addenda and errata

ISSN 2056-9890

Received 26 February 2021 Accepted 26 February 2021

Keywords: CCDC reference: 2066475

Supporting information: this article has supporting information at journals.iucr.org/e

Chloridotetrakis(imidazole)copper(II) chloride. Corrigendum

Ting Bin Li,* Ya Li Hu, Ji Kun Li and Guo Fang He

Department of Materials Science and Technology, Taishan University, Taian 271021, People's Republic of China. *Correspondence e-mail: tscltb@126.com

In the article by Li et al. [Acta Cryst. (2007), E63, m2536], four imidazole H atoms are missing in the refinement.

The structure of chloridotetrakis(imidazole)copper(II) chloride, reported in the article by Li et al. (2007), has been

Figure 1 Chemical scheme for chloridotetrakis(imidazole)copper(II) chloride.

Table 1 Experimental details. Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) β (°) $V(Å^3)$ Ζ Radiation type $\mu \text{ (mm}^{-1})$ Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$

 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$

Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters H-atom treatment $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$

[CuCl(C₃H₄N₂)₄]Cl 406.77 Monoclinic, $P2_1/n$ 293 8.8662 (3), 13.3199 (4), 13.9190 (4) 90.042 (1) 1643.79 (9) 4 Μο Κα 1.67 $0.15 \times 0.12 \times 0.10$

Bruker CCD Multi-scan (SADABS; Krause et al., 2015) 0.788, 0.851 18819, 3317, 2798

0.039 0.650

0.026, 0.057, 0.94 3317 209 H-atom parameters constrained 0.25, -0.37

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXT (Sheldrick, 2015a) and SHELXL2018 (Sheldrick, 2015b).

rerefined to include four missing imidazole H atoms. The crystal was twinned by pseudomerohedry, which was dealt with using standard *SHELXL* methods (TWIN and BASF commands). The revised crystal data, data collection and structure refinement details are summarized in Table 1 and the revised chemical drawing is shown in Fig. 1.

References

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Li, T. B., Hu, Y. L., Li, J. K. & He, G. F. (2007). Acta Cryst. E63, m2536.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2021). E77, 450-451 [https://doi.org/10.1107/S2056989021002267]

Chloridotetrakis(imidazole)copper(II) chloride. Corrigendum

Ting Bin Li, Ya Li Hu, Ji Kun Li and Guo Fang He

Chloridotetrakis(imidazole)copper(II) chloride

Crystal data $[CuCl(C_3H_4N_2)_4]Cl$ $M_r = 406.77$ Monoclinic, $P2_1/n$ a = 8.8662 (3) Åb = 13.3199 (4) Å c = 13.9190 (4) Å $\beta = 90.042 (1)^{\circ}$ V = 1643.79 (9) Å³ Z = 4Data collection

Bruker CCD diffractometer Radiation source: fine-focus sealed-tube Detector resolution: 9.1 pixels mm⁻¹ φ and ω scans at fixed $\gamma = 55^{\circ}$ Absorption correction: multi-scan (SADABS; Krause et al., 2015) $T_{\rm min} = 0.788, T_{\rm max} = 0.851$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.057$ H-atom parameters constrained S = 0.94 $w = 1/[\sigma^2(F_0^2) + (0.022P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ 3317 reflections 209 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$ 0 restraints Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Acta Cryst. (2021). E77, 450-451

F(000) = 828 $D_{\rm x} = 1.644 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 8636 reflections $\theta = 2.7 - 27.4^{\circ}$ $\mu = 1.67 \text{ mm}^{-1}$ T = 293 KBlock, blue $0.15\times0.12\times0.10~mm$

18819 measured reflections 3317 independent reflections 2798 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.039$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -17 \rightarrow 17$ $l = -17 \rightarrow 17$

Hydrogen site location: difference Fourier map

supporting information

	x	V	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	
Cul	0.68666 (3)	0.28667 (2)	0.37745 (2)	0.02393 (7)	
N1	0.6959 (2)	0.28765 (13)	0.23419 (13)	0.0259 (4)	
N2	0.6679 (2)	0.32558 (15)	0.08280 (14)	0.0348 (5)	
H2N	0.636864	0.355523	0.031725	0.042*	
N3	0.58536 (18)	0.15168 (11)	0.37424 (14)	0.0261 (4)	
N4	0.4040 (2)	0.04018 (13)	0.37092 (16)	0.0356 (4)	
H4N	0.314625	0.015090	0.369077	0.043*	
N5	0.6952 (2)	0.27930 (12)	0.52089 (13)	0.0279 (4)	
N6	0.6741 (3)	0.31834 (16)	0.67249 (14)	0.0378 (5)	
H6N	0.649042	0.350481	0.723635	0.045*	
N7	0.85774 (18)	0.38627 (12)	0.37990 (14)	0.0272 (4)	
N8	1.0848 (2)	0.44900 (14)	0.37450 (16)	0.0391 (5)	
H8N	1.181520	0.452439	0.371463	0.047*	
C1	0.6293 (3)	0.34862 (18)	0.17279 (17)	0.0307 (5)	
H1	0.564507	0.400524	0.189836	0.037*	
C2	0.7649 (3)	0.24628 (19)	0.08597 (19)	0.0388 (6)	
H2	0.810447	0.214439	0.034083	0.047*	
C3	0.7813 (3)	0.22351 (17)	0.17973 (17)	0.0332 (6)	
H3	0.841423	0.172116	0.203825	0.040*	
C4	0.4387 (2)	0.13815 (16)	0.37156 (17)	0.0306 (5)	
H4	0.368157	0.189789	0.370286	0.037*	
C5	0.5354 (2)	-0.01236 (16)	0.3737 (2)	0.0391 (5)	
Н5	0.546237	-0.081805	0.374264	0.047*	
C6	0.6467 (2)	0.05655 (15)	0.3755 (2)	0.0359 (5)	
H6	0.749319	0.042122	0.377214	0.043*	
C7	0.6409 (3)	0.34477 (18)	0.58258 (18)	0.0334 (6)	
H7	0.586607	0.401851	0.565718	0.040*	
C8	0.7550 (3)	0.2312 (2)	0.6690 (2)	0.0421 (7)	
H8	0.793436	0.195461	0.720941	0.050*	
С9	0.7680 (3)	0.20719 (18)	0.57536 (18)	0.0354 (6)	
H9	0.817889	0.151193	0.551229	0.042*	
C10	1.0020 (2)	0.36497 (17)	0.3752 (2)	0.0347 (5)	
H10	1.041431	0.300308	0.372764	0.042*	
C11	0.9878 (3)	0.52801 (17)	0.3794 (2)	0.0415 (6)	
H11	1.012833	0.595805	0.380273	0.050*	
C12	0.8483 (2)	0.48821 (16)	0.3828 (2)	0.0367 (5)	
H12	0.759181	0.524784	0.386633	0.044*	
Cl1	0.44359 (6)	0.39845 (4)	0.37917 (5)	0.03331 (12)	
C12	1.05460 (6)	0.09206 (4)	0.37508 (5)	0.03696 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02695 (13)	0.02467 (12)	0.02018 (13)	-0.00402 (10)	-0.00038 (13)	-0.00037 (12)
N1	0.0273 (10)	0.0266 (9)	0.0237 (10)	-0.0037 (8)	-0.0006 (8)	0.0001 (7)

supporting information

N2	0.0360 (11)	0.0460 (12)	0.0225 (10)	-0.0039 (10)	-0.0034 (9)	0.0096 (9)
N3	0.0288 (9)	0.0259 (8)	0.0236 (9)	-0.0016 (7)	0.0004 (9)	-0.0013 (9)
N4	0.0293 (9)	0.0336 (10)	0.0440 (12)	-0.0093 (8)	-0.0001 (10)	-0.0009 (10)
N5	0.031 (1)	0.0302 (9)	0.0225 (10)	-0.0027 (8)	0.0000 (9)	-0.0005 (8)
N6	0.0375 (12)	0.0557 (13)	0.0202 (10)	-0.0025 (11)	0.0028 (10)	-0.0095 (9)
N7	0.0291 (9)	0.0289 (9)	0.0236 (9)	-0.0028 (7)	-0.0004 (9)	0.0008 (8)
N8	0.0235 (9)	0.0516 (11)	0.0421 (11)	-0.0108 (8)	0.0014 (11)	-0.0032 (12)
C1	0.0297 (13)	0.0338 (13)	0.0286 (13)	-0.0002 (10)	-0.0006 (10)	0.0024 (10)
C2	0.0491 (17)	0.0373 (13)	0.0301 (14)	-0.0023 (11)	0.0079 (12)	-0.0052 (11)
C3	0.0391 (15)	0.0295 (12)	0.0310 (14)	0.0038 (10)	0.0036 (11)	0.0003 (10)
C4	0.0313 (11)	0.0302 (11)	0.0303 (12)	0.0012 (9)	-0.0010 (12)	0.0011 (10)
C5	0.0376 (12)	0.0234 (10)	0.0563 (15)	-0.0005 (9)	-0.0038 (14)	0.0010 (13)
C6	0.0296 (11)	0.0304 (10)	0.0477 (14)	0.0029 (8)	0.0006 (13)	-0.0008 (13)
C7	0.0325 (14)	0.0356 (13)	0.0321 (13)	-0.0019 (10)	-0.0009 (10)	-0.0044 (10)
C8	0.0417 (15)	0.0546 (17)	0.0299 (15)	0.0018 (13)	-0.0061 (12)	0.0089 (12)
C9	0.0389 (14)	0.0367 (13)	0.0306 (14)	0.0048 (11)	-0.0027 (11)	0.0012 (10)
C10	0.0337 (12)	0.0314 (11)	0.0390 (13)	-0.0017 (9)	-0.0002 (12)	-0.0019 (12)
C11	0.0449 (14)	0.0307 (12)	0.0489 (15)	-0.0092 (10)	0.0008 (14)	0.0005 (13)
C12	0.0337 (12)	0.0289 (11)	0.0476 (14)	0.0013 (9)	0.0003 (13)	0.0008 (12)
Cl1	0.0305 (3)	0.0333 (3)	0.0362 (3)	0.0070 (2)	-0.0006 (3)	-0.0032 (3)
Cl2	0.0329 (3)	0.0478 (3)	0.0302 (3)	-0.0087 (2)	0.0001 (3)	-0.0025 (3)

Geometric parameters (Å, °)

Cu1—N1	1.9959 (18)	N7—C12	1.361 (3)
Cu1—N5	2.0002 (18)	N8—C10	1.338 (3)
Cu1—N3	2.0104 (16)	N8—C11	1.361 (3)
Cu1—N7	2.0154 (16)	N8—H8N	0.8600
Cu1—Cl1	2.6195 (5)	C1—H1	0.9300
N1—C1	1.318 (3)	C2—C3	1.348 (3)
N1—C3	1.371 (3)	C2—H2	0.9300
N2—C1	1.334 (3)	С3—Н3	0.9300
N2—C2	1.363 (3)	C4—H4	0.9300
N2—H2N	0.8600	C5—C6	1.348 (3)
N3—C4	1.313 (3)	C5—H5	0.9300
N3—C6	1.379 (2)	С6—Н6	0.9300
N4—C4	1.341 (3)	С7—Н7	0.9300
N4—C5	1.360 (3)	C8—C9	1.347 (4)
N4—H4N	0.8600	C8—H8	0.9300
N5—C7	1.315 (3)	С9—Н9	0.9300
N5—C9	1.383 (3)	C10—H10	0.9300
N6—C7	1.333 (3)	C11—C12	1.346 (3)
N6—C8	1.366 (3)	C11—H11	0.9300
N6—H6N	0.8600	C12—H12	0.9300
N7—C10	1.312 (3)		
N1—Cu1—N5	174.86 (7)	N1—C1—H1	124.7
N1—Cu1—N3	90.12 (7)	N2—C1—H1	124.7

N5-Cu1-N3	89 71 (7)	C_{3} C_{2} N2	105.9(2)
N1_Cu1_N7	88.92 (8)	C_{3} C_{2} H_{2}	103.7 (2)
N5 Cu1 N7	80.92 (8)	N2 C2 H2	127.1
$N_2 = C_{11} = N_7$	09.20(0)	$N_2 = C_2 = N_1$	12/.1
$N_1 = C_{11} = C_{11}$	137.71(7)	$C_2 = C_3 = H_2$	109.0(2)
NI-Cui-Cli	92.27(0)	C2-C3-H3	125.2
$N_{2} = C_{11} = C_{11}$	92.84 (0)	$NI = C_3 = H_3$	125.2
	98.11 (5)	N3—C4—N4	111.18 (19)
N = Cu = CI	104.18 (5)	N3—C4—H4	124.4
CI—NI—C3	105.83 (19)	N4—C4—H4	124.4
CI—NI—Cul	129.29 (16)	C6—C5—N4	106.12 (18)
C3—N1—Cu1	124.85 (15)	C6—C5—H5	126.9
C1—N2—C2	108.0 (2)	N4—C5—H5	126.9
C1—N2—H2N	126.0	C5—C6—N3	109.66 (19)
C2—N2—H2N	126.0	С5—С6—Н6	125.2
C4—N3—C6	105.36 (17)	N3—C6—H6	125.2
C4—N3—Cu1	124.45 (14)	N5—C7—N6	110.9 (2)
C6—N3—Cu1	130.19 (14)	N5—C7—H7	124.5
C4—N4—C5	107.68 (18)	N6—C7—H7	124.5
C4—N4—H4N	126.2	C9—C8—N6	106.4 (2)
C5—N4—H4N	126.2	С9—С8—Н8	126.8
C7—N5—C9	105.9 (2)	N6—C8—H8	126.8
C7—N5—Cu1	127.25 (17)	C8—C9—N5	109.0 (2)
C9—N5—Cu1	126.77 (15)	С8—С9—Н9	125.5
C7—N6—C8	107.9 (2)	N5—C9—H9	125.5
C7—N6—H6N	126.1	N7-C10-N8	110.73(19)
C8 - N6 - H6N	126.1	N7-C10-H10	124.6
C10 N7 C12	106.09 (18)	N8_C10_H10	124.6
C10 - N7 - C12	$126\ 20\ (14)$	C12 - C11 - N8	124.0 106 1 (2)
$C_{10} = N7 = C_{11}$	120.20(14) 127.67(14)	$C_{12} = C_{11} = N_0$	100.1 (2)
C_{12} N_{12} C_{11}	127.07(14) 107.46(18)	$N_{2} = C_{11} = H_{11}$	120.9
C10 N9 U9N	107.40 (10)	$N_{0} = C_{11} = M_{11}$	120.9
	120.5	CII = CI2 = N/	109.0 (2)
CII—N8—H8N	126.3	CII—CI2—HI2	125.2
NI-CI-N2	110.6 (2)	N/C12H12	125.2
C3 - N1 - C1 - N2	0.4 (3)	C9—N5—C7—N6	-0.3(3)
Cu1 - N1 - C1 - N2	178 33 (16)	Cu1 - N5 - C7 - N6	-17665(17)
$C_2 N_2 C_1 N_1$	-0.4(3)	C8 - N6 - C7 - N5	03(3)
C1 - N2 - C2 - C3	0.1(3)	C7 - N6 - C8 - C9	-0.1(3)
$N_{2} - C_{2} - C_{3} - N_{1}$	0.0(3)	N6-C8-C9-N5	-0.1(3)
C1 - N1 - C3 - C2	-0.2(3)	C7 - N5 - C9 - C8	0.1(3)
$C_1 = N_1 = C_2 = C_2$	-178 27 (18)	C_{11} N5 C_{20} C_{8}	17650(10)
C_{u1} N_1 C_3 C_4 N_4	-0.1(2)	$C_{11} = N_{13} = C_{23} = C_{33}$	-0.4(3)
$C_{11} = \frac{1}{2} C_{11} = \frac{1}{2} C_{1$	-170.25(16)	$C_{12} = \frac{N7}{C_{10}} = \frac{10}{N6}$	0.4(3)
$C_{1} = 103 = C_{4} = 104$	-1/9.55(10)	$C_{11} = N / - C_{10} = N \delta$	1/1.33(10)
$C_{1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	0.2(3)	$C_{11} = N_0 = C_{11} = C_{12}$	0.3(3)
$U_4 - I_N 4 - U_3 - U_0$	-0.3(3)	$U_{10} - N_{0} - U_{11} - U_{12}$	-0.1(3)
IN4 - U3 - U6 - IN3	0.3(3)	NO - UI - UI - N/	-0.1(3)
U4—N3—U6—U5	-0.1(3)	C10—N/—C12—C11	0.3 (3)
Cu1—N3—C6—C5	179.09 (19)	Cu1—N7—C12—C11	-177.3(2)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2N····Cl2 ⁱ	0.86	2.40	3.251 (2)	169
N4—H4N····Cl2 ⁱⁱ	0.86	2.52	3.1742 (19)	133
N6—H6N····Cl2 ⁱⁱⁱ	0.86	2.39	3.241 (2)	168
N8—H8 <i>N</i> ···Cl1 ^{iv}	0.86	2.43	3.2523 (19)	159

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) *x*-1, *y*, *z*; (iii) *x*-1/2, -*y*+1/2, *z*+1/2; (iv) *x*+1, *y*, *z*.