А—Н23А	0.9800	C24B—H24F	0.9800
C13A—O3A—C23A	119.0 (2)	O3A—C23A—H23B	109.5
C1A—N1A—C9A	122.95 (18)	H23A—C23A—H23B	109.5
C1A—N1A—C16A	116.59 (17)	O3A—C23A—H23C	109.5

C9A—N1A—C16A	120.30 (16)	H23A—C23A—H23C	109.5
O1A—C1A—N1A	122.7 (2)	H23B—C23A—H23C	109.5
O1A—C1A—C2A	123.00 (19)	C19A—C24A—H24A	109.5
N1A—C1A—C2A	114.25 (17)	C19A—C24A—H24B	109.5
C22A—C2A—C1A	109.44 (18)	H24A—C24A—H24B	109.5
C22A—C2A—C3A	112.57 (19)	C19A—C24A—H24C	109.5
C1A - C2A - C3A	113.61 (16)	H24A - C24A - H24C	109.5
$C^{22}A - C^{2}A - H^{2}A$	106.9	H24B - C24A - H24C	109.5
C1A - C2A - H2A	106.9	$C_{13B} = O_{3B} = C_{23B}$	116 91 (19)
C_{3A} C_{2A} H_{2A}	106.9	C1B $N1B$ $C9B$	122 42 (17)
C4A - C3A - C10A	113 21 (16)	C1B $N1B$ $C16B$	116 28 (16)
C4A - C3A - C2A	107 67 (17)	C9B—N1B—C16B	121 24 (15)
C10A - C3A - C2A	114 14 (17)	OIB_CIB_NIB	121.2 + (13) 122.5 (2)
$C_{4} = C_{3} = H_{3}$	107.1	O1B $C1B$ $C2B$	122.5(2) 122.54(18)
C10A - C3A - H3A	107.1	NIB_CIB_C2B	114 93 (16)
$C_{2} = C_{3} = H_{3}$	107.1	$C_{22}B = C_{22}B = C_{12}B$	107.18(18)
$C_{2A} = C_{3A} = H_{3A}$	107.1	$C_{22} = C_{22} = C_{12} = C_{13} = C$	107.18(18) 113.26(10)
$C_{A} = C_{A} = C_{A}$	120.91(10) 122.27(18)	$C_{22}D - C_{22}D - C_{3}D$	113.20(19) 113.74(15)
$C_{9A} = C_{4A} = C_{5A}$	122.37(10) 116.70(18)	C1D - C2D - C3D	113.74(13)
$C_{3A} = C_{4A} = C_{3A}$	110.70(10)	$C_{22}D - C_{22}D - D_{22}D$	107.5
$O_2A = C_5A = C_4A$	121.5(2)	CIB-C2B-H2B	107.5
$O_{2A} = C_{5A} = C_{6A}$	122.0(3)	$C_{3}D = C_{2}D = C_{1}D D$	107.3
C4A - C5A - C6A	110.0(3)	C4B = C3B = C10B	110.55(15)
O_{2A} C_{5A} C_{6AA}	116.4 (6)	C4B = C3B = C2B	107.16(17)
C4A - C5A - C6AA	122.0 (6)	C10B - C3B - C2B	116.00 (16)
C/A—C6A—C5A	119.8 (5)	C4B—C3B—H3B	107.6
С7А—С6А—Н6А1	107.4	C10B—C3B—H3B	107.6
С5А—С6А—Н6А1	107.4	C2B—C3B—H3B	107.6
C7A—C6A—H6A2	107.4	C9B—C4B—C5B	120.73 (17)
C5A—C6A—H6A2	107.4	C9B—C4B—C3B	122.01 (17)
H6A1—C6A—H6A2	106.9	C5B—C4B—C3B	117.10 (18)
C6A—C7A—C8A	114.0 (6)	O2B—C5B—C4B	120.75 (19)
C6A—C7A—H7A1	108.7	O2B—C5B—C6B	121.47 (19)
C8A—C7A—H7A1	108.7	C4B—C5B—C6B	117.77 (18)
C6A—C7A—H7A2	108.7	C5B—C6B—C7B	113.01 (18)
C8A—C7A—H7A2	108.7	C5B—C6B—H6BA	109.0
H7A1—C7A—H7A2	107.6	C7B—C6B—H6BA	109.0
C7A—C8A—C9A	113.4 (7)	C5B—C6B—H6BB	109.0
C7A—C8A—H8A1	108.9	C7B—C6B—H6BB	109.0
C9A—C8A—H8A1	108.9	H6BA—C6B—H6BB	107.8
C7A—C8A—H8A2	108.9	C6B—C7B—C8B	111.51 (18)
C9A—C8A—H8A2	108.9	C6B—C7B—H7BA	109.3
H8A1—C8A—H8A2	107.7	С8В—С7В—Н7ВА	109.3
С7АА—С6АА—С5А	110.6 (11)	C6B—C7B—H7BB	109.3
С7АА—С6АА—Н6А3	109.5	C8B—C7B—H7BB	109.3
С5А—С6АА—Н6А3	109.5	H7BA—C7B—H7BB	108.0
С7АА—С6АА—Н6А4	109.5	C9B—C8B—C7B	111.81 (18)
С5А—С6АА—Н6А4	109.5	C9B—C8B—H8BA	109.3
Н6А3—С6АА—Н6А4	108.1	C7B—C8B—H8BA	109.3

С6АА—С7АА—С8АА	123.9 (12)	C9B—C8B—H8BB	109.3
С6АА—С7АА—Н7А3	106.4	C7B—C8B—H8BB	109.3
С8АА—С7АА—Н7А3	106.4	H8BA—C8B—H8BB	107.9
С6АА—С7АА—Н7А4	106.4	C4B—C9B—N1B	120.81 (17)
С8АА—С7АА—Н7А4	106.4	C4B—C9B—C8B	123.09 (18)
Н7А3—С7АА—Н7А4	106.4	N1B—C9B—C8B	116.10 (18)
С9А—С8АА—С7АА	109.2 (12)	C11B—C10B—C15B	117.5 (2)
С9А—С8АА—Н8А3	109.8	C11B—C10B—C3B	122.08 (18)
С7АА—С8АА—Н8А3	109.8	C15B—C10B—C3B	120.23 (19)
С9А—С8АА—Н8А4	109.8	C10B—C11B—C12B	121.7 (2)
С7АА—С8АА—Н8А4	109.8	C10B—C11B—H11B	119.2
H8A3—C8AA—H8A4	108.3	C12B—C11B—H11B	119.2
C4A—C9A—N1A	120.92 (18)	C13B—C12B—C11B	119.6 (2)
C4A—C9A—C8A	121.5 (4)	C13B—C12B—H12B	120.2
N1A—C9A—C8A	117.5 (4)	C11B—C12B—H12B	120.2
C4A - C9A - C8AA	125.8 (7)	O3B-C13B-C12B	123.5 (2)
N1A—C9A—C8AA	1131(7)	O3B-C13B-C14B	116.8(2)
C15A - C10A - C11A	117.6 (2)	C12B $C13B$ $C14B$	110.0(2) 119.7(2)
C15A - C10A - C3A	123.09(18)	C15B— $C14B$ — $C13B$	1201(2)
$C_{11A} - C_{10A} - C_{3A}$	119 35 (18)	C15B $C14B$ $H14B$	119.9
C12A— $C11A$ — $C10A$	121 4 (2)	C13B— $C14B$ — $H14B$	119.9
C12A— $C11A$ — $H11A$	119 3	C14B— $C15B$ — $C10B$	121.2(2)
C10A - C11A - H11A	119.3	C14B— $C15B$ — $H15B$	119.4
C11A - C12A - C13A	120 4 (2)	C10B $C15B$ $H15B$	119.4
$C_{11A} - C_{12A} - H_{12A}$	119.8	C_{21B} C_{16B} C_{17B}	119.6(2)
C13A - C12A - H12A	119.8	$C_{21B} = C_{16B} = N_{1B}$	119.62 (19)
O3A - C13A - C14A	125.0(2)	C17B— $C16B$ — $N1B$	120 78 (19)
O3A - C13A - C12A	115.6(2)	C16B— $C17B$ — $C18B$	120.70(1)
C14A - C13A - C12A	119.4 (2)	C_{16B} C_{17B} H_{17B}	120.1
C13A - C14A - C15A	119.9 (2)	C18B— $C17B$ — $H17B$	120.1
C13A - C14A - H14A	120.1	C19B— $C18B$ — $C17B$	120.1 121.7(2)
C15A - C14A - H14A	120.1	C19B $C18B$ $H18B$	119.2
C10A - C15A - C14A	120.1 121.4(2)	C17B $C18B$ $H18B$	119.2
C10A - C15A - H15A	119 3	C_{18B} C_{19B} C_{20B}	117.2
C_{14A} C_{15A} H_{15A}	119.3	C_{18B} C_{19B} C_{24B}	1209(3)
C17A - C16A - C21A	120.6 (2)	C_{20B} C_{19B} C_{24B}	120.9(3) 121.7(3)
C17A - C16A - N1A	120.0(2) 120.6(2)	$C_{19B} = C_{20B} = C_{21B}$	121.7(3) 121.6(2)
$C_{21}A - C_{16}A - N_{14}A$	120.0(2) 118.7(2)	$C_{19B} = C_{20B} = H_{20B}$	119.2
C_{16A} C_{17A} C_{18A}	110.7(2) 119.1(2)	$C_{21B} = C_{20B} = H_{20B}$	119.2
$C_{16A} = C_{17A} = H_{17A}$	120.4	$C_{16B} = C_{21B} = C_{20B}$	119.2 120.0 (2)
C18A - C17A - H17A	120.4	$C_{16B} = C_{21B} = C_{20B}$	120.0 (2)
C19A - C18A - C17A	120.4	C_{20B} C_{21B} H_{21B} H_{21B}	120.0
C19A - C18A - H18A	110.3	N2B C22B C22B	120.0 179.0(3)
C17A - C18A - H18A	119.3	O3B - C22B - C22B	109.5
C_{20A} C_{19A} C_{18A}	118.6 (2)	O3B-C23B-H23F	109.5
C_{20A} C_{19A} C_{24A}	119.8 (2)	H_{23D} C_{23B} H_{23E}	109.5
C18A - C19A - C24A	1216(2)	O3B-C23B-H23F	109.5
C19A = C20A = C21A	121.0(2) 120.8(2)	$H_{23D} = C_{23D} = H_{23F}$	109.5
U177-U20A-U21A	120.0 (2)	112JD—C2JD—II2JI	102.5

C19A—C20A—H20A	119.6	H23E—C23B—H23F	109.5
C21A—C20A—H20A	119.6	C19B—C24B—H24D	109.5
C16A—C21A—C20A	119.5 (2)	C19B—C24B—H24E	109.5
C16A—C21A—H21A	120.2	H24D—C24B—H24E	109.5
C20A—C21A—H21A	120.2	C19B—C24B—H24F	109.5
N2A—C22A—C2A	178.0 (3)	H24D—C24B—H24F	109.5
N2A—C22A—C2A	178.0 (3)	H24D—C24B—H24F	109.5
O3A—C23A—H23A	109.5	H24E—C24B—H24F	

Hydrogen-bond geometry (Å, °)

Cg4 and Cg9 are the centroids of the C10A-C15A and C16B-C21B rings, respectively.

<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
0.95	2.65	3.258 (4)	123
0.95	2.65	3.417 (3)	139
1.00	2.37	3.171 (2)	136
0.98	2.93	3.868 (3)	160
0.98	2.74	3.710 (3)	169
	D—H 0.95 0.95 1.00 0.98 0.98	D—H H···A 0.95 2.65 0.95 2.65 1.00 2.37 0.98 2.93 0.98 2.74	D—H H···A D···A 0.95 2.65 3.258 (4) 0.95 2.65 3.417 (3) 1.00 2.37 3.171 (2) 0.98 2.93 3.868 (3) 0.98 2.74 3.710 (3)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) *x*, *y*-1, *z*; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+1.