

Received 21 December 2020 Accepted 30 December 2020

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

**Keywords:** crystal structure; whole-molecule disorder; 3,10-bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane; 4fluorophenethyl side chain; nickel(II) complex; *trans*-III configuration.

CCDC reference: 2053166

Supporting information: this article has supporting information at journals.iucr.org/e



### Crystal structure of [3,10-bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane]nickel(II) diperchlorate

#### Chee-Hun Kwak<sup>a</sup>\* and Mee Chang<sup>b</sup>

<sup>a</sup>Department of Chemistry Education, Sunchon National University, 255 Jungang-ro, Sunchon, 57922, South Korea, and <sup>b</sup>Polymerization Manufacturing Technology Research Team, Lotte Chemicals, 334-27 Yeosu Sandan-ro, Yeosu, 59616, South Korea. \*Correspondence e-mail: chkwak@sunchon.ac.kr

The square-planar nickel(II) title complex,  $[Ni(C_{24}H_{36}F_2N_6)](ClO_4)_2$  or  $[NiL](ClO_4)_2$  (L = 3,10-bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) was synthesized by a one-pot reaction of template condensation and its X-ray crystal structure was determined. The nickel(II) ion lies close by a twofold axis and the complex displays whole-molecule disorder. Ligand L, a hexaaza-cyclotetradecane ring having 4-fluorophenethyl side chains attached to uncoordinated nitrogen atoms, adopts a *trans* III (R,R,S,S) configuration. The average Ni–N bond distance is 1.934 (9) Å, which is quite similar to those of other nickel(II) complexes with similar ligands. The nickel(II) ion is located 0.051 (7) Å above the least-squares plane through the four coordinated N atoms. The average C–N bond distance and C–N–C angle involving uncoordinated nitrogen atoms are 1.425 (12) Å and 118.0 (9)°, respectively, indicating a significant contribution of  $sp^2$  hybridization for these N atoms. The intermolecular N–H···O, C–H···O/F hydrogen bonds of the complex form a network structure, which looks like a seamless floral lace pattern.

#### 1. Chemical context

A metal template condensation reaction with formaldehyde and appropriate amines is a useful method for the synthesis of saturated polyazamacrocyclic complexes. It often produces new macrocyclic complexes in one-pot reactions with high yield via selective routes (Salavati-Niasari & Davar, 2006; Salavati-Niasari & Najafian, 2003; Suh, 1996). The introduction of pendant arms into polyazamacrocyclic ligands has, sometimes, changed the structural and chemical properties of the complexes considerably (Hermann et al., 2008; Jee et al., 2003; Alexander, 1995; Kang et al., 1995). The information derived from polyazamacrocyclic complexes containing pendant arms helps in the understanding of apical effects in the biological behavior of tetraazamacrocyclic metalloenzymes having a square-planar geometry (Liang & Sadler, 2004; Costamagna et al., 2000). Furthermore, the donor atoms in the pendant arms of these macrocyclic complexes can be coordinated to another metal ion or participate in hydrogen bonding. Consequently, these complexes can be applied in the field of supramolecular chemistry or metal-organic frameworks. In the nickel(II) complex 8-(pyridin-4-ylmethyl)-1,3,6,8,10,13,15heptaazatricyclo[13.1.1.1<sup>13,15</sup>]octadecane, intermolecular hydrogen bonding between the nitrogen of the pendant pyridine and coordinated water produces a one-dimensional chain structure (Jee et al., 2003). In particular, many supramolecular

studies including metal-organic frameworks using complexes of 3,10-bis(alkyl)-1,3,5,8,10,12-hexaazacyclotetradecane-type ligands are available because they can be obtained by easy synthetic routes using metal template reactions (Min & Suh, 2001; Kang et al., 1999; Suh et al., 1994). The nickel(II) complex of 3,10-bis(2-cyanoethyl)-1,3,5,8,10,12-hexaazacyclotetradecane produces a coordination polymer with each nickel(II) ion in the macrocycle units coordinating to two nitrile pendant groups of neighboring macrocycles (Suh et al., 1994). In the nickel(II) complex of 3,10-bis(pyridin-4ylmethyl)-1,3,5,8,10,12-hexaazacyclotetradecane, hydrogenbonding interactions between nitrogen atoms in pendant pyridine rings, structural water molecules and hydrogen atoms of the secondary amine of the macrocycle link the macrocyclic complexes, resulting in a two-dimensional network (Min & Suh, 2001). In addition, many studies on metal-organic frameworks have been performed using complexes of 3,10bis(alkyl)-1,3,5,8,10,12-hexaazacyclotetradecane-type ligands (Jeoung et al., 2019; Stackhouse & Ma, 2018; Lee & Moon, 2018; Lin et al., 2014). In this communication, we report the preparation of a new nickel(II) complex  $[NiL](ClO_4)_2$ , where L is a 3,10-bis(alkyl)-1,3,5,8,10,12-hexaazacyclotetradecane ligand having 4-fluorophenethyl pendant arms at positions 3 and 10, and its structural characterization by single-crystal X-ray crystallography.



#### 2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. Both the complex and perchlorate anion display disorder. The Ni<sup>II</sup> ion lies close by a special position (twofold axis) and the  $[NiL]^{2+}$  complex occurs in two orientations with fixed occupancies of 0.50. The refinement of this whole-mol-



#### Figure 1

Molecular structure of one of the whole-molecule disorder component molecules of  $[NiL]^{2+}$  with displacement ellipsoids at 50% probability level. The second disorder component, generated by  $(1 - x, y, \frac{1}{2} - z)$  is omitted for clarity.

| Table 1                       |     |     |
|-------------------------------|-----|-----|
| Selected geometric parameters | (Å, | °). |

| Ni1-N3     | 1.925 (7)  | N1-C2           | 1.401 (11) |
|------------|------------|-----------------|------------|
| Ni1-N2     | 1.933 (9)  | N1-C5           | 1.469 (10) |
| Ni1-N3'    | 1.934 (7)  | N1′-C1′         | 1.400 (11) |
| Ni1-N2'    | 1.943 (9)  | N1' - C2'       | 1.408 (12) |
| N1-C1      | 1.398 (11) | N1′-C5′         | 1.481 (10) |
| N2-Ni1-N3  | 93.7 (4)   | C1-N1-C5        | 118.9 (9)  |
| N3-Ni1-N3' | 86.6 (3)   | C2-N1-C5        | 119.1 (8)  |
| N2-Ni1-N3' | 176.4 (4)  | C1' - N1' - C2' | 115.6 (7)  |
| N2-Ni1-N2' | 86.5 (2)   | C1'-N1'-C5'     | 120.1 (8)  |
| C1-N1-C2   | 115.5 (7)  | C2' - N1' - C5' | 118.5 (9)  |
|            |            |                 |            |

ecule disorder needed additional restraints (see Refinement section). The occupancies of the disordered perchlorate ion are 0.795 (7) and 0.205 (7). The nickel(II) ion is coordinated to the four nitrogens N2, N3, N2' and N3', and the complex has a square-planar coordination geometry. The 14-membered ring skeleton adopts the thermodynamically most stable trans-III configuration with R,R,S,S chirality of the four coordinated nitrogen atoms (Barefield, 2010). The ligand L of the complex has two 4-fluorophenethyl pendant arms attached to the two uncoordinated nitrogens (N1 and N1′) of the 14-membered 1,3,5,8,10,12-hexaazacyclotetradecane ring skeleton. The 4-fluorophenethyl pendants are positioned above and below the square coordination plane. The sixmembered chelate rings adopt a chair conformation and the five-membered chelate rings assume a gauche conformation.

Selected bond distances and angles are listed in Table 1. The average Ni-N bond distance of 1.934 (9) Å is quite similar to those in square-planar nickel(II) complexes of various other related 14-membered polyaza macrocycles (Kang et al., 1999; Suh et al., 1998; Suh et al., 1996). The bite angles of fivemembered chelates are  $86.5 (2)^{\circ}$  for N2-Ni1-N2' and  $86.6 (3)^{\circ}$  for N3-Ni1-N3', respectively and those of sixmembered chelates are 93.7 (4)° for N2-Ni1-N3 and  $93.0 (4)^{\circ}$  for N2'-Ni1-N3', respectively. The four coordinating nitrogen atoms (N2, N3, N2' and N3') are almost coplanar (r.m.s. deviation 0.010 Å). The nickel(II) ion is located 0.051 (7) Å above this least-squares plane showing a slightly square-pyramidal distortion. The N-C bond distances involving the uncoordinated bridgehead nitrogens (N1 and N1') range from 1.398 (11) Å (N1-C1) to 1.481 (10) Å (N1'-C5') and the average N–C bond distance is 1.425 (12) Å, which is significantly shorter than the other N-C single bond distances. Furthermore, the C-N-C bond angles involving these bridgehead nitrogens range from  $115.5 (7)^{\circ} (C1 - N1 - N1)^{\circ}$ C2) to 120.1 (8)° (C1'-N1'-C5') and the average bond angle is  $118.0 (9)^{\circ}$ , which is distinctly larger than the ideal tetrahedral angle. These results indicate a significant contribution of  $sp^2$  hybridization of the bridgehead nitrogen atoms (N1 and N1') (Min & Suh, 2001; Kang et al., 1999).

#### 3. Supramolecular features

There are several  $N-H\cdots A$  (A = O) as well as  $C-H\cdots A$  (A = O or F) hydrogen bonds in the crystal packing of

### research communications



Figure 2

Hydrogen-bonding interactions involving the perchlorate anions in the crystal packing  $[NiL](ClO_4)_2$ . Light-green dashed lines indicate N-H···O and C-H···O hydrogen-bonding interactions. Symmetry codes: (i)  $1 - x, y, \frac{1}{2} - z$ ; (ii) 1 - x, 1 - y, 1 - z; (iii)  $x, -\frac{1}{2} + y, 1 - z$ ; (v)  $\frac{3}{2} - x$ ,  $\frac{1}{2} - y, 1 - z$ ; (vi)  $-\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$ . Only one of the whole-molecule disorder  $[NiL]^{2+}$  components and the major component of the perchlorate anion are shown.

 $[NiL](ClO_4)_2$ . Hydrogen-bonding interactions between N-H or C-H groups of the ligand L and perchlorate oxygen atoms are summarized in Table 2 and illustrated in Fig. 2. In addition, fluorine atom F1 in one of the pendant phenyl groups of the macrocycle is involved in an intermolecular interaction with hydrogen H4A of a neighboring molecule (Table 2 and Fig. 3). The other fluorine atom, F1', takes part in a weaker hydrogenbonding interaction with H4'A of a neighboring molecule  $[H4A\cdots F1' = 2.62 \text{ Å}, C4'\cdots F1' = 3.312 (17) \text{ Å} and C4' H4'A\cdots F1' = 128.4 (8)^{\circ}]$ . These interactions form a chain structure extending in the [101] direction (Fig. 3). All of these intermolecular hydrogen-bonding interactions lead to a network structure resembling a seamless floral lace pattern (Fig. 4).

#### 4. Database survey

An Access Structures search of the Cambridge Structural Database (CSD, *via* CCDC Access Structures, December 2020; Groom *et al.*, 2016) resulted in 97 structures of complexes of 3,10-bis(alkyl)-1,3,5,8,10,12-hexaazacyclotetra-

Table 2Hydrogen-bond geometry (Å, °).

| , , ,                                 | /    | /                       |              |                             |
|---------------------------------------|------|-------------------------|--------------|-----------------------------|
| $D - H \cdots A$                      | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
| $N2 - H2 \cdots O4$                   | 0.98 | 2 51                    | 3 355 (17)   | 144                         |
| $N2 - H2 \cdots O4^{i}$               | 0.98 | 2.31                    | 3.260 (16)   | 141                         |
| $N2' - H2' \cdots O4^{ii}$            | 0.98 | 2.43                    | 3.332 (18)   | 152                         |
| $N2' - H2' \cdots O4^{iii}$           | 0.98 | 2.36                    | 3.089 (17)   | 131                         |
| $N3-H3 \cdot \cdot \cdot O2$          | 0.98 | 1.97                    | 2.819 (11)   | 144                         |
| $N3' - H3' \cdot \cdot \cdot O2^{ii}$ | 0.98 | 2.40                    | 3.186 (11)   | 137                         |
| $C1' - H1'A \cdots O1^{iii}$          | 0.97 | 2.31                    | 3.198 (13)   | 151                         |
| $C1-H1B\cdots O3^{ii}$                | 0.97 | 2.35                    | 3.156 (16)   | 140                         |
| $C1' - H1'B \cdots O3$                | 0.97 | 2.56                    | 3.309 (15)   | 134                         |
| $C2-H2B\cdots O1^{iv}$                | 0.97 | 2.50                    | 3.394 (16)   | 154                         |
| $C3-H3B\cdotsO1^{i}$                  | 0.97 | 2.48                    | 3.35 (2)     | 149                         |
| $C2' - H2'B \cdots O1^v$              | 0.97 | 2.58                    | 3.551 (16)   | 175                         |
| $C4-H4A\cdots F1^{vi}$                | 0.97 | 2.54                    | 3.341 (19)   | 140                         |
| $C3' - H3'A \cdots O4^{in}$           | 0.97 | 2.54                    | 3.136 (17)   | 119                         |
| $C4' - H4'B \cdots O2$                | 0.97 | 2.54                    | 3.239 (14)   | 129                         |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, y,  $-z + \frac{1}{2}$ ; (iii) x, -y + 1,  $z - \frac{1}{2}$ ; (iv)  $x - \frac{1}{2}$ ,  $-y + \frac{1}{2}$ ,  $z - \frac{1}{2}$ ; (v)  $-x + \frac{3}{2}$ ,  $-y + \frac{1}{2}$ , -z + 1; (vi)  $-x + \frac{1}{2}$ ,  $-y + \frac{1}{2}$ , -z + 1.

decane derivatives and 13 structures of complexes of 1,8bis(alkyl)-1,3,6,8,10,13-hexaazacyclotetradecane (different systematic name of the ligand). However, no results were found for the 3,10-bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane structure.

In addition, 92 structures containing the 1,3,5,8,10,12hexaazacyclotetradecane skeleton were found during a SciFinder search, but again no results were found containing the title complex. Most are classified as octahedral complexes, while only a few cases are square-planar nickel(II) complexes. The Ni-N bond distances are 1.931 (2)-1.934 (3) Å in the nickel(II) complex of 3,10-bis(2-aminoethyl)-1,3,5,8,10,12hexaazacyclotetradecane (Kang et al., 1999), 1.934 Å in the nickel(II) complex of 3,10-dibenzyl-1,3,5,8,10,12-hexaazacyclotetradecane (Min & Suh, 2001), and 1.933 (3)-1.936 (3) Å in 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane (Benkada et al., 2020), similar to those of the squareplanar nickel(II) complexes of various other related 14membered polyaza macrocycles. The Ni-N distances of 1.933 (4)-1.944 (4) Å in the nickel(II) complex of 1,8dipentyl-1,3,6,8,10,13-hexaazacyclotetradecane (Park et al., 2015) and the average Ni-N bond distance of 1.941 (6) Å in the nickel(II) complex of 3,10-bis( $\alpha$ -methylnaphthyl)-



Figure 3

A view showing the one-dimensional chain propagation of rings formed by the intermolecular hydrogen bonding between F1··· H4A and F1··· H4'A in  $[NiL]^{2+}$ . Symmetry codes: (i)  $1 - x, y, \frac{1}{2} - z$ ; (iv)  $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$ ; (v)  $\frac{3}{2} - x, \frac{1}{2} - y, -z$ ; (vii) -1 + x, y, 1 + z. Only one of the whole-molecule disorder  $[NiL]^{2+}$  components is shown.



Figure 4

A view of the crystal packing of  $[NiL](CIO_4)_2$ , which resembles a seamless floral lace pattern. Light-green dashed lines indicate hydrogen-bonding interactions.

1,3,5,8,10,12-hexaazacyclotetradecane (Min *et al.*, 2013) are a little longer than those of analogous complexes. However, the Ni–N distances of 1.927 (4)–1.932 (4) Å in the nickel(II) complex of 3,10-bis(2-thiophenemethyl)-1,3,5,8,10,12-hexa-azacyclotetradecane (Su *et al.*, 2007) and 1.926 (1)–1.928 (1) Å in that of 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane (Kim *et al.*, 2002) are somewhat shorter than those of analogous complexes. In all these nickel(II) complexes of 3,10-bis(alkyl)-1,3,5,8,10,12-hexaazacyclotetradecane analogues, the nickel(II) ion is situated on an inversion center, except for the nickel(II) complex of 3,10-bis( $\alpha$ -methylnaphthyl)-1,3,5,8,10,12-hexaazacyclotetradecane,

which does not have an inversion center due to the chiral pendants of the macrocyclic ligand (Min *et al.*, 2013). The nickel (II) ion is exactly in the least-squares plane through the four coordinating nitrogen atoms.

#### 5. Synthesis and crystallization

A well-known one-pot reaction of template condensation was used for the preparation of the title complex (Salavati-Niasari & Rezai-Adaryani, 2004; Min & Suh, 2001; Kang *et al.*, 1999). 98% Ethylenediamine (1.1 ml, 16mmol), 99% 4-fluorophenethylamine (2.1 ml, 16 mmol), and 95% paraformaldehyde (1.44 g, 48 mmol) were slowly added to a stirred solution of 98% nickel(II) acetate tetrahydrate (2.0 g, 8.0 mmol) in 50 ml of methanol. The solution was heated under reflux for 24 h and then cooled to room temperature. The solution was filtered, concentrated HClO<sub>4</sub> was added to the filtrate, adjusting pH of the solution to 4, and it was kept in a refrigerator until a yellow-colored precipitate was formed. The

| Table 3                                                                      |                                                   |
|------------------------------------------------------------------------------|---------------------------------------------------|
| Experimental details.                                                        |                                                   |
| Crystal data                                                                 |                                                   |
| Chamical formula                                                             | $[N_{i}(C, H, E, N_{i})](C O_{i})$                |
|                                                                              | $[N(C_{24}\Pi_{36}\Gamma_{2}N_{6})](C(O_{4})_{2}$ |
| M <sub>r</sub>                                                               | /04.20<br>Managlinia C2/a                         |
| Crystal system, space group                                                  | Monochine, C2/c                                   |
| Temperature (K)                                                              | 1/3                                               |
| <i>a</i> , <i>b</i> , <i>c</i> (A)                                           | 16.9910 (12), 15.5187 (11),<br>13.8864 (9)        |
| $\beta$ (°)                                                                  | 126.189 (1)                                       |
| $V(Å^3)$                                                                     | 2955.1 (4)                                        |
| Z                                                                            | 4                                                 |
| Radiation type                                                               | Μο Κα                                             |
| $\mu \text{ (mm}^{-1})$                                                      | 0.91                                              |
| Crystal size (mm)                                                            | $0.40 \times 0.35 \times 0.20$                    |
| Data collection                                                              |                                                   |
| Diffractometer                                                               | Bruker SMART CCD area<br>detector                 |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 9357, 3400, 2737                                  |
| R <sub>int</sub>                                                             | 0.083                                             |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                         | 0.667                                             |
| Refinement                                                                   |                                                   |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.068, 0.159, 1.13                                |
| No. of reflections                                                           | 3400                                              |
| No. of parameters                                                            | 282                                               |
| No. of restraints                                                            | 492                                               |
| H-atom treatment                                                             | H-atom parameters constrained                     |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.88, -0.63                                       |

Computer programs: SMART and SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), and Mercury (Macrae et al., 2020).

product was filtered, washed with methanol, and dried in air. Single crystals for X-ray crystallography were obtained by recrystallization from hot water.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geometrically and allowed to ride on their respective parent atoms  $[C-H = 0.93 \text{ Å} (CH, \text{ aromatic}), 0.97 \text{ Å} (CH_2) \text{ and } N-H =$  $0.98 \text{ Å} (NH_2), \text{ and } U_{iso}(H) = 1.2U_{eq}(C) \text{ or } U_{iso}(H) =$  $1.2U_{eq}(N)].$ 

The refinement of the whole-molecule disorder employed the following constraints and restraints in *SHELXL*: (1) occupancy factors were set at 0.50, (2) the two chemically equivalent halves of the complex were restrained to be similar using the 'SAME' command, (3) the fluorinated benzene rings were given a weak 'FLAT' restraint, (4) Ni1 required a strong 'ISOR' restraint and (5) displacement factors for atom pairs related about the special position were constrained to be equal (EADP).

The perchlorate anion is disordered over two sets of atomic sites with occupancy ratios of 0.795 (7):0.205 (7).

#### Acknowledgements

The authors thank the Center for Research Faculties, Kyungsang National University, Jinju, South Korea, for the X-ray crystallographic data collection.

#### References

- Alexander, V. (1995). Chem. Rev. 95, 273-342.
- Barefield, E. K. (2010). Coord. Chem. Rev. 254, 1607-1627.
- Benkada, A., Näther, C. & Bensch, W. (2020). Z. Anorg. Allg. Chem. 646, 1352–1358.
- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Costamagna, J., Ferraudi, G., Matsuhiro, B., Campos-Vallette, M., Canales, J., Villagrán, M., Vargas, J. & Aguirre, M. J. (2000). *Coord. Chem. Rev.* **196**, 125–164.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hermann, P., Kotek, J., Kubíček, V. & Lukeš, I. (2008). Dalton Trans. pp. 3027–3047.
- Jee, J. E., Kim, Y. M., Lee, S. S., Park, K. M. & Kwak, C. H. (2003). *Inorg. Chem. Commun.* 6, 946–949.
- Jeoung, S., Lee, S., Lee, J. H., Lee, S., Choe, W., Moon, D. & Moon, H. R. (2019). Chem. Commun. 55, 8832–8835.
- Kang, S. G., Kim, M.-S., Choi, J. S., Whang, D. & Kim, K. (1995). J. Chem. Soc. Dalton Trans. pp. 363–366.
- Kang, S. G., Ryu, K., Jung, S. K. & Kim, J. (1999). Inorg. Chim. Acta, 293, 140–146.
- Kim, J. C., Lough, A. J. & Kim, H. (2002). Inorg. Chem. Commun. 5, 771–776.
- Lee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237–249.

- Liang, X. & Sadler, P. J. (2004). Chem. Soc. Rev. 33, 246-266.
- Lin, Z. J., Lü, J., Hong, M. & Cao, R. (2014). Chem. Soc. Rev. 43, 5867–5895.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Min, K. S., Park, M. J. & Ryoo, J. J. (2013). Chirality, 25, 54-58.
- Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303-313.
- Park, J. H., Jeong, A. R., Hastuti, D. K. A. K., Jeong, M. J. & Min, K. S. (2015). J. Incl Phenom. Macrocycl Chem. 82, 153–162.
- Salavati-Niasari, M. & Davar, F. (2006). Inorg. Chem. Commun. 9, 175–179.
- Salavati-Niasari, M. & Najafian, H. (2003). Polyhedron, 22, 2633–2638.
- Salavati-Niasari, M. & Rezai-Adaryani, M. (2004). Polyhedron, 23, 1325–1331.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.
- Su, Y. H., Liu, J., Li, J. & Si, X. Z. (2007). J. Mol. Struct. 837, 257– 262.
- Suh, M. P. (1996). Adv. Inorg. Chem. 44, 93-146.
- Suh, M. P., Han, M. Y., Lee, J. H., Min, K. S. & Hyeon, C. (1998). J. Am. Chem. Soc. 120, 3819–3820.
- Suh, M. P., Kim, I. S., Shim, B. Y., Hong, D. & Yoon, T.-S. (1996). *Inorg. Chem.* 35, 3595–3598.
- Suh, M. P., Shim, B. Y. & Yoon, T.-S. (1994). Inorg. Chem. 33, 5509– 5514.

Acta Cryst. (2021). E77, 148-152 [https://doi.org/10.1107/S2056989020016795]

Crystal structure of [3,10-bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclo-tetradecane]nickel(II) diperchlorate

### **Chee-Hun Kwak and Mee Chang**

**Computing details** 

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT* (Bruker, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

[3,10-Bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane]nickel(II) bis(perchlorate)

| Crystal data                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Ni(C <sub>24</sub> H <sub>36</sub> F <sub>2</sub> N <sub>6</sub> )](ClO <sub>4</sub> ) <sub>2</sub><br>$M_r = 704.20$<br>Monoclinic, C2/c<br>a = 16.9910 (12) Å<br>b = 15.5187 (11) Å<br>c = 13.8864 (9) Å<br>$\beta = 126.189$ (1)°<br>V = 2955.1 (4) Å <sup>3</sup><br>Z = 4 | F(000) = 1464<br>$D_x = 1.583 \text{ Mg m}^{-3}$<br>Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A}<br>Cell parameters from 3600 reflections<br>\theta = 1.8-28.3^\circ<br>\mu = 0.91 \text{ mm}^{-1}<br>T = 173 \text{ K}<br>Block, yellow<br>0.40 \times 0.35 \times 0.20 \text{ mm} |
| Data collection                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                           |
| Bruker SMART CCD area detector<br>diffractometer<br>phi and $\omega$ scans<br>9357 measured reflections<br>3400 independent reflections<br>2737 reflections with $I > 2\sigma(I)$                                                                                               | $R_{int} = 0.083$<br>$\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.0^{\circ}$<br>$h = -21 \rightarrow 19$<br>$k = -19 \rightarrow 18$<br>$l = -18 \rightarrow 15$                                                                                                                      |
| Refinement                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                           |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.068$<br>$wR(F^2) = 0.159$<br>S = 1.13                                                                                                                                                           | Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2 + 12.0119P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                      |

where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.88 \text{ e} \text{ Å}^{-3}$  $\Delta\rho_{min} = -0.63 \text{ e} \text{ Å}^{-3}$ 

3400 reflections

282 parameters

492 restraints

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|-------------|--------------|-----------------------------|-----------|
| Ni1 | 0.50831 (10) | 0.37625 (4) | 0.25924 (13) | 0.0174 (2)*                 | 0.5       |
| F1  | 0.0633 (8)   | 0.3851 (12) | 0.5651 (8)   | 0.071 (3)                   | 0.5       |
| N1  | 0.2930 (6)   | 0.3576 (6)  | 0.2078 (8)   | 0.0457 (18)                 | 0.5       |
| N2  | 0.4195 (8)   | 0.4599 (6)  | 0.2494 (14)  | 0.0285 (16)                 | 0.5       |
| H2  | 0.440274     | 0.471036    | 0.330822     | 0.034*                      | 0.5       |
| N3  | 0.4422 (6)   | 0.2796 (5)  | 0.2689 (8)   | 0.0315 (17)                 | 0.5       |
| H3  | 0.464913     | 0.275912    | 0.352038     | 0.038*                      | 0.5       |
| C1  | 0.3129 (7)   | 0.4353 (7)  | 0.1751 (11)  | 0.0438 (19)                 | 0.5       |
| H1A | 0.276898     | 0.481023    | 0.180846     | 0.053*                      | 0.5       |
| H1B | 0.289042     | 0.431370    | 0.092254     | 0.053*                      | 0.5       |
| C2  | 0.3322 (7)   | 0.2838 (6)  | 0.1930 (9)   | 0.0407 (18)                 | 0.5       |
| H2A | 0.307538     | 0.280024    | 0.109821     | 0.049*                      | 0.5       |
| H2B | 0.308648     | 0.233687    | 0.210625     | 0.049*                      | 0.5       |
| C3  | 0.4317 (10)  | 0.5416 (7)  | 0.2027 (12)  | 0.043 (2)                   | 0.5       |
| H3A | 0.398839     | 0.537629    | 0.117278     | 0.052*                      | 0.5       |
| H3B | 0.404620     | 0.589837    | 0.218621     | 0.052*                      | 0.5       |
| C4  | 0.4734 (8)   | 0.1987 (5)  | 0.2428 (11)  | 0.042 (2)                   | 0.5       |
| H4A | 0.462776     | 0.149576    | 0.277068     | 0.050*                      | 0.5       |
| H4B | 0.436522     | 0.190069    | 0.157356     | 0.050*                      | 0.5       |
| C5  | 0.2772 (7)   | 0.3584 (7)  | 0.3011 (9)   | 0.043 (2)                   | 0.5       |
| H5A | 0.324764     | 0.396071    | 0.365491     | 0.051*                      | 0.5       |
| H5B | 0.286668     | 0.300782    | 0.333287     | 0.051*                      | 0.5       |
| C6  | 0.1754 (10)  | 0.3892 (15) | 0.2521 (13)  | 0.0436 (17)                 | 0.5       |
| H6A | 0.169116     | 0.448576    | 0.226476     | 0.052*                      | 0.5       |
| H6B | 0.129079     | 0.355294    | 0.181870     | 0.052*                      | 0.5       |
| C7  | 0.1472 (8)   | 0.3846 (10) | 0.3366 (10)  | 0.0368 (12)                 | 0.5       |
| C8  | 0.1429 (10)  | 0.3083 (10) | 0.3863 (11)  | 0.048 (3)                   | 0.5       |
| H8  | 0.157393     | 0.256297    | 0.366611     | 0.057*                      | 0.5       |
| C9  | 0.1173 (10)  | 0.3085 (10) | 0.4650 (11)  | 0.054 (3)                   | 0.5       |
| H9  | 0.119223     | 0.257617    | 0.501639     | 0.065*                      | 0.5       |
| C10 | 0.0891 (15)  | 0.3847 (12) | 0.4885 (15)  | 0.0519 (18)                 | 0.5       |
| C11 | 0.0973 (19)  | 0.4610 (12) | 0.447 (2)    | 0.046 (2)                   | 0.5       |
| H11 | 0.084266     | 0.512687    | 0.469261     | 0.055*                      | 0.5       |
| C12 | 0.126 (2)    | 0.4599 (11) | 0.371 (2)    | 0.039 (2)                   | 0.5       |
| H12 | 0.130349     | 0.512186    | 0.342290     | 0.047*                      | 0.5       |
| F1′ | 0.9281 (8)   | 0.3557 (11) | -0.0646 (8)  | 0.071 (3)                   | 0.5       |
| N1′ | 0.7183 (6)   | 0.3953 (6)  | 0.3006 (8)   | 0.0457 (18)                 | 0.5       |
| N2′ | 0.5718 (8)   | 0.4730 (6)  | 0.2422 (15)  | 0.0315 (17)                 | 0.5       |
| H2′ | 0.548837     | 0.474605    | 0.158805     | 0.038*                      | 0.5       |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| N3′  | 0.5922 (6)  | 0.2927 (5)  | 0.2582 (8)  | 0.0285 (16) | 0.5       |
|------|-------------|-------------|-------------|-------------|-----------|
| H3′  | 0.570787    | 0.286557    | 0.175710    | 0.034*      | 0.5       |
| C1′  | 0.6818 (7)  | 0.4693 (6)  | 0.3192 (10) | 0.0407 (18) | 0.5       |
| H1'A | 0.706114    | 0.519692    | 0.303050    | 0.049*      | 0.5       |
| H1′B | 0.706349    | 0.471549    | 0.402388    | 0.049*      | 0.5       |
| C2′  | 0.6995 (7)  | 0.3171 (7)  | 0.3348 (10) | 0.0438 (19) | 0.5       |
| H2'A | 0.722435    | 0.321528    | 0.417275    | 0.053*      | 0.5       |
| H2′B | 0.736204    | 0.271471    | 0.330180    | 0.053*      | 0.5       |
| C3′  | 0.5385 (10) | 0.5534 (7)  | 0.2658 (12) | 0.042 (2)   | 0.5       |
| H3'A | 0.551526    | 0.603098    | 0.234804    | 0.050*      | 0.5       |
| H3′B | 0.571198    | 0.561228    | 0.350715    | 0.050*      | 0.5       |
| C4′  | 0.5786 (8)  | 0.2082 (5)  | 0.2969 (10) | 0.043 (2)   | 0.5       |
| H4'A | 0.600078    | 0.161811    | 0.270542    | 0.052*      | 0.5       |
| H4′B | 0.616559    | 0.206027    | 0.383173    | 0.052*      | 0.5       |
| C5′  | 0.7323 (7)  | 0.3938 (7)  | 0.2050 (9)  | 0.043 (2)   | 0.5       |
| H5'A | 0.695637    | 0.440331    | 0.149100    | 0.051*      | 0.5       |
| H5′B | 0.708406    | 0.339732    | 0.161773    | 0.051*      | 0.5       |
| C6′  | 0.8384 (11) | 0.4037 (15) | 0.2587 (14) | 0.0436 (17) | 0.5       |
| H6'A | 0.874819    | 0.360440    | 0.320403    | 0.052*      | 0.5       |
| H6′B | 0.860033    | 0.459795    | 0.296500    | 0.052*      | 0.5       |
| C7′  | 0.8622 (8)  | 0.3952 (10) | 0.1701 (10) | 0.0368 (12) | 0.5       |
| C8′  | 0.8807 (9)  | 0.3129 (9)  | 0.1490 (10) | 0.039 (2)   | 0.5       |
| H8′  | 0.875962    | 0.266112    | 0.187145    | 0.047*      | 0.5       |
| C9′  | 0.9059 (10) | 0.2994 (10) | 0.0724 (11) | 0.046 (2)   | 0.5       |
| H9′  | 0.923553    | 0.245074    | 0.062804    | 0.055*      | 0.5       |
| C10′ | 0.9039 (15) | 0.3693 (11) | 0.0113 (15) | 0.0519 (18) | 0.5       |
| C11′ | 0.893 (2)   | 0.4515 (12) | 0.034 (2)   | 0.054 (3)   | 0.5       |
| H11′ | 0.902900    | 0.497780    | -0.000650   | 0.065*      | 0.5       |
| C12′ | 0.868 (2)   | 0.4641 (12) | 0.112 (2)   | 0.048 (3)   | 0.5       |
| H12′ | 0.854488    | 0.519427    | 0.124343    | 0.057*      | 0.5       |
| Cl1  | 0.6115 (4)  | 0.3604 (3)  | 0.5699 (5)  | 0.0469 (4)  | 0.795 (7) |
| 01   | 0.6801 (6)  | 0.3549 (5)  | 0.6978 (5)  | 0.082 (3)   | 0.795 (7) |
| O2   | 0.5813 (5)  | 0.2776 (4)  | 0.5188 (5)  | 0.102 (2)   | 0.795 (7) |
| 03   | 0.6555 (5)  | 0.3981 (6)  | 0.5233 (6)  | 0.113 (3)   | 0.795 (7) |
| O4   | 0.5284 (5)  | 0.4091 (5)  | 0.5368 (6)  | 0.089 (2)   | 0.795 (7) |
| Cl1′ | 0.6086 (16) | 0.3675 (13) | 0.5680 (19) | 0.0469 (4)  | 0.205 (7) |
| 01′  | 0.6497 (18) | 0.3241 (14) | 0.6781 (19) | 0.049 (4)   | 0.205 (7) |
| O2′  | 0.6325 (17) | 0.3288 (16) | 0.4980 (16) | 0.074 (4)   | 0.205 (7) |
| O3′  | 0.6267 (19) | 0.4551 (13) | 0.574 (2)   | 0.097 (6)   | 0.205 (7) |
| O4′  | 0.5058 (15) | 0.3669 (16) | 0.5057 (19) | 0.067 (4)   | 0.205 (7) |
|      |             |             |             |             |           |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$  | $U^{22}$   | $U^{33}$  | $U^{12}$   | $U^{13}$    | $U^{23}$   |
|----|-----------|------------|-----------|------------|-------------|------------|
| F1 | 0.074 (3) | 0.112 (11) | 0.060 (2) | 0.010 (4)  | 0.0571 (19) | 0.004 (3)  |
| N1 | 0.035 (2) | 0.063 (6)  | 0.054 (3) | -0.001 (2) | 0.034 (2)   | 0.005 (3)  |
| N2 | 0.034 (3) | 0.030 (3)  | 0.034 (3) | 0.007 (2)  | 0.028 (3)   | 0.006 (3)  |
| N3 | 0.037 (3) | 0.031 (3)  | 0.039 (4) | -0.003 (3) | 0.029 (3)   | -0.002 (3) |

| C1   | 0.031 (3)  | 0.057 (5)   | 0.049 (4)  | 0.012 (3)  | 0.026 (3)   | 0.011 (4)  |
|------|------------|-------------|------------|------------|-------------|------------|
| C2   | 0.038 (3)  | 0.050 (4)   | 0.043 (4)  | -0.014 (3) | 0.029 (3)   | -0.007 (3) |
| C3   | 0.067 (6)  | 0.031 (3)   | 0.060 (6)  | 0.013 (3)  | 0.054 (5)   | 0.010 (3)  |
| C4   | 0.073 (7)  | 0.022 (3)   | 0.062 (6)  | -0.003 (3) | 0.057 (6)   | -0.001 (3) |
| C5   | 0.033 (3)  | 0.061 (8)   | 0.045 (3)  | -0.001 (3) | 0.028 (2)   | 0.002 (3)  |
| C6   | 0.032 (4)  | 0.066 (6)   | 0.040 (3)  | -0.003 (4) | 0.025 (3)   | -0.003 (5) |
| C7   | 0.029 (2)  | 0.052 (3)   | 0.033 (2)  | 0.003 (5)  | 0.020 (2)   | -0.002 (4) |
| C8   | 0.045 (6)  | 0.053 (4)   | 0.046 (7)  | 0.009 (4)  | 0.027 (6)   | 0.010 (4)  |
| C9   | 0.051 (7)  | 0.073 (5)   | 0.041 (7)  | 0.000 (5)  | 0.029 (6)   | 0.011 (5)  |
| C10  | 0.041 (3)  | 0.086 (6)   | 0.041 (2)  | 0.010 (6)  | 0.031 (2)   | 0.008 (5)  |
| C11  | 0.036 (5)  | 0.068 (4)   | 0.032 (5)  | 0.007 (4)  | 0.020 (5)   | -0.003 (4) |
| C12  | 0.036 (5)  | 0.052 (4)   | 0.028 (5)  | 0.003 (4)  | 0.019 (4)   | 0.003 (4)  |
| F1′  | 0.074 (3)  | 0.112 (11)  | 0.060 (2)  | 0.010 (4)  | 0.0571 (19) | 0.004 (3)  |
| N1′  | 0.035 (2)  | 0.063 (6)   | 0.054 (3)  | -0.001 (2) | 0.034 (2)   | 0.005 (3)  |
| N2′  | 0.037 (3)  | 0.031 (3)   | 0.039 (4)  | -0.003 (3) | 0.029 (3)   | -0.002 (3) |
| N3′  | 0.034 (3)  | 0.030 (3)   | 0.034 (3)  | 0.007 (2)  | 0.028 (3)   | 0.006 (3)  |
| C1′  | 0.038 (3)  | 0.050 (4)   | 0.043 (4)  | -0.014 (3) | 0.029 (3)   | -0.007 (3) |
| C2′  | 0.031 (3)  | 0.057 (5)   | 0.049 (4)  | 0.012 (3)  | 0.026 (3)   | 0.011 (4)  |
| C3′  | 0.073 (7)  | 0.022 (3)   | 0.062 (6)  | -0.003 (3) | 0.057 (6)   | -0.001 (3) |
| C4′  | 0.067 (6)  | 0.031 (3)   | 0.060 (6)  | 0.013 (3)  | 0.054 (5)   | 0.010 (3)  |
| C5′  | 0.033 (3)  | 0.061 (8)   | 0.045 (3)  | -0.001 (3) | 0.028 (2)   | 0.002 (3)  |
| C6′  | 0.032 (4)  | 0.066 (6)   | 0.040 (3)  | -0.003 (4) | 0.025 (3)   | -0.003 (5) |
| C7′  | 0.029 (2)  | 0.052 (3)   | 0.033 (2)  | 0.003 (5)  | 0.020(2)    | -0.002 (4) |
| C8′  | 0.036 (5)  | 0.052 (4)   | 0.028 (5)  | 0.003 (4)  | 0.019 (4)   | 0.003 (4)  |
| C9′  | 0.036 (5)  | 0.068 (4)   | 0.032 (5)  | 0.007 (4)  | 0.020 (5)   | -0.003 (4) |
| C10′ | 0.041 (3)  | 0.086 (6)   | 0.041 (2)  | 0.010 (6)  | 0.031 (2)   | 0.008 (5)  |
| C11′ | 0.051 (7)  | 0.073 (5)   | 0.041 (7)  | 0.000 (5)  | 0.029 (6)   | 0.011 (5)  |
| C12′ | 0.045 (6)  | 0.053 (4)   | 0.046 (7)  | 0.009 (4)  | 0.027 (6)   | 0.010 (4)  |
| C11  | 0.0583 (8) | 0.0582 (11) | 0.0380 (6) | 0.0229 (7) | 0.0361 (6)  | 0.0149 (7) |
| 01   | 0.089 (5)  | 0.116 (6)   | 0.038 (3)  | 0.058 (4)  | 0.035 (3)   | 0.014 (3)  |
| O2   | 0.119 (5)  | 0.063 (3)   | 0.077 (4)  | 0.015 (3)  | 0.032 (3)   | 0.012 (3)  |
| 03   | 0.113 (5)  | 0.162 (6)   | 0.094 (4)  | -0.035 (4) | 0.077 (4)   | 0.015 (4)  |
| O4   | 0.081 (4)  | 0.108 (5)   | 0.062 (4)  | 0.056 (4)  | 0.033 (3)   | 0.010 (3)  |
| Cl1′ | 0.0583 (8) | 0.0582 (11) | 0.0380 (6) | 0.0229 (7) | 0.0361 (6)  | 0.0149 (7) |
| 01′  | 0.068 (8)  | 0.052 (8)   | 0.050 (7)  | 0.028 (6)  | 0.047 (6)   | 0.017 (6)  |
| O2′  | 0.093 (8)  | 0.095 (9)   | 0.039 (6)  | 0.040 (8)  | 0.042 (6)   | 0.016 (7)  |
| O3′  | 0.108 (9)  | 0.081 (8)   | 0.084 (8)  | 0.002 (7)  | 0.046 (7)   | 0.013 (6)  |
| O4′  | 0.073 (7)  | 0.093 (9)   | 0.050 (7)  | 0.007 (7)  | 0.044 (5)   | 0.008 (7)  |
|      |            |             |            |            |             |            |

Geometric parameters (Å, °)

| Ni1—N3  | 1.925 (7)  | N1′—C1′ | 1.400 (11) |
|---------|------------|---------|------------|
| Ni1—N2  | 1.933 (9)  | N1′—C2′ | 1.408 (12) |
| Ni1—N3′ | 1.934 (7)  | N1′—C5′ | 1.481 (10) |
| Ni1—N2′ | 1.943 (9)  | N2′—C3′ | 1.484 (10) |
| F1-C10  | 1.370 (10) | N2′—C1′ | 1.510 (11) |
| N1—C1   | 1.398 (11) | N2′—H2′ | 0.9800     |
| N1—C2   | 1.401 (11) | N3'—C4' | 1.486 (10) |
|         |            |         |            |

| N1—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,469 (10)                        | N3'—C2'                        | 1.519 (12)             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|------------------------|
| N2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.495 (11)                        | N3'—H3'                        | 0.9800                 |
| N2-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 511 (11)                        | C1'—H1'A                       | 0.9700                 |
| N2—H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9800                            | C1'—H1'B                       | 0.9700                 |
| N3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 488 (9)                         | C2' - H2'A                     | 0.9700                 |
| N3 C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.400(9)                          | C2' $H2'B$                     | 0.9700                 |
| N3 H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0800                            | $C_2 = H_2 D$                  | 0.9700                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9800                            | $C_2'$ $H_2'P$                 | 0.9700                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9700                            | $C_{3}$ — $H_{3}$ B            | 0.9700                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9700                            | C4 - H4 A                      | 0.9700                 |
| C2—H2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700                            | C4 - H4 B                      | 0.9700                 |
| C2—H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700                            | $C_{5} = C_{6}$                | 1.498 (12)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.489 (13)                        |                                | 0.9700                 |
| C3—H3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700                            | CS'—HS'B                       | 0.9700                 |
| С3—НЗВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700                            | C6'—C'/'                       | 1.510 (10)             |
| C4—C4′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.482 (17)                        | С6'—Н6'А                       | 0.9700                 |
| C4—H4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700                            | С6'—Н6'В                       | 0.9700                 |
| C4—H4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700                            | C7'—C12'                       | 1.380 (11)             |
| C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.515 (11)                        | C7'—C8'                        | 1.387 (11)             |
| С5—Н5А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700                            | C8′—C9′                        | 1.377 (11)             |
| С5—Н5В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700                            | C8'—H8'                        | 0.9300                 |
| C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.509 (10)                        | C9′—C10′                       | 1.366 (12)             |
| С6—Н6А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700                            | С9'—Н9'                        | 0.9300                 |
| С6—Н6В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700                            | C10′—C11′                      | 1.351 (12)             |
| C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.393 (11)                        | C11′—C12′                      | 1.395 (12)             |
| C7—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.394 (11)                        | C11'—H11'                      | 0.9300                 |
| C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.394 (12)                        | C12'—H12'                      | 0.9300                 |
| С8—Н8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9300                            | C11—O3                         | 1.376 (7)              |
| C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.385 (12)                        | C11—O2                         | 1.410 (7)              |
| С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9300                            | Cl1—04                         | 1.418 (6)              |
| C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.357(12)                         | Cl1—O1                         | 1 440 (6)              |
| C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 396 (11)                        | C11'-03'                       | 1.386(17)              |
| C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9300                            | Cl1'                           | 1.300(17)<br>1.392(17) |
| C12_H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9300                            | C11' - O4'                     | 1.392(17)<br>1 420(17) |
| E12 III2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 356 (10)                        |                                | 1.420(17)              |
| 11-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.550 (10)                        |                                | 1.421 (10)             |
| N2 Ni1 N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93.7(4)                           | $C_{2'}$ N2' $C_{1'}$          | 110.4(9)               |
| N3 Ni1 N3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95.7 ( <del>1</del> )<br>86.6 (3) | C3 - N2 - C1<br>C3' - N2' - N1 | 108.1(8)               |
| N2 Ni1 N2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 176 A (A)                         | $C_{1}$ $N_{2}$ $N_{1}$        | 106.1(8)               |
| $\frac{1}{1} \frac{1}{1} \frac{1}$ | 170.4(4)                          | $C_1 - N_2 - N_1$              | 107.5                  |
| $N_{2} = N_{11} = N_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 177.5(3)                          | $C_{3} = N_{2} = N_{2}$        | 107.5                  |
| $N_2 = N_1 = N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80.5(2)                           | CI - N2 - H2                   | 107.5                  |
| $N3^{-}$ $N11^{-}$ $N2^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93.0 (4)                          | $N11 - N2^{2} - H2^{2}$        | 107.5                  |
| CI—NI—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115.5 (/)                         | C4' = N3' = C2'                | 110.2 (8)              |
| CI—NI—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.9 (9)                         | C4' - N3' - N11                | 108.5 (6)              |
| C2—N1—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.1 (8)                         | C2'—N3'—N11                    | 114.4 (6)              |
| C3—N2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.6 (9)                         | C4'—N3'—H3'                    | 107.9                  |
| C3—N2—Ni1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.3 (7)                         | C2'—N3'—H3'                    | 107.9                  |
| C1—N2—Ni1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.7 (7)                         | Ni1—N3'—H3'                    | 107.9                  |
| C3—N2—H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.6                             | N1'—C1'—N2'                    | 113.4 (8)              |

| C1—N2—H2                     | 107.6      | N1'—C1'—H1'A         | 108.9      |
|------------------------------|------------|----------------------|------------|
| Ni1—N2—H2                    | 107.6      | N2'—C1'—H1'A         | 108.9      |
| C4—N3—C2                     | 109.7 (7)  | N1′—C1′—H1′B         | 108.9      |
| C4—N3—Ni1                    | 109.6 (5)  | N2′—C1′—H1′B         | 108.9      |
| C2—N3—Ni1                    | 116.8 (6)  | H1'A—C1'—H1'B        | 107.7      |
| C4—N3—H3                     | 106.7      | N1′—C2′—N3′          | 113.3 (7)  |
| C2—N3—H3                     | 106.7      | N1′—C2′—H2′A         | 108.9      |
| Ni1—N3—H3                    | 106.7      | N3'—C2'—H2'A         | 108.9      |
| N1—C1—N2                     | 114.7 (8)  | N1′—C2′—H2′B         | 108.9      |
| N1—C1—H1A                    | 108.6      | N3'-C2'-H2'B         | 108.9      |
| N2—C1—H1A                    | 108.6      | H2'A - C2' - H2'B    | 107.7      |
| N1—C1—H1B                    | 108.6      | N2'-C3'-C3           | 107.0(11)  |
| N2—C1—H1B                    | 108.6      | N2'-C3'-H3'A         | 110.8      |
| H1A—C1—H1B                   | 107.6      | $C_3 - C_3' - H_3'A$ | 110.8      |
| N1-C2-N3                     | 115 7 (7)  | N2'-C3'-H3'B         | 110.8      |
| N1-C2-H2A                    | 108.4      | $C_3 - C_3' - H_3'B$ | 110.8      |
| $N_3 - C_2 - H_2 A$          | 108.4      | H3'A = C3' = H3'B    | 108.8      |
| N1 - C2 - H2B                | 108.4      | C4-C4'-N3'           | 107.6 (8)  |
| N3_C2_H2B                    | 108.4      | C4 - C4' - H4'A      | 110.2      |
| $H_2 A = C_2 = H_2 B$        | 107.4      | N3' - C4' - H4'A     | 110.2      |
| $C_{3'} - C_{3} - N_{2}^{2}$ | 106.4 (10) | C4-C4'-H4'B          | 110.2      |
| C3' - C3 - H3A               | 110.4      | N3' - C4' - H4'B     | 110.2      |
| N2-C3-H3A                    | 110.1      | H4'A - C4' - H4'B    | 108.5      |
| C3' - C3 - H3B               | 110.4      | N1′—C5′—C6′          | 109.6 (8)  |
| N2-C3-H3B                    | 110.4      | N1' - C5' - H5'A     | 109.8 (0)  |
| $H_{3A}$ $C_{3}$ $H_{3B}$    | 108.6      | C6' - C5' - H5'A     | 109.8      |
| C4' - C4 - N3                | 106.8 (8)  | N1′—C5′—H5′B         | 109.8      |
| C4′—C4—H4A                   | 110.4      | C6' - C5' - H5'B     | 109.8      |
| N3—C4—H4A                    | 110.4      | H5'A - C5' - H5'B    | 108.2      |
| C4'-C4-H4B                   | 110.4      | C5' - C6' - C7'      | 114.0 (8)  |
| N3—C4—H4B                    | 110.4      | C5'—C6'—H6'A         | 108.7      |
| H4A—C4—H4B                   | 108.6      | C7'—C6'—H6'A         | 108.7      |
| N1-C5-C6                     | 111.1 (8)  | C5'—C6'—H6'B         | 108.7      |
| N1—C5—H5A                    | 109.4      | C7'—C6'—H6'B         | 108.7      |
| C6—C5—H5A                    | 109.4      | H6'A—C6'—H6'B        | 107.6      |
| N1—C5—H5B                    | 109.4      | C12'—C7'—C8'         | 119.1 (9)  |
| C6—C5—H5B                    | 109.4      | C12'—C7'—C6'         | 123.8 (11) |
| H5A—C5—H5B                   | 108.0      | C8′—C7′—C6′          | 117.1 (11) |
| C7—C6—C5                     | 116.0 (8)  | C9'—C8'—C7'          | 121.1 (10) |
| C7—C6—H6A                    | 108.3      | C9'—C8'—H8'          | 119.4      |
| C5—C6—H6A                    | 108.3      | C7'—C8'—H8'          | 119.4      |
| C7—C6—H6B                    | 108.3      | C10'—C9'—C8'         | 117.0 (10) |
| C5—C6—H6B                    | 108.3      | C10'—C9'—H9'         | 121.5      |
| H6A—C6—H6B                   | 107.4      | C8'—C9'—H9'          | 121.5      |
| C8—C7—C12                    | 116.1 (9)  | C11'-C10'-F1'        | 118.1 (11) |
| C8—C7—C6                     | 124.0 (11) | C11'-C10'-C9'        | 124.3 (10) |
| C12—C7—C6                    | 119.9 (11) | F1'-C10'-C9'         | 116.8(12)  |
| C7—C8—C9                     | 121.1 (11) | C10'-C11'-C12'       | 117.2 (13) |
| 0, 00 07                     |            | 010 011 012          |            |

| С7—С8—Н8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.4                  | C10′—C11′—H11′                                       | 1214               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------|--------------------|
| C9-C8-H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.1                  | C12'-C11'-H11'                                       | 121.1              |
| $C_{10} - C_{9} - C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.1                  | C7'-C12'-C11'                                        | 121.1<br>120.5(13) |
| $C_{10}$ $C_{9}$ $H_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0                  | $C_{7}^{\prime}$ $C_{12}^{\prime}$ $H_{12}^{\prime}$ | 110.8              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0                  | $C_{11'}$ $C_{12'}$ $H_{12'}$                        | 110.8              |
| $C_{0} = C_{0} = C_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.0<br>118.8(12)     | $C_{11} = C_{12} = 1112$                             | 119.8              |
| $C_{11} = C_{10} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.0(12)<br>120.7(10) | 03 - C11 - 02                                        | 100.7(0)           |
| C11 - C10 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.7(10)<br>120.1(11) | 03 - 01 - 04                                         | 109.3(0)           |
| F1 - C10 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.1(11)<br>118.4(12) | 02 - CII - O4                                        | 109.0(6)           |
| C10-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.4 (12)             | 03-01-01                                             | 109.0 (6)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.8                  |                                                      | 110.9 (5)          |
| CI2—CII—HII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.8                  |                                                      | 110.9 (5)          |
| C/C12C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123.4 (12)             | 03'                                                  | 108.4 (19)         |
| С7—С12—Н12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.3                  | 03'—Cl1'—O4'                                         | 101.1 (17)         |
| C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.3                  | O2'—Cl1'—O4'                                         | 109.5 (18)         |
| C1'—N1'—C2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 115.6 (7)              | O3'-Cl1'-O1'                                         | 116.9 (18)         |
| C1'—N1'—C5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1 (8)              | 02'—Cl1'—O1'                                         | 112.8 (18)         |
| C2'—N1'—C5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.5 (9)              | 04'—Cl1'—O1'                                         | 107.4 (18)         |
| C2—N1—C1—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -64.3 (13)             | C5'—N1'—C1'—N2'                                      | 86.6 (11)          |
| C5-N1-C1-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87.3 (12)              | C3' - N2' - C1' - N1'                                | -179.4(10)         |
| $C_3 - N_2 - C_1 - N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 177.6 (10)             | $N_1 - N_2' - C_1' - N_1'$                           | 57.6 (13)          |
| Ni1-N2-C1-N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55 4 (13)              | C1' - N1' - C2' - N3'                                | 67.6 (12)          |
| C1-N1-C2-N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63.7(12)               | C5' - N1' - C2' - N3'                                | -85.8(10)          |
| $C_{5}$ N1 $C_{2}$ N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -87.7(12)              | C4' - N3' - C2' - N1'                                | 1780(8)            |
| $C_4 = N_3 = C_2 = N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1703(8)               | $N_{11} N_{12} C_{2} N_{11}$                         | -59.5(10)          |
| $N_{1} N_{2} C_{2} N_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -53.0(10)              | N11 - N3 - C2 - N1<br>C1' - N2' - C3' - C3           | -160.8(8)          |
| $\frac{1}{1} \frac{1}{1} \frac{1}$ | -1704(8)               | $N_{1}^{-1} N_{2}^{-1} C_{3}^{-1} C_{3}^{-1}$        | -42.7(11)          |
| $N_{1} N_{2} C_{3} C_{3} C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -170.4(6)<br>-42.7(11) | N11 - N2 - C3 - C3<br>N2 C2 C2' N2'                  | -42.7(11)          |
| NII - N2 - C3 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -42.7(11)              | N2 - C3 - C3 - N2                                    | 33.7(7)            |
| $V_2 = N_3 = C_4 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.7(7)               | $N_{3} = C_{4} = C_{4} = N_{3}$                      | -49.6(8)           |
| NII - N3 - C4 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.5 (9)<br>79.6 (14)  | $C_2 = N_3 = C_4 = C_4$                              | 103.1(7)           |
| CI = NI = CS = C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /8.0 (14)              | N11 - N3 - C4 - C4                                   | 39.5 (9)           |
| C2—N1—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -130.9 (14)            | C1' - N1' - C5' - C6'                                | 103.5 (13)         |
| NI-C5-C6-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/4.2 (12)             | C2' - N1' - C5' - C6'                                | -104.4 (13)        |
| C5—C6—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -61.5 (16)             | NI'                                                  | 174.9 (12)         |
| C5—C6—C7—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117 (2)                | C5'—C6'—C7'—C12'                                     | 93 (2)             |
| C12—C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7 (16)               | C5'—C6'—C7'—C8'                                      | -88.0 (15)         |
| C6—C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 179.3 (10)             | C12'—C7'—C8'—C9'                                     | 1.0 (16)           |
| C7—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 (2)                  | C6'—C7'—C8'—C9'                                      | -178.0 (10)        |
| C8—C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -8 (2)                 | C7'—C8'—C9'—C10'                                     | -5.3 (19)          |
| C8—C9—C10—F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 179.6 (14)             | C8'—C9'—C10'—C11'                                    | 10 (3)             |
| F1-C10-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179 (2)                | C8'—C9'—C10'—F1'                                     | -179.6 (13)        |
| C9—C10—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 (3)                  | F1'—C10'—C11'—C12'                                   | 180 (2)            |
| C8—C7—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -3 (3)                 | C9'—C10'—C11'—C12'                                   | -11 (3)            |
| C6-C7-C12-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 178.8 (18)             | C8'—C7'—C12'—C11'                                    | -1 (3)             |
| C10-C11-C12-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1 (4)                 | C6'—C7'—C12'—C11'                                    | 177.8 (18)         |
| C2'—N1'—C1'—N2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -66.3 (12)             | C10'—C11'—C12'—C7'                                   | 6 (4)              |

| D—H···A                          | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|----------------------------------|-------------|--------------|--------------|---------|
| N2—H2…O4                         | 0.98        | 2.51         | 3.355 (17)   | 144     |
| N2—H2···O4 <sup>i</sup>          | 0.98        | 2.44         | 3.260 (16)   | 141     |
| N2′—H2′····O4 <sup>ii</sup>      | 0.98        | 2.43         | 3.332 (18)   | 152     |
| N2′—H2′····O4 <sup>iii</sup>     | 0.98        | 2.36         | 3.089 (17)   | 131     |
| N3—H3…O2                         | 0.98        | 1.97         | 2.819 (11)   | 144     |
| N3′—H3′····O2 <sup>ii</sup>      | 0.98        | 2.40         | 3.186 (11)   | 137     |
| C1′—H1′A…O1 <sup>iii</sup>       | 0.97        | 2.31         | 3.198 (13)   | 151     |
| C1—H1 <i>B</i> …O3 <sup>ii</sup> | 0.97        | 2.35         | 3.156 (16)   | 140     |
| C1′—H1′ <i>B</i> ···O3           | 0.97        | 2.56         | 3.309 (15)   | 134     |
| C2—H2 $B$ ····O1 <sup>iv</sup>   | 0.97        | 2.50         | 3.394 (16)   | 154     |
| C3—H3 <i>B</i> …O1 <sup>i</sup>  | 0.97        | 2.48         | 3.35 (2)     | 149     |
| C2'— $H2'B$ ···O1 <sup>v</sup>   | 0.97        | 2.58         | 3.551 (16)   | 175     |
| C4—H4 $A$ ····F1 <sup>vi</sup>   | 0.97        | 2.54         | 3.341 (19)   | 140     |
| C3'—H3'A···O4 <sup>iii</sup>     | 0.97        | 2.54         | 3.136 (17)   | 119     |
| C4′—H4′ <i>B</i> ···O2           | 0.97        | 2.54         | 3.239 (14)   | 129     |

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, -z+1/2; (iii) x, -y+1, z-1/2; (iv) x-1/2, -y+1/2, z-1/2; (v) -x+3/2, -y+1/2, -z+1; (vi) -x+1/2, -y+1/2, -z+1.