Crystal structure of 2-[(*E*)-2-(4-bromophenyl)diazen-1-yl]-4,5-bis(4-methoxyphenyl)-1*H*imidazole: the first example of a structurally characterized triarylazoimidazole

Ayalew Temesgen,^a* Alexander G. Tskhovrebov,^{b,c} Anna V. Vologzhanina,^d Tuan A. Le^e and Victor N. Khrustalev^c

^aChemistry Department, College of Natural and Computational Sciences, University of Gondar, 196 Gondar, Ethiopia,
 ^bN.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, Moscow, Russian Federation, ^cPeoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation, ^dNesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Vavilova str., 28, Russian Federation, and ^eFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 334
 Nguyen Trai, Hanoi, 100000, Vietnam. *Correspondence e-mail: Ayalew.t@uog.edu.et

The title compound, $C_{23}H_{19}BrN_4O_2$, is a product of an azo coupling reaction between 3,4-bis(4-methoxyphenyl)imidazole and 4-bromophenyldiazonium tetrafluoroborate. Its crystal structure was determined using data collected at 120 K. The molecule adopts a *trans* configuration with respect to the N=N double bond. The imidazole and aryl rings attached to the azo linkage are coplanar within 12.73 (14)°, which indicates significant electron delocalization within the molecule. In the crystal, the molecules form centrosymmetric dimers *via* pairs of N-H···O hydrogen bonds.

1. Chemical context

Azoimidazoles are a class of dyes that have found widespread applications in industry, as well as in laboratory research (Eymann et al., 2016; Tskhovrebov et al., 2014; Liu et al., 2019). They are widely used for dyeing natural and synthetic fibers. In addition, they have found applications as photoswitches and hold promise for utilization in photopharmacology (Crespi et al., 2019). Azo-functionalized imidazoles have been studied intensively as ligands in coordination chemistry (Sarker, Chand et al., 2007; Sarker, Sardar et al., 2007; Schütt et al., 2016; Das et al., 1997; Misra et al., 1997). They are also attractive as chelating bidentate ligands. Azoimidazole coordination compounds have been reported for numerous metals, some of them showing interesting photochromic properties (Sarker, Sardar et al., 2007; Sarker, Chand et al., 2007; Crespi et al., 2019). Numerous publications have been devoted to the development of organic crystalline materials that contain various imidazole-based architectures (Akhriff et al., 2006). Following our interest in azo dyes (Nenajdenko et al., 2020; Tskhovrebov, Vasileva et al., 2018), imidazole chemistry, imidazolylidenes and corresponding metal-carbene complexes (Tskhovrebov, Lingnau et al., 2019; Tskhovrebov, Goddard et al., 2018; Mikhaylov et al., 2018; Tskhovrebov et al., 2012), we report here the synthesis and crystal structure of (*E*)-2-[(4-bromophenyl)diazenyl]-4,5-bis(4-methoxyphenyl)-1H-imidazole. Although azoimidazoles form a widely studied class of azo compounds, triarylazoimidazoles have never been

Received 19 January 2021 Accepted 20 February 2021

Edited by A. V. Yatsenko, Moscow State University, Russia

CRYSTALLOGRAPHIC

COMMUNICATIONS

Keywords: crystal structure; azoimidazoles; nitrogen heterocycles; dyes; *PASS* program.

CCDC reference: 2064019

Supporting information: this article has supporting information at journals.iucr.org/e

ISSN 2056-9890

research communications

structurally characterized. This work presents the first example of structurally characterized triarylazoimidazole.

The *PASS* program (Filimonov *et al.*, 2014) predicted the potential activity of the title compound as a thiol protease inhibitor and an aspulvinone dimethylallyltransferase inhibitor at 81% and 76% probability levels, respectively.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. Overall, bond dimensions within the molecule are similar to those reported for structurally relevant azo compounds (Tskhovrebov *et al.*, 2014, 2015; Liu *et al.*, 2019; Eymann *et al.*, 2016; Nenajdenko *et al.*, 2020). The molecule adopts a *trans* configuration with respect to the azo double bond. The N=N bond distance of 1.274 (3) Å is slightly longer than that in azobenzene. The imidazole and aryl rings attached to the azo group are coplanar within 12.73 (14)°, which indicates significant electron delocalization within the molecule. The two other aromatic rings, C4–C9 and C11–C16, form dihedral angles with the plane of the imidazole ring of 60.64 (14) and 22.38 (13)°, respectively.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.

Table 1		
Hydrogen-bond	geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots O1^i$	0.80 (3)	2.17 (3)	2.963 (3)	169 (3)

Symmetry code: (i) -x, -y + 1, -z + 1.

3. Supramolecular features

In the crystal, the title molecules form centrosymmetric dimers *via* pairs of $N-H\cdots$ O hydrogen bonds (Fig. 2, Table 1). A similar supramolecular motif has previously been observed by our group (Repina *et al.*, 2020; Tskhovrebov, Novikov *et al.*, 2019). The crystal packing involves some $\pi-\pi$ stacking interactions (Fig. 3) with a shortest intercentroid separation of 3.792 (2) Å between two imidazole rings related by the symmetry operation 1 - x, 1 - y, 1 - z.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom *et al.*, 2016) revealed that this is the first example of a structurally characterized triarylazomidazole. At the same time, the CSD search revealed

The hydrogen-bonded centrosymmetric dimer. Dashed lines indicate the $N-H\cdots O$ hydrogen bonds.

Figure 3 Crystal packing projected along the-*a* axis direction.

Crystal data	
Chemical formula	$C_{23}H_{19}BrN_4O_2$
M _r	463.32
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	120
a, b, c (Å)	10.7812 (9), 12.7877 (11), 15.4575 (13)
β (°)	109.635 (2)
$V(Å^3)$	2007.2 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.08
Crystal size (mm)	$0.33 \times 0.21 \times 0.08$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause al., 2015)
T_{\min}, T_{\max}	0.597, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22147, 6069, 3449
R _{int}	0.084
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.122, 1.00
No. of reflections	6069
No. of parameters	276
H-atom treatment	H atoms treated by a mixture independent and constraine refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.44, -0.62

several examples of structurally similar azoimidazoles, which contain a proton at the imidazolic N atom, *viz*. 2-[(4-bromophenyl)diazenyl]-1*H*-imidazole (Pramanik *et al.*, 2010), 2-(1-naphthyldiazenyl)-1*H*-imidazole (Pramanik *et al.*, 2010), 2-[4-(*N*,*N*-dihydroxyethylamino)phenylazo]-4,5-dicyanoimidazole (Carella *et al.*, 2004), phenylazoimidazole (Fun *et al.*, 1999), 4-(4,5-dicyano-1*H*-imidazolyazo)-*N*,*N*-diethylaniline (Zhang *et al.*, 2007), 2-(*p*-tolylazo)imidazole (Bhunia *et al.*, 2006) and 3,3'-([4-[(4,5-dicyano-1*H*-imidazol-2-yl)diazenyl]phenyl]imino) dipropionic acid (Centore *et al.*, 2013).

5. Synthesis and crystallization

Triarylazoimidazole was prepared according to the literature method (Fun *et al.*, 1999) *via* azo coupling of *p*-bromophenyldiazonium tetrafluoroborate with di(*p*-anisyl)imidazole and isolated in 84% yield as a red solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a saturated MeOH solution.

6. Refinement

Crystal data, details of data collection, and results of structure refinement are summarized in Table 2. The X-ray diffraction study was performed using the equipment of the Center for Molecular Studies of INEOS RAS. The hydrogen atom of the NH group was localized in the difference-Fourier map and refined with a fixed isotropic displacement parameter $[U_{iso}(H) = 1.2U_{eq}(N)]$. The other hydrogen atoms were placed in calculated positions with C-H = 0.95–0.98 Å and refined using a riding model with fixed isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C) \text{ for CH}_3 \text{ groups and } U_{iso}(H) = 1.2U_{eq}(C) \text{ for other groups}].$

Funding information

Funding for this research was provided by: Russian Science Foundation (award No. 20-73-00094).

References

- Akhriff, Y., Server-Carrió, J., García-Lozano, J., Folgado, J. V., Sancho, A., Escrivà, E., Vitoria, P. & Soto, L. (2006). *Cryst. Growth Des.* 6, 1124–1133.
- Bhunia, P., Baruri, B., Ray, U., Sinha, C., Das, S., Cheng, J. & Lu, T.-H. (2006). *Transition Met. Chem.* **31**, 310–315.
- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carella, A., Centore, R., Sirigu, A., Tuzi, A., Quatela, A., Schutzmann, S. & Casalboni, M. (2004). *Macromol. Chem. Phys.* 205, 1948–1954.
- Centore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, 0802-0803.
- Crespi, S., Simeth, N. A. & König, B. (2019). Nat. Rev. Chem. 3, 133–146.
- Das, D., Nayak, M. K. & Sinha, C. (1997). Transit. Met. Chem. 22, 172–175.
- Eymann, L. Y. M., Tskhovrebov, A. G., Sienkiewicz, A., Bila, J. L., Živković, I., Rønnow, H. M., Wodrich, M. D., Vannay, L., Corminboeuf, C., Pattison, P., Solari, E., Scopelliti, R. & Severin, K. (2016). J. Am. Chem. Soc. 138, 15126–15129.
- Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). *Chem. Heterocycl. Compd*, **50**, 444–457.
- Fun, H.-K., Chinnakali, K., Chen, X.-F., Zhu, X.-H. & You, X.-Z. (1999). Acta Cryst. C55 IUC9900025.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). *J. Appl. Cryst.* **48**, 3–10.
- Liu, Y., Varava, P., Fabrizio, A., Eymann, L. Y. M., Tskhovrebov, A. G., Planes, O. M., Solari, E., Fadaei-Tirani, F., Scopelliti, R., Sienkiewicz, A., Corminboeuf, C. & Severin, K. (2019). *Chem. Sci.* **10**, 5719–5724.
- Mikhaylov, V. N., Sorokoumov, V. N., Liakhov, D. M., Tskhovrebov, A. G. & Balova, I. A. (2018). *Catalysts.* **8** No. 141.
- Misra, T. K., Das, D. & Sinha, C. (1997). Polyhedron, 16, 4163-4170.
- Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). *Molecules*, **25** No. 5013.
- Pramanik, A., Majumdar, S. & Das, G. (2010). CrystEngComm, 12, 250–259.
- Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). *Inorg. Chim. Acta*, 502 No. 119378.
- Sarker, K. K., Chand, B. G., Suwa, K., Cheng, J., Lu, T. H., Otsuki, J. & Sinha, C. (2007). *Inorg. Chem.* 46, 670–680.
- Sarker, K. K., Sardar, D., Suwa, K., Otsuki, J. & Sinha, C. (2007). *Inorg. Chem.* 46, 8291–8301.
- Schütt, C., Heitmann, G., Wendler, T., Krahwinkel, B. & Herges, R. (2016). J. Org. Chem. 81, 1206–1215.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

research communications

- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
- Tskhovrebov, A. G., Goddard, R. & Fürstner, A. (2018). Angew. Chem. Int. Ed. 57, 8089–8094.
- Tskhovrebov, A. G., Lingnau, J. B. & Fürstner, A. (2019). Angew. Chem. Int. Ed. 58, 8834–8838.
- Tskhovrebov, A. G., Luzyanin, K. V., Haukka, M. & Kukushkin, V. Y. (2012). J. Chem. Crystallogr. 42, 1170–1175.
- Tskhovrebov, A. G., Naested, L. C. E., Solari, E., Scopelliti, R. & Severin, K. (2015). *Angew. Chem. Int. Ed.* **54**, 1289–1292.
- Tskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. (2019). J. Organomet. Chem. 886, 71–75.
- Tskhovrebov, A. G., Solari, E., Scopelliti, R. & Severin, K. (2014). Organometallics, **33**, 2405–2408.
- Tskhovrebov, A. G., Vasileva, A. A., Goddard, R., Riedel, T., Dyson, P. J., Mikhaylov, V. N., Serebryanskaya, T. V., Sorokoumov, V. N. & Haukka, M. (2018). *Inorg. Chem.* **57**, 930–934.
- Zhang, Y., Zhang, G., Gan, Q., Wang, S., Xu, H. & Yang, G. (2007). Dyes Pigments, 74, 531–535.

supporting information

Acta Cryst. (2021). E77, 305-308 [https://doi.org/10.1107/S2056989021002024]

Crystal structure of 2-[(*E*)-2-(4-bromophenyl)diazen-1-yl]-4,5-bis(4-methoxy-phenyl)-1*H*-imidazole: the first example of a structurally characterized triaryl-azoimidazole

Ayalew Temesgen, Alexander G. Tskhovrebov, Anna V. Vologzhanina, Tuan A. Le and Victor N. Khrustalev

Computing details

Data collection: *APEX3* (Bruker, 2018); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

2-[(E)-2-(4-Bromophenyl)diazen-1-yl]-4,5-bis(4-methoxyphenyl)-1H-imidazole

Crystal data

C₂₃H₁₉BrN₄O₂ $M_r = 463.32$ Monoclinic, $P2_1/c$ a = 10.7812 (9) Å b = 12.7877 (11) Å c = 15.4575 (13) Å $\beta = 109.635$ (2)° V = 2007.2 (3) Å³ Z = 4

Data collection Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.597$, $T_{\max} = 0.746$ 22147 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.122$ S = 1.006069 reflections 276 parameters F(000) = 944 $D_x = 1.533 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2288 reflections $\theta = 2.6-25.4^{\circ}$ $\mu = 2.08 \text{ mm}^{-1}$ T = 120 KPlate, orange $0.33 \times 0.21 \times 0.08 \text{ mm}$

6069 independent reflections 3449 reflections with $I > 2\sigma(I)$ $R_{int} = 0.084$ $\theta_{max} = 30.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -14 \rightarrow 15$ $k = -18 \rightarrow 18$ $l = -21 \rightarrow 21$

0 restraints Primary atom site location: difference Fourier map Secondary atom site location: difference Fourier map Hydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.44 \text{ e} \text{ Å}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0498P)^2]$	$\Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm \AA}^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	

Special details

Experimental. SADABS-2014/5 (Bruker, 2014/5) was used for absorption correction. wR2(int) was 0.0815 before and 0.0536 after correction. The Ratio of minimum to maximum transmission is 0.8000. The $\lambda/2$ correction factor is 0.00150. **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.27445 (4)	0.40711 (3)	-0.14822 (2)	0.04431 (14)
01	-0.01642 (18)	0.55364 (14)	0.68807 (12)	0.0212 (4)
O2	0.84035 (18)	0.33604 (14)	0.90163 (12)	0.0249 (4)
N1	0.2914 (2)	0.39235 (17)	0.42224 (15)	0.0191 (5)
H1	0.222 (3)	0.410 (2)	0.387 (2)	0.023*
N2	0.5047 (2)	0.35277 (17)	0.47136 (14)	0.0194 (5)
N3	0.4041 (2)	0.36812 (17)	0.30966 (15)	0.0204 (5)
N4	0.2927 (2)	0.38470 (16)	0.24827 (15)	0.0215 (5)
C1	0.3985 (3)	0.36862 (19)	0.39831 (17)	0.0176 (5)
C2	0.4641 (3)	0.37005 (19)	0.54552 (17)	0.0162 (5)
C3	0.3314 (3)	0.39603 (19)	0.51634 (17)	0.0178 (5)
C4	0.2423 (3)	0.43346 (19)	0.56408 (17)	0.0163 (5)
C5	0.2757 (3)	0.5239 (2)	0.61663 (17)	0.0192 (6)
Н5	0.3570	0.5577	0.6235	0.023*
C6	0.1921 (3)	0.56603 (19)	0.65933 (17)	0.0177 (6)
H6	0.2161	0.6281	0.6949	0.021*
C7	0.0742 (3)	0.51714 (19)	0.64976 (17)	0.0175 (5)
C8	0.0393 (3)	0.4255 (2)	0.59788 (18)	0.0203 (6)
H8	-0.0416	0.3915	0.5918	0.024*
C9	0.1230 (3)	0.38447 (19)	0.55551 (17)	0.0190 (6)
H9	0.0990	0.3223	0.5202	0.023*
C10	0.0165 (3)	0.6508 (2)	0.7369 (2)	0.0321 (7)
H10A	0.0296	0.7048	0.6958	0.048*
H10B	0.0978	0.6422	0.7895	0.048*
H10C	-0.0552	0.6717	0.7588	0.048*
C11	0.5584 (3)	0.36163 (19)	0.64007 (17)	0.0175 (5)
C12	0.5186 (3)	0.34390 (19)	0.71556 (18)	0.0195 (6)
H12	0.4273	0.3382	0.7065	0.023*
C13	0.6090 (3)	0.3342 (2)	0.80404 (18)	0.0201 (6)
H13	0.5800	0.3203	0.8545	0.024*
C14	0.7421 (3)	0.34526 (19)	0.81732 (17)	0.0199 (6)
C15	0.7843 (3)	0.3655 (2)	0.74336 (18)	0.0208 (6)
H15	0.8753	0.3754	0.7531	0.025*

C16	0.6935 (3)	0.3714 (2)	0.65562 (18)	0.0200 (6)	
H16	0.7232	0.3822	0.6050	0.024*	
C17	0.7997 (3)	0.3123 (2)	0.97884 (18)	0.0289 (7)	
H17A	0.7433	0.2501	0.9652	0.043*	
H17B	0.7506	0.3716	0.9911	0.043*	
H17C	0.8775	0.2989	1.0329	0.043*	
C18	0.2974 (3)	0.38963 (19)	0.15723 (18)	0.0198 (6)	
C19	0.4131 (3)	0.3895 (2)	0.13582 (18)	0.0234 (6)	
H19	0.4961	0.3872	0.1835	0.028*	
C20	0.4069 (3)	0.3928 (2)	0.04512 (19)	0.0270 (7)	
H20	0.4851	0.3907	0.0298	0.032*	
C21	0.2842 (3)	0.3992 (2)	-0.02354 (18)	0.0272 (7)	
C22	0.1682 (3)	0.4025 (2)	-0.0033 (2)	0.0294 (7)	
H22	0.0853	0.4075	-0.0508	0.035*	
C23	0.1765 (3)	0.3983 (2)	0.08831 (19)	0.0250 (6)	
H23	0.0984	0.4014	0.1037	0.030*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0599 (3)	0.0551 (2)	0.01949 (15)	0.01172 (18)	0.01531 (15)	0.00843 (14)
O1	0.0173 (10)	0.0258 (10)	0.0236 (10)	-0.0033 (8)	0.0110 (8)	-0.0072 (8)
O2	0.0192 (11)	0.0302 (11)	0.0220 (10)	-0.0016 (8)	0.0025 (8)	0.0041 (8)
N1	0.0171 (12)	0.0223 (12)	0.0187 (11)	0.0021 (10)	0.0073 (10)	0.0012 (9)
N2	0.0197 (13)	0.0231 (12)	0.0192 (11)	0.0024 (9)	0.0116 (10)	0.0030 (9)
N3	0.0207 (13)	0.0200 (11)	0.0223 (11)	0.0010 (9)	0.0098 (10)	0.0001 (9)
N4	0.0229 (13)	0.0228 (12)	0.0212 (11)	-0.0008 (9)	0.0105 (10)	-0.0023 (9)
C1	0.0159 (14)	0.0201 (13)	0.0200 (13)	0.0009 (10)	0.0103 (11)	-0.0004 (10)
C2	0.0165 (14)	0.0168 (12)	0.0180 (12)	-0.0010 (10)	0.0096 (11)	0.0015 (9)
C3	0.0200 (14)	0.0182 (13)	0.0170 (12)	0.0008 (11)	0.0089 (11)	0.0011 (10)
C4	0.0156 (14)	0.0189 (13)	0.0157 (12)	0.0033 (10)	0.0068 (11)	0.0025 (9)
C5	0.0158 (14)	0.0244 (14)	0.0180 (12)	-0.0027 (11)	0.0062 (11)	0.0012 (10)
C6	0.0177 (14)	0.0189 (13)	0.0167 (12)	-0.0004 (10)	0.0062 (11)	-0.0008(9)
C7	0.0159 (14)	0.0224 (14)	0.0162 (12)	0.0029 (11)	0.0080 (11)	0.0024 (10)
C8	0.0159 (14)	0.0224 (14)	0.0235 (13)	-0.0059 (10)	0.0080 (11)	-0.0009 (10)
C9	0.0214 (15)	0.0171 (14)	0.0204 (13)	0.0001 (10)	0.0095 (12)	-0.0023 (10)
C10	0.0271 (18)	0.0387 (18)	0.0361 (18)	-0.0066 (14)	0.0181 (15)	-0.0197 (14)
C11	0.0213 (15)	0.0138 (12)	0.0204 (13)	0.0017 (10)	0.0108 (11)	0.0014 (10)
C12	0.0167 (14)	0.0206 (14)	0.0228 (13)	0.0000 (11)	0.0087 (11)	0.0022 (10)
C13	0.0216 (15)	0.0205 (14)	0.0200 (13)	0.0005 (11)	0.0094 (12)	0.0015 (10)
C14	0.0197 (15)	0.0154 (13)	0.0210 (13)	-0.0009 (10)	0.0021 (11)	0.0008 (10)
C15	0.0176 (15)	0.0185 (13)	0.0289 (14)	0.0020 (11)	0.0112 (12)	0.0030 (11)
C16	0.0179 (15)	0.0199 (13)	0.0251 (14)	0.0019 (11)	0.0112 (12)	0.0025 (10)
C17	0.0272 (17)	0.0354 (17)	0.0201 (14)	-0.0006 (13)	0.0027 (13)	0.0011 (12)
C18	0.0239 (16)	0.0168 (13)	0.0215 (13)	-0.0027 (11)	0.0113 (12)	0.0003 (10)
C19	0.0246 (16)	0.0261 (15)	0.0205 (13)	0.0041 (12)	0.0087 (12)	0.0030 (11)
C20	0.0264 (17)	0.0315 (16)	0.0271 (15)	0.0039 (13)	0.0141 (13)	0.0044 (12)
C21	0.0401 (19)	0.0242 (15)	0.0184 (13)	0.0012 (13)	0.0113 (13)	0.0024 (11)

supporting information

C22	0.0322 (18)	0.0274 (16)	0.0235 (14)	-0.0054 (13)	0.0028 (13)	-0.0007 (12)
C23	0.0203 (15)	0.0297 (16)	0.0245 (14)	-0.0048 (12)	0.0069 (12)	-0.0008 (12)

Geometric parameters (Å, °)

Br1—C21	1.897 (3)	C10—H10A	0.9800	
O1—C7	1.382 (3)	C10—H10B	0.9800	
O1—C10	1.435 (3)	C10—H10C	0.9800	
O2—C14	1.381 (3)	C11—C12	1.390 (4)	
O2—C17	1.435 (3)	C11—C16	1.400 (4)	
N1-C1	1.360 (3)	C12—C13	1.393 (4)	
N1—C3	1.372 (3)	C12—H12	0.9500	
N1—H1	0.80 (3)	C13—C14	1.387 (4)	
N2-C1	1.326 (3)	C13—H13	0.9500	
N2—C2	1.375 (3)	C14—C15	1.389 (4)	
N3—N4	1.274 (3)	C15—C16	1.382 (4)	
N3—C1	1.392 (3)	C15—H15	0.9500	
N4—C18	1.427 (3)	C16—H16	0.9500	
C2—C3	1.388 (4)	C17—H17A	0.9800	
C2-C11	1.477 (4)	C17—H17B	0.9800	
C3—C4	1.474 (4)	C17—H17C	0.9800	
C4—C5	1.390 (3)	C18—C23	1.383 (4)	
C4—C9	1.397 (4)	C18—C19	1.393 (4)	
С5—С6	1.392 (4)	C19—C20	1.382 (4)	
С5—Н5	0.9500	C19—H19	0.9500	
С6—С7	1.379 (4)	C20—C21	1.392 (4)	
С6—Н6	0.9500	C20—H20	0.9500	
С7—С8	1.399 (3)	C21—C22	1.388 (5)	
С8—С9	1.384 (4)	C22—C23	1.389 (4)	
С8—Н8	0.9500	C22—H22	0.9500	
С9—Н9	0.9500	С23—Н23	0.9500	
C7 Q1 C10	115 ((2)	C12 C11 C2	122 ((2)	
C = 01 = 010	115.0(2)	C12 $-C11$ $-C2$	122.0(2)	
C14 - 02 - C17	116.8(2)	C16-C11-C2	119.6 (2)	
CI = NI = C3	107.6 (2)	C11 - C12 - C13	121.8 (3)	
CI - NI - HI	125 (2)	C12—C12—H12	119.1	
$C_3 - N_1 - H_1$	127(2)	C13—C12—H12	119.1	
CI - N2 - C2	105.0(2)	C14 - C13 - C12	119.0 (2)	
N4 - N3 - C1	113.0(2)	C12 C12 H13	120.5	
$N_3 - N_4 - C_{18}$	113.9 (2)	C12—C13—H13	120.5	
N2 - CI - NI	111.8(2)	02 - C14 - C13	123.9 (2)	
$N_2 - C_1 - N_3$	121.8(2)	02 - C14 - C15	115.7 (2)	
$\frac{N1-U1-N3}{N2-C2-C2}$	120.2(2)	C15 - C14 - C15	120.4(2)	
$N_2 - C_2 - C_3$	110.5 (2)	C16 - C15 - C14	119.9 (5)	
$N_2 - U_2 - U_1$	120.5(2)	C16-C15-H15	120.1	
$U_3 - U_2 - U_1$	129.1(2)	C14 - C15 - H15	120.1	
N1 - C3 - C2	105.0 (2)		121.1 (2)	
NI-C3-C4	121.1 (2)	C15—C16—H16	119.4	

C2—C3—C4	133.5 (2)	C11—C16—H16	119.4
C5—C4—C9	118.6 (2)	O2—C17—H17A	109.5
C5—C4—C3	118.6 (2)	O2—C17—H17B	109.5
C9—C4—C3	122.8 (2)	H17A—C17—H17B	109.5
C4—C5—C6	121.2 (3)	O2—C17—H17C	109.5
C4—C5—H5	119.4	H17A—C17—H17C	109.5
С6—С5—Н5	119.4	H17B—C17—H17C	109.5
C7—C6—C5	119.6 (2)	C_{23} — C_{18} — C_{19}	120.3(2)
C7—C6—H6	120.2	C_{23} — C_{18} —N4	115.2(2)
C5-C6-H6	120.2	C19-C18-N4	1244(2)
C6-C7-01	120.2 1240(2)	C_{20} C_{19} C_{18}	1199(3)
C6-C7-C8	1201(2)	C_{20} C_{19} H_{19}	120.0
01 - C7 - C8	115.9(2)	C_{18} C_{19} H_{19}	120.0
C9-C8-C7	119.9(2) 119.8(2)	C_{19} C_{20} C_{21}	120.0 1190(3)
C9 - C8 - H8	120.1	C_{19} C_{20} H_{20}	120.5
C7-C8-H8	120.1	C_{21} C_{20} H_{20}	120.5
$C_{1}^{2} = C_{2}^{2} = C_{1}^{2}$	120.1 120.8(2)	$C_{21} = C_{20} = H_{20}$	120.3 121.8(3)
	120.8 (2)	$C_{22} = C_{21} = C_{20}$	121.8(3)
C_{3} C_{4} C_{9} H_{9}	119.0	$C_{22} = C_{21} = B_{r1}$	110.0(2)
$C_{1} = C_{2} = H_{2}$	100.5	$C_{20} = C_{21} = D_{11}$	119.4(2) 118.2(3)
O1 = C10 = H10R	109.5	$C_{21} = C_{22} = C_{23}$	110.5 (5)
	109.5	$C_{21} = C_{22} = H_{22}$	120.8
$\begin{array}{ccc} \mathbf{H}\mathbf{I}\mathbf{O}\mathbf{A} & -\mathbf{C}\mathbf{I}\mathbf{O} & -\mathbf{H}\mathbf{I}\mathbf{O}\mathbf{B} \\ \mathbf{O}\mathbf{I} & \mathbf{C}\mathbf{I}\mathbf{O} & \mathbf{H}\mathbf{I}\mathbf{O}\mathbf{C} \end{array}$	109.5	C_{23} C_{22} C_{22} C_{23} C_{22}	120.6
	109.5	$C_{18} = C_{23} = C_{22}$	120.0 (3)
H10A - C10 - H10C	109.5	$C_{18} - C_{23} - H_{23}$	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	C22—C23—H23	119.7
C12—C11—C16	117.8(2)		
C1 N3 N4 C18	1771(2)	C_{3} C_{4} C_{9} C_{8}	-1767(2)
$C_2 N_2 C_1 N_1$	-1.7(3)	$N_2 C_2 C_{11} C_{12}$	-1582(2)
$C_2 = N_2 = C_1 = N_1$	1.7(3) 1737(2)	$C_{2} = C_{2} = C_{11} = C_{12}$	130.2(2)
$C_2 = N_2 = C_1 = N_3$	2 4 (3)	$N_2 = C_2 = C_{11} = C_{12}$	22.9(4)
$C_3 = N_1 = C_1 = N_2$	-1727(2)	$C_2 = C_2 = C_{11} = C_{10}$	-1572(3)
$N_{1} = N_{1} = N_{2}$	172.7(2) 180.0(2)	$C_{16} = C_{11} = C_{10}$	-1.1(4)
N4 N3 C1 N1	-5.3(4)	$C_{10} = C_{11} = C_{12} = C_{13}$	1.1(+) 1788(2)
C1 - N2 - C2 - C3	0.4(3)	C_{11} C_{12} C_{13} C_{14}	178.8(2) 17(4)
C1 = N2 = C2 = C3	-1787(2)	C17 O2 C14 C13	1.7(4)
C1 = N2 = C2 = C11	-20(3)	C17 = 02 = C14 = C15	-1784(2)
C1 = N1 = C3 = C4	2.0(3)	$C_{17} = 02 = C_{14} = C_{15}$	-179.2(2)
$N_{1} = 0.0000000000000000000000000000000000$	1/1.9(2)	$C_{12} = C_{13} = C_{14} = C_{15}$	-0.1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0(3)	$C_{12} = C_{13} = C_{14} = C_{15}$	1771(2)
$N_{2} C_{2} C_{3} C_{4}$	-1717(3)	$C_{12} = C_{14} = C_{15} = C_{16}$	-21(4)
$N_2 = C_2 = C_3 = C_4$	-1/1.7(5)	C_{13} C_{14} C_{15} C_{16} C_{11}	-2.1(4)
C11 - C2 - C3 - C4	(-115.0) (2)	$C_{14} = C_{15} = C_{16} = C_{17}$	2.7(4)
$1 \times 1 - C = C + C = C = C = C = C = C = C = C =$	55 0 (A)	C_{12} C_{11} C_{16} C_{15}	1.2(4)
$C_2 - C_3 - C_4 - C_3$	55.7 (4) 61.2 (2)	12 - 11 - 10 - 13	1745(2)
111 - 03 - 04 - 09	01.2(3) -127.0(2)	$N_{3} = N_{4} = C_{10} = C_{23}$	1/4.3(2) -7.5(4)
$C_2 - C_3 - C_4 - C_9$	-12/.0(3)	$1N_{3} = 1N_{4} = 0.10 = 0.19$	-7.3(4)
	-0.0(4)	125 - 13 - 19 - 120	-3.2(4)
しっ―し4―しう―し0	1/0.0(2)	184-018-019-020	1/8.9(2)

supporting information

$\begin{array}{c} C4 & -C5 & -C6 & -C7 \\ C5 & -C6 & -C7 & -O1 \\ C5 & -C6 & -C7 & -C8 \\ C10 & -O1 & -C7 & -C6 \\ C10 & -O1 & -C7 & -C8 \\ C6 & -C7 & -C8 & -C9 \\ O1 & -C7 & -C8 & -C9 \\ C7 & -C8 & -C9 & -C4 \end{array}$	0.2 (4) -178.9 (2) 0.4 (4) 2.6 (4) -176.7 (2) -0.6 (4) 178.7 (2) 0.1 (4)	C18—C19—C20—C21 C19—C20—C21—C22 C19—C20—C21—Br1 C20—C21—C22—C23 Br1—C21—C22—C23 C19—C18—C23—C22 N4—C18—C23—C22 C21—C22—C23—C18	1.8 (4) 0.1 (4) 178.5 (2) -0.6 (4) -179.0 (2) 2.8 (4) -179.2 (2) -0.8 (4)
O1—C7—C8—C9 C7—C8—C9—C4 C5—C4—C9—C8	178.7 (2) 0.1 (4) 0.4 (4)	N4—C18—C23—C22 C21—C22—C23—C18	-179.2 (2) -0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···O1 ⁱ	0.80 (3)	2.17 (3)	2.963 (3)	169 (3)

Symmetry code: (i) -x, -y+1, -z+1.