

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 16 December 2020 Accepted 22 December 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

**Keywords:** crystal structure; 1,1,1,3,3,3-hexa-fluoropropan-2-olate ligand; aluminium cluster.

CCDC reference: 2052015

**Supporting information**: this article has supporting information at journals.iucr.org/e



 $(\mathbf{c})$ 

OPEN d ACCESS

# The crystal structure of the decaaluminum alkoxide cluster $Al_{10}O_4(OH)_8L_{14}$ (*L* = 1,1,1,3,3,3-hexa-fluoropropan-2-olate)

### Ray J. Butcher<sup>a</sup>\* and Andrew P. Purdy<sup>b</sup>

<sup>a</sup>Department of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and <sup>b</sup>Chemistry Division, Code 6123, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA. \*Correspondence e-mail: rbutcher99@yahoo.com

In the title centrosymmetric cluster compound, hexakis( $\mu_2$ -1,1,1,3,3,3-hexafluoropropan-2-olato)octakis(1,1,1,3,3,3-hexafluoropropan-2-olato)octa- $\mu_2$ hydroxido-di- $\mu_4$ -oxido-di- $\mu_3$ -oxido-decaaluminium, [Al<sub>10</sub>(C<sub>3</sub>HF<sub>6</sub>O)<sub>14</sub>(OH)<sub>8</sub>O<sub>4</sub>]  $(C_{42}H_{22}Al_{10}F_{84}O_{26})$ , there is a central  $\mu_4$ -OAl<sub>4</sub> moiety, which has six edges of which three contain  $\mu(O)$ -1,1,1,3,3,3-hexafluoropropan-2-olate (L) ligands and two contain  $\mu$ -OH groups each bridging two Al atoms along an edge. The sixth edge is occupied by a group containing a fifth aluminium atom [bis- $\mu$ (OH)-,  $\mu_3(O) - AlL$ ]. This last  $\mu_3(O)$  group generates a centrosymmetric Al<sub>2</sub>O<sub>2</sub> dimer, thus the  $\mu_3(O)$  atom is linked to two Al atoms in the asymmetric unit as well as a third Al atom through a center of inversion. Three of the hexafluoropropyl groups of the  $C_3HF_6O^-$  ligands are disordered and each was refined with two conformations with occupancies of 0.770 (3)/0.230 (3), 0.772 (3)/0.228 (3) and 0.775(3)/0.225(3). The five unique Al centers have coordination numbers varying from four to six with bond angles that show considerable distortions from regular geometry: for the four-coordinate atom,  $\tau_4' = 0.886$ , while three Al atoms are five-coordinate ( $\tau_5$  values = 0.098, 1.028, and 0.338) and one is distorted six-coordinate with O-AI-O bond angles ranging from 74.22 (9) to  $171.59 (12)^{\circ}$ . The geometry about the central O atom in the OAl<sub>4</sub> block is significantly distorted tetrahedral ( $\tau_4' = 0.630$ ) with Al–O–Al angles ranging from 95.50 (9) to 147.74 (13)°. The extended structure features numerous O- $H \cdots O, O - H \cdots F, C - H \cdots O$  and  $C - H \cdots F$  hydrogen bonds and short  $F \cdots F$ contacts.

#### 1. Chemical context

The interest in metal alkoxides (Turova et al., 2002) is due to their potential use as precursors of oxide materials in sol-gel technology (Brinker & Scherer, 1990) with applications in many fields including biomaterials (Avnir et al., 2006), and in the synthesis of single-phase materials, which provide unique possibilities to tailor the mechanical, electrical, and optical properties (Schottner, 2001). Within this class of compounds, the alkoxides of aluminum are of great interest and the first aluminum compounds with monodentate alkoxide ligands have been known since 1881. However, in spite of this interest, there are few examples of simple monodentate aluminum alkoxides that have been structurally characterized by single crystal X-ray analysis. In order of complexity, the dinuclear structure,  $Al_2(OtBu)_6$  [tBu = tert-butyl], was published in 1991 (Cayton et al., 1991) followed by trinuclear Al<sub>3</sub>(OCHex)<sub>9</sub> [CHex = cyclohexyl] in 2000 (Pauls & Neumüller, 2000). The crystal structure of the tetranuclear compound Al<sub>4</sub>(OiPr)<sub>12</sub> [*i*Pr = isopropyl] was first reported in 1979 (Turova *et al.*, 1979)

and re-determined in 1991 (Folting et al., 1991). An additional structure with four Al atoms and containing a  $\mu_4$ -O atom bridging all four Al atoms,  $[Al_4(OCH_2CF_3)_{11}]^-$  (one H atom could not be located) has been reported (Sangokoya et al., 1993). A pentanuclear, Al<sub>5</sub>O(Oi-Bu)<sub>13</sub>, and octanuclear structure,  $Al_8O_2(OH)_2(OiBu)_{18}$  (*iBu* = *iso*-butyl), was determined in 2002 (Abrahams et al., 2002). In 2018, the structure of a nonanuclear structure, Al<sub>9</sub>O<sub>3</sub>(OEt)<sub>21</sub>, was reported (Nachtigall et al. 2018). In 1987, the decanuclear compound, Al<sub>10</sub>O<sub>4</sub>(OEt)<sub>22</sub>, was reported (Yanovsky et al., 1987). The polynuclear aluminum oxoalkoxide structure containing the largest number of Al atoms solely from simple alcohols reported to date was  $Al_{11}O_6(OnPr)_{10}(OiPr)_{10}(Oi/nPr)(HOi/$ nPr)<sub>2</sub> (nPr = n-propyl) in 2004 (Starikova *et al.*, 2004). In a continuation of these studies, the structure of the complex derived from perfluorinated 2-propanol and aluminum ions,  $Al_{10}O_4(OH)_8L_{14}$  [L = 1,1,1,3,3,3-hexafluoropropan-2-olate], 1, is now reported.



#### 2. Structural commentary

The structure of the title compound  $(C_{42}H_{22}Al_{10}F_{84}O_{26})$  is best described in terms of its building blocks. First there is a  $\mu_4$ -OAl<sub>4</sub> moiety (O1, Al1-Al4), which has six edges of which three contain  $\mu(O)$ -1,1,1,3,3,3-hexafluoropropan-2-olate (L) ligands and two contain  $\mu$ -OH groups, each bridging two Al atoms along an edge (Al1-Al2, Al2-Al4, and Al3-Al4 for L and Al1–Al3 and Al2–Al3 for the  $\mu$ -OH groups). The sixth edge (Al1-Al4) is occupied by a group containing a fifth Al atom [bis- $\mu$ (OH)-,  $\mu_3$ (O)-AlL] where one  $\mu$ (OH) bridges Al4–Al5 and the  $\mu_3(O)$  group bridges Al1–Al5, while the second  $\mu$ (OH) bridges Al2–Al5. This last  $\mu_3$ (O) group allows this overall moiety to form a centrosymmetric Al<sub>2</sub>O<sub>2</sub> decaaluminum dimer, thus each  $\mu_3(O)$  group is linked to Al1 and Al5 in the asymmetric unit as well as a second Al1 atom through a center of inversion (symmetry operation -x, 1 - y, 1 - z).

Apart from the simpler homoleptic aluminum alkoxides containing two, three, and four aluminum atoms, in the larger aggregates the important building block appears to be a central O atom surrounded by four Al atoms in a distorted tetrahedral arrangement, *i.e.*  $OAl_4$  [five Al atoms in the case of  $Al_5O(Oi-Bu)_{13}$  (Abrahams *et al.*, 2002) but this is an exception and also not an aggregate]. In each case in this  $OAl_4$  building

block, five of the six edges are occupied by a  $\mu(O)$ -alkoxide bridge while the sixth edge is vacant to allow for dimerization. In larger aggregates, in the case of  $Al_8O_2(OH)_2(OiBu)_{18}$ (Abrahams et al., 2002), these building blocks are linked by two  $\mu$ -OH units. For Al<sub>9</sub>O<sub>3</sub>(OEt)<sub>21</sub> (Nachtigall *et al.* 2018), these building blocks are linked by two moieties. The first is a  $\mu_3(O)$  group linking the two halves as well as the ninth Al atom. The second link is provided by a central  $Al(OEt)_4$ group, which links the two building blocks through two  $\mu$ (OEt) on each side of the ninth Al atom. In the case of Al<sub>10</sub>O<sub>4</sub>(OEt)<sub>22</sub> (Yanovsky et al., 1987), these units are again linked by two moieties somewhat analogous to the situation for Al<sub>9</sub>O<sub>3</sub>(OEt)<sub>21</sub>. Both contain a  $\mu_3$ (O) group linking the two halves as well as an additional Al(OEt)<sub>4</sub> group, which links the two building blocks through two  $\mu(OEt)$  on each side of the group. However, in this instance this both linking moieties are located about a center of inversion The situation for  $Al_{11}O_6(OnPr)_{10}(OiPr)_{10}(Oi/nPr)(HOi/nPr)_2$  (Starikova et al., 2004) is slightly more complex: in this case the two building blocks are linked by group containing three Al atoms of which the central Al is located on a twofold crystallographic axis. This central Al is linked to both the O<sub>4</sub>Al building blocks and the other Al in the linking moiety by both two  $\mu_2(O)$  and  $\mu_3(O)$  linkages and also contains a terminal OEt ligand.

From this survey of aluminum alkoxide aggregates containing more than five Al centers, it can be seen that the present structure is unique in both its building block and the method of aggregation. In this instance, the edges of the OAl<sub>4</sub> block are made up by three  $\mu$ (O)-1,1,1,3,3,3-hexafluoropropan-2-olate (*L*) and two  $\mu$ -OH bridges with the sixth edge vacant to allow for dimerization. Aggregation is achieved by a  $\mu_3$ (O) group as in the other cases as well as a Al(OH)<sub>2</sub>(O)(*L*) moiety containing both  $\mu$ (OH) and  $\mu$ (O) groups where the latter are used to achieve dimerization.





The molecular structure of the decaaluminium cluster in 1 showing labeling for Al and O only for clarity (major component only; unlabeled atoms are generated by -x, 1 - y, 1 - z). Atomic displacement parameters are shown at the 30% probability level. Intramolecular O– $H \cdots O$ , O– $H \cdots F$  and C– $H \cdots F$  interactions are shown by dashed lines.

Table 1Selected bond lengths (Å).

| Al1-O11              | 1.781 (2) | Al3-O13              | 1.803 (2) |
|----------------------|-----------|----------------------|-----------|
| Al1-O13              | 1.833 (2) | Al3-O31              | 1.856 (3) |
| Al1-O12              | 1.839 (2) | Al3-O1               | 2.034 (2) |
| Al1-O11 <sup>i</sup> | 1.839 (2) | Al4-O41              | 1.734 (3) |
| Al1-O1               | 1.852 (2) | Al4-O22              | 1.830 (2) |
| Al2-O21              | 1.729 (2) | Al4-O1               | 1.831 (2) |
| Al2-O23              | 1.861 (2) | Al4–O52 <sup>i</sup> | 1.872 (2) |
| Al2-O51 <sup>i</sup> | 1.893 (2) | Al4-O31              | 1.932 (2) |
| Al2-O1               | 1.900(2)  | Al5-O53              | 1.714 (2) |
| Al2-O12              | 2.023 (2) | Al5-O11              | 1.734 (2) |
| Al2-O22              | 2.113 (3) | Al5-O51              | 1.767 (2) |
| Al3-O32              | 1.710(2)  | Al5-O52              | 1.786 (2) |
| A13 - 023            | 1.796(2)  |                      |           |

Symmetry code: (i) -x, -y + 1, -z + 1.

Typically the Al centers in these aluminum alkoxide aggregates have varying coordination numbers from four to six with angles that vary widely from regular geometry and this is true in 1 (Table 1 and Fig. 1) where Al5 is four-coordinate  $[\tau_4' = 0.886$  (Okuniewski *et al.*, 2015) indicating slightly distorted tetrahedral], while Al1, Al3, and Al4 are all fivecoordinate [ $\tau_5$  values are 0.098, 1.028, and 0.338, respectively (Addison et al., 1984)] while Al2 is distorted six-coordinate with O-Al-O bond angles ranging from 74.22 (9) to 171.59 (12)°. A  $\tau_5$  value of 1.028 is outside the normal range from 0 to 1 (Addison et al., 1984) so some comment should be made. A recent paper (Blackman et al., 2020) gave examples of this situation in which the geometries were all distorted trigonal pyramidal with the metal out of the trigonal plane, as is the case for Al3 (Fig. 2). The geometry about the central O atom in the OAl<sub>4</sub> block is significantly distorted tetrahedral  $[\tau_4' = 0.630$  (Okuniewski *et al.*, 2015)] with Al–O–Al angles ranging from 95.50 (9) to 147.74 (13)°.

#### 3. Supramolecular features

In the extended structure of **1**, the deca-aluminum clusters make numerous intermolecular  $F \cdots F$  contacts, which are less



#### Figure 2

Diagram showing the five-coordinate environment about Al3 in which the metal ion is displaced out of the trigonal plane leading to a  $\tau_5$  value of 1.028 (> 1).

 Table 2

 Hydrogen-bond geometry (Å, °).

| , , ,                             |             |                         |              |                  |
|-----------------------------------|-------------|-------------------------|--------------|------------------|
| $D - H \cdots A$                  | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
| 013-H13053                        | 0.80(2)     | 244(3)                  | 3 080 (3)    | 138 (4)          |
| $O13 - H13 \cdots F15A$           | 0.80(2)     | 2.63(4)                 | 3.094 (13)   | 119(3)           |
| O13-H13···F201                    | 0.80(2)     | 2.57 (3)                | 3.266 (3)    | 146 (4)          |
| O23-H23···F142                    | 0.81 (2)    | 2.21 (4)                | 2.876 (4)    | 139 (5)          |
| $O51-H51\cdot\cdot\cdot F53^{i}$  | 0.80(2)     | 2.07 (2)                | 2.850 (3)    | 163 (5)          |
| $O52-H52\cdot\cdot\cdot F173^{i}$ | 0.81 (2)    | 2.21 (4)                | 2.841 (6)    | 136 (5)          |
| $O52-H52\cdots F17A^{i}$          | 0.81 (2)    | 2.15 (4)                | 2.806 (12)   | 139 (5)          |
| $O52-H52\cdots F17B^{i}$          | 0.81 (2)    | 2.58 (5)                | 3.123 (19)   | 126 (4)          |
| $C1-H1A\cdots O21$                | 1.00        | 2.48                    | 3.103 (4)    | 120              |
| $C4-H4A\cdots F81$                | 1.00        | 2.32                    | 3.023 (5)    | 126              |
| $C4-H4A\cdots F93$                | 1.00        | 2.52                    | 3.265 (5)    | 131              |
| $C7-H7A\cdots O41$                | 1.00        | 2.59                    | 3.204 (5)    | 120              |
| $C7 - H7A \cdots F183$            | 1.00        | 2.43                    | 3.336 (6)    | 151              |
| $C10 - H10A \cdots O41$           | 1.00        | 2.19                    | 2.910 (5)    | 127              |
| $C13A - H13A \cdots F51^{m}$      | 1.00        | 2.32                    | 3.171 (5)    | 142              |
| $C15B - H15B \cdots O25$          | 1.00        | 2.51                    | 3.090(14)    | 110              |
| $C10D - H10B \cdots F12A$         | 1.00        | 2.19                    | 2.909 (18)   | 155              |

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y + 1, z.

than the sum of their van der Waals (Alvarez, 2013) radii, ranging in length from 2.641 (4)  $[F143\cdots F211(1 - x, 2 - y, 1 - z)$  to 2.921 (4) Å  $[F31\cdots F202(x, -1 + y, z)$  (see Fig. 3). In addition there are strong O-H···O and O-H···F and weak





Packing diagram of the decaaluminium cluster in **1** viewed along the *c*-axis direction. Inter-cluster  $F \cdots F$  interactions and both intra-cluster and inter-cluster  $O-H \cdots F$  and  $C-H \cdots F$  interactions are shown with dashed lines.

## research communications

Table 3Experimental details.

Crystal data Chemical formula [Al<sub>10</sub>(C<sub>3</sub>HF<sub>6</sub>O)<sub>14</sub>(OH)<sub>8</sub>O<sub>4</sub>] 2808 39  $M_r$ Crystal system, space group Triclinic,  $P\overline{1}$ Temperature (K) 100 11.8721 (8), 12.4448 (8), *a*, *b*, *c* (Å) 16.3091 (11) 108.754 (3), 102.232 (3), 98.650 (3)  $\begin{array}{l} \alpha,\,\beta,\,\gamma\,(^{\circ}) \\ V\,({
m \AA}^3) \end{array}$ 2166.8 (3) Ζ 1 Radiation type Μο Κα  $\mu \,({\rm mm}^{-1})$ 0.37  $0.20 \times 0.20 \times 0.20$ Crystal size (mm) Data collection Diffractometer Bruker APEXII CCD Absorption correction Multi-scan (SADABS; Bruker, 2016) 0.634, 0.747  $T_{\min}, T_{\max}$ No. of measured, independent and 13173, 13173, 8076 observed  $[I > 2\sigma(I)]$  reflections  $R_{\rm int}$ 0.075  $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.714 Refinement  $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.059, 0.171, 1.02 No. of reflections 13173 No. of parameters 935 No. of restraints 307 H-atom treatment H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.79, -0.87

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick 2015a), SHELXL2018/3 (Sheldrick, 2015b) and SHELXTL (Sheldrick 2008).

 $C-H\cdots O$  and  $C-H\cdots F$  hydrogen bonds, which help to consolidate the aluminum aggregates (Table 2).

#### 4. Database survey

A search of the Cambridge Structural Database [CSD version 5.41 (November 2019); Groom *et al.*, 2016] for fragments based on the structure of **1** gave five hits [ERUBEY (Starikova *et al.*, 2004); QESHOO (Nachtigall *et al.* 2018); UDOTAI and UDOTEM (Abrahams *et al.*, 2002) and ZZZGIE11 (Yanovsky *et al.*, 1987)]. A survey of the literature also revealed other structures not found from this search (Cayton *et al.*, 1991; Pauls & Neumüller, 2000; Folting *et al.*, 1991; Sangokoya *et al.*, 1993).

#### 5. Synthesis and crystallization

A solution of  $Al(BH_4)_3$  (Olson and Sanderson, 1958) in toluene was prepared by a reaction of  $AlCl_3$  with 3 eq. of LiBH<sub>4</sub> in toluene, followed by distillation. In a bulb, 21.18 mmol of hexafluoroisopropanol were condensed into 1.76 mmol of  $Al(BH_4)_3$  solution in several portions, and allowed to react to completion. Two phases formed, and then the second phase redissolved. The yellow liquid product was stored in a vial in a dry box, and on a day where the room temperature was very cold (<15 °C), colorless crystals formed. The crystals quickly melt at normal room temperature, and had to be placed into the cold stream immediately upon isolation.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Several of the hexafluoropropyl groups are disordered and each was refined with two equivalent conformations with occupancies of 0.770 (3)/ 0.230 (3), 0.772 (3)/0.228 (3) and 0.775 (3)/0.225 (3). The H atoms attached to C were refined in idealized positions using a riding model with C-H = 1.00 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ , while those attached to O were refined isotropically.

#### **Funding information**

RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.

#### References

- Abrahams, I., Bradley, D. C., Chudzynska, H., Motevalli, M. & Sinclair, R. A. (2002). J. Chem. Soc. Dalton Trans. pp. 259–266.
- Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Alvarez, S. (2013). Dalton Trans. 42, 8617-8636.
- Avnir, D., Coradin, T., Lev, O. & Livage, J. (2006). J. Mater. Chem. 16, 1013–1030.
- Blackman, A. G., Schenk, E. B., Jelley, R. E., Krenske, E. H. & Gahan, L. R. (2020). *Dalton Trans.* **49**, 14798–14806.
- Brinker, C. J. & Scherer, G. W. (1990). Sol-gel Science, the Physics and Chemistry of Sol-gel Processing. Boston: Academic Press.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cayton, R. H., Chisholm, M. H., Davidson, E. R., DiStasi, V. F., Du, P. & Huffman, J. C. (1991). *Inorg. Chem.* **30**, 1020–1024.
- Folting, K., Streib, W. E., Caulton, K. G., Poncelet, O. & Hubert-Pfalzgraf, L. G. (1991). *Polyhedron*, **10**, 1639–1646.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Nachtigall, O., Hirsch, T. & Spandl, J. (2018). Z. Anorg. Allg. Chem. 644, 2–5.
- Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). *Polyhedron*, **90**, 47–57.
- Olson, W. M. & Sanderson, R. T. (1958). J. Inorg. Nucl. Chem. 7, 228–230.
- Pauls, J. & Neumüller, B. (2000). Z. Anorg. Allg. Chem. 626, 270-279.
- Sangokoya, S. A., Pennington, W. T., Byers-Hill, J., Robinson, G. H. & Rogers, R. D. (1993). Organometallics, 12, 2429–2431.
- Schottner, G. (2001). Chem. Mater. 13, 3422-3435.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Starikova, Z. A., Kessler, V. G., Turova, N. Y., Tcheboukov, D. E., Suslova, E. V., Seisenbaeva, G. A. & Yanovsky, A. I. (2004). *Polyhedron*, 23, 109–114.
- Turova, N. Y., Kozunov, V. A., Yanovskii, A. I., Bokii, N. G., Struchkov, Y. T. & Tarnopol'skii, B. L. (1979). J. Inorg. Nucl. Chem. 41, 5–11.
- Turova, N. Y., Turevskaya, E. P., Kessler, V. G. & Yanovskaya, M. I. (2002). The Chemistry of Metal Alkoxides, Kluwer Academic Publishers, Boston/Dordrecht/London.
- Yanovsky, A. I., Turova, N. Y., Kozlova, N. I. & Struchkov, Y. T. (1987). *Koord. Khim.* **13**, 149–153.

Acta Cryst. (2021). E77, 79-82 [https://doi.org/10.1107/S2056989020016618]

The crystal structure of the decaaluminum alkoxide cluster  $AI_{10}O_4(OH)_8L_{14}$  (*L* = 1,1,1,3,3,3-hexafluoropropan-2-olate)

## Ray J. Butcher and Andrew P. Purdy

**Computing details** 

Data collection: *APEX2* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick 2008).

 $Hexakis(\mu_2-1,1,1,3,3,3-hexafluoropropan-2-olato) octakis(1,1,1,3,3,3-hexafluoropropan-2-olato) octa-\mu_2-hydroxido-di-\mu_4-oxido-di-\mu_3-oxido-decaaluminium$ 

| Crystal | data |
|---------|------|
|---------|------|

[ $Al_{10}(C_3HF_6O)_{14}(OH)_8O_4$ ]  $M_r = 2808.39$ Triclinic,  $P\overline{1}$  a = 11.8721 (8) Å b = 12.4448 (8) Å c = 16.3091 (11) Å a = 108.754 (3)°  $\beta = 102.232$  (3)°  $\gamma = 98.650$  (3)° V = 2166.8 (3) Å<sup>3</sup>

Data collection

Bruker APEXII CCD diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker, 2016)  $T_{\min} = 0.634, T_{\max} = 0.747$ 13173 measured reflections

Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.059$  $wR(F^2) = 0.171$ S = 1.0213173 reflections 935 parameters 307 restraints Z = 1 F(000) = 1368  $D_x = 2.152 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8011 reflections  $\theta = 2.6-33.8^{\circ}$   $\mu = 0.37 \text{ mm}^{-1}$ T = 100 K Chunk, colorless  $0.20 \times 0.20 \times 0.20 \text{ mm}$ 

13173 independent reflections 8076 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.075$  $\theta_{max} = 30.5^\circ, \ \theta_{min} = 2.6^\circ$  $h = -16 \rightarrow 16$  $k = -17 \rightarrow 17$  $l = 0 \rightarrow 23$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0742P)^2 + 2.7605P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\text{max}} = 0.001$   $\Delta \rho_{\rm max} = 0.79 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\rm min} = -0.87 \text{ e } \text{\AA}^{-3}$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x             | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|---------------|--------------|--------------|-----------------------------|-----------|
| A11  | 0.11057 (7)   | 0.56017 (7)  | 0.55578 (6)  | 0.01470 (17)                |           |
| Al2  | 0.26603 (8)   | 0.51056 (7)  | 0.69630 (6)  | 0.01955 (19)                |           |
| A13  | 0.28902 (8)   | 0.74967 (7)  | 0.69685 (6)  | 0.01924 (18)                |           |
| Al4  | 0.12747 (9)   | 0.66333 (8)  | 0.78809 (6)  | 0.02044 (19)                |           |
| A15  | 0.01488 (8)   | 0.58474 (7)  | 0.35584 (6)  | 0.01725 (18)                |           |
| 01   | 0.16224 (18)  | 0.60890 (16) | 0.68017 (13) | 0.0165 (4)                  |           |
| 011  | 0.02188 (18)  | 0.54022 (16) | 0.44686 (13) | 0.0159 (4)                  |           |
| O12  | 0.22217 (18)  | 0.47319 (16) | 0.56169 (14) | 0.0177 (4)                  |           |
| O13  | 0.20279 (19)  | 0.70523 (17) | 0.58119 (14) | 0.0196 (4)                  |           |
| H13  | 0.207 (4)     | 0.740 (3)    | 0.548 (2)    | 0.029 (11)*                 |           |
| O21  | 0.3669 (2)    | 0.42397 (19) | 0.69781 (17) | 0.0288 (5)                  |           |
| O22  | 0.2458 (2)    | 0.59639 (19) | 0.82515 (15) | 0.0263 (5)                  |           |
| O23  | 0.37364 (19)  | 0.64705 (18) | 0.71473 (15) | 0.0221 (4)                  |           |
| H23  | 0.444 (2)     | 0.655 (5)    | 0.720 (4)    | 0.077 (19)*                 |           |
| O31  | 0.2105 (2)    | 0.80585 (17) | 0.78288 (14) | 0.0231 (4)                  |           |
| O32  | 0.3947 (2)    | 0.87142 (19) | 0.71596 (17) | 0.0274 (5)                  |           |
| O41  | 0.0835 (2)    | 0.7390 (2)   | 0.88066 (15) | 0.0296 (5)                  |           |
| O51  | -0.12965 (19) | 0.60400 (17) | 0.32113 (14) | 0.0204 (4)                  |           |
| H51  | -0.147 (4)    | 0.663 (3)    | 0.320 (3)    | 0.046 (13)*                 |           |
| O52  | 0.0089 (2)    | 0.45898 (18) | 0.26165 (14) | 0.0209 (4)                  |           |
| H52  | 0.071 (3)     | 0.453 (4)    | 0.250 (3)    | 0.050 (15)*                 |           |
| O53  | 0.13129 (19)  | 0.70295 (18) | 0.38762 (15) | 0.0230 (4)                  |           |
| C1   | 0.2654 (3)    | 0.3974 (2)   | 0.4988 (2)   | 0.0231 (6)                  |           |
| H1A  | 0.330262      | 0.372176     | 0.532717     | 0.028*                      |           |
| C2   | 0.3190 (3)    | 0.4619 (3)   | 0.4455 (2)   | 0.0256 (6)                  |           |
| C3   | 0.1678 (3)    | 0.2884 (3)   | 0.4387 (2)   | 0.0255 (6)                  |           |
| C4   | 0.4216 (3)    | 0.3511 (3)   | 0.7308 (3)   | 0.0308 (7)                  |           |
| H4A  | 0.423231      | 0.371894     | 0.795689     | 0.037*                      |           |
| C5   | 0.3526 (4)    | 0.2238 (3)   | 0.6787 (4)   | 0.0480 (12)                 |           |
| C6   | 0.5489 (4)    | 0.3677 (4)   | 0.7243 (3)   | 0.0458 (10)                 |           |
| C7   | 0.2915 (3)    | 0.6084 (3)   | 0.9154 (2)   | 0.0321 (8)                  |           |
| H7A  | 0.263162      | 0.673363     | 0.953491     | 0.039*                      |           |
| C8   | 0.4268 (4)    | 0.6439 (3)   | 0.9444 (3)   | 0.0401 (9)                  |           |
| C9   | 0.2392 (4)    | 0.4976 (3)   | 0.9286 (3)   | 0.0386 (9)                  |           |
| C10  | 0.2067 (4)    | 0.9202 (3)   | 0.8327 (3)   | 0.0417 (10)                 |           |
| H10A | 0.151426      | 0.905456     | 0.868472     | 0.050*                      |           |

| C11  | 0.1378(3)                                 | 0.9727(3)              | 0.7752(2)              | 0 0334 (8)                |            |
|------|-------------------------------------------|------------------------|------------------------|---------------------------|------------|
| C12  | 0.1370(5)                                 | 0.9727(3)<br>0.9939(4) | 0.7732(2)<br>0.9039(3) | 0.0534(0)<br>0.0632(16)   |            |
| C13A | 0.5190(3)<br>0.4999(4)                    | 0.9995(4)              | 0.9039(3)<br>0.7147(3) | 0.00052(10)<br>0.0244(10) | 0 769 (9)  |
| H13A | 0.501453                                  | 1 014669               | 0.738237               | 0.0244 (10)               | 0.769(9)   |
| C13B | 0.501455<br>0 5064 (11)                   | 0.8590 (11)            | 0.6855 (8)             | 0.027 (3)                 | 0.705(9)   |
| H13B | 0.503315                                  | 0.773577               | 0.661533               | 0.027(5)                  | 0.231(9)   |
| C14  | 0.505515                                  | 0.773377<br>0.0124 (A) | 0.001333<br>0.7730 (3) | 0.032                     | 0.231 (9)  |
| C14  | 0.0030(3)                                 | 0.9124(4)<br>0.8073(3) | 0.7759(3)              | 0.0390(9)                 |            |
| C15  | -0.0067(4)                                | 0.0975(3)              | 0.0138(3)              | 0.0358(8)                 | 0.810(10)  |
|      | -0.026017                                 | 0.7100 (4)             | 0.9209 (3)             | 0.0355 (12)               | 0.810(10)  |
| C16P | 0.020917                                  | 0.030039               | 0.307737               | 0.042                     | 0.810(10)  |
|      | 0.0140(12)<br>0.036202                    | 0.7606 (14)            | 0.9287 (8)             | 0.030 (3)                 | 0.190(10)  |
|      | 0.030292                                  | 0.872115<br>0.7478(4)  | 0.939/04               | $0.044^{\circ}$           | 0.190 (10) |
| C17  | -0.114/(4)                                | 0.7478(4)              | 0.8850(5)              | 0.0519(11)                |            |
| C18  | 0.0456 (5)                                | 0.7778 (5)             | 1.0222(3)              | 0.0555 (12)               |            |
| C19  | 0.1634 (3)                                | 0.8018 (3)             | 0.3681 (2)             | 0.0264 (7)                |            |
| HI9A | 0.251891                                  | 0.823834               | 0.383337               | 0.032*                    |            |
| C20  | 0.1233 (3)                                | 0.9019 (3)             | 0.4273 (3)             | 0.0349 (8)                |            |
| C21  | 0.1143 (4)                                | 0.7783 (4)             | 0.2689 (3)             | 0.0395 (9)                |            |
| F21  | 0.40343 (18)                              | 0.55535 (17)           | 0.50202 (15)           | 0.0329 (5)                |            |
| F22  | 0.36696 (19)                              | 0.39535 (19)           | 0.38769 (15)           | 0.0367 (5)                |            |
| F23  | 0.23906 (17)                              | 0.50107 (18)           | 0.39799 (15)           | 0.0319 (4)                |            |
| F31  | 0.1236 (2)                                | 0.23738 (16)           | 0.48875 (14)           | 0.0337 (5)                |            |
| F32  | 0.2074 (2)                                | 0.21197 (16)           | 0.38103 (15)           | 0.0357 (5)                |            |
| F33  | 0.07529 (18)                              | 0.31398 (15)           | 0.38976 (14)           | 0.0305 (4)                |            |
| F51  | 0.4002 (3)                                | 0.1510 (2)             | 0.7111 (3)             | 0.0794 (11)               |            |
| F52  | 0.3431 (3)                                | 0.1894 (2)             | 0.5914 (2)             | 0.0674 (9)                |            |
| F53  | 0.2415 (2)                                | 0.2112 (2)             | 0.6876 (2)             | 0.0563 (8)                |            |
| F61  | 0.5550 (3)                                | 0.3428 (3)             | 0.6405 (2)             | 0.0734 (9)                |            |
| F62  | 0.6065 (3)                                | 0.3021 (3)             | 0.7593 (3)             | 0.0883 (12)               |            |
| F63  | 0.6070 (2)                                | 0.4787 (3)             | 0.7698 (2)             | 0.0617 (8)                |            |
| F81  | 0.4754 (2)                                | 0.5590 (2)             | 0.9043 (2)             | 0.0604 (8)                |            |
| F82  | 0.4682 (3)                                | 0.6717 (3)             | 1.03286 (17)           | 0.0633 (8)                |            |
| F83  | 0.4654 (2)                                | 0.7349 (2)             | 0.92514 (19)           | 0.0592 (8)                |            |
| F91  | 0.2797 (3)                                | 0.5033 (3)             | 1.01232 (17)           | 0.0639 (8)                |            |
| F92  | 0.1210 (2)                                | 0.4799 (2)             | 0.90928 (17)           | 0.0466 (6)                |            |
| F93  | 0.2623 (2)                                | 0.40254 (19)           | 0.87329 (17)           | 0.0462 (6)                |            |
| F111 | 0.0246 (3)                                | 0.9176 (3)             | 0.7390 (3)             | 0.0423 (10)               | 0.766 (8)  |
| F112 | 0.1833 (4)                                | 0.9652 (3)             | 0.7039 (2)             | 0.0365 (9)                | 0.766 (8)  |
| F113 | 0.1425 (13)                               | 1.0850 (5)             | 0.8181 (8)             | 0.0471 (19)               | 0.766 (8)  |
| F11A | 0.1112 (13)                               | 0.9412 (10)            | 0.6913 (6)             | 0.039 (2)                 | 0.234 (8)  |
| F11B | 0.0339 (9)                                | 0.9206 (9)             | 0.7929 (9)             | 0.043 (3)                 | 0.234 (8)  |
| F11C | 0.152 (4)                                 | 1.0857 (15)            | 0.818 (2)              | 0.043 (5)                 | 0.234 (8)  |
| F121 | 0.3881 (4)                                | 0.9365 (4)             | 0.9299 (3)             | 0.0510(12)                | 0.747(5)   |
| F122 | 0.3832 (3)                                | 1.0585 (2)             | 0.8632 (2)             | 0.0426 (9)                | 0.747 (5)  |
| F123 | 0.2992 (3)                                | 1.0761 (3)             | 0.9702 (2)             | 0.0420 (9)                | 0.747(5)   |
| F12A | 0.2041 (9)                                | 0.9938 (9)             | 0.9627 (6)             | 0.058 (3)                 | 0.253(5)   |
| F12B | 0.3562 (11)                               | 1 0866 (8)             | 0.9515 (8)             | 0.059(3)                  | 0.253(5)   |
| F12C | 0.3444(12)                                | 0.9107 (10)            | 0.9488 (8)             | 0.059(3)                  | 0.253(5)   |
| 1120 | 0.3 + + + + + + + + + + + + + + + + + + + | 0.7107 (10)            | 0.9400 (0)             | (ד) דנוני                 | 0.200 (0)  |

| F141 | 0.6026 (4)   | 0.9477 (4)  | 0.8585 (2)   | 0.0577 (11) | 0.772 (5) |
|------|--------------|-------------|--------------|-------------|-----------|
| F142 | 0.6042 (2)   | 0.7947 (2)  | 0.7535 (2)   | 0.0445 (9)  | 0.772 (5) |
| F143 | 0.7090 (4)   | 0.9608 (4)  | 0.7700 (5)   | 0.0487 (12) | 0.772 (5) |
| F14A | 0.6003 (10)  | 1.0389 (9)  | 0.8026 (8)   | 0.064 (3)   | 0.228 (5) |
| F14B | 0.7117 (13)  | 0.9269 (14) | 0.7610 (16)  | 0.047 (3)   | 0.228 (5) |
| F14C | 0.5929 (14)  | 0.8838 (14) | 0.8368 (9)   | 0.067 (3)   | 0.228 (5) |
| F151 | 0.5990 (4)   | 0.9655 (4)  | 0.6102 (3)   | 0.0625 (12) | 0.771 (4) |
| F152 | 0.5152 (3)   | 0.7868 (3)  | 0.5815 (2)   | 0.0520 (9)  | 0.771 (4) |
| F153 | 0.4089 (3)   | 0.9058 (4)  | 0.5657 (2)   | 0.0555 (10) | 0.771 (4) |
| F15A | 0.4180 (10)  | 0.8263 (12) | 0.5382 (8)   | 0.063 (3)   | 0.229 (4) |
| F15B | 0.5025 (12)  | 1.0082 (9)  | 0.6226 (8)   | 0.059 (3)   | 0.229 (4) |
| F15C | 0.6027 (10)  | 0.8800 (13) | 0.5804 (9)   | 0.065 (3)   | 0.229 (4) |
| F171 | -0.0945 (4)  | 0.8644 (3)  | 0.8931 (3)   | 0.0589 (11) | 0.780 (6) |
| F172 | -0.2023 (5)  | 0.7318 (5)  | 0.9199 (5)   | 0.0695 (14) | 0.780 (6) |
| F173 | -0.1589 (5)  | 0.6903 (4)  | 0.7952 (3)   | 0.0588 (13) | 0.780 (6) |
| F17A | -0.1343 (12) | 0.6147 (9)  | 0.8658 (9)   | 0.070 (3)   | 0.220 (6) |
| F17B | -0.1457 (19) | 0.7353 (15) | 0.7975 (9)   | 0.060 (4)   | 0.220 (6) |
| F17C | -0.1910 (18) | 0.7726 (16) | 0.9252 (16)  | 0.070 (4)   | 0.220 (6) |
| F181 | 0.0757 (5)   | 0.8906 (3)  | 1.0466 (2)   | 0.0714 (14) | 0.759 (5) |
| F182 | -0.0366 (5)  | 0.7525 (4)  | 1.0639 (3)   | 0.0745 (13) | 0.759 (5) |
| F183 | 0.1407 (5)   | 0.7423 (5)  | 1.0517 (2)   | 0.0733 (14) | 0.759 (5) |
| F18A | 0.0476 (15)  | 0.6767 (10) | 1.0247 (8)   | 0.075 (3)   | 0.241 (5) |
| F18B | 0.1690 (10)  | 0.8383 (13) | 1.0602 (7)   | 0.074 (3)   | 0.241 (5) |
| F18C | -0.0039 (13) | 0.8409 (14) | 1.0782 (8)   | 0.083 (3)   | 0.241 (5) |
| F201 | 0.1731 (3)   | 0.9221 (2)  | 0.51341 (17) | 0.0568 (7)  |           |
| F202 | 0.1527 (3)   | 0.9997 (2)  | 0.4134 (2)   | 0.0650 (8)  |           |
| F203 | 0.0058 (2)   | 0.8768 (2)  | 0.41380 (19) | 0.0481 (6)  |           |
| F211 | 0.1522 (3)   | 0.8649 (3)  | 0.2456 (2)   | 0.0821 (12) |           |
| F212 | 0.1437 (3)   | 0.6820 (3)  | 0.21900 (19) | 0.0652 (8)  |           |
| F213 | -0.0046 (2)  | 0.7514 (2)  | 0.24250 (16) | 0.0463 (6)  |           |
|      |              |             |              |             |           |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| All | 0.0170 (4)  | 0.0096 (3)  | 0.0159 (4)  | 0.0015 (3)  | 0.0003 (3)   | 0.0060 (3)  |
| Al2 | 0.0203 (4)  | 0.0125 (4)  | 0.0230 (4)  | 0.0013 (3)  | -0.0022 (3)  | 0.0093 (3)  |
| Al3 | 0.0207 (4)  | 0.0117 (4)  | 0.0216 (4)  | -0.0001 (3) | -0.0003 (3)  | 0.0069 (3)  |
| Al4 | 0.0275 (5)  | 0.0156 (4)  | 0.0145 (4)  | 0.0014 (3)  | 0.0014 (4)   | 0.0051 (3)  |
| A15 | 0.0210 (4)  | 0.0127 (4)  | 0.0172 (4)  | 0.0010 (3)  | 0.0013 (3)   | 0.0083 (3)  |
| 01  | 0.0198 (10) | 0.0100 (8)  | 0.0170 (9)  | 0.0007 (7)  | 0.0000 (8)   | 0.0059 (7)  |
| O11 | 0.0188 (9)  | 0.0111 (8)  | 0.0167 (9)  | 0.0012 (7)  | 0.0005 (8)   | 0.0073 (7)  |
| O12 | 0.0177 (9)  | 0.0116 (8)  | 0.0218 (10) | 0.0035 (7)  | 0.0022 (8)   | 0.0057 (7)  |
| O13 | 0.0241 (10) | 0.0125 (9)  | 0.0195 (10) | -0.0003 (8) | -0.0011 (8)  | 0.0090 (8)  |
| O21 | 0.0270 (12) | 0.0199 (10) | 0.0383 (13) | 0.0062 (9)  | -0.0032 (10) | 0.0167 (10) |
| O22 | 0.0307 (12) | 0.0223 (10) | 0.0191 (10) | 0.0014 (9)  | -0.0055 (9)  | 0.0089 (8)  |
| O23 | 0.0172 (10) | 0.0152 (9)  | 0.0296 (11) | -0.0006 (8) | -0.0020 (9)  | 0.0098 (8)  |
| O31 | 0.0295 (11) | 0.0119 (9)  | 0.0207 (10) | 0.0022 (8)  | -0.0001 (9)  | 0.0023 (8)  |
| O32 | 0.0208 (11) | 0.0172 (10) | 0.0408 (13) | -0.0013 (8) | 0.0041 (10)  | 0.0117 (9)  |
|     |             |             |             |             |              |             |

| O41  | 0.0401 (14) | 0.0258 (11) | 0.0199 (11) | 0.0020 (10)  | 0.0104 (10)  | 0.0058 (9)   |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| 051  | 0.0231 (10) | 0.0142 (9)  | 0.0234 (10) | 0.0030 (8)   | -0.0010 (8)  | 0.0115 (8)   |
| O52  | 0.0251 (11) | 0.0182 (10) | 0.0167 (10) | 0.0010 (8)   | 0.0034 (9)   | 0.0062 (8)   |
| 053  | 0.0238 (11) | 0.0181 (10) | 0.0271 (11) | 0.0003 (8)   | 0.0023 (9)   | 0.0135 (9)   |
| C1   | 0.0243 (15) | 0.0144 (12) | 0.0288 (15) | 0.0093 (11)  | 0.0038 (12)  | 0.0057 (11)  |
| C2   | 0.0211 (14) | 0.0237 (14) | 0.0310 (16) | 0.0090 (12)  | 0.0069 (13)  | 0.0071 (12)  |
| C3   | 0.0317 (16) | 0.0141 (12) | 0.0288 (16) | 0.0088 (12)  | 0.0050 (13)  | 0.0059 (11)  |
| C4   | 0.0289 (17) | 0.0284 (16) | 0.0386 (19) | 0.0113 (13)  | 0.0019 (15)  | 0.0196 (14)  |
| C5   | 0.038 (2)   | 0.0271 (18) | 0.081 (3)   | 0.0148 (16)  | 0.004 (2)    | 0.028 (2)    |
| C6   | 0.031 (2)   | 0.045 (2)   | 0.067 (3)   | 0.0109 (17)  | 0.008 (2)    | 0.029 (2)    |
| C7   | 0.040 (2)   | 0.0300 (16) | 0.0182 (14) | 0.0025 (14)  | -0.0054(14)  | 0.0099 (13)  |
| C8   | 0.045 (2)   | 0.0339 (19) | 0.0279 (18) | 0.0007 (16)  | -0.0131 (16) | 0.0121 (15)  |
| C9   | 0.053(2)    | 0.0344 (19) | 0.0276 (17) | 0.0073 (17)  | 0.0009 (17)  | 0.0187 (15)  |
| C10  | 0.055 (2)   | 0.0179 (15) | 0.0345 (19) | 0.0089 (15)  | -0.0085(18)  | 0.0005 (13)  |
| C11  | 0.044 (2)   | 0.0183 (14) | 0.0336 (18) | 0.0120 (14)  | 0.0073 (16)  | 0.0047 (13)  |
| C12  | 0.079 (4)   | 0.030 (2)   | 0.040 (2)   | 0.017 (2)    | -0.020(2)    | -0.0185(18)  |
| C13A | 0.0237 (19) | 0.0166 (18) | 0.030(2)    | 0.0003(15)   | 0.0039 (16)  | 0.0089 (16)  |
| C13B | 0.023 (4)   | 0.019 (4)   | 0.030(4)    | 0.000 (4)    | 0.008 (4)    | 0.000 (4)    |
| C14  | 0.0275 (18) | 0.042 (2)   | 0.040 (2)   | -0.0022(15)  | 0.0032 (16)  | 0.0121 (17)  |
| C15  | 0.0317 (18) | 0.0323(18)  | 0.040(2)    | 0.0052 (14)  | 0.0080 (16)  | 0.0118 (15)  |
| C16A | 0.053 (3)   | 0.029 (2)   | 0.030(2)    | 0.010 (2)    | 0.023 (2)    | 0.0108 (18)  |
| C16B | 0.051 (5)   | 0.030 (5)   | 0.029 (5)   | 0.007 (5)    | 0.021 (5)    | 0.006 (5)    |
| C17  | 0.052 (3)   | 0.055 (3)   | 0.047 (3)   | 0.006 (2)    | 0.027(2)     | 0.010 (2)    |
| C18  | 0.075(3)    | 0.068 (3)   | 0.032 (2)   | 0.026 (3)    | 0.027(2)     | 0.018 (2)    |
| C19  | 0.0239 (15) | 0.0234 (15) | 0.0332(17)  | -0.0025(12)  | 0.0031 (13)  | 0.0187(13)   |
| C20  | 0.0354 (19) | 0.0185 (15) | 0.051 (2)   | 0.0002 (13)  | 0.0064 (17)  | 0.0188 (15)  |
| C21  | 0.038 (2)   | 0.041 (2)   | 0.040 (2)   | -0.0048(16)  | 0.0076 (17)  | 0.0237 (17)  |
| F21  | 0.0254 (10) | 0.0266 (10) | 0.0419 (12) | 0.0011 (8)   | 0.0096 (9)   | 0.0082 (9)   |
| F22  | 0.0319 (11) | 0.0382 (12) | 0.0408 (12) | 0.0153 (9)   | 0.0169 (10)  | 0.0080 (9)   |
| F23  | 0.0251 (10) | 0.0386 (11) | 0.0434 (12) | 0.0111 (8)   | 0.0112 (9)   | 0.0272 (10)  |
| F31  | 0.0440 (12) | 0.0156 (8)  | 0.0384 (11) | -0.0006(8)   | 0.0105 (10)  | 0.0098 (8)   |
| F32  | 0.0461 (13) | 0.0171 (9)  | 0.0404 (12) | 0.0142 (9)   | 0.0138 (10)  | 0.0018 (8)   |
| F33  | 0.0309 (10) | 0.0160 (8)  | 0.0338 (10) | 0.0053 (7)   | -0.0021(8)   | 0.0023 (7)   |
| F51  | 0.0578 (18) | 0.0412 (15) | 0.151 (3)   | 0.0253 (13)  | 0.0084 (19)  | 0.0574 (19)  |
| F52  | 0.0657 (19) | 0.0363 (14) | 0.076 (2)   | 0.0146 (13)  | 0.0066 (16)  | -0.0034 (13) |
| F53  | 0.0365 (13) | 0.0308 (12) | 0.109 (2)   | 0.0076 (10)  | 0.0110 (14)  | 0.0413 (14)  |
| F61  | 0.066 (2)   | 0.076 (2)   | 0.082 (2)   | 0.0088 (16)  | 0.0419 (18)  | 0.0229 (18)  |
| F62  | 0.0382 (15) | 0.095 (3)   | 0.163 (4)   | 0.0369 (17)  | 0.0193 (19)  | 0.083 (3)    |
| F63  | 0.0311 (13) | 0.0567 (17) | 0.087 (2)   | -0.0011 (11) | 0.0014 (13)  | 0.0272 (15)  |
| F81  | 0.0388 (14) | 0.0522 (16) | 0.0658 (18) | 0.0068 (12)  | -0.0079(13)  | 0.0057 (13)  |
| F82  | 0.0639 (18) | 0.0698 (18) | 0.0297 (12) | -0.0006 (14) | -0.0236(12)  | 0.0143 (12)  |
| F83  | 0.0455 (15) | 0.0531 (15) | 0.0628 (17) | -0.0143(12)  | -0.0207(13)  | 0.0344 (14)  |
| F91  | 0.090 (2)   | 0.0623 (17) | 0.0378 (13) | 0.0019 (15)  | -0.0044 (14) | 0.0369 (13)  |
| F92  | 0.0523 (15) | 0.0454 (14) | 0.0475 (14) | 0.0052 (11)  | 0.0123 (12)  | 0.0277 (11)  |
| F93  | 0.0594 (15) | 0.0288 (11) | 0.0516 (14) | 0.0073 (10)  | 0.0068 (12)  | 0.0233 (10)  |
| F111 | 0.0338 (16) | 0.0329 (15) | 0.047 (2)   | 0.0089 (12)  | -0.0044 (15) | 0.0075 (15)  |
| F112 | 0.054 (2)   | 0.0290 (15) | 0.0305 (15) | 0.0144 (16)  | 0.0087 (16)  | 0.0164 (12)  |
| F113 | 0.066 (4)   | 0.019 (2)   | 0.051 (3)   | 0.019 (2)    | 0.010 (3)    | 0.005 (2)    |
|      | × /         | × /         | × /         | × /          | × /          | × /          |

| F11A | 0.049 (5)   | 0.040 (4)   | 0.031 (4)   | 0.015 (4)    | 0.009 (4)    | 0.015 (3)    |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| F11B | 0.040 (5)   | 0.045 (5)   | 0.044 (6)   | 0.020 (4)    | 0.004 (5)    | 0.016 (5)    |
| F11C | 0.060 (8)   | 0.019 (7)   | 0.045 (7)   | 0.010 (7)    | 0.020 (7)    | 0.003 (7)    |
| F121 | 0.050 (3)   | 0.039 (2)   | 0.040 (2)   | 0.0067 (19)  | -0.0146 (18) | 0.0026 (15)  |
| F122 | 0.0452 (18) | 0.0242 (14) | 0.0422 (17) | -0.0091 (12) | 0.0133 (14)  | -0.0018 (12) |
| F123 | 0.049 (2)   | 0.0297 (15) | 0.0265 (15) | -0.0033 (15) | 0.0084 (14)  | -0.0091 (12) |
| F12A | 0.074 (6)   | 0.042 (5)   | 0.037 (5)   | -0.003 (5)   | 0.014 (5)    | -0.001 (4)   |
| F12B | 0.062 (5)   | 0.033 (4)   | 0.047 (4)   | -0.018 (4)   | 0.001 (4)    | -0.007 (4)   |
| F12C | 0.064 (7)   | 0.032 (5)   | 0.033 (6)   | 0.010 (5)    | -0.024 (5)   | -0.006 (4)   |
| F141 | 0.057 (2)   | 0.076 (3)   | 0.0361 (19) | 0.021 (2)    | -0.0002 (17) | 0.0209 (19)  |
| F142 | 0.0278 (14) | 0.0340 (15) | 0.076 (2)   | 0.0076 (11)  | 0.0053 (14)  | 0.0321 (15)  |
| F143 | 0.0240 (16) | 0.039 (3)   | 0.082 (3)   | -0.0015 (15) | 0.0010 (17)  | 0.033 (2)    |
| F14A | 0.038 (5)   | 0.061 (5)   | 0.064 (6)   | 0.002 (4)    | 0.002 (4)    | -0.002 (5)   |
| F14B | 0.026 (5)   | 0.045 (7)   | 0.074 (6)   | 0.008 (5)    | 0.012 (4)    | 0.029 (6)    |
| F14C | 0.060 (5)   | 0.073 (6)   | 0.060 (6)   | -0.006 (6)   | -0.006 (5)   | 0.040 (5)    |
| F151 | 0.062 (2)   | 0.070 (3)   | 0.056 (2)   | -0.014 (2)   | 0.0215 (18)  | 0.034 (2)    |
| F152 | 0.068 (2)   | 0.0399 (17) | 0.0443 (18) | 0.0142 (16)  | 0.0217 (17)  | 0.0052 (14)  |
| F153 | 0.052 (2)   | 0.080 (3)   | 0.0407 (19) | 0.0211 (19)  | 0.0042 (16)  | 0.0322 (19)  |
| F15A | 0.057 (5)   | 0.070 (6)   | 0.043 (5)   | 0.004 (5)    | 0.014 (4)    | 0.002 (5)    |
| F15B | 0.071 (6)   | 0.060 (5)   | 0.061 (5)   | 0.012 (5)    | 0.023 (5)    | 0.043 (4)    |
| F15C | 0.061 (5)   | 0.074 (6)   | 0.064 (5)   | 0.018 (5)    | 0.029 (5)    | 0.021 (5)    |
| F171 | 0.080 (3)   | 0.0401 (18) | 0.064 (2)   | 0.0270 (17)  | 0.0220 (19)  | 0.0209 (16)  |
| F172 | 0.068 (3)   | 0.065 (3)   | 0.087 (3)   | 0.026 (3)    | 0.052 (2)    | 0.019 (3)    |
| F173 | 0.054 (2)   | 0.064 (3)   | 0.044 (2)   | 0.027 (2)    | 0.0108 (17)  | -0.0024 (19) |
| F17A | 0.065 (6)   | 0.076 (6)   | 0.060 (6)   | 0.012 (5)    | 0.035 (5)    | 0.007 (5)    |
| F17B | 0.064 (6)   | 0.057 (7)   | 0.053 (6)   | 0.031 (6)    | 0.009 (5)    | 0.009 (5)    |
| F17C | 0.069 (6)   | 0.060(7)    | 0.078 (6)   | 0.026 (6)    | 0.044 (5)    | 0.002 (6)    |
| F181 | 0.114 (4)   | 0.046 (2)   | 0.0299 (17) | 0.009 (2)    | 0.009 (2)    | -0.0055 (15) |
| F182 | 0.120 (4)   | 0.084 (3)   | 0.046 (2)   | 0.035 (3)    | 0.056 (2)    | 0.033 (2)    |
| F183 | 0.099 (3)   | 0.101 (4)   | 0.0293 (18) | 0.048 (3)    | 0.020 (2)    | 0.024 (2)    |
| F18A | 0.113 (7)   | 0.081 (6)   | 0.048 (5)   | 0.022 (5)    | 0.031 (5)    | 0.042 (5)    |
| F18B | 0.100 (6)   | 0.083 (6)   | 0.025 (4)   | 0.018 (6)    | 0.008 (5)    | 0.007 (5)    |
| F18C | 0.112 (6)   | 0.088 (6)   | 0.045 (5)   | 0.023 (6)    | 0.044 (5)    | 0.006 (5)    |
| F201 | 0.0741 (19) | 0.0386 (13) | 0.0399 (14) | 0.0095 (13)  | 0.0019 (13)  | 0.0019 (11)  |
| F202 | 0.0695 (18) | 0.0232 (11) | 0.109 (2)   | 0.0059 (11)  | 0.0221 (17)  | 0.0371 (14)  |
| F203 | 0.0374 (13) | 0.0342 (12) | 0.0728 (18) | 0.0107 (10)  | 0.0176 (12)  | 0.0173 (12)  |
| F211 | 0.091 (2)   | 0.081 (2)   | 0.0581 (17) | -0.0438 (18) | -0.0124 (16) | 0.0544 (17)  |
| F212 | 0.0686 (19) | 0.090 (2)   | 0.0387 (14) | 0.0245 (17)  | 0.0246 (14)  | 0.0176 (15)  |
| F213 | 0.0375 (12) | 0.0553 (15) | 0.0442 (13) | -0.0011 (11) | -0.0031 (10) | 0.0305 (12)  |
|      |             |             |             |              |              |              |

## Geometric parameters (Å, °)

| Al1—011              | 1.781 (2) | C9—F92   | 1.340 (5) |  |
|----------------------|-----------|----------|-----------|--|
| Al1-013              | 1.833 (2) | C9—F93   | 1.343 (5) |  |
| Al1—O12              | 1.839 (2) | C10—C12  | 1.459 (6) |  |
| Al1—O11 <sup>i</sup> | 1.839 (2) | C10—C11  | 1.483 (5) |  |
| Al1—01               | 1.852 (2) | C10—H10A | 1.0000    |  |
| Al2—021              | 1.729 (2) | C11—F11A | 1.250 (9) |  |
|                      |           |          |           |  |

| Al2—023                 | 1.861 (2)            | C11—F11C    | 1.320 (17)             |
|-------------------------|----------------------|-------------|------------------------|
| Al2—O51 <sup>i</sup>    | 1.893 (2)            | C11—F111    | 1.324 (5)              |
| Al2—01                  | 1.900 (2)            | C11—F113    | 1.333 (7)              |
| Al2—012                 | 2.023 (2)            | C11—F112    | 1.365 (5)              |
| A12—O22                 | 2.113 (3)            | C11—F11B    | 1.434 (10)             |
| A13—032                 | 1.710 (2)            | C12—F12B    | 1.129 (9)              |
| A13—023                 | 1.796 (2)            | C12—F123    | 1.287 (5)              |
| A13-013                 | 1.803 (2)            | C12—F121    | 1.309 (6)              |
| Al3—031                 | 1.856 (3)            | C12—F122    | 1.467 (7)              |
| A13-01                  | 2.034 (2)            | C12—F12C    | 1.495 (11)             |
| A14-041                 | 1.734(3)             | C12—F12A    | 1 766 (10)             |
| A14                     | 1.830(2)             | C13A - C14  | 1 496 (6)              |
| A14-01                  | 1 831 (2)            | C13A - C15  | 1 559 (6)              |
| A14-052 <sup>i</sup>    | 1.872 (2)            | C13A—H13A   | 1 0000                 |
| A14-031                 | 1.932 (2)            | C13B-C15    | 1 369 (14)             |
| A15-053                 | 1.714 (2)            | C13B $C14$  | 1.509(11)<br>1.524(12) |
| A15-011                 | 1.711(2)<br>1.734(2) | C13B—H13B   | 1.0000                 |
| A15-051                 | 1.767 (2)            | C14— $F14C$ | 1.0000                 |
| A15-057                 | 1.786 (2)            | C14 - F143  | 1 314 (6)              |
| 012-012                 | 1 397 (4)            | C14 - F141  | 1.314(5)               |
| 013—H13                 | 0 798 (19)           | C14—F14B    | 1.323(13)              |
| 021-C4                  | 1 371 (4)            | C14—F142    | 1 391 (5)              |
| 022 - C7                | 1 407 (4)            | C14—F14A    | 1.591(0)<br>1.505(10)  |
| 023—H23                 | 0.81 (2)             | C15—F151    | 1 311 (5)              |
| 0.25 $1125$ $0.31-0.10$ | 1 407 (4)            | C15—F153    | 1.319(5)               |
| 032—C13A                | 1.353 (5)            | C15—F152    | 1.332(5)               |
| 032—C13B                | 1.523 (14)           | C15—F15B    | 1.361 (10)             |
| 041—C16B                | 1.325 (16)           | C15—F15C    | 1.385 (11)             |
| O41—C16A                | 1,409 (5)            | C15—F15A    | 1.394 (10)             |
| O51—H51                 | 0.804 (19)           | C16A—C17    | 1.469 (7)              |
| O52—H52                 | 0.807 (19)           | C16A—C18    | 1.520 (6)              |
| O53—C19                 | 1.386 (3)            | C16A—H16A   | 1.0000                 |
| C1—C3                   | 1.528 (4)            | C16B—C17    | 1.485 (14)             |
| C1—C2                   | 1.529 (5)            | C16B—C18    | 1.535 (13)             |
| C1—H1A                  | 1.0000               | C16B—H16B   | 1.0000                 |
| C2—F22                  | 1.329 (4)            | C17—F17C    | 1.265 (13)             |
| C2—F21                  | 1.332 (4)            | C17—F17B    | 1.316 (13)             |
| C2—F23                  | 1.345 (4)            | C17—F173    | 1.323 (6)              |
| C3—F31                  | 1.326 (4)            | C17—F172    | 1.327 (7)              |
| C3—F32                  | 1.326 (4)            | C17—F171    | 1.383 (6)              |
| C3—F33                  | 1.357 (4)            | C17—F17A    | 1.561 (11)             |
| C4—C6                   | 1.524 (6)            | C18—F18A    | 1.276 (11)             |
| C4—C5                   | 1.534 (6)            | C18—F181    | 1.298 (6)              |
| C4—H4A                  | 1.0000               | C18—F18C    | 1.305 (10)             |
| C5—F52                  | 1.322 (6)            | C18—F183    | 1.327 (6)              |
| C5—F51                  | 1.325 (4)            | C18—F182    | 1.357 (6)              |
| C5—F53                  | 1.348 (5)            | C18—F18B    | 1.443 (12)             |
| C6—F61                  | 1.321 (6)            | C19—C21     | 1.513 (5)              |

| C6—F62                                               | 1 328 (5)                | C19—C20                   | 1 521 (5)            |
|------------------------------------------------------|--------------------------|---------------------------|----------------------|
| C6—F63                                               | 1.320(5)<br>1.331(5)     | C19—H19A                  | 1.0000               |
| C7—C9                                                | 1 524 (5)                | $C_{20}$ = F_{202}        | 1 318 (4)            |
| C7—C8                                                | 1 526 (6)                | $C_{20}$ F202             | 1.327(5)             |
| C7—H7A                                               | 1,0000                   | $C_{20}$ F201             | 1.327(5)<br>1.336(5) |
| C8 F83                                               | 1.314(5)                 | C21 F211                  | 1.303(3)             |
| $C_8 = F_8^2$                                        | 1.314(3)<br>1.330(4)     | $C_{21} = F_{213}$        | 1.303(4)<br>1.340(5) |
| C8 F81                                               | 1.330 (4)                | $C_{21} = F_{212}$        | 1.370(3)<br>1.357(5) |
| $C_0 = F_0 I$                                        | 1.332(3)<br>1 322(4)     | C21—I <sup>2</sup> I2     | 1.557 (5)            |
| C)—191                                               | 1.322 (4)                |                           |                      |
| 011_411_013                                          | 97 78 (9)                | F82                       | 107.2(3)             |
| 011 - 411 - 012                                      | 117.46(10)               | F83 - C8 - C7             | 107.2(3)<br>110.9(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 117.40(10)<br>101.00(10) | $F_{82} = C_8 = C_7$      | 110.5(3)             |
| 013 - A11 - 012                                      | 81 79 (10)               | $F_{02} = C_{0} = C_{7}$  | 110.3(+)<br>112.7(3) |
| O12 $A11$ $O11i$                                     | (10)                     | $F_{01} = C_{0} = C_{1}$  | 112.7(3)<br>108.0(4) |
| 013 - A11 - 011                                      | 101.50(0)                | $F_{91} = C_{9} = F_{92}$ | 100.0(4)<br>100.0(2) |
| 012 - A11 - 011                                      | 101.50(9)<br>150.52(10)  | $F_{91} = C_{9} = F_{93}$ | 106.0(3)             |
| 012 $A11$ $01$                                       | 139.33 (10)              | F92 - C9 - F93            | 100.0(3)<br>112.2(2) |
| 013—AII—01                                           | 80.54 (9)                | F91—C9—C7                 | 112.3(3)             |
|                                                      | 82.04 (9)                | F92—C9—C7                 | 109.9(3)             |
|                                                      | 90.78 (9)                | F93-C9-C7                 | 111.9(3)             |
| 021—Al2—023                                          | 96.86 (11)               | 031 - 010 - 012           | 11/.0(3)             |
| 021—AI2—051 <sup>4</sup>                             | 97.40 (11)               |                           | 111.8(3)             |
| 023—AI2—051                                          | 165.72 (11)              | C12—C10—C11               | 119.0 (3)            |
| 021—Al2—01                                           | 171.59 (12)              | 031—C10—H10A              | 101.5                |
| O23—Al2—O1                                           | 78.91 (9)                | С12—С10—Н10А              | 101.5                |
| O51 <sup>1</sup> —Al2—O1                             | 87.04 (9)                | C11—C10—H10A              | 101.5                |
| 021—Al2—012                                          | 96.15 (11)               | F11A—C11—F11C             | 114.2 (18)           |
| O23—Al2—O12                                          | 90.33 (10)               | F111—C11—F113             | 107.6 (7)            |
| O51 <sup>i</sup> —Al2—O12                            | 88.92 (9)                | F111—C11—F112             | 105.2 (3)            |
| 01—Al2—O12                                           | 76.73 (9)                | F113—C11—F112             | 107.5 (5)            |
| O21—Al2—O22                                          | 113.06 (11)              | F11A—C11—F11B             | 104.3 (7)            |
| O23—Al2—O22                                          | 87.22 (10)               | F11C—C11—F11B             | 103.8 (15)           |
| O51 <sup>i</sup> —Al2—O22                            | 86.50 (10)               | F11A—C11—C10              | 127.8 (6)            |
| O1—Al2—O22                                           | 74.22 (9)                | F11C—C11—C10              | 112 (2)              |
| 012—Al2—022                                          | 150.78 (9)               | F111—C11—C10              | 114.1 (4)            |
| O32—Al3—O23                                          | 103.74 (11)              | F113—C11—C10              | 113.4 (7)            |
| O32—Al3—O13                                          | 105.59 (12)              | F112—C11—C10              | 108.6 (3)            |
| O23—Al3—O13                                          | 112.56 (11)              | F11B—C11—C10              | 87.5 (6)             |
| O32—Al3—O31                                          | 101.95 (11)              | F123—C12—F121             | 112.8 (4)            |
| O23—Al3—O31                                          | 115.50 (11)              | F12B-C12-C10              | 143.5 (8)            |
| O13—Al3—O31                                          | 115.55 (11)              | F123—C12—C10              | 117.5 (5)            |
| O32—Al3—O1                                           | 177.19 (12)              | F121—C12—C10              | 114.3 (4)            |
| O23—Al3—O1                                           | 76.95 (9)                | F123—C12—F122             | 102.7 (4)            |
| O13—Al3—O1                                           | 76.49 (9)                | F121—C12—F122             | 100.2 (5)            |
| O31—Al3—O1                                           | 75.36 (9)                | C10-C12-F122              | 106.8 (4)            |
| O41—Al4—O22                                          | 108.96 (12)              | F12B-C12-F12C             | 109.9 (8)            |
| O41—Al4—O1                                           | 166.52 (11)              | C10-C12-F12C              | 100.5 (6)            |
| O22—Al4—O1                                           | 83.04 (10)               | F12B-C12-F12A             | 88.4 (8)             |

| O41—Al4—O52 <sup>i</sup>  | 95.13 (12)               | C10-C12-F12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77.4 (5)   |
|---------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| O22—Al4—O52 <sup>i</sup>  | 104.38 (11)              | F12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.9 (7)   |
| O1—Al4—O52 <sup>i</sup>   | 87.50 (10)               | O32—C13A—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 113.7 (3)  |
| O41—A14—O31               | 92.28 (11)               | O32—C13A—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.1 (3)  |
| Q22—A14—Q31               | 104.14 (11)              | C14—C13A—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111.6 (3)  |
| 01—Al4—031                | 78.49 (9)                | O32— $C13A$ — $H13A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107.1      |
| $0.52^{i}$ Al4 031        | 146 29 (10)              | C14-C13A-H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.1      |
| 053 - A15 - 011           | 107 38 (10)              | C15-C13A-H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.1      |
| 053 - A15 - 051           | 117 54 (11)              | C15-C13B-O32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111 3 (9)  |
| 011 - 15 - 051            | 107.62 (11)              | C15 - C13B - C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121.5(9)   |
| 053 415 052               | 107.02(11)<br>117.44(12) | $O_{32}$ $C_{13B}$ $C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103.1(8)   |
| 011 - 15 - 052            | 106 56 (10)              | $C_{12} = C_{13} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106.7      |
| 011 - A15 - 052           | 100.50(10)<br>00.46(11)  | C13— $C13B$ — $H13BO22$ $C13B$ $H13B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106.7      |
| A14 O1 A11                | 33.40(11)<br>147.74(12)  | $C_{14}$ $C_{12}$ $C_{13}$ $C_{14}$ $C_{12}$ $C_{14}$ $C_{14}$ $C_{12}$ $C_{14}$ $C_{14}$ $C_{12}$ $C_{14}$ $C$ | 106.7      |
|                           | 147.74(13)<br>104.61(10) | $C14$ — $C13B$ — $\Pi13B$<br>E142 $C14$ $E141$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.7      |
| A14-01-A12                | 104.01(10)<br>102.00(10) | F143 - C14 - F141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.8(4)   |
|                           | 102.00(10)               | F14C - C14 - F14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.0(12)  |
|                           | 99.09 (9)                | F143—C14—F142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105.2 (4)  |
| All—01—Al3                | 95.50 (9)                | F141—C14—F142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103.0 (4)  |
| Al2—OI—Al3                | 96.86 (10)               | F143—C14—C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115.6 (4)  |
| Al5—Ol1—All               | 144.27 (13)              | F141—C14—C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111.4 (4)  |
| Al5—Ol1—All <sup>1</sup>  | 117.37 (11)              | F142—C14—C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111.9 (3)  |
| Al1—O11—Al1 <sup>1</sup>  | 98.21 (10)               | F14C—C14—F14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105.2 (10) |
| C1—O12—Al1                | 135.25 (19)              | F14B—C14—F14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.7 (8)   |
| C1—O12—Al2                | 126.73 (18)              | F14C—C14—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 118.6 (9)  |
| Al1—O12—Al2               | 97.93 (10)               | F14B—C14—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112.3 (11) |
| Al3—O13—Al1               | 104.65 (11)              | F14A—C14—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101.4 (7)  |
| Al3—O13—H13               | 127 (3)                  | F151—C15—F153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.7 (4)  |
| Al1—O13—H13               | 128 (3)                  | F151—C15—F152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.8 (4)  |
| C4—O21—Al2                | 152.0 (3)                | F153—C15—F152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106.6 (4)  |
| C7—O22—Al4                | 123.5 (2)                | F15B—C15—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122.6 (8)  |
| C7—O22—Al2                | 139.7 (2)                | F15B—C15—F15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103.5 (8)  |
| Al4—O22—Al2               | 96.72 (10)               | C13B—C15—F15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 114.0 (9)  |
| Al3—O23—Al2               | 107.19 (12)              | F15B—C15—F15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104.6 (8)  |
| Al3—O23—H23               | 125 (4)                  | C13B—C15—F15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111.5 (8)  |
| A12—O23—H23               | 126 (4)                  | F15C—C15—F15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.3 (8)   |
| C10-031-Al3               | 131.5 (3)                | F151—C15—C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111.9 (3)  |
| C10-031-Al4               | 126.5 (3)                | F153—C15—C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.7 (3)  |
| A13-031-A14               | 101.97 (10)              | F152—C15—C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110.9 (3)  |
| C13A - O32 - A13          | 154.9 (3)                | O41—C16A—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111.6 (4)  |
| C13B-032-A13              | 120.0 (5)                | 041 - C16A - C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107.1 (4)  |
| C16B - O41 - A14          | 1597(5)                  | C17-C16A-C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1145(4)    |
| C16A - O41 - A14          | 1362(3)                  | O41— $C16A$ — $H16A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107.8      |
| $A15-051-A12^{i}$         | 120.2(3)<br>121.60(11)   | C17-C16A-H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.8      |
| A15-051-H51               | 127.00 (11)              | $C_{18}$ — $C_{16A}$ — $H_{16A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107.8      |
| Al2 <sup>i</sup> -051-H51 | 111 (4)                  | O41-C16B-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 115 7 (9)  |
| A15-052-A14 <sup>i</sup>  | 119 51 (13)              | 041-C16B-C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.7(10)  |
| A15-052-H52               | 116 (4)                  | $C_{17}$ $C_{16B}$ $C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112 7 (0)  |
| A14 <sup>i</sup> H52      | 123 (4)                  | 041 - C16B - H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105.6      |
| 1117 0002 1102            | 145 (7)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.0      |

| C19—O53—Al5                | 140.3 (2)            | C17—C16B—H16B                | 105.6                 |
|----------------------------|----------------------|------------------------------|-----------------------|
| O12—C1—C3                  | 110.3 (3)            | C18—C16B—H16B                | 105.6                 |
| O12—C1—C2                  | 109.8 (2)            | F17C—C17—F17B                | 115.7 (14)            |
| C3—C1—C2                   | 113.0 (3)            | F173—C17—F172                | 106.7 (5)             |
| O12—C1—H1A                 | 107.9                | F173—C17—F171                | 104.7 (5)             |
| C3—C1—H1A                  | 107.9                | F172—C17—F171                | 104.8 (4)             |
| C2—C1—H1A                  | 107.9                | F173—C17—C16A                | 112.7 (4)             |
| F22—C2—F21                 | 108.1 (3)            | F172—C17—C16A                | 114.8 (5)             |
| F22—C2—F23                 | 107.2 (3)            | F171—C17—C16A                | 112.4 (4)             |
| F21—C2—F23                 | 106.6 (3)            | F17C—C17—C16B                | 122.0 (12)            |
| F22—C2—C1                  | 112.3 (3)            | F17B—C17—C16B                | 115.7 (11)            |
| F21—C2—C1                  | 109.7 (3)            | F17C—C17—F17A                | 99.8 (10)             |
| F23—C2—C1                  | 112.8 (3)            | F17B-C17-F17A                | 95.8 (8)              |
| F31—C3—F32                 | 108.9(2)             | C16B-C17-F17A                | 100.0 (8)             |
| F31—C3—F33                 | 106.2(3)             | F18A—C18—F18C                | 115.6 (9)             |
| F32-C3-F33                 | 107.3(3)             | F181—C18—F183                | 108.0 (5)             |
| F31—C3—C1                  | 10, 2(3)             | F181—C18—F182                | 107.7(4)              |
| $F_{32}$ $-C_{3}$ $-C_{1}$ | 110.2(3)             | F183—C18—F182                | 107.7(1)<br>108.2(4)  |
| $F_{33}$ $-C_{3}$ $-C_{1}$ | 1122(2)              | F18A—C18—F18B                | 100.2(1)<br>102.1(10) |
| 021-C4-C6                  | 109.5(3)             | F18C-C18-F18B                | 102.1 (10)            |
| 021 - C4 - C5              | 109.2(3)             | F181—C18—C16A                | 102.1(9)<br>112.9(4)  |
| C6-C4-C5                   | 110.2(3)<br>110.9(3) | F183— $C18$ — $C16A$         | 112.9(1)<br>111.0(4)  |
| 021—C4—H4A                 | 108.7                | F182—C18—C16A                | 108.9 (5)             |
| C6-C4-H4A                  | 108.7                | F18A - C18 - C16B            | 1170(8)               |
| C5-C4-H4A                  | 108.7                | F18C - C18 - C16B            | 113.6 (9)             |
| F52-C5-F51                 | 108.9 (4)            | F18B—C18—C16B                | 103.5(7)              |
| F52-C5-F53                 | 107.1(4)             | 053 - C19 - C21              | 1112(3)               |
| F51-C5-F53                 | 106.1 (4)            | 053 - C19 - C20              | 109.3(3)              |
| F52-C5-C4                  | 113.0 (4)            | $C_{21}$ $-C_{19}$ $-C_{20}$ | 112.1(3)              |
| F51—C5—C4                  | 112.0 (4)            | 053—C19—H19A                 | 108.0                 |
| F53—C5—C4                  | 109.5 (4)            | C21—C19—H19A                 | 108.0                 |
| F61—C6—F62                 | 108.2(4)             | C20—C19—H19A                 | 108.0                 |
| F61—C6—F63                 | 106.7 (4)            | F202—C20—F201                | 107.8 (3)             |
| F62—C6—F63                 | 107.7 (4)            | F202—C20—F203                | 107.6 (3)             |
| F61—C6—C4                  | 112.8 (4)            | F201—C20—F203                | 107.4 (3)             |
| F62—C6—C4                  | 111.3 (4)            | F202—C20—C19                 | 112.6 (3)             |
| F63—C6—C4                  | 109.9 (4)            | F201—C20—C19                 | 109.5(3)              |
| 022                        | 109.4 (3)            | F203—C20—C19                 | 111.6(3)              |
| 022                        | 111.2 (3)            | F211—C21—F213                | 108.2 (4)             |
| C9—C7—C8                   | 114.4 (3)            | F211—C21—F212                | 108.5(4)              |
| 022—C7—H7A                 | 107.2                | $F_{213}$ $C_{21}$ $F_{212}$ | 104.1(3)              |
| С9—С7—Н7А                  | 107.2                | F211—C21—C19                 | 113.4 (3)             |
| С8—С7—Н7А                  | 107.2                | F213—C21—C19                 | 112.4(3)              |
| F83—C8—F82                 | 108.0(3)             | F212-C21-C19                 | 109.7(3)              |
| F83—C8—F81                 | 107.2 (4)            | 0 01/                        |                       |
|                            |                      |                              |                       |
| 041—Al4—01—Al1             | -51.9 (6)            | O22—Al4—O41—C16A             | -95.6 (4)             |
| 022—Al4—01—Al1             | 154.6 (2)            | O1—Al4—O41—C16A              | 112.3 (5)             |
|                            | × /                  |                              |                       |

| O52 <sup>i</sup> —Al4—O1—Al1  | 49.8 (2)     | O52 <sup>i</sup> —Al4—O41—C16A         | 11.6 (4)     |
|-------------------------------|--------------|----------------------------------------|--------------|
| O31—Al4—O1—Al1                | -99.4 (2)    | O31—Al4—O41—C16A                       | 158.6 (4)    |
| Al3—Al4—O1—Al1                | -115.8 (2)   | Al3—Al4—O41—C16A                       | 165.3 (3)    |
| Al2—Al4—O1—Al1                | 144.6 (3)    | Al2—Al4—O41—C16A                       | -91.6 (4)    |
| O41—Al4—O1—Al2                | 163.5 (5)    | O53—A15—O51—A12 <sup>i</sup>           | -169.35(13)  |
| O22—Al4—O1—Al2                | 9.99 (11)    | O11—A15—O51—A12 <sup>i</sup>           | -48.08 (16)  |
| O52 <sup>i</sup> —Al4—O1—Al2  | -94.83 (11)  | O52—A15—O51—A12 <sup>i</sup>           | 62.78 (16)   |
| O31—Al4—O1—Al2                | 116.01 (11)  | O53—A15—O52—A14 <sup>i</sup>           | -170.17 (12) |
| Al3—Al4—O1—Al2                | 99.60 (12)   | O11—A15—O52—A14 <sup>i</sup>           | 69.46 (15)   |
| O41—Al4—O1—Al3                | 63.9 (5)     | O51—Al5—O52—Al4 <sup>i</sup>           | -42.23 (15)  |
| O22—A14—O1—A13                | -89.60 (10)  | O11—A15—O53—C19                        | -153.5 (3)   |
| O52 <sup>i</sup> —A14—O1—A13  | 165.58 (10)  | O51—Al5—O53—C19                        | -32.1 (4)    |
| O31—A14—O1—A13                | 16.42 (9)    | O52—A15—O53—C19                        | 86.6 (4)     |
| Al2—Al4—O1—Al3                | -99.60(12)   | Al1-012-C1-C3                          | -65.4(3)     |
| 011—A11—01—A14                | 17.8 (4)     | A12-012-C1-C3                          | 110.3 (2)    |
| 013— $A11$ — $01$ — $A14$     | 104.7 (2)    | Al1-012-C1-C2                          | 59.7 (4)     |
| 012—Al1—01—Al4                | -151.8(2)    | Al2-012-C1-C2                          | -124.6(2)    |
| $011^{i}$ $-A11$ $-01$ $-A14$ | -50.3(2)     | 012-C1-C2-F22                          | 176.8 (2)    |
| $A11^{i}$ $A11$ $O1$ $A14$    | -34.7(3)     | $C_{3}$ — $C_{1}$ — $C_{2}$ — $F_{22}$ | -59.6(3)     |
| A13—A11—O1—A14                | 116.7 (2)    | O12-C1-C2-F21                          | 56.7 (3)     |
| Al2—Al1—O1—Al4                | -145.0(3)    | $C_{3}$ — $C_{1}$ — $C_{2}$ — $F_{21}$ | -179.8(2)    |
| 011 - A11 - 01 - A12          | 162.9 (2)    | O12-C1-C2-F23                          | -61.9(3)     |
| 013— $A11$ — $01$ — $A12$     | -110.23(11)  | $C_{3}$ — $C_{1}$ — $C_{2}$ — $F_{23}$ | 61.6 (3)     |
| 012 - A11 - 01 - A12          | -6.79(10)    | O12-C1-C3-F31                          | -55.7 (3)    |
| $011^{i}$ Al1 - 01 - Al2      | 94.71 (10)   | C2-C1-C3-F31                           | -179.0(2)    |
| $A11^{i}$ $A11$ $O1$ $A12$    | 110.31 (10)  | O12-C1-C3-F32                          | -177.0(2)    |
| A13—A11—O1—A12                | -98.23 (11)  | C2-C1-C3-F32                           | 59.8 (3)     |
| 011 - A11 - 01 - A13          | -98.9 (3)    | O12-C1-C3-F33                          | 62.4 (4)     |
| 013—A11—01—A13                | -12.00(9)    | C2-C1-C3-F33                           | -60.8(4)     |
| 012— $A11$ — $01$ — $A13$     | 91.44 (9)    | Al2-021-C4-C6                          | -148.4(4)    |
| 011 <sup>i</sup> —Al1—O1—Al3  | -167.06(9)   | Al2—O21—C4—C5                          | 89.3 (6)     |
| All <sup>i</sup> —All—Ol—Al3  | -151.47 (7)  | O21—C4—C5—F52                          | 59.1 (4)     |
| A12—A11—O1—A13                | 98.23 (11)   | C6—C4—C5—F52                           | -62.3(4)     |
| 023 - A12 - 01 - A14          | -99.15 (11)  | 021-C4-C5-F51                          | -177.4(4)    |
| $0.51^{i}$ Al2 01 Al4         | 78.27 (11)   | C6-C4-C5-F51                           | 61.2 (5)     |
| 012—A12—01—A14                | 167.86 (11)  | O21—C4—C5—F53                          | -60.1(5)     |
| 022—Al2—O1—Al4                | -8.92(10)    | C6—C4—C5—F53                           | 178.5 (3)    |
| A11—A12—O1—A14                | 161.57 (15)  | O21—C4—C6—F61                          | -60.9(4)     |
| A13—A12—O1—A14                | -101.29(11)  | C5-C4-C6-F61                           | 61.0 (4)     |
| 023 - A12 - 01 - A11          | 99.28 (11)   | $O_{21}$ C4 C6 F62                     | 177.3 (4)    |
| $0.51^{i}$ Al2 01 Al1         | -83.30(11)   | C5-C4-C6-F62                           | -60.9(5)     |
| 012 - A12 - 01 - A11          | 6.29 (9)     | $O_21 - C_4 - C_6 - F_{63}$            | 58.0 (5)     |
| 022 - A12 - 01 - A11          | -17049(12)   | $C_{5}$ C 4 C 6 F 63                   | 1799(4)      |
| Al3—Al2—O1—Al1                | 97.13 (11)   | A14—022—C7—C9                          | 101.9 (3)    |
| A14 - A12 - O1 - A11          | -161.57 (15) | A12-022-C7-C9                          | -75.5(4)     |
| 023 - A12 - 01 - A13          | 2.15 (10)    | A14-022-C7-C8                          | -130.9(3)    |
| $0.51^{i}$ Al2 01 Al3         | 179.56 (10)  | A12-022-C7-C8                          | 51.8 (4)     |
| 012 - A12 - 01 - A13          | -90 85 (9)   | 022 - 07 - 03                          | 51.0(4)      |
| 012 MI2 -01                   | JU.U.J (J)   | 022 $07$ $00-103$                      | 51.0(7)      |

| O22—Al2—O1—Al3                    | 92.37 (10)  | C9—C7—C8—F83      | 175.5 (3)  |
|-----------------------------------|-------------|-------------------|------------|
| Al1—Al2—O1—Al3                    | -97.13 (11) | O22—C7—C8—F82     | 170.8 (3)  |
| Al4—Al2—O1—Al3                    | 101.29 (11) | C9—C7—C8—F82      | -64.7 (4)  |
| O53—Al5—O11—Al1                   | -9.2 (3)    | O22—C7—C8—F81     | -69.3 (4)  |
| O51—Al5—O11—Al1                   | -136.6(2)   | C9—C7—C8—F81      | 55.2 (4)   |
| 052—A15—011—A11                   | 117.4 (2)   | O22—C7—C9—F91     | 179.5 (3)  |
| O53—A15—O11—A11 <sup>i</sup>      | 164.95 (12) | C8—C7—C9—F91      | 54.1 (5)   |
| O51—A15—O11—A11 <sup>i</sup>      | 37.52 (15)  | O22—C7—C9—F92     | -60.3 (4)  |
| O52—A15—O11—A11 <sup>i</sup>      | -68.41 (15) | C8—C7—C9—F92      | 174.3 (3)  |
| O13—A11—O11—A15                   | 21.3 (2)    | O22—C7—C9—F93     | 57.9 (4)   |
| 012—Al1—011—Al5                   | -86.5 (2)   | C8—C7—C9—F93      | -67.6 (4)  |
| O11 <sup>i</sup> —Al1—O11—Al5     | 174.8 (3)   | Al3—O31—C10—C12   | -71.8(5)   |
| 01—A11—011—A15                    | 105.1 (3)   | A14-031-C10-C12   | 109.4 (5)  |
| $A11^{i}$ $A11$ $O11$ $A15$       | 174.8 (3)   | Al3-031-C10-C11   | 71.0 (4)   |
| A13—A11—O11—A15                   | 27.0 (3)    | A14-031-C10-C11   | -107.8(4)  |
| Al2—Al1—Ol1—Al5                   | -106.8(2)   | O31-C10-C11-F11A  | -18.8(10)  |
| $013$ — $A11$ — $011$ — $A11^{i}$ | -153.45(11) | C12—C10—C11—F11A  | 123.4 (10) |
| $012$ — $A11$ — $011$ — $A11^{i}$ | 98.75 (11)  | 031-C10-C11-F11C  | -168.8(16) |
| $011^{i}$ All $011$ All i         | 0.0         | C12-C10-C11-F11C  | -26.6(17)  |
| $01 - A11 - 011 - A11^{i}$        | -69.7 (3)   | O31-C10-C11-F111  | 62.9 (5)   |
| $A13 - A11 - O11 - A11^{i}$       | -147.76(9)  | C12-C10-C11-F111  | -154.8(5)  |
| A12—A11—O11—A11 <sup>i</sup>      | 78.4 (2)    | O31—C10—C11—F113  | -173.5(6)  |
| 011—Al1—012—C1                    | 6.9 (3)     | C12—C10—C11—F113  | -31.2(8)   |
| 013— $A11$ — $012$ — $C1$         | -98.5 (3)   | O31-C10-C11-F112  | -54.1(5)   |
| $011^{i}$ All $-012$ Cl           | 93.5 (3)    | C12—C10—C11—F112  | 88.2 (5)   |
| 01 - A11 - 012 - C1               | -177.2(3)   | O31-C10-C11-F11B  | 87.3 (6)   |
| $A11^{i}$ $A11$ $O12$ $C1$        | 53.7 (3)    | C12—C10—C11—F11B  | -130.4(7)  |
| Al3—Al1—O12—C1                    | -132.4(3)   | O31—C10—C12—F12B  | 168.0 (14) |
| Al2—Al1—O12—C1                    | 176.5 (3)   | C11—C10—C12—F12B  | 27.9 (17)  |
| 011—Al1—012—Al2                   | -169.65 (9) | O31—C10—C12—F123  | -153.4 (4) |
| O13—A11—O12—A12                   | 84.96 (10)  | C11—C10—C12—F123  | 66.5 (7)   |
| O11 <sup>i</sup> —Al1—O12—Al2     | -83.00 (10) | O31—C10—C12—F121  | -17.9(7)   |
| 01—Al1—012—Al2                    | 6.29 (9)    | C11—C10—C12—F121  | -158.0 (5) |
| All <sup>i</sup> —Al1—O12—Al2     | -122.78 (8) | O31—C10—C12—F122  | 92.0 (4)   |
| Al3—Al1—O12—Al2                   | 51.12 (7)   | C11—C10—C12—F122  | -48.1(5)   |
| O32—A13—O13—A11                   | 169.07 (12) | O31—C10—C12—F12C  | -45.6 (8)  |
| O23—A13—O13—A11                   | 56.55 (15)  | C11—C10—C12—F12C  | 174.3 (7)  |
| O31—Al3—O13—Al1                   | -79.12 (13) | O31—C10—C12—F12A  | -122.6(5)  |
| O1—Al3—O13—Al1                    | -12.88(10)  | C11—C10—C12—F12A  | 97.3 (6)   |
| A14—A13—O13—A11                   | -37.71(12)  | Al3—032—C13A—C14  | -65.1 (7)  |
| Al2—Al3—O13—Al1                   | 22.70 (11)  | Al3—032—C13A—C15  | 60.9 (7)   |
| 011—Al1—013—Al3                   | 173.32 (11) | Al3—O32—C13B—C15  | 110.9 (8)  |
| 012—A11—013—A13                   | -66.38 (13) | Al3—032—C13B—C14  | -117.3 (6) |
| 011 <sup>i</sup> —Al1—013—Al3     | 86.1 (2)    | O32—C13A—C14—F143 | 175.5 (4)  |
| O1—A11—O13—A13                    | 13.96 (11)  | C15—C13A—C14—F143 | 50.4 (5)   |
| A11 <sup>i</sup> —A11—O13—A13     | 149.05 (9)  | O32—C13A—C14—F141 | -59.6 (5)  |
| Al2—Al1—O13—Al3                   | -22.95 (11) | C15—C13A—C14—F141 | 175.3 (4)  |
| O23—Al2—O21—C4                    | 124.0 (5)   | O32—C13A—C14—F142 | 55.2 (5)   |
|                                   |             |                   |            |

| O51 <sup>i</sup> —Al2—O21—C4 | -55.2 (5)   | C15—C13A—C14—F142                     | -70.0 (4)   |
|------------------------------|-------------|---------------------------------------|-------------|
| O12—Al2—O21—C4               | -144.9 (5)  | C15—C13B—C14—F14C                     | 172.2 (13)  |
| O22—Al2—O21—C4               | 34.1 (5)    | O32—C13B—C14—F14C                     | 46.8 (14)   |
| Al1—Al2—O21—C4               | -143.4 (4)  | C15—C13B—C14—F14B                     | -44.5 (15)  |
| Al3—Al2—O21—C4               | 131.7 (5)   | O32—C13B—C14—F14B                     | -169.9 (9)  |
| Al4—Al2—O21—C4               | 28.8 (6)    | C15—C13B—C14—F14A                     | 57.7 (13)   |
| O41—Al4—O22—C7               | -0.7 (3)    | O32—C13B—C14—F14A                     | -67.7 (9)   |
| O1—Al4—O22—C7                | 173.0 (2)   | O32—C13B—C15—F15B                     | 58.7 (11)   |
| O52 <sup>i</sup> —A14—O22—C7 | -101.4(2)   | C14—C13B—C15—F15B                     | -62.9(14)   |
| O31—Al4—O22—C7               | 96.8 (2)    | O32—C13B—C15—F15C                     | -175.3(8)   |
| A13—A14—O22—C7               | 129.7 (2)   | C14—C13B—C15—F15C                     | 63.2 (14)   |
| A12—A14—O22—C7               | -178.3(3)   | O32—C13B—C15—F15A                     | -66.3(11)   |
| 041 - A14 - 022 - A12        | 177.56 (11) | C14—C13B—C15—F15A                     | 172.1 (10)  |
| 01 - A14 - 022 - A12         | -8.74 (9)   | 032-C13A-C15-F151                     | 169.6 (4)   |
| $052^{i}$ Al4 $022^{i}$ Al2  | 76 86 (11)  | C14-C13A-C15-F151                     | -633(5)     |
| 031 - A14 - 022 - A12        | -84.97 (11) | 032-C13A-C15-F153                     | 48.2 (4)    |
| A13—A14—O22—A12              | -51.99(8)   | C14-C13A-C15-F153                     | 175 4 (4)   |
| 032 - A13 - 023 - A12        | 179 58 (13) | 032-C13A-C15-F152                     | -68.7(4)    |
| 013 - A13 - 023 - A12        | -66.77(15)  | C14-C13A-C15-F152                     | 58 5 (4)    |
| 0.31 - A13 - 0.23 - A12      | 68 92 (14)  | A14 - O41 - C16A - C17                | -895(5)     |
| 01 - A13 - 023 - A12         | 2.38(11)    | A14-O41-C16A-C18                      | 144.6(3)    |
| Al1—Al3—O23—Al2              | -35.82(11)  | A14-041-C16B-C17                      | 15 (3)      |
| A14—A13—O23—A12              | 39.02 (11)  | A14-O41-C16B-C18                      | 144.7(13)   |
| 021 - A12 - 023 - A13        | 170 11 (13) | 041 - C16A - C17 - F173               | 59 7 (6)    |
| $051^{i}$ Al2 $023^{i}$ Al3  | -130(5)     | $C_{18}$ $C_{16A}$ $C_{17}$ $F_{173}$ | -1786(5)    |
| 01 - A12 - 023 - A13         | -2.52(11)   | 041-C16A-C17-F172                     | -178.0(4)   |
| 012 - A12 - 023 - A13        | 73 88 (12)  | C18 - C16A - C17 - F172               | -562(6)     |
| 022 - A12 - 023 - A13        | -76.98(12)  | 041 - C16A - C17 - F171               | -58.3(5)    |
| A11—A12—O23—A13              | 35 36 (11)  | C18 - C16A - C17 - F171               | 63 5 (5)    |
| A14—A12—O23—A13              | -38.94(11)  | 041 - C16B - C17 - F17C               | 169.1 (14)  |
| 032 - A13 - 031 - C10        | 18.4 (3)    | C18 - C16B - C17 - F17C               | 40.3 (19)   |
| 023 - A13 - 031 - C10        | 130.1 (3)   | O41—C16B—C17—F17B                     | -40.6 (16)  |
| 013 - A13 - 031 - C10        | -95.5 (3)   | C18 - C16B - C17 - F17B               | -169.4(11)  |
| 01 - A13 - 031 - C10         | -162.4(3)   | 041-C16B-C17-F17A                     | 60.9 (12)   |
| Al1—Al3—O31—C10              | -134.0(3)   | C18 - C16B - C17 - F17A               | -67.9(12)   |
| Al4—Al3—O31—C10              | -179.0(3)   | 041 - C16A - C18 - F181               | 63.8 (5)    |
| A12—A13—O31—C10              | 164.8 (3)   | C17—C16A—C18—F181                     | -60.4(6)    |
| 032—A13—031—A14              | -162.61(11) | O41—C16A—C18—F183                     | -57.6 (6)   |
| 023—A13—031—A14              | -50.91 (14) | C17—C16A—C18—F183                     | 178.2 (5)   |
| 013—A13—031—A14              | 83.45 (12)  | O41—C16A—C18—F182                     | -176.6(4)   |
| 01 - A13 - O31 - A14         | 16.56 (9)   | C17—C16A—C18—F182                     | 59.2 (6)    |
| Al1—Al3—O31—Al4              | 44.96 (10)  | O41-C16B-C18-F18A                     | -52.7(14)   |
| Al2—Al3—O31—Al4              | -16.17(10)  | C17-C16B-C18-F18A                     | 78.6 (15)   |
| 023 - A13 - 032 - C13A       | 34.2 (6)    | 041 - C16B - C18 - F18C               | 168.5(11)   |
| 013 - A13 - 032 - C13A       | -84.4 (6)   | C17-C16B-C18-F18C                     | -60.2(15)   |
| O31—Al3—O32—C13A             | 154.5 (6)   | O41—C16B—C18—F18B                     | 58.6 (12)   |
| Al1—Al3—O32—C13A             | -73.3 (6)   | C17—C16B—C18—F18B                     | -170.1 (11) |
| A14—A13—O32—C13A             | 137.4 (5)   | Al5-053-C19-C21                       | -35.6(5)    |
|                              |             |                                       | 55.5 (5)    |

| Al2—Al3—O32—C13A               | 34.6 (7)  | Al5—O53—C19—C20  | 88.7 (4)   |
|--------------------------------|-----------|------------------|------------|
| O23—A13—O32—C13B               | 37.6 (6)  | O53—C19—C20—F202 | 178.9 (3)  |
| O13—Al3—O32—C13B               | -81.0 (6) | C21—C19—C20—F202 | -57.3 (4)  |
| O31—Al3—O32—C13B               | 157.9 (6) | O53—C19—C20—F201 | 59.0 (4)   |
| Al1—Al3—O32—Cl3B               | -69.9 (6) | C21—C19—C20—F201 | -177.2 (3) |
| Al4—Al3—O32—Cl3B               | 140.8 (6) | O53—C19—C20—F203 | -59.8 (4)  |
| Al2—Al3—O32—Cl3B               | 38.0 (6)  | C21—C19—C20—F203 | 64.0 (4)   |
| O22—Al4—O41—C16B               | -151 (2)  | O53—C19—C21—F211 | -173.3 (4) |
| O1—Al4—O41—C16B                | 57 (2)    | C20-C19-C21-F211 | 64.0 (5)   |
| O52 <sup>i</sup> —Al4—O41—C16B | -44 (2)   | O53—C19—C21—F213 | 63.5 (4)   |
| O31—Al4—O41—C16B               | 103 (2)   | C20-C19-C21-F213 | -59.2 (4)  |
| Al3—Al4—O41—C16B               | 110 (2)   | O53—C19—C21—F212 | -51.8 (4)  |
| Al2—Al4—O41—C16B               | -147 (2)  | C20—C19—C21—F212 | -174.5 (3) |
|                                |           |                  |            |

Symmetry code: (i) -x, -y+1, -z+1.

## Hydrogen-bond geometry (Å, °)

| $D \cdots A D \cdots A D - A (2) $ | H··· <i>A</i>                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 11 (2) 2 000 (2) 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |
| .44 (3) 3.080 (3) 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 (4)                                                |
| .63 (4) 3.094 (13) 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 (3)                                                |
| .57 (3) 3.266 (3) 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 (4)                                                |
| .21 (4) 2.876 (4) 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 (5)                                                |
| .07 (2) 2.850 (3) 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 (5)                                                |
| .21 (4) 2.841 (6) 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 (5)                                                |
| .15 (4) 2.806 (12) 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 (5)                                                |
| .58 (5) 3.123 (19) 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 (4)                                                |
| .48 3.103 (4) 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                    |
| .32 3.023 (5) 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                    |
| .52 3.265 (5) 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                    |
| .59 3.204 (5) 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                    |
| .43 3.336 (6) 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                    |
| .19 2.910 (5) 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                    |
| .32 3.171 (5) 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                    |
| .51 3.090 (14) 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                    |
| .19 2.969 (18) 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                    |
| .4<br>.6<br>.5<br>.2<br>.0<br>.2<br>.1<br>.2<br>.0<br>.2<br>.1<br>.5<br>.4<br>.3<br>.5<br>.5<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Symmetry codes: (i) –*x*, –*y*+1, –*z*+1; (ii) *x*, *y*+1, *z*.