

Received 2 February 2021 Accepted 14 February 2021

Edited by A. V. Yatsenko, Moscow State University, Russia

**Keywords:** crystal structure; hydrogen bond; phenol; aromatic ether; phenoxy; azomethines; Hirshfeld surface analysis.

CCDC reference: 2062957

**Supporting information**: this article has supporting information at journals.iucr.org/e

# Crystal structure and Hirshfeld surface analysis of 3-[(1*E*)-(4-{4-[(*E*)-(3-hydroxybenzylidene)amino]phenoxy}phenylimino)methyl]phenol

# Shaaban K. Mohamed,<sup>a,b</sup> Joel T. Mague,<sup>c</sup> Mehmet Akkurt,<sup>d</sup> Farouq E. Hawaiz,<sup>e</sup> Sahar M. I. Elgarhy<sup>f</sup> and Elham A. Al-Taifi<sup>g</sup>\*

<sup>a</sup>Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, <sup>b</sup>Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, <sup>c</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, <sup>d</sup>Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, <sup>e</sup>Chemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq, <sup>f</sup>Faculty of Science, Department of Biochemistry, Beni Suef University, Beni Suef, Egypt, and <sup>g</sup>Department of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen. \*Correspondence e-mail: shaabankamel@yahoo.com

In the crystal, the molecule of the title compound,  $C_{26}H_{20}N_2O_3$ , has crystallographically imposed twofold rotation symmetry. The crystal packing consists of layers parallel to the *ab* plane formed by  $O-H\cdots N$  and  $C-H\cdots O$  hydrogen bonds. Between the layers,  $C-H\cdots \pi$  interactions are observed.

#### 1. Chemical context

Several Schiff bases have been reported for their significant biological activities such as antitumor (Mansouri *et al.*, 2013), anti-inflammatory (Shukla & Mishra, 2019), antibacterial (Van Zee & Coates, 2015) or antimicrobial (Pagadala *et al.*, 2015). Schiff bases are also used as versatile components in nucleophilic addition with organometallic reagents and in cycloaddition reactions (Mohan *et al.*, 2012). These findings prompted us to investigate the crystal structure of the title compound.







#### 2. Structural commentary

The molecule of the title compound has crystallographically imposed twofold rotation symmetry (Fig. 1). The dihedral angle between the two unique benzene rings is 40.68 (6)° while the dihedral angle between the two central benzene rings is 77.71 (6)°. Bond lengths are typical for this kind of compounds.

#### 3. Supramolecular features

In the crystal,  $O2-H2A\cdots N1$  and  $C5-H5\cdots O2$  hydrogen bonds link the molecules into layers parallel to the *ab* plane

**Table 1** Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 benzene ring.

| $D - H \cdots A$                                                                                                                                              | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|--------------|------------------|
| $\begin{array}{c} \text{O2-H2}A\cdots\text{N1}^{\text{i}}\\ \text{C5-H5}\cdots\text{O2}^{\text{ii}}\\ \text{C12-H11}\cdots\text{Cg1}^{\text{ii}} \end{array}$ | 0.972 (19) | 1.828 (19)              | 2.7615 (12)  | 160.1 (16)       |
|                                                                                                                                                               | 0.973 (13) | 2.431 (14)              | 3.1121 (14)  | 126.7 (10)       |
|                                                                                                                                                               | 1.004 (14) | 2.986 (15)              | 3.9882 (12)  | 178.7 (19)       |

Symmetry codes: (i)  $-x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii)  $-x + \frac{1}{2}$ ,  $y + \frac{3}{2}$ ,  $-z + \frac{1}{2}$ .

(Table 1, Fig. 2). The layers are hold together by  $C-H\cdots\pi$  contacts (Table 1, Fig. 3) and by other van der Waals interactions (Table 2).



Figure 1

The title molecule with labeling scheme and 50% probability ellipsoids [symmetry code: (i) -x + 1, y,  $-z + \frac{1}{2}$ ].



Figure 2

The layer structure viewed along the *c*-axis direction. The intermolecular  $O-H\cdots N$  and  $C-H\cdots O$  hydrogen bonds are shown as red and black dashed lines, respectively.



Figure 3

Side view of two layers seen along the *b*-axis direction. Hydrogen bonds and  $C-H\cdots\pi$  interactions are depicted by dashed lines.

| Table 2                       |        |     |       |         |      |
|-------------------------------|--------|-----|-------|---------|------|
| Short intermolecular contacts | (Å) in | the | title | structu | ire. |

| Contact                    | Distance    | Symmetry operation                        |
|----------------------------|-------------|-------------------------------------------|
| H12···O1                   | 2.763 (14)  | 1 - x, 2 - y, 1 - z                       |
| $H6 \cdot \cdot \cdot H11$ | 2.53 (2)    | $x, 2 - y, -\frac{1}{2} + z$              |
| $C3 \cdot \cdot \cdot C6$  | 3.5155 (15) | x, -1 + y, z                              |
| C6···H11                   | 2.892 (15)  | $x, 1 - y, -\frac{1}{2} + z$              |
| C11···C11                  | 3.319 (2)   | $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$ |
| $H11 \cdot \cdot \cdot H2$ | 2.40 (3)    | 1 - x, 1 - y, 1 - z                       |

#### 4. Hirshfeld surface analysis

Hirshfeld surface analysis, together with two-dimensional fingerprint plots, is an important tool for visualizing and analyzing intermolecular contacts in molecular crystals. The corresponding surfaces and fingerprint plots were prepared by *CrystalExplorer* (Turner *et al.*, 2017). Fig. 4 shows the  $d_{\text{norm}}$  map for the title molecule, with red spots indicating the positions of  $H \cdots N$  contacts arising from the  $O-H \cdots N$  hydrogen bonds.

Fig. 5 shows the two-dimensional fingerprint plots, which give the contributions of intermolecular contacts to the Hirshfeld surface. The most important contribution to the Hirshfeld surface (41.6%) is from  $H \cdot \cdot \cdot H$  contacts.  $C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$  and  $O \cdot \cdot \cdot H/H \cdot \cdot \cdot O$  interactions follow with 28.1% and 13.8% contributions, respectively. Other minor contributors are  $C \cdot \cdot \cdot C$  (5.3%),  $N \cdot \cdot H/H \cdot \cdot \cdot N$  (4.8%),  $O \cdot \cdot C/C \cdot \cdot O$  (3.8%) and  $N \cdot \cdot \cdot C/C \cdot \cdot \cdot N$  (2.6%) contacts.

#### 5. Database survey

Five related compounds with a 4-[(E)-benzylideneamino]phenol skeleton are:  $(E)-2-\{[(2-aminophenyl)mino]methyl\}-$ 





## research communications

5-(benzyloxy)phenol (NIBRIC; Ghichi *et al.*, 2018), (*Z*)-3-(benzyloxy)-6-{[(5-chloro-2-hydroxyphenyl)amino]methylidene}cyclohexa-2,4-dien-1-one (NIBROI; Ghichi *et al.*, 2018), 2-{(*E*)-[(2-methyl-3-nitrophenyl)imino]methyl}-4-nitrophenol (AFOPUI; Tanak *et al.*, 2013), 2-[(*E*)-(2-chlorophenyl)iminomethyl]-6-methylphenol (SABKOX; Zhu *et al.*, 2010) and 2-{[(2,4-dimethylphenyl)imino]methyl}-6-methylphenol (MUCDIY; Tanak *et al.*, 2009).

In the crystal of NIBRIC, strong N-H···O hydrogen bonds form zigzag chains of molecules along the b-axis direction. Weaker C-H··· $\pi$  and offset  $\pi$ - $\pi$  stacking interactions also contribute to the packing. For NIBROI, pairs of strong O-H···O hydrogen bonds form centrosymmetric dimers that enclose  $R_2^2(18)$  rings. These combine with weaker C-H···Cl hydrogen bonds, which also generate centrosymmetric dimers, but with  $R_2^2(14)$  motifs. Inversion-related C- $H \cdots \pi$  contacts lead to the formation of sheets of molecules parallel to (120), which are stacked approximately along the baxis direction. In the crystal of AFOPUI, molecules are linked by C-H···O interactions, forming two-dimensional sheets parallel to the bc plane. In the structure of SABKOX, the hydroxy H atom is involved in a strong intramolecular O- $H \cdots N$  hydrogen bond, generating a S(6) ring. The molecular structure of MUCDIY is stabilized by an intramolecular O- $H \cdots N$  hydrogen bond, which generates a six membered ring.





#### Figure 5

A view of the two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b)  $H \cdots H$ , (c)  $C \cdots H/H \cdots C$  and (d)  $O \cdots H/H \cdots O$  interactions. The  $d_i$  and  $d_e$  values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

| Table  | 3      |          |
|--------|--------|----------|
| Experi | mental | details. |

| Crystal data                                                                 |                                          |
|------------------------------------------------------------------------------|------------------------------------------|
| Chemical formula                                                             | $C_{26}H_{20}N_2O_3$                     |
| M <sub>r</sub>                                                               | 408.44                                   |
| Crystal system, space group                                                  | Monoclinic, C2/c                         |
| Temperature (K)                                                              | 150                                      |
| a, b, c (Å)                                                                  | 26.8396 (6), 5.1174 (1), 17.2574 (4)     |
| $\beta$ (°)                                                                  | 121.764 (1)                              |
| $V(Å^3)$                                                                     | 2015.27 (8)                              |
| Ζ                                                                            | 4                                        |
| Radiation type                                                               | Cu Ka                                    |
| $\mu \text{ (mm}^{-1})$                                                      | 0.72                                     |
| Crystal size (mm)                                                            | $0.25 \times 0.06 \times 0.06$           |
| Data collection                                                              |                                          |
| Diffractometer                                                               | Bruker D8 VENTURE PHOTON<br>100 CMOS     |
| Absorption correction                                                        | Multi-scan (SADABS; Krause et al., 2015) |
| $T_{\min}, T_{\max}$                                                         | 0.90, 0.96                               |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 15449, 1880, 1767                        |
| R <sub>int</sub>                                                             | 0.031                                    |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                         | 0.609                                    |
| Refinement                                                                   |                                          |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.033, 0.086, 1.05                       |
| No. of reflections                                                           | 1880                                     |
| No. of parameters                                                            | 182                                      |
| H-atom treatment                                                             | All H-atom parameters refined            |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.19, -0.16                              |

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2016/6* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

#### 6. Synthesis and crystallization

Condensation of 1 mmol of 4,4'-oxydibenzaldehyde (226 mg) with 2 mmol of 3-aminophenol (218 mg) in ethanol under reflux for 4 h afforded the crude product of the title compound. The product was crystallized from ethanol by slow evaporation to obtain good quality crystals for X-ray diffraction. Yield 82%.

#### 7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located in a difference-Fourier map and refined freely.

#### **Funding information**

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

#### References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Ghichi, N., Benboudiaf, A., Bensouici, C., DJebli, Y. & Merazig, H. (2018). Acta Cryst. E74, 737–742.

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Mansouri, T. H., Somaye, S., Nezami, Z. S., Ghahghaei, A. & Najmedini, S. (2013). J. Biomol. Struct. Dyn. 30, 23–31.
- Mohan, C. S., Balamurugan, V., Elayaraja, R. & Prabakaran, A. S. (2012). Int. J. Pharm. Sci. Res. 3, 881-885.
- Pagadala, R., Kusampally, U., Rajanna, K. C. & Meshram, J. S. (2015). J. Heterocycl. Chem. 52, 403–410.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shukla, S. & Mishra, A. P. (2019). Arabian Journal of Chemistry, 12, 1715–1721.

- Tanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291.
- Tanak, H., Toğurman, F., Kalecik, S., Dege, N. & Yavuz, M. (2013). *Acta Cryst.* E**69**, 01085.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer*. University of Western Australia. http://hirshfeldsurface.net.
- Van Zee, N. J. & Coates, G. W. (2015). Angew. Chem. Int. Ed. 54, 2665–2668.
- Zhu, P., Yu, J., Wang, H., Zhang, C. & Yang, D. (2010). Acta Cryst. E66, o2460.

## supporting information

Acta Cryst. (2021). E77, 266-269 [https://doi.org/10.1107/S205698902100181X]

Crystal structure and Hirshfeld surface analysis of 3-[(1*E*)-(4-{4-[(*E*)-(3-hydroxy-benzylidene)amino]phenoxy}phenylimino)methyl]phenol

# Shaaban K. Mohamed, Joel T. Mague, Mehmet Akkurt, Farouq E. Hawaiz, Sahar M. I. Elgarhy and Elham A. Al-Taifi

## **Computing details**

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2016/6* (Sheldrick, 2015*b*); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

3-[(1*E*)-(4-{4-[(*E*)-(3-Hydroxybenzylidene)amino]phenoxy}phenylimino)methyl]phenol

Crystal data

 $C_{26}H_{20}N_2O_3$   $M_r = 408.44$ Monoclinic, C2/c a = 26.8396 (6) Å b = 5.1174 (1) Å c = 17.2574 (4) Å  $\beta = 121.764$  (1)° V = 2015.27 (8) Å<sup>3</sup> Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer Radiation source: INCOATEC I $\mu$ S micro–focus source Mirror monochromator Detector resolution: 10.4167 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015)

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.033$  $wR(F^2) = 0.086$ S = 1.051880 reflections 182 parameters 0 restraints F(000) = 856  $D_x = 1.346 \text{ Mg m}^{-3}$ Cu K\alpha radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9934 reflections  $\theta = 3.9-69.8^{\circ}$   $\mu = 0.72 \text{ mm}^{-1}$  T = 150 KColumn, colourless  $0.25 \times 0.06 \times 0.06 \text{ mm}$ 

 $T_{\min} = 0.90, T_{\max} = 0.96$ 15449 measured reflections 1880 independent reflections 1767 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.031$  $\theta_{max} = 69.8^{\circ}, \theta_{min} = 3.9^{\circ}$  $h = -32 \rightarrow 32$  $k = -6 \rightarrow 6$  $l = -20 \rightarrow 20$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined  $w = 1/[\sigma^2(F_o^2) + (0.043P)^2 + 1.3008P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.19$  e Å<sup>-3</sup>  $\Delta \rho_{\rm min} = -0.16$  e Å<sup>-3</sup> Extinction correction: *SHELXL* 2016/6 (Sheldrick, 2015*b*),  $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0031 (2)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative F<sup>2</sup>. The threshold expression of F<sup>2</sup> > 2sigma(F<sup>2</sup>) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | x           | У            | Ζ           | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|-------------|--------------|-------------|-------------------------------|
| 01  | 0.500000    | 1.3874 (2)   | 0.250000    | 0.0267 (3)                    |
| O2  | 0.21618 (3) | 0.09976 (18) | 0.33558 (6) | 0.0336 (2)                    |
| H2A | 0.1966 (8)  | 0.182 (4)    | 0.2759 (13) | 0.066 (5)*                    |
| N1  | 0.36195 (4) | 0.78690 (18) | 0.33726 (6) | 0.0233 (2)                    |
| C1  | 0.46708 (5) | 1.2402 (2)   | 0.27573 (7) | 0.0228 (3)                    |
| C2  | 0.49250 (5) | 1.0380 (2)   | 0.33777 (8) | 0.0288 (3)                    |
| H2  | 0.5331 (6)  | 0.994 (3)    | 0.3625 (9)  | 0.035 (3)*                    |
| C3  | 0.45903 (5) | 0.8917 (2)   | 0.36148 (8) | 0.0276 (3)                    |
| Н3  | 0.4769 (6)  | 0.743 (3)    | 0.4038 (9)  | 0.033 (3)*                    |
| C4  | 0.39966 (4) | 0.9482 (2)   | 0.32294 (7) | 0.0220 (3)                    |
| C5  | 0.37512 (5) | 1.1545 (2)   | 0.26182 (7) | 0.0244 (3)                    |
| Н5  | 0.3337 (6)  | 1.192 (3)    | 0.2353 (9)  | 0.031 (3)*                    |
| C6  | 0.40866 (5) | 1.3034 (2)   | 0.23883 (7) | 0.0242 (3)                    |
| H6  | 0.3914 (5)  | 1.445 (3)    | 0.1965 (9)  | 0.030 (3)*                    |
| C7  | 0.38127 (5) | 0.6916 (2)   | 0.41641 (7) | 0.0254 (3)                    |
| H7  | 0.4211 (6)  | 0.744 (3)    | 0.4696 (10) | 0.035 (4)*                    |
| C8  | 0.35036 (5) | 0.4960 (2)   | 0.43754 (7) | 0.0238 (3)                    |
| C9  | 0.29481 (5) | 0.4001 (2)   | 0.37197 (7) | 0.0242 (3)                    |
| Н9  | 0.2735 (5)  | 0.460 (3)    | 0.3094 (9)  | 0.026 (3)*                    |
| C10 | 0.26950 (5) | 0.2038 (2)   | 0.39519 (7) | 0.0242 (3)                    |
| H10 | 0.2803 (6)  | -0.038 (3)   | 0.4990 (9)  | 0.030 (3)*                    |
| C11 | 0.29889 (5) | 0.1028 (2)   | 0.48379 (8) | 0.0262 (3)                    |
| H11 | 0.3729 (6)  | 0.127 (3)    | 0.6118 (10) | 0.034 (3)*                    |
| C12 | 0.35320 (5) | 0.2004 (2)   | 0.54851 (8) | 0.0278 (3)                    |
| H12 | 0.4190 (6)  | 0.465 (3)    | 0.5730 (9)  | 0.030 (3)*                    |
| C13 | 0.37916 (5) | 0.3963 (2)   | 0.52590 (8) | 0.0268 (3)                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

#### Atomic displacement parameters $(Å^2)$

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$ | $U^{13}$   | $U^{23}$ |
|----|------------|------------|------------|----------|------------|----------|
| 01 | 0.0298 (6) | 0.0206 (5) | 0.0400 (6) | 0.000    | 0.0254 (5) | 0.000    |

# supporting information

| 02  | 0.0266 (4) | 0.0395 (5) | 0.0285 (5) | -0.0111 (4) | 0.0103 (4) | -0.0010 (4) |
|-----|------------|------------|------------|-------------|------------|-------------|
| N1  | 0.0218 (5) | 0.0235 (5) | 0.0265 (5) | 0.0009 (4)  | 0.0141 (4) | 0.0018 (4)  |
| C1  | 0.0256 (5) | 0.0208 (5) | 0.0278 (6) | -0.0023 (4) | 0.0181 (5) | -0.0032 (4) |
| C2  | 0.0204 (5) | 0.0313 (6) | 0.0344 (6) | 0.0025 (5)  | 0.0142 (5) | 0.0046 (5)  |
| C3  | 0.0240 (6) | 0.0273 (6) | 0.0304 (6) | 0.0030 (5)  | 0.0136 (5) | 0.0066 (5)  |
| C4  | 0.0224 (5) | 0.0226 (5) | 0.0235 (5) | -0.0011 (4) | 0.0138 (4) | -0.0019 (4) |
| C5  | 0.0221 (5) | 0.0262 (6) | 0.0275 (6) | 0.0037 (4)  | 0.0148 (5) | 0.0013 (4)  |
| C6  | 0.0276 (6) | 0.0215 (5) | 0.0277 (6) | 0.0042 (4)  | 0.0175 (5) | 0.0020 (4)  |
| C7  | 0.0237 (5) | 0.0276 (6) | 0.0247 (6) | -0.0018 (4) | 0.0125 (5) | -0.0010 (4) |
| C8  | 0.0235 (5) | 0.0251 (6) | 0.0249 (6) | -0.0002 (4) | 0.0142 (5) | -0.0010 (4) |
| C9  | 0.0238 (5) | 0.0275 (6) | 0.0219 (6) | 0.0008 (4)  | 0.0124 (5) | 0.0012 (4)  |
| C10 | 0.0209 (5) | 0.0267 (6) | 0.0257 (6) | -0.0014 (4) | 0.0128 (5) | -0.0035 (4) |
| C11 | 0.0274 (6) | 0.0254 (6) | 0.0299 (6) | -0.0001 (4) | 0.0179 (5) | 0.0021 (4)  |
| C12 | 0.0271 (6) | 0.0317 (6) | 0.0249 (6) | 0.0033 (5)  | 0.0140 (5) | 0.0046 (5)  |
| C13 | 0.0224 (5) | 0.0325 (6) | 0.0237 (6) | -0.0011 (5) | 0.0109 (5) | -0.0003 (5) |
|     |            |            |            |             |            |             |

Geometric parameters (Å, °)

| 01-C1 <sup>i</sup> | 1.3992 (12) | С5—Н5       | 0.973 (13)  |
|--------------------|-------------|-------------|-------------|
| 01—C1              | 1.3993 (12) | С6—Н6       | 0.959 (14)  |
| O2—C10             | 1.3563 (13) | С7—С8       | 1.4634 (15) |
| O2—H2A             | 0.972 (19)  | С7—Н7       | 1.012 (14)  |
| N1—C7              | 1.2755 (14) | C8—C13      | 1.3935 (15) |
| N1—C4              | 1.4250 (13) | C8—C9       | 1.4028 (15) |
| C1—C2              | 1.3831 (16) | C9—C10      | 1.3848 (16) |
| C1—C6              | 1.3849 (15) | С9—Н9       | 0.967 (13)  |
| C2—C3              | 1.3865 (16) | C10-C11     | 1.3991 (16) |
| С2—Н2              | 0.965 (14)  | C11—C12     | 1.3812 (16) |
| C3—C4              | 1.3961 (15) | C11—H10     | 0.988 (14)  |
| С3—Н3              | 0.988 (15)  | C12—C13     | 1.3888 (16) |
| C4—C5              | 1.3891 (16) | C12—H11     | 1.004 (14)  |
| C5—C6              | 1.3871 (15) | C13—H12     | 1.007 (13)  |
| C1 <sup>i</sup>    | 114.87 (11) | N1—C7—C8    | 124.35 (10) |
| C10—O2—H2A         | 113.5 (11)  | N1—C7—H7    | 120.7 (8)   |
| C7—N1—C4           | 118.81 (9)  | C8—C7—H7    | 114.9 (8)   |
| C2—C1—C6           | 120.56 (10) | C13—C8—C9   | 119.77 (10) |
| C2-C1-O1           | 120.77 (9)  | C13—C8—C7   | 117.53 (10) |
| C6-C1-O1           | 118.66 (9)  | C9—C8—C7    | 122.65 (10) |
| C1—C2—C3           | 120.01 (10) | C10—C9—C8   | 119.69 (10) |
| С1—С2—Н2           | 119.8 (9)   | С10—С9—Н9   | 117.3 (8)   |
| С3—С2—Н2           | 120.1 (9)   | С8—С9—Н9    | 122.9 (8)   |
| C2—C3—C4           | 120.12 (10) | O2—C10—C9   | 123.21 (10) |
| С2—С3—Н3           | 119.8 (8)   | O2—C10—C11  | 116.53 (10) |
| С4—С3—Н3           | 120.0 (8)   | C9—C10—C11  | 120.26 (10) |
| C5—C4—C3           | 119.03 (10) | C12—C11—C10 | 119.88 (10) |
| C5—C4—N1           | 118.41 (9)  | C12—C11—H10 | 121.0 (8)   |
| C3—C4—N1           | 122.28 (10) | C10—C11—H10 | 119.1 (8)   |
|                    |             |             |             |

| C6—C5—C4             | 120.99 (10)  | C11—C12—C13     | 120.38 (10)  |
|----------------------|--------------|-----------------|--------------|
| С6—С5—Н5             | 120.6 (8)    | C11—C12—H11     | 118.1 (8)    |
| С4—С5—Н5             | 118.4 (8)    | C13—C12—H11     | 121.5 (8)    |
| C1—C6—C5             | 119.23 (10)  | C12—C13—C8      | 120.02 (10)  |
| С1—С6—Н6             | 120.2 (8)    | C12—C13—H12     | 120.2 (8)    |
| С5—С6—Н6             | 120.5 (8)    | C8—C13—H12      | 119.8 (8)    |
|                      |              |                 |              |
| C1 <sup>i</sup> O1C2 | 49.26 (9)    | C4—N1—C7—C8     | -171.34 (10) |
| C1 <sup>i</sup> O1C6 | -131.68 (11) | N1—C7—C8—C13    | 175.25 (11)  |
| C6—C1—C2—C3          | 1.91 (17)    | N1—C7—C8—C9     | -2.15 (18)   |
| O1—C1—C2—C3          | -179.04 (10) | C13—C8—C9—C10   | -1.16 (16)   |
| C1—C2—C3—C4          | -0.10 (18)   | C7—C8—C9—C10    | 176.18 (10)  |
| C2—C3—C4—C5          | -0.88 (17)   | C8—C9—C10—O2    | -179.55 (10) |
| C2-C3-C4-N1          | 173.02 (10)  | C8—C9—C10—C11   | 0.54 (16)    |
| C7—N1—C4—C5          | -145.80 (11) | O2-C10-C11-C12  | -179.50 (10) |
| C7—N1—C4—C3          | 40.26 (15)   | C9—C10—C11—C12  | 0.42 (17)    |
| C3—C4—C5—C6          | 0.06 (16)    | C10-C11-C12-C13 | -0.76 (17)   |
| N1-C4-C5-C6          | -174.08 (10) | C11—C12—C13—C8  | 0.15 (17)    |
| C2-C1-C6-C5          | -2.71 (16)   | C9—C8—C13—C12   | 0.82 (17)    |
| O1—C1—C6—C5          | 178.23 (9)   | C7—C8—C13—C12   | -176.66 (10) |
| C4—C5—C6—C1          | 1.72 (16)    |                 |              |

Symmetry code: (i) -x+1, y, -z+1/2.

## Hydrogen-bond geometry (Å, °)

*Cg*1 is the centroid of the C1–C6 benzene ring.

| D—H···A                    | <i>D</i> —Н | Н…А        | D····A      | <i>D</i> —H··· <i>A</i> |
|----------------------------|-------------|------------|-------------|-------------------------|
| O2—H2A···N1 <sup>ii</sup>  | 0.972 (19)  | 1.828 (19) | 2.7615 (12) | 160.1 (16)              |
| C5—H5····O2 <sup>iii</sup> | 0.973 (13)  | 2.431 (14) | 3.1121 (14) | 126.7 (10)              |
| C12—H11···· $Cg1^{iii}$    | 1.004 (14)  | 2.986 (15) | 3.9882 (12) | 178.7 (19)              |

Symmetry codes: (ii) -x+1/2, y-1/2, -z+1/2; (iii) -x+1/2, y+3/2, -z+1/2.