

Received 2 February 2021 Accepted 5 February 2021

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 3,3,6,6-tetramethyltetrahydroacridine-1,8-dione; C-H···O hydrogen bonds; O-H···O hydrogen bonds; acridines.

CCDC reference: 2061379

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of ethyl 2-[9-(2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-2,3,4,4a,5,6,7,8a,9,9a,10,10a-dodecahydroacridin-10-yl]acetate

Omyma A. A. Abd Allah,^a Manpreet Kaur,^b Mehmet Akkurt,^c Shaaban K. Mohamed,^{d,e}* Jerry P. Jasinski^b and Sahar M. I. Elgarhy^f

^aChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and ^fFaculty of Science, Department of Bio Chemistry, Beni Suef University, Beni Suef, Egypt. *Correspondence e-mail: shaabankamel@yahoo.com

In the title compound, $C_{27}H_{33}NO_5$, a 3,3,6,6-tetramethyltetrahydroacridine-1,8dione ring system carries an ethyl acetate substituent on the acridine N atom and an *o*-hydroxyphenyl ring on the central methine C atom of the dihydropyridine ring. The benzene ring is inclined to the acridine ring system at an angle of 80.45 (7)° and this conformation is stabilized by an intramolecular O-H···O hydrogen bond between the hydroxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit. The ester C=O oxygen atom is disordered over major and minor orientations in a 0.777 (9):0.223 (9) ratio and the terminal $-CH_3$ unit of the ethyl side chain is disordered over two sets of sites in a 0.725 (5): 0.275 (5) ratio. In the crystal, C-H···O hydrogen bonds combine to link the molecules into a three-dimensional network. van der Waals H···H contacts contribute the most to the Hirshfeld surface (66.9%) followed by O···H/H···O (22.1%) contacts associated with weak hydrogen bonds.

1. Chemical context

Acridine derivatives occur in a number of compounds of importance in medicinal chemistry such as bucricaine, which used for surface anesthesia of the eye and given by injection for infiltration anesthesia, peripheral nerve block and spinal anesthesia (Ramesh *et al.*, 2012). Quinacrine, also known as mepacrine, is used as a gametocytocide and acts as an antimalarial agent (Valdés, 2011). Proflavin is also found to be active as a bacteriostatic agent (Patel *et al.*, 2010) and nitracrine is as anticancer agent (Cholewinski *et al.*, 2011). Acriflavin is used as an antiseptic for skin and mucous membranes (Ramesh *et al.*, 2012). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, $C_{27}H_{33}NO_5$.

2. Structural commentary

As shown in Fig.1, the 3,3,6,6-tetramethyltetrahydroacridine-1,8-dione ring system carries an ethyl acetate substituent on the acridine N1 atom and an *o*-hydroxyphenyl ring on the central methine C7 atom of the C1/C6–C8/C13/N1 dihydropyridine ring. The acridinedione ring system deviates signifi-

research communications

cantly from planarity with an r.m.s. deviation of 0.404 Å for the thirteen C atoms and one N atom of the acridine unit. The benzene ring is inclined to the acridine ring system at a dihedral angle of 80.45 (7)°.

The outer C1–C6 and C8–C13 cyclohexenone rings both adopt flattened chair conformations with the C4 and C11 atoms displaced in the same direction, by 0.308 (2) and 0.338 (2) Å, respectively, from the best-fit planes through the remaining five C atoms. In contrast, the central C13/N1/C1/C6–C8 ring can best be described as a flattened boat with N1 and C7 displaced by 0.146 (1) and 0.191 (14) Å, respectively, from the remaining four C atoms. The bond lengths and angles in the title molecule agree reasonably well with those found in closely related molecules (Abdelhamid *et al.*, 2011, 2014; Khalilov *et al.*, 2011).

The molecular conformation of the title compound is stabilized by an intramolecular $O5-H5\cdots O1$ hydrogen bond

Figure 1

The title molecule with displacement ellipsoids drawn at the 30% probability level. Only the major disorder components for O3 and C17 are shown.

Table 1			
Hydrogen-bond geometry	(Å,	°).	

, , ,	2 ()	/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O5−H5···O1	0.84	1.81	2.6319 (17)	166
$C2-H2A\cdots O2^{i}$	0.99	2.52	3.1663 (19)	123
$C2-H2B\cdots O5^{i}$	0.99	2.53	3.457 (2)	157
$C12-H12B\cdots O1^{ii}$	0.99	2.52	3.2708 (17)	133
$C14-H14A\cdots O1^{ii}$	0.99	2.53	3.3299 (18)	138
$C14-H14B\cdots O2^{i}$	0.99	2.66	3.473 (2)	140
$C27 - H27B \cdots O3^{iii}$	0.98	2.51	3.452 (3)	161
Symmetry codes: ($-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.	i) $x + \frac{1}{2}, -\frac{1}{2}$	$y + \frac{1}{2}, z + \frac{1}{2};$	(ii) $x - \frac{1}{2}, -y +$	$\frac{1}{2}, z + \frac{1}{2};$ (iii)

between the hydroxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit (Table 1; Fig. 1). Atom O3 is disordered over major and minor orientations in a 0.777 (9):0.223 (9) ratio and the terminal C17 methyl group is disordered over two sets of sites in a 0.725 (5):0.275 (5) ratio.

3. Supramolecular features

In the crystal, a number of $C-H \cdots O$ hydrogen bonds link the molecules into a three-dimensional network (Table 1; Fig. 2); all the oxygen atoms in the molecule except O4 accept at least one of these bonds.

4. Hirshfeld surface analysis

The *CrystalExplorer* software (Wolff *et al.*, 2012) was used to produce the d_{norm} -mapped Hirshfeld surfaces and the electrostatic potential for the title compound. The contact distances, d_i and d_e , from the Hirshfeld surface to the nearest atom, inside and outside, respectively, enable the analysis of the intermolecular interactions through the mapping of d_{norm} .

Figure 2

The molecular packing, viewed down the *a*-axis direction, showing hydrogen bonds as dashed lines.

Figure 3

A view of the three-dimensional Hirshfeld surface for the title compound, plotted over d_{norm} in the range -0.14 to 1.68 a.u.

An illustration of the inter-molecular contacts in the crystal is given by two-dimensional fingerprint plots.

Figure 4

A view of the two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $O \cdots H/H \cdots O$ and (d) $C \cdots H/H \cdots C$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

Symmetry operation
$-\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$
$\frac{1}{2} - x, -\frac{1}{2} + y, \frac{3}{2} - z$
-1 + x, y, z

The bright-red spots on the Hirshfeld surface mapped over d_{norm} (Fig. 3), with labels H27*B*, H12*B*, H14*A*, H14*B*, H2*A* and H2*B* on the surface represent donors for potential C-H···O hydrogen bonds (see Table 1); the corresponding acceptors on the surface appear as bright-red spots at atoms O1, O2 and O5. Short H···H contacts are given in Table 2.

The overall two-dimensional fingerprint plot is illustrated in Fig. 4*a*, and those delineated into $H \cdots H$, $O \cdots H/H \cdots O$ and $C \cdots H/H \cdots C$ in Fig. 4*b*-*d*, respectively. The greatest contribution to the overall Hirshfeld surface, *i.e.* 66.9%, is due to $H \cdots H$ contacts (Fig. 4*b*). The relative contributions of the other interactions in descending order are: $O \cdots H/H \cdots O$ (22.1%), $C \cdots H/H \cdots C$ (9.2%), $O \cdots O$ (1.3%), $N \cdots H/H \cdots N$ (0.2%) and $N \cdots C/C \cdots N$ (0.2%). This illustrates that the C- $H \cdots O$ interactions contribute significantly to the crystal packing.

5. Database survey

Compounds similar to the title compound with a octahydroacridin moiety are [9-(2-hydroxyphenyl)-1,8-dioxo-2,3,4,5,6,7,8,9-octahydroacridin-10(1*H*)-yl]acetic acid [Cambridge Structural Database (Groom *et al.*, 2016)] refcode DABSAD; Akkurt *et al.*, 2015), ethyl [9-(5-bromo-2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-2,3,4,5,6,7,8,9-octahydroacridin-10(1*H*)-yl]acetate (VANBUK; Mohamed*et al.*,2017), 9-(3-bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,6-diphenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,-5*H*)-dione (SILBIB; Abdelhamid*et al.*, 2018) and 10-benzyl-9-(3,4-dimethoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)-dione (PUSJEU; Sureshbabu*et al.*,2015).

The DABSAD compound crystallizes with two molecules in the asymmetric unit. In each molecule, the central 1,4-dihydropyridine ring adopts a shallow sofa conformation (with the C atom bearing the phenol ring as the flap), whereas the pendant cyclohexene rings both have twisted-boat conformations. Each molecule features an intramolecular O-H···O hydrogen bond, which closes an S(8) ring. In the crystal, the molecules are linked by O–H···O, C–H···O and C–H··· π interactions, forming a three-dimensional network. In VANBUK, the central 1,4-dihydropyridine ring adopts a shallow sofa conformation (with the C atom bearing the bromophenol ring as the flap), whereas the pendant cyclohexene rings both have twisted-boat conformations. The molecule features an intramolecular O-H···O hydrogen bond, which closes an S(8) ring. In the crystal, molecules are linked by C-H···O interactions, forming C(12) chains propagating along the c-axis direction. In the crystal of

research communications

Table 3Experimental details.

Crystal data	
Chemical formula	C ₂₇ H ₃₃ NO ₅
$M_{ m r}$	451.54
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	173
a, b, c (Å)	9.5289 (2), 18.6653 (5), 13.8046 (3)
β (°)	96.410 (2)
$V(Å^3)$	2439.93 (10)
Z	4
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	0.68
Crystal size (mm)	$0.48 \times 0.22 \times 0.08$
Data collection	
Diffractometer	Rigaku Oxford Diffraction EOS
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD. 2015)
T_{\min}, T_{\max}	0.861, 1.000
No. of measured, independent and	9527, 4648, 3949
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.029
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.614
Definition	
Remember $\mathbf{p}[\mathbf{F}^2 + 2\pi(\mathbf{F}^2)] = \mathbf{p}(\mathbf{F}^2) - \mathbf{c}$	0.045 0.126 1.04
$K[F > 2\sigma(F)], WK(F), S$	0.045, 0.126, 1.04
NO. OI FERECTIONS	4040
No. of parameters	313 H stom nonomotons construint 1
H-atom treatment (a, b^{-3})	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e A^{-5})$	0.2/, -0.23

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015b), SHELXL (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009).

SILBIB, $O-H\cdots O$, $C-H\cdots O$ and $C-H\cdots \pi(\text{ring})$ hydrogen bonds combine with an Br-O and unusual $C-\text{Br}\cdots\pi(\text{ring})$ halogen bonds to generate a three dimensional network with molecules stacked along the *a*-axis direction. In the acridinedione moiety of PUSJEU, the central dihydropyridine ring adopts a flattened-boat conformation, with the N atom and the methine C atom displaced from the mean plane of the other four atoms by 0.0513 (14) and 0.1828 (18) Å, respectively. The two cyclohexenone rings adopt envelope conformations, with the tetrasubsituted C atoms as the flap atoms. In the crystal, molecules are linked *via* a pair of $C-H\cdots O$ hydrogen bonds, forming inversion dimers, which are, in turn, linked by C- $H\cdots O$ hydrogen bonds, forming slabs lying parallel to (001).

6. Synthesis and crystallization

To a mixture of dimedone (1.12 g, 0.008 mol), ethyl glycinate hydrochloride (0.56 g, 0.004 mol) and salicaldehyde (0.43 ml, 0.004 mol) in ethanol (20 ml), triethyl amine (1.12 ml, 0.008 mol) was added. The reaction mixture was heated under reflux for 5 h at 353–358 K then left to cool. The separated

solid was filtered off, dried and recrystallized from ethanol solution as yellow plates of the title compound, yield 68%, m.p. 497 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in idealized locations and and refined using a riding model with C-H = 0.9-1.00 Å $U_{iso}(H) = 1.2U_{eq}$ (C) and O-H = 0.84 Å, $U_{iso}(H) = 1.5U_{eq}$ (O). Atom O3 of the oxo group and terminal methyl group (C17) of the ethyl acetate substituent are disordered over two sites in 0.777 (9):0.223 (9) (for O3 and O3A) and 0.725 (5):0.275 (5) (for C17 and C17A) ratios, respectively.

Funding information

JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X ray diffract-ometer.

References

- Abdelhamid, A. A., Hawaiz, F. E., Mohamed, A. F., Mohamed, S. K. & Simpson, J. (2018). *Acta Cryst.* E74, 1218–1221.
- Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). *Acta Cryst*. E67, 0744.
- Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2014). *Acta Cryst.* E**70**, 44–47.
- Akkurt, M., Jasinski, J. P., Mohamed, S. K., Allah, O. A. A., Tamam, A. H. A. & Albayati, M. R. (2015). *Acta Cryst.* E71, 0963–0964.
- Cholewiński, G., Dzierzbicka, K. & Kołodziejczyk, A. M. (2011). Pharmacol. Rep. 63, 305-336.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, 01146.
- Mohamed, S. K., Dege, N., Akkurt, M., Allah, O. A. A. & Albayati, M. R. (2017). *IUCrData*, 2, x170573.
- Patel, M. M. M. D., Mali, M. D. & Patel, S. K. (2010). Bioorg. Med. Chem. Lett. 20, 6324–6326.
- Ramesh, K., Mandeep, K. & Meena, K. (2012). Acta Pol. Pharm. Drug Res. 69, 3–9.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Sureshbabu, N. & Sughanya, V. (2015). Acta Cryst. E71, 0688-0689.
- Valdés, A. Fernández-Calienes (2011). Open Med. Chem. J. 5, 11-20.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). *Crystal Explorer*. University of Western Australia, Australia.

supporting information

Acta Cryst. (2021). E77, 247-250 [https://doi.org/10.1107/S2056989021001341]

Crystal structure and Hirshfeld surface analysis of ethyl 2-[9-(2-hydroxy-phenyl)-3,3,6,6-tetramethyl-1,8-dioxo-2,3,4,4a,5,6,7,8a,9,9a,10,10a-dodeca-hydroacridin-10-yl]acetate

Omyma A. A. Abd Allah, Manpreet Kaur, Mehmet Akkurt, Shaaban K. Mohamed, Jerry P. Jasinski and Sahar M. I. Elgarhy

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015a); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Ethyl 2-[9-(2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-2,3,4,4a,5,6,7,8a,9,9a,10,10a-dodecahydroacridin-10-yl]acetate

Crystal data

C₂₇H₃₃NO₅ $M_r = 451.54$ Monoclinic, P2₁/n a = 9.5289 (2) Å b = 18.6653 (5) Å c = 13.8046 (3) Å $\beta = 96.410$ (2)° V = 2439.93 (10) Å³ Z = 4

Data collection

Rigaku Oxford Diffraction EOS diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 16.0416 pixels mm⁻¹
ω scans
Absorption correction: multi-scan (CrysalisPro; Rigaku OD, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.126$ F(000) = 968 $D_x = 1.229 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3784 reflections $\theta = 4.0-71.4^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 173 KPlate, yellow $0.48 \times 0.22 \times 0.08 \text{ mm}$

 $T_{\min} = 0.861, T_{\max} = 1.000$ 9527 measured reflections
4648 independent reflections
3949 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$ $\theta_{\text{max}} = 71.2^{\circ}, \theta_{\text{min}} = 4.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -22 \rightarrow 14$ $l = -16 \rightarrow 16$

S = 1.044648 reflections 313 parameters 0 restraints

Primary atom site location: dual	$w = 1/[\sigma^2(F_2^2) + (0.0643P)^2 + 0.6477P]$
Hydrogen site location: inferred from	where $P = (F^2 + 2F^2)/3$
noighbouring sites	$(\Lambda/\pi) < 0.001$
neighbouring sites	$(\Delta/\sigma)_{\rm max} < 0.001$
H-atom parameters constrained	$\Delta \rho_{\rm max} = 0.27 \ {\rm e \ A^{-3}}$
	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}*/U_{ m eq}$	Occ. (<1)
01	0.65518 (12)	0.22713 (7)	0.50403 (8)	0.0373 (3)	
O2	0.21715 (14)	0.36821 (7)	0.51857 (8)	0.0426 (3)	
O3	0.3445 (5)	0.11473 (19)	0.83632 (16)	0.0636 (11)	0.777 (9)
O3A	0.2813 (17)	0.1388 (6)	0.8394 (7)	0.0636 (11)	0.223 (9)
O4	0.35606 (14)	0.14006 (6)	0.99586 (9)	0.0406 (3)	
05	0.41985 (13)	0.19489 (7)	0.39430 (8)	0.0389 (3)	
Н5	0.4887	0.2122	0.4300	0.058*	
N1	0.44568 (13)	0.24991 (6)	0.79603 (8)	0.0236 (2)	
C1	0.54686 (14)	0.22154 (7)	0.74277 (10)	0.0228 (3)	
C2	0.66871 (16)	0.18305 (8)	0.79873 (11)	0.0292 (3)	
H2A	0.6309	0.1464	0.8407	0.035*	
H2B	0.7234	0.2179	0.8419	0.035*	
C3	0.76892 (16)	0.14645 (9)	0.73461 (12)	0.0328 (3)	
C4	0.79512 (16)	0.19849 (9)	0.65285 (12)	0.0356 (4)	
H4A	0.8424	0.2421	0.6814	0.043*	
H4B	0.8587	0.1758	0.6098	0.043*	
C5	0.65908 (16)	0.21917 (8)	0.59366 (11)	0.0286 (3)	
C6	0.53718 (15)	0.23162 (8)	0.64433 (10)	0.0245 (3)	
C7	0.40195 (15)	0.25806 (8)	0.58758 (10)	0.0244 (3)	
H7	0.4283	0.2880	0.5323	0.029*	
C8	0.32755 (14)	0.30588 (7)	0.65354 (10)	0.0237 (3)	
C9	0.22950 (16)	0.35939 (8)	0.60657 (11)	0.0291 (3)	
C10	0.14223 (16)	0.40152 (9)	0.67124 (12)	0.0323 (3)	
H10A	0.0581	0.3731	0.6833	0.039*	
H10B	0.1091	0.4463	0.6376	0.039*	
C11	0.22671 (16)	0.42010 (8)	0.76873 (11)	0.0280 (3)	
C12	0.27846 (15)	0.34965 (8)	0.81805 (10)	0.0263 (3)	
H12A	0.3461	0.3608	0.8758	0.032*	
H12B	0.1970	0.3245	0.8411	0.032*	
C13	0.34886 (14)	0.30040 (7)	0.75185 (10)	0.0222 (3)	
C14	0.43949 (15)	0.22835 (8)	0.89738 (10)	0.0256 (3)	
H14A	0.3858	0.2646	0.9304	0.031*	
H14B	0.5365	0.2265	0.9315	0.031*	
C15	0.37019 (19)	0.15605 (9)	0.90423 (12)	0.0368 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C16	0.2856 (3)	0.07304 (12)	1.01388 (17)	0.0641 (7)	
H16A	0.3553	0.0335	1.0218	0.077*	0.725 (5)
H16B	0.2146	0.0615	0.9581	0.077*	0.725 (5)
H16C	0.2872	0.0420	0.9559	0.077*	0.275 (5)
H16D	0.3405	0.0485	1.0693	0.077*	0.275 (5)
C17	0.2157 (4)	0.08124 (19)	1.1040 (3)	0.0665 (9)	0.725 (5)
H17A	0.2875	0.0880	1.1598	0.100*	0.725 (5)
H17B	0.1604	0.0381	1.1141	0.100*	0.725 (5)
H17C	0.1530	0.1230	1.0976	0.100*	0.725 (5)
C17A	0.1551 (11)	0.0790 (5)	1.0331 (8)	0.0665 (9)	0.275 (5)
H17D	0.1499	0.1142	1.0853	0.100*	0.275 (5)
H17E	0.1217	0.0324	1.0541	0.100*	0.275 (5)
H17F	0.0956	0.0947	0.9745	0.100*	0.275 (5)
C18	0.30828 (15)	0.19663 (8)	0.54418 (10)	0.0258 (3)	
C19	0.32270 (16)	0.16932 (9)	0.45105 (11)	0.0307 (3)	
C20	0.23375 (19)	0.11504 (10)	0.41156 (13)	0.0405 (4)	
H20	0.2428	0.0976	0.3479	0.049*	
C21	0.13242 (18)	0.08647 (9)	0.46441 (14)	0.0410 (4)	
H21	0.0723	0.0493	0.4371	0.049*	
C22	0.11833 (17)	0.11164 (9)	0.55659 (13)	0.0356 (4)	
H22	0.0494	0.0916	0.5933	0.043*	
C23	0.20564 (16)	0.16652 (8)	0.59556 (11)	0.0295 (3)	
H23	0.1949	0.1839	0.6590	0.035*	
C24	0.7045 (2)	0.07682 (10)	0.69143 (15)	0.0469 (4)	
H24A	0.6894	0.0436	0.7443	0.070*	
H24B	0.7688	0.0550	0.6493	0.070*	
H24C	0.6139	0.0872	0.6531	0.070*	
C25	0.9082 (2)	0.12973 (11)	0.79789 (14)	0.0468 (4)	
H25A	0.9533	0.1746	0.8214	0.070*	
H25B	0.9713	0.1036	0.7590	0.070*	
H25C	0.8887	0.1003	0.8537	0.070*	
C26	0.13320 (19)	0.45952 (9)	0.83469 (13)	0.0405 (4)	
H26A	0.0495	0.4305	0.8424	0.061*	
H26B	0.1038	0.5057	0.8052	0.061*	
H26C	0.1864	0.4677	0.8987	0.061*	
C27	0.35163 (17)	0.46822 (8)	0.75087 (12)	0.0340 (3)	
H27A	0.4061	0.4799	0.8133	0.051*	
H27B	0.3163	0.5125	0.7187	0.051*	
H27C	0.4123	0.4431	0.7092	0.051*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0375 (6)	0.0503 (7)	0.0266 (6)	-0.0016 (5)	0.0144 (4)	-0.0032 (5)
O2	0.0548 (7)	0.0469 (7)	0.0249 (6)	0.0155 (6)	-0.0006 (5)	0.0006 (5)
03	0.114 (3)	0.0437 (16)	0.0360 (8)	-0.0364 (17)	0.0192 (12)	-0.0122 (10)
O3A	0.114 (3)	0.0437 (16)	0.0360 (8)	-0.0364 (17)	0.0192 (12)	-0.0122 (10)
O4	0.0571 (7)	0.0352 (6)	0.0317 (6)	-0.0098 (5)	0.0158 (5)	0.0055 (5)

supporting information

05	0.0448 (6)	0.0485 (7)	0.0245 (5)	0.0025 (5)	0.0080 (5)	-0.0075 (5)
N1	0.0288 (6)	0.0242 (6)	0.0189 (5)	0.0020 (5)	0.0069 (4)	-0.0005 (4)
C1	0.0248 (6)	0.0203 (6)	0.0241 (7)	-0.0020 (5)	0.0064 (5)	-0.0023 (5)
C2	0.0305 (7)	0.0316 (7)	0.0257 (7)	0.0041 (6)	0.0035 (6)	-0.0014 (6)
C3	0.0324 (8)	0.0323 (8)	0.0344 (8)	0.0071 (6)	0.0065 (6)	-0.0027 (6)
C4	0.0290 (8)	0.0417 (9)	0.0382 (9)	0.0041 (6)	0.0125 (6)	-0.0014 (7)
C5	0.0309 (7)	0.0280 (7)	0.0287 (7)	-0.0025 (6)	0.0109 (6)	-0.0038 (6)
C6	0.0269 (7)	0.0244 (7)	0.0233 (7)	-0.0005 (5)	0.0073 (5)	-0.0025 (5)
C7	0.0303 (7)	0.0246 (7)	0.0190 (6)	0.0010 (6)	0.0065 (5)	-0.0012 (5)
C8	0.0260 (6)	0.0226 (7)	0.0233 (7)	-0.0010 (5)	0.0059 (5)	-0.0021 (5)
C9	0.0312 (7)	0.0294 (7)	0.0261 (7)	0.0006 (6)	0.0010 (6)	-0.0025 (6)
C10	0.0304 (7)	0.0318 (8)	0.0345 (8)	0.0063 (6)	0.0028 (6)	-0.0016 (6)
C11	0.0327 (7)	0.0243 (7)	0.0277 (7)	0.0043 (6)	0.0072 (6)	-0.0017 (6)
C12	0.0323 (7)	0.0241 (7)	0.0236 (7)	0.0020 (6)	0.0088 (5)	-0.0016 (5)
C13	0.0245 (6)	0.0195 (6)	0.0232 (7)	-0.0018 (5)	0.0064 (5)	-0.0010 (5)
C14	0.0325 (7)	0.0267 (7)	0.0187 (6)	0.0019 (6)	0.0068 (5)	0.0003 (5)
C15	0.0492 (9)	0.0353 (8)	0.0269 (8)	-0.0090 (7)	0.0085 (6)	0.0001 (6)
C16	0.0987 (18)	0.0460 (12)	0.0520 (12)	-0.0294 (12)	0.0280 (12)	0.0052 (9)
C17	0.082 (2)	0.0543 (16)	0.070 (2)	-0.0088 (15)	0.0384 (17)	0.0188 (17)
C17A	0.082 (2)	0.0543 (16)	0.070 (2)	-0.0088 (15)	0.0384 (17)	0.0188 (17)
C18	0.0286 (7)	0.0242 (7)	0.0239 (7)	0.0051 (5)	-0.0003 (5)	-0.0014 (5)
C19	0.0338 (8)	0.0323 (8)	0.0256 (7)	0.0080 (6)	0.0015 (6)	-0.0029 (6)
C20	0.0479 (9)	0.0391 (9)	0.0326 (8)	0.0063 (7)	-0.0039 (7)	-0.0137 (7)
C21	0.0388 (9)	0.0307 (8)	0.0503 (10)	0.0005 (7)	-0.0097 (7)	-0.0093 (7)
C22	0.0344 (8)	0.0281 (8)	0.0434 (9)	0.0008 (6)	-0.0001 (7)	0.0019 (7)
C23	0.0328 (7)	0.0274 (7)	0.0280 (7)	0.0026 (6)	0.0021 (6)	-0.0002 (6)
C24	0.0588 (11)	0.0312 (9)	0.0514 (11)	0.0062 (8)	0.0094 (8)	-0.0059 (8)
C25	0.0405 (10)	0.0533 (11)	0.0463 (10)	0.0185 (8)	0.0037 (8)	-0.0019 (8)
C26	0.0469 (10)	0.0344 (8)	0.0418 (9)	0.0118 (7)	0.0124 (7)	-0.0053 (7)
C27	0.0409 (8)	0.0247 (7)	0.0363 (8)	-0.0019 (6)	0.0034 (6)	0.0005 (6)

Geometric parameters (Å, °)

O1—C5	1.2426 (19)	C12—C13	1.5057 (18)
O2—C9	1.2185 (19)	C14—H14A	0.9900
O3—C15	1.217 (3)	C14—H14B	0.9900
O3A—C15	1.205 (11)	C14—C15	1.510 (2)
O4—C15	1.321 (2)	C16—H16A	0.9900
O4—C16	1.454 (2)	C16—H16B	0.9900
O5—H5	0.8400	C16—H16C	0.9900
O5—C19	1.364 (2)	C16—H16D	0.9900
N1—C1	1.3816 (18)	C16—C17	1.483 (4)
N1-C13	1.4091 (18)	C16—C17A	1.305 (9)
N1-C14	1.4633 (17)	C17—H17A	0.9800
C1—C2	1.504 (2)	C17—H17B	0.9800
C1—C6	1.365 (2)	C17—H17C	0.9800
C2—H2A	0.9900	C17A—H17D	0.9800
C2—H2B	0.9900	C17A—H17E	0.9800

supporting information

С2—С3	1.533 (2)	C17A—H17F	0.9800
C3—C4	1.531 (2)	C18—C19	1.404 (2)
C3—C24	1.530 (2)	C18—C23	1.389 (2)
C3—C25	1.537 (2)	C19—C20	1.392 (2)
C4—H4A	0.9900	С20—Н20	0.9500
C4—H4B	0.9900	C20—C21	1.381 (3)
C4—C5	1.504 (2)	C21—H21	0.9500
C5—C6	1.4401 (19)	C21—C22	1.377 (3)
C6—C7	1.514 (2)	С22—Н22	0.9500
С7—Н7	1.0000	C22—C23	1.390 (2)
C7—C8	1.5074 (18)	С23—Н23	0.9500
C7—C18	1.5334 (19)	C24—H24A	0.9800
C8—C9	1.468 (2)	C24—H24B	0.9800
C8—C13	1.354 (2)	C24—H24C	0.9800
C9—C10	1.507 (2)	С25—Н25А	0.9800
C10—H10A	0.9900	С25—Н25В	0.9800
C10—H10B	0.9900	С25—Н25С	0.9800
C10—C11	1.529 (2)	C26—H26A	0.9800
C11—C12	1.537 (2)	C26—H26B	0.9800
C11—C26	1.532 (2)	С26—Н26С	0.9800
C11—C27	1.533 (2)	С27—Н27А	0.9800
C12—H12A	0.9900	С27—Н27В	0.9800
C12—H12B	0.9900	С27—Н27С	0.9800
C15—O4—C16	117.16 (15)	O3—C15—O4	124.13 (18)
С19—О5—Н5	109.5	O3—C15—C14	124.71 (17)
C1—N1—C13	119.22 (11)	O3A—C15—O4	120.8 (5)
C1—N1—C14	120.56 (12)	O3A—C15—C14	117.9 (5)
C13—N1—C14	120.23 (11)	O4—C15—C14	110.73 (13)
N1—C1—C2	117.03 (12)	O4C16H16A	110.0
N1—C1—C2 C6—C1—N1	117.03 (12) 120.23 (13)	O4—C16—H16A O4—C16—H16B	110.0 110.0
N1C1C2 C6C1N1 C6C1C2	117.03 (12) 120.23 (13) 122.68 (13)	O4—C16—H16A O4—C16—H16B O4—C16—H16C	110.0 110.0 108.4
N1C1C2 C6C1N1 C6C1C2 C1C2H2A	117.03 (12) 120.23 (13) 122.68 (13) 108.7	O4—C16—H16A O4—C16—H16B O4—C16—H16C O4—C16—H16D	110.0 110.0 108.4 108.4
N1C1C2 C6C1N1 C6C1C2 C1C2H2A C1C2H2B	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7	O4—C16—H16A O4—C16—H16B O4—C16—H16C O4—C16—H16D O4—C16—C17	110.0 110.0 108.4 108.4 108.3 (2)
N1C1C2 C6C1N1 C6C1C2 C1C2H2A C1C2H2B C1C2C3	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12)	O4—C16—H16A O4—C16—H16B O4—C16—H16C O4—C16—H16D O4—C16—C17 H16A—C16—H16B	110.0 110.0 108.4 108.4 108.3 (2) 108.4
N1C1C2 C6C1N1 C6C1C2 C1C2H2A C1C2H2B C1C2C3 H2AC2H2B	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6	O4—C16—H16A O4—C16—H16B O4—C16—H16C O4—C16—H16D O4—C16—C17 H16A—C16—H16B H16C—C16—H16D	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5
N1C1C2 C6C1C2 C1C2	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7	O4—C16—H16A O4—C16—H16B O4—C16—H16C O4—C16—H16D O4—C16—C17 H16A—C16—H16B H16C—C16—H16D C17—C16—H16A	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0
N1C1C2 C6C1C2 C1C2	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7 108.7	O4—C16—H16A O4—C16—H16B O4—C16—H16C O4—C16—H16D O4—C16—C17 H16A—C16—H16B H16C—C16—H16D C17—C16—H16A C17—C16—H16B	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0 110.0
N1C1C2 C6C1N1 C6C1C2 C1C2H2A C1C2H2B C1C2H2B C3C2H2B C3C2H2B C3C2H2B C2C3C25	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7 108.7 108.7 108.7 108.7	O4—C16—H16A O4—C16—H16B O4—C16—H16C O4—C16—H16D O4—C16—C17 H16A—C16—H16B H16C—C16—H16D C17—C16—H16A C17—C16—H16B C17A—C16—O4	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0 110.0 115.5 (4)
N1-C1-C2 $C6-C1-N1$ $C6-C1-C2$ $C1-C2-H2A$ $C1-C2-H2B$ $C1-C2-C3$ $H2A-C2-H2B$ $C3-C2-H2B$ $C3-C2-H2B$ $C3-C2-H2B$ $C2-C3-C25$ $C4-C3-C2$	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7 108.7 108.7 108.7 108.42 (13) 107.84 (13)	O4—C16—H16A O4—C16—H16B O4—C16—H16C O4—C16—H16D O4—C16—C17 H16A—C16—H16B H16C—C16—H16B C17—C16—H16A C17—C16—H16B C17A—C16—O4 C17A—C16—H16C	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0 110.0 115.5 (4) 108.4
N1-C1-C2 $C6-C1-N1$ $C6-C1-C2$ $C1-C2-H2A$ $C1-C2-H2B$ $C1-C2-C3$ $H2A-C2-H2B$ $C3-C2-H2A$ $C3-C2-H2B$ $C2-C3-C25$ $C4-C3-C2$ $C4-C3-C25$	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7 108.7 108.7 108.7 108.42 (13) 107.84 (13) 110.27 (14)	O4—C16—H16A O4—C16—H16B O4—C16—H16C O4—C16—H16D O4—C16—C17 H16A—C16—H16B H16C—C16—H16D C17—C16—H16A C17—C16—H16B C17A—C16—H16C C17A—C16—H16C C17A—C16—H16D	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0 110.0 115.5 (4) 108.4 108.4
N1-C1-C2 $C6-C1-N1$ $C6-C1-C2$ $C1-C2-H2A$ $C1-C2-H2B$ $C1-C2-C3$ $H2A-C2-H2B$ $C3-C2-H2A$ $C3-C2-H2B$ $C2-C3-C25$ $C4-C3-C2$ $C4-C3-C2$ $C2-C2$	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7 108.7 108.7 108.42 (13) 107.84 (13) 110.27 (14) 110.77 (14)	$\begin{array}{l} 04C16H16A\\ 04C16H16B\\ 04C16H16D\\ 04C16H16D\\ 04C16H16B\\ H16CC16H16D\\ C17C16H16A\\ C17C16H16B\\ C17AC16H16C\\ C17AC16H16D\\ C16C17H17A\\ \end{array}$	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0 110.0 115.5 (4) 108.4 108.4 108.4 109.5
N1-C1-C2 $C6-C1-N1$ $C6-C1-C2$ $C1-C2-H2A$ $C1-C2-H2B$ $C1-C2-C3$ $H2A-C2-H2B$ $C3-C2-H2A$ $C3-C2-H2B$ $C2-C3-C25$ $C4-C3-C2$ $C4-C3-C25$ $C24-C3-C2$ $C24-C3-C2$ $C24-C3-C2$	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7 108.7 108.7 108.7 108.42 (13) 107.84 (13) 110.27 (14) 110.77 (14) 110.08 (14)	$\begin{array}{c} 04-016-116A\\ 04-016-116B\\ 04-016-116C\\ 04-016-116D\\ 04-016-017\\ 116A-016-116B\\ 116C-016-116B\\ 116C-016-116D\\ 017-016-116B\\ 017A-016-116B\\ 017A-016-116C\\ 017A-016-116D\\ 016-017-117A\\ 016-017-117B\\ \end{array}$	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0 115.5 (4) 108.4 108.4 109.5 109.5
N1-C1-C2 $C6-C1-N1$ $C6-C1-C2$ $C1-C2-H2A$ $C1-C2-H2B$ $C1-C2-C3$ $H2A-C2-H2B$ $C3-C2-H2A$ $C3-C2-H2B$ $C2-C3-C25$ $C4-C3-C25$ $C4-C3-C25$ $C24-C3-C2$ $C24-C3-C2$ $C24-C3-C2$	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7 108.7 108.7 108.42 (13) 107.84 (13) 110.27 (14) 110.77 (14) 110.08 (14) 109.43 (15)	$\begin{array}{l} 04-016-116A\\ 04-016-116B\\ 04-016-116C\\ 04-016-116D\\ 04-016-017\\ 116A-016-116B\\ 116C-016-116B\\ 116C-016-116D\\ 017-016-116B\\ 017-016-116B\\ 017A-016-116C\\ 017A-016-116C\\ 017A-016-116D\\ 016-017-117A\\ 016-017-117B\\ 016-017-117B\\ 016-017-117C\\ \end{array}$	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0 110.0 115.5 (4) 108.4 108.4 109.5 109.5 109.5
N1-C1-C2 $C6-C1-N1$ $C6-C1-C2$ $C1-C2-H2A$ $C1-C2-H2B$ $C1-C2-C3$ $H2A-C2-H2B$ $C3-C2-H2B$ $C3-C2-H2B$ $C2-C3-C25$ $C4-C3-C25$ $C4-C3-C2$ $C24-C3-C2$ $C24-C3-C4$ $C24-C3-C4$ $C24-C3-C25$ $C3-C4-H4A$	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7 108.7 108.42 (13) 107.84 (13) 110.27 (14) 110.77 (14) 110.08 (14) 109.43 (15) 109.4	$\begin{array}{l} 04-016-116A\\ 04-016-116B\\ 04-016-116C\\ 04-016-116D\\ 04-016-017\\ 116A-016-116B\\ 116C-016-116B\\ 116C-016-116D\\ 017-016-116B\\ 017A-016-116B\\ 017A-016-116C\\ 017A-016-116C\\ 017A-016-116D\\ 016-017-117B\\ 016-017-$	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0 110.0 115.5 (4) 108.4 108.4 109.5 109.5 109.5 109.5
N1-C1-C2 $C6-C1-N1$ $C6-C1-C2$ $C1-C2-H2A$ $C1-C2-H2B$ $C1-C2-C3$ $H2A-C2-H2B$ $C3-C2-H2A$ $C3-C2-H2B$ $C2-C3-C25$ $C4-C3-C2$ $C4-C3-C2$ $C24-C3-C2$ $C24-C3-C4$ $C24-C3-C25$ $C3-C4-H4A$ $C3-C4-H4B$	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7 108.7 108.7 108.42 (13) 107.84 (13) 110.27 (14) 110.77 (14) 110.08 (14) 109.43 (15) 109.4 109.4	$\begin{array}{l} 04C16H16A\\ 04C16H16B\\ 04C16H16D\\ 04C16H16D\\ 04C16H16B\\ H16CC16H16B\\ H16CC16H16D\\ C17C16H16B\\ C17AC16H16B\\ C17AC16H16D\\ C16C17H17B\\ C16C17H17B\\ C16C17H17B\\ H17AC17H17B\\ H17AC17H17C\\ \end{array}$	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0 115.5 (4) 108.4 108.4 108.4 109.5 109.5 109.5 109.5 109.5 109.5
N1-C1-C2 $C6-C1-N1$ $C6-C1-C2$ $C1-C2-H2A$ $C1-C2-H2B$ $C1-C2-C3$ $H2A-C2-H2B$ $C3-C2-H2A$ $C3-C2-H2B$ $C2-C3-C25$ $C4-C3-C25$ $C4-C3-C2$ $C4-C3-C2$ $C24-C3-C2$ $C24-C3-C4$ $C24-C3-C25$ $C3-C4-H4A$ $C3-C4-H4B$ $H4A-C4-H4B$	117.03 (12) 120.23 (13) 122.68 (13) 108.7 108.7 114.28 (12) 107.6 108.7 108.7 108.42 (13) 107.84 (13) 110.27 (14) 110.77 (14) 110.08 (14) 109.43 (15) 109.4 109.4 109.4 108.0	$\begin{array}{l} 04C16H16A\\ 04C16H16B\\ 04C16H16D\\ 04C16H16D\\ 04C16H16B\\ H16CC16H16B\\ H16CC16H16D\\ C17C16H16B\\ C17AC16H16B\\ C17AC16H16C\\ C17AC16H16D\\ C16C17H17B\\ C16C17H17B\\ C16C17H17B\\ H17AC17H17C\\ H17BC17H17C\\ H17B$	110.0 110.0 108.4 108.4 108.3 (2) 108.4 107.5 110.0 115.5 (4) 108.4 108.4 108.4 108.4 109.5 109.5 109.5 109.5 109.5 109.5 109.5

C5—C4—H4A	109.4	С16—С17А—Н17Е	109.5
C5—C4—H4B	109.4	C16—C17A—H17F	109.5
O1—C5—C4	119.99 (13)	H17D—C17A—H17E	109.5
O1—C5—C6	121.89 (14)	H17D—C17A—H17F	109.5
C6—C5—C4	118.08 (13)	H17E—C17A—H17F	109.5
C1—C6—C5	119.53 (13)	C19—C18—C7	121.14 (13)
C1—C6—C7	121.28 (12)	C23—C18—C7	121.01 (13)
C5—C6—C7	119.16 (12)	C23—C18—C19	117.85 (14)
С6—С7—Н7	107.8	O5—C19—C18	122.76 (14)
C6—C7—C18	112.53 (11)	O5—C19—C20	116.89 (14)
C8—C7—C6	108.12 (11)	C20—C19—C18	120.34 (15)
С8—С7—Н7	107.8	С19—С20—Н20	119.8
C8—C7—C18	112.73 (11)	C21—C20—C19	120.35 (15)
С18—С7—Н7	107.8	C21—C20—H20	119.8
C9—C8—C7	117.07 (12)	C20—C21—H21	119.9
C13—C8—C7	122.19 (13)	C22—C21—C20	120.17 (15)
C13—C8—C9	120.73 (13)	C22—C21—H21	119.9
O2—C9—C8	121.20 (14)	C21—C22—H22	120.2
O2—C9—C10	121.44 (14)	C21—C22—C23	119.56 (16)
C8—C9—C10	117.34 (13)	C23—C22—H22	120.2
C9—C10—H10A	109.3	C18—C23—C22	121.71 (14)
C9—C10—H10B	109.3	C18—C23—H23	119.1
C9—C10—C11	111.62 (12)	С22—С23—Н23	119.1
H10A-C10-H10B	108.0	C3—C24—H24A	109.5
C11—C10—H10A	109.3	C3—C24—H24B	109.5
C11—C10—H10B	109.3	C3—C24—H24C	109.5
C10-C11-C12	107.90 (12)	H24A—C24—H24B	109.5
C10-C11-C26	110.38 (13)	H24A—C24—H24C	109.5
C10-C11-C27	109.47 (13)	H24B—C24—H24C	109.5
C26—C11—C12	109.08 (12)	C3—C25—H25A	109.5
C26—C11—C27	109.14 (13)	C3—C25—H25B	109.5
C27—C11—C12	110.87 (12)	C3—C25—H25C	109.5
C11—C12—H12A	108.9	H25A—C25—H25B	109.5
C11—C12—H12B	108.9	H25A—C25—H25C	109.5
H12A—C12—H12B	107.7	H25B—C25—H25C	109.5
C13—C12—C11	113.34 (12)	C11—C26—H26A	109.5
C13—C12—H12A	108.9	C11—C26—H26B	109.5
C13—C12—H12B	108.9	C11—C26—H26C	109.5
N1—C13—C12	117.39 (12)	H26A—C26—H26B	109.5
C8—C13—N1	120.15 (12)	H26A—C26—H26C	109.5
C8—C13—C12	122.36 (13)	H26B—C26—H26C	109.5
N1—C14—H14A	109.3	С11—С27—Н27А	109.5
N1-C14-H14B	109.3	C11—C27—H27B	109.5
N1—C14—C15	111.74 (12)	C11—C27—H27C	109.5
H14A—C14—H14B	107.9	H27A—C27—H27B	109.5
C15—C14—H14A	109.3	H27A—C27—H27C	109.5
C15—C14—H14B	109.3	H27B—C27—H27C	109.5

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
05—H5…O1	0.84	1.81	2.6319 (17)	166
C2— $H2A$ ···O2 ⁱ	0.99	2.52	3.1663 (19)	123
C2— $H2B$ ···O5 ⁱ	0.99	2.53	3.457 (2)	157
C12—H12 <i>B</i> ···O1 ⁱⁱ	0.99	2.52	3.2708 (17)	133
C14—H14A…O1 ⁱⁱ	0.99	2.53	3.3299 (18)	138
C14—H14 <i>B</i> ···O2 ⁱ	0.99	2.66	3.473 (2)	140
C27—H27 <i>B</i> ···O3 ⁱⁱⁱ	0.98	2.51	3.452 (3)	161

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*+1/2, *-y*+1/2, *z*+1/2; (ii) *x*-1/2, *-y*+1/2, *z*+1/2; (iii) *-x*+1/2, *y*+1/2, *-z*+3/2.