CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 19 November 2020
Accepted 9 December 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: Tricyclic quinazoline derivative; intramolecular $\mathrm{N}-\mathrm{H} \ldots \mathrm{O}$ bond; $\pi-\pi$ interactions; Hirshfeld surface analysis; energy frameworks; crystal structure.

CCDC reference: 2049242

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure, Hirshfeld surface analysis and energy framework study of 6-formyl-7,8,9,11-tetrahydro-5H-pyrido[2,1-b]quinazolin-11-one

Akmal Tojiboev, ${ }^{\text {a }}$ Sherzod Zhurakulov, ${ }^{\text {b,c }}$ Valentina Vinogradova, ${ }^{\text {b }}$ Ulli Englert ${ }^{\text {d }}$ and Ruimin Wang ${ }^{\text {d }}$

${ }^{\text {a A Arifov Institute of Ion-Plasma and Laser Technologies of Uzbekistan Academy of Sciences, 100125, Durmon Yuli St. 33, }}$ Tashkent, Uzbekistan, ${ }^{\mathbf{b}}$ S. Yunusov Institute of Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan, ${ }^{\text {TNational University of Uzbekistan named after Mirzo Ulugbek, 100174, }}$ University Str. 4, Olmazor District, Tashkent, Uzbekistan, and dinstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany. *Correspondence e-mail: a_tojiboev@yahoo.com

At 100 K , the title compound, $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$, crystallizes in the orthorhombic space group Pna_{1} with two very similar molecules in the asymmetric unit. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond leads to an $S(6)$ graph-set motif in each of the molecules. Intermolecular $\pi-\pi$ stacking and $C=O \cdots \pi$ interactions involving the aldehyde O atoms link molecules into stacks parallel to [100]. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing stem from $\mathrm{H} \cdots \mathrm{H}(49.4 \%)$ and $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}(21.5 \%)$ interactions. Energy framework calculations reveal a significant contribution of dispersion energy. The crystal studied was refined as a two-component inversion twin.

1. Chemical context

Two major aspects contribute to the interest in modified structural analogues of quinazoline alkaloids. On the one hand, they are attractive targets for the development of methods in organic synthesis; reactions sufficiently general to target a wide range of derivatives of a given lead structure should be easy to carry out and warrant high yields. On the other hand, substituted quinazolines allow the study of structure-property relationships with respect to their biological activities (Shakhidoyatov, 1988; Shakhidoyatov \& Elmuradov, 2014).

The quinazoline alkaloid 7,8,9,11-tetrahydro-5H-pyrido[2,1-b]quinazolin-11-one (mackinazolinone alkaloid) was first isolated from the plant Mackinlaya subulata Philipson (Fitzgerald et al., 1966). A simple method for the synthesis of mackinazolinone via condensation of anthranilic acid with δ-valerolactam promoted the use of this compound as a synthon for chemical transformations (Shakhidoyatov et al., 1976; Oripov et al., 1979).

The title compound, 6-formyl-7,8,9,11-tetrahydro-5H-pyrido[2,1-b]quinazolin-11-one (1) (Fig. 1), does react with primary amines (Zhurakulov \& Vinogradova, 2015, 2016), but does not react with pseudoephedrine or 1-(phenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline in a range of solvents with different polarities such as acetonitrile, chloroform, ethanol, trifluoroacetic acid, acetic acid, benzene, DMF

Figure 1
Chemical scheme showing the synthesis of the title compound.
or dioxane. The existence of several tautomeric forms for compound (1) may be the reason for this selectivity towards primary amines.

Based on ${ }^{1} \mathrm{H}$ NMR data and quantum-chemical calculations, Zhurakulov et al. (2016) confirmed that the tautomer with the intramolecular hydrogen bond represents the energetically favourable form. In order to establish the tautomeric form of (1) in the solid state, we studied its molecular and crystal structure. We also report the analysis of the Hirshfeld surface and the energy framework of crystalline (1).

2. Structural commentary

The asymmetric unit of the title compound contains two molecules A and B (Fig. 2). They are almost superimposable, with an r.m.s. of $0.023 \AA$ (Spek, 2020); an overlay of A and B is depicted in the supporting information (Fig. S1). In contrast to the quinazolinone moiety, the alkyl ring is not planar. The maximum deviation from the least-squares plane through each of the molecules is encountered for the atoms C2A and C2B

Figure 2
The asymmetric unit of (1) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond forming an $S(6)$ ring motif is shown with dashed lines.
and amounts to 0.515 (3) and 0.521 (3) \AA, respectively. The almost coplanar arrangement of the aldehyde group and the pyrimidine ring in either molecule A and B enables an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 1) and formation of an $S(6)$ graph-set motif.

Molecules of (1) stack into columns parallel to [100] in an equidistant series of coplanar moieties; the independent molecules A and B segregate into different stacks (Fig. 3). The intra-stack arrangement does obviously not correspond to translation but involves the a glide plane with its mirror component along [010]. The carbonyl groups in subsequent molecules of a stack are therefore oriented alternately in the positive and negative direction of the crystallographic b axis, and the same arrangement can be expected for their dipole moments. Although no 'real' translation relates consecutive molecules along [100], the rather regular arrangement of essentially planar objects at half a lattice parameter is reflected in moderate pseudosymmetry in reciprocal space: reflection intensities $I_{h k l}$ are stronger for even indices h than for odd ones, with a ratio $I_{h k l}, h=2 n: I_{h k b}, h=(2 n+1)$ of 1.5 .

Compound (1) crystallizes in the non-centrosymmetric achiral space group $P n a 2_{1}$, and its absolute structure deserves a comment. The absolute structure is linked to the direction of the polar screw axis along [001]. In the absence of heavy atoms, resonant scattering in (1) is minor, with Friedif (Flack \& Shmueli, 2007) of 28 . We have recently investigated a case of similar low resonant scattering in a Sohnke group, where the absolute structure could be linked to the absolute configuration of the target molecule, and chemical and spectroscopic information could help (Wang \& Englert, 2019). As might be expected, the commonly used indicators for diffraction-based assignment of the absolute structure of (1) were associated with rather large standard uncertainties: the Flack parameter (Flack, 1983) refined to 0.51 (7), and similar results were obtained for Parsons' quotient method [0.52 (5); Parsons et al., 2013] and Hooft's Bayesian analysis [0.51 (5); Hooft et al., 2010]. All of these indicators suggest that the specimen used for the diffraction experiment was a twin. Refinement converged for a volume ratio of 0.7 (2):0.3 (2) for the twin domains.

Figure 3
Packing in a view along [010]; the independent molecules A (black) and B (red) stack into separate columns of equidistant molecules along [100].

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 A-\mathrm{H} 5 A \cdots \mathrm{O} 2 A$	$0.93(3)$	$1.77(3)$	$2.592(3)$	$146(3)$
$\mathrm{N} 5 B-\mathrm{H} 5 B \cdots \mathrm{O} 2 B$	$0.90(3)$	$1.82(3)$	$2.582(3)$	$141(3)$
$\mathrm{C} 1 A-\mathrm{H} 1 A 2 \cdots \mathrm{O} 1 A^{\text {i }}$	0.99	2.57	$3.535(3)$	164
$\mathrm{C} 6 A-\mathrm{H} 6 A \cdots \mathrm{O} 1 A^{\text {ii }}$	0.95	2.39	$3.230(4)$	147
$\mathrm{C} 6 B-\mathrm{H} 6 B \cdots \mathrm{O} 1 B^{\text {ii }}$	0.95	2.40	$3.239(4)$	148
$\mathrm{C} 8 A-\mathrm{H} 8 A \cdots \mathrm{O} 1 B^{\text {iii }}$	0.95	2.60	$3.469(4)$	153
$\mathrm{C} 1 B-\mathrm{H} 1 B 2 \cdots \mathrm{O} 1 B^{\text {iv }}$	0.99	2.59	$3.550(3)$	164

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (ii) $x, y+1, z$; (iii) $-x+1,-y+1, z+\frac{1}{2}$; (iv) $x-\frac{1}{2},-y+\frac{1}{2}, z$.

3. Supramolecular features

Consecutive molecules in each column along [100] interact via $\pi-\pi$ stacking and $\mathrm{C}=\mathrm{O} \cdots \pi$ contacts (Fig. 4). $\pi-\pi$ stacking interactions occur between pyrimidine (Cg1, Cg7) and benzene ($C g 3, C g 9$) rings and involve contact distances of $C g 1 \cdots C g 3\left(-\frac{1}{2}+x, \frac{3}{2}-y, z\right)=3.5154(18) \AA($ slippage $0.954 \AA)$ and of $C g 7 \cdots C g 9\left(-\frac{1}{2}+x, \frac{3}{2}-y, z\right)=3.5159(19) \AA$ (slippage $1.054 \AA$).
Molecules within each π-stacked column additionally interact via $\mathrm{C}=\mathrm{O} \cdots \pi$ contacts; they amount to $\mathrm{C} 11 A=\mathrm{O} 2 A \cdots C g 1\left(x+\frac{1}{2},-y+\frac{3}{2}, z\right)=3.212(2) \AA$ and $\mathrm{C} 11 B=\mathrm{O} 2 B \cdots \operatorname{Cg} 7\left(x-\frac{1}{2},-y+\frac{3}{2}, z\right)=3.215(2) \AA$. Perpendicular to the stacking direction, non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the columns along [001] (Fig. 4) and thus form layers parallel to (010).

4. Hirshfeld surface analysis

In order to visualize intermolecular interactions in (1), the Hirshfeld surface (HS) (Spackman \& Jayatilaka, 2009) was

Figure 4
Crystal packing of (1) in a view along [100]. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as light-blue and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as dark-blue dashed lines. Dashed red lines denote contacts $\mathrm{C}=\mathrm{O} \cdots C g 1$ and $\mathrm{C}=\mathrm{O} \cdots C g 7$ (slippage $1.676 \AA$ for both), and dashed light-green lines $C g 1 \cdots C g 3$ and $C g 7 \cdots C g 9$ contacts. $C g 3, C g 9$, $C g 1$ and $C g 7$ correspond to the ring centroids $\mathrm{C} 6 A-\mathrm{C} 9 A / \mathrm{C} 9 A A / \mathrm{C} 5 A A$, $\mathrm{C} 6 B-\mathrm{C} 9 B / \mathrm{C} 9 B A / \mathrm{C} 5 B A, \quad \mathrm{~N} 5 A / \mathrm{C} 4 A A / \mathrm{N} 10 A / \mathrm{C} 10 A / \mathrm{C} 9 A A / \mathrm{C} 5 A A$ and $\mathrm{N} 5 B / \mathrm{C} 4 B A / \mathrm{N} 10 B / \mathrm{C} 10 B / \mathrm{C} 9 B A / \mathrm{C} 5 B A$, respectively. For clarity, only H atoms $\mathrm{H} 5 A, \mathrm{H} 8 A, \mathrm{H} 5 B$ and $\mathrm{H} 8 B$ are shown.

Figure 5
Three-dimensional Hirshfeld surface of the title compound plotted over $d_{\text {norm }}$ in the range -0.2446 to 1.1709 a.u.
analysed and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) calculated with Crystal Explorer 17 (Turner et al., 2017). The HS mapped with $d_{\text {norm }}$ is represented in Fig. 5. White surface areas indicate contacts with distances equal to the sum of van der Waals radii, whereas red and blue colours denote distances shorter (e.g. due to hydrogen bonds) or longer than the sum of the van der Waals radii, respectively.

The two-dimensional fingerprint plot for all contacts is depicted in Fig. 6a. H $\cdots \mathrm{H}$ contacts are responsible for the largest contribution (49.4\%) to the Hirshfeld surface (Fig. 6b). Besides these contacts, $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}(21.5 \%), \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ (14.9\%), C $\cdots \mathrm{C}(6.7 \%)$ and $\mathrm{N} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{N}(4.0 \%)$ interactions contribute significantly to the total Hirshfeld surface; their decomposed fingerprint plots are shown in Fig. $6 c-f$. The contributions of further contacts are only minor and amount to $\mathrm{N} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{N}(1.4 \%), \mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}(1.4 \%), \mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ (0.5%) and $\mathrm{O} \cdots \mathrm{O}(0.1 \%)$.

Figure 6
Hirshfeld fingerprint plots for (a) all contacts and decomposed into (b) $\mathrm{H} \cdots \mathrm{H}$, $(c) \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$, (d) $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$, (e) $\mathrm{C} \cdots \mathrm{C}$ and $(f) \mathrm{N} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{N}$ contacts. d_{i} and d_{e} denote the closest internal and external distances (in \AA) from a point on the surface.

Figure 7
Energy frameworks for the electrostatic (red, top) and dispersion (green, middle) components and the total interaction energy (blue, bottom). Cylinder radii are proportional to the corresponding energy; a scale factor of 80 and a cut-off value of $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$ have been used.

5. Interaction energy calculations

Intermolecular interaction energies were calculated using the CE-HF/3-21G energy model available in Crystal Explorer 17 (Turner et al., 2017). The total intermolecular energy ($E_{\text {tot }}$) is the sum of electrostatic ($E_{\text {elec }}$), polarization ($E_{\text {pol }}$), dispersion ($E_{\text {dis }}$) and exchange-repulsion ($E_{\text {rep }}$) energies (Turner et al., 2015) with scale factors of $1.019,0.651,0.901$ and 0.811 , respectively (Mackenzie et al., 2017). According to these calculations, the major contribution of $-306.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ is due to dispersion interactions (Fig. 7). The other energy components have values of $-91.5 \mathrm{~kJ} \mathrm{~mol}^{-1},-37.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $155.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the $E_{\text {elec }}, E_{\text {pol }}$ and $E_{\text {rep }}$ energies, respectively. The total interaction energy resulting from these four components amounts to $-267.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

6. Database survey

A search in the Cambridge Structural Database (CSD, version 5.41, update January 2020; Groom et al., 2016) revealed six matches for molecules containing the 3 -methyl-2-(propan-2-ylidene)-2,3-dihydroquinazolin- $4(1 \mathrm{H})$-one moiety with a similar planar conformation to that in the title structure:

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure
Absolute structure parameter
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
228.25

Orthorhombic, Pna2 ${ }_{1}$
100
8.284 (2), 8.006 (2), 31.637 (6)
2098.2 (8)

8
$\mathrm{Cu} K \alpha$
0.81
$0.40 \times 0.22 \times 0.07$

Stoe Stadivari goniometer, Dectris
Pilatus 200 K area detector
Multi-scan (LANA; Koziskova et al., 2016)
0.261, 1.000

15842, 3629, 3409
0.013
0.619
$0.036,0.103,1.03$
3629
316
2
H atoms treated by a mixture of
\quad independent and constrained
\quad refinement
$0.36,-0.24$
Refined as an inversion twin.
$0.3(2)$

Computer programs: X-AREA (Stoe \& Cie, 2017), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

3-(2-methylphenyl)-2-(2-oxophenylethyl)-4(3H)-quinazolinone (FABWUA10; Duke \& Codding, 1993), 3-(2-chloro-phenyl)-2-[2-oxo-2-(4-pyridyl)ethyl]-4(3H)-quinazolinone (FABXAH10; Duke \& Codding, 1993), 2-[2-oxo-2-(4-pyrid-yl)ethyl]-3-phenyl-4(3H)quinazolinone (FABXEL10; Duke \& Codding, 1993), 3-(2-methylphenyl)-2-[2-oxo-2-(4-pyridyl)-ethyl]-4(3H)-quinazolinone (HADLAZ; Duke \& Codding, 1993), 3-(4-chlorophenyl)-2-[2-oxo-2-(4-pyridyl)ethyl]-4(3H)quinazolinone (HADLED; Duke \& Codding, 1993) and (E)-2-[2-oxo-2-(thiophen-2-yl)ethylidene]-3-phenyl-2,3-dihydro-quinazolin-4(1H)-one (SATJOP; Narra et al., 2017). A search for the 2 -amino-1,4,5,6-tetrahydropyridine-3-carbaldehyde moiety gave one hit with similar conformation: 1 -methyl-2-(methylamino)-1,4,5,6-tetrahydropyridine-3-carbaldehyde (MFHPYM10; Horváth et al., 1983). Similar to in (1), all compounds mentioned above exist as the enamine tautomer in the crystalline state, and their intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the ethanone and the amine N atom results in an $S(6)$ graph set motif.

7. Synthesis and crystallization

Compound (1) was synthesized according to the method of Oripov et al. (1979). Yield $12.55 \mathrm{~g}, 91 \%$; m.p. $474-476 \mathrm{~K}$ (after crystallization from hexane), $R_{\mathrm{f}} 0.78\left(\mathrm{C}_{6} \mathrm{H}_{6}: \mathrm{MeOH} 4: 1\right)$. A
detailed report on the synthesis of $\mathbf{(1)}$ and its characterization by ${ }^{1} \mathrm{H}$ NMR is available in Zhurakulov et al. (2017). Crystals suitable for X-ray diffraction were obtained from a methanol solution by slow evaporation of the solvent at room temperature.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table $2 . \mathrm{H}$ atoms attached to C were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ (for aromatic), $0.95 \AA$ (for the aldehyde H atom), $0.99 \AA$ (for methylene H atoms) and were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The enamine H atoms $\mathrm{H} 5 A$ and $\mathrm{H} 5 B$ were refined with a common isotropic displacement parameter; $\mathrm{N}-\mathrm{H}$ distances were restrained to similarity.

Acknowledgements

The authors are grateful to the Institute of Inorganic Chemistry, RWTH Aachen University for providing laboratory facilities.

Funding information

AT is grateful to the Istedod Foundation of the Uzbekistan Government for financial support.

References

Duke, N. E. C. \& Codding, P. W. (1993). Acta Cryst. B49, 719-726.
Fitzgerald, J. S., Johns, S. R., Lamberton, J. A. \& Redcliffe, A. H. (1966). Aust. J. Chem. 19, 151-159.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Shmueli, U. (2007). Acta Cryst. A63, 257-265.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hooft, R. W. W., Straver, L. H. \& Spek, A. L. (2010). J. Appl. Cryst. 43, 665-668.

Horváth, A., Hermecz, I., Vasvári-Debreczy, L., Simon, K., PongorCsákvári, M., Mészáros, Z. \& Tóth, G. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 369-377.
Koziskova, J., Hahn, F., Richter, J. \& Kožíšek, J. (2016). Acta Chim. Slov. 9, 136-140.
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). IUCrJ, 4, 575-587.

McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.
Narra, S. R., Avula, S., Kuchukulla, R. R., Nanubolu, J. B., Banda, N. \& Yadla, R. (2017). Tetrahedron, 73, 4730-4738.
Oripov, E., Shakhidoyatov, K. M., Kadyrov, C. S. \& Abdullaev, N. D. (1979). Chem. Heterocycl. Compd. 15, 556-564.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Shakhidoyatov, Kh. M. (1988). Quinazol-4-ones and their Biological Activity, p. 60. Tashkent: Fan. [In Russian]
Shakhidoyatov, Kh. M. \& Elmuradov, B. Zh. (2014). Chem. Nat. Compd. 50, 781-800.
Shakhidoyatov, K. M., Irisbaev, A., Yun, L. M., Oripov, E. \& Kadyrov, C. S. (1976). Chem. Heterocycl. Compd. 11, 1564-1569.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 1932.

Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Stoe \& Cie (2017). X-AREA. Stoe \& Cie GmbH, Darmstadt, Germany.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. \& Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.

Wang, A. \& Englert, U. (2019). Acta Cryst. C75, 1448-1453.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhurakulov, Sh. N. \& Vinogradova, V. I. (2015). Uzbek Chemical Journal, 5, 25-29.
Zhurakulov, Sh. N. \& Vinogradova, V. I. (2016). Int. J. Chem. Phys. Sci. 5, 1-7.
Zhurakulov, Sh. N., Vinogradova, V. I. \& Levkovich, M. G. (2016). Uzbek Chemical Journal, 4, 75-81.
Zhurakulov, S. N., Levkovich, M. G. \& Vinogradova, V. I. (2017). Chem. Sustainable Dev. 25, 265-269.

supporting information

Acta Cryst. (2021). E77, 47-51 [https://doi.org/10.1107/S2056989020016059]
Crystal structure, Hirshfeld surface analysis and energy framework study of 6-formyl-7,8,9,11-tetrahydro-5H-pyrido[2,1-b]quinazolin-11-one

Akmal Tojiboev, Sherzod Zhurakulov, Valentina Vinogradova, Ulli Englert and Ruimin Wang

Computing details

Data collection: X - $A R E A$ (Stoe \& Cie, 2017); cell refinement: $X-A R E A$ (Stoe \& Cie, 2017); data reduction: X-AREA (Stoe \& Cie, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

6-Formyl-7,8,9,11-tetrahydro-5H-pyrido[2,1-b]quinazolin-11-one

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=228.25$
Orthorhombic, Pna_{1}
$a=8.284$ (2) \AA
$b=8.006(2) \AA$
$c=31.637$ (6) \AA
$V=2098.2(8) \AA^{3}$
$Z=8$
$F(000)=960$

Data collection

Stoe Stadivari goniometer, Dectris Pilatus 200K area detector diffractometer
Radiation source: XENOCS microsource
rotation method, ω scans
Absorption correction: multi-scan
(LANA; Koziskova et al., 2016)
$T_{\text {min }}=0.261, T_{\text {max }}=1.000$
$D_{\mathrm{x}}=1.445 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54186 \AA$
Cell parameters from 17372 reflections
$\theta=5.6-73.9^{\circ}$
$\mu=0.81 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, brown
$0.40 \times 0.22 \times 0.07 \mathrm{~mm}$

15842 measured reflections
3629 independent reflections
3409 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=72.8^{\circ}, \theta_{\text {min }}=5.6^{\circ}$
$h=-7 \rightarrow 10$
$k=-7 \rightarrow 9$
$l=-35 \rightarrow 38$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.103$
$S=1.03$
3629 reflections
316 parameters
2 restraints
Primary atom site location: dual
Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0861 P)^{2}+0.1201 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.24$ e \AA^{-3}
Extinction correction: SHELXL-2018/3
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Absolute structure: Refined as an inversion twin.
Absolute structure parameter: 0.3 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1A	$0.6021(2)$	$0.3190(2)$	$0.91582(6)$	$0.0238(4)$
O2A	$0.9070(2)$	$0.9397(2)$	$0.81869(6)$	$0.0273(4)$
N10A	$0.7388(2)$	$0.4746(2)$	$0.86753(6)$	$0.0188(4)$
N5A	$0.7374(4)$	$0.7667(3)$	$0.87182(9)$	$0.0205(6)$
H5A	$0.785(4)$	$0.861(3)$	$0.8601(12)$	$0.031(5)^{*}$
C10A	$0.6394(3)$	$0.4572(3)$	$0.90289(7)$	$0.0193(4)$
C4AA	$0.7900(3)$	$0.6267(3)$	$0.85180(7)$	$0.0183(5)$
C5AA	$0.6354(3)$	$0.7651(3)$	$0.90621(10)$	$0.0156(6)$
C9AA	$0.5867(3)$	$0.6135(3)$	$0.92277(9)$	$0.0199(6)$
C9A	$0.4876(4)$	$0.6078(3)$	$0.95915(9)$	$0.0198(6)$
H9A	0.450928	0.504197	0.970188	0.024^{*}
C8A	$0.4454(4)$	$0.7578(3)$	$0.97834(12)$	$0.0208(7)$
H8A	0.386242	0.756350	1.004070	0.025^{*}
C7A	$0.4889(4)$	$0.9111(4)$	$0.96020(9)$	$0.0201(5)$
H7A	0.450755	1.012023	0.972419	0.024^{*}
C6A	$0.5870(3)$	$0.9174(4)$	$0.92456(9)$	$0.0221(5)$
H6A	0.620410	1.021297	0.912959	0.027^{*}
C4A	$0.8927(3)$	$0.6410(3)$	$0.81695(8)$	$0.0219(5)$
C11A	$0.9422(3)$	$0.7999(4)$	$0.80294(8)$	$0.0236(5)$
H11A	1.010208	0.801898	0.778758	0.028^{*}
C3A	$0.9495(3)$	$0.4844(3)$	$0.79423(7)$	$0.0251(5)$
H3A1	1.055458	0.449174	0.805650	0.030^{*}
H3A2	0.962786	0.508158	0.763718	0.030^{*}
C2A	$0.8267(3)$	$0.3449(3)$	$0.80027(8)$	$0.0261(5)$
H2A1	0.725049	0.374290	0.785613	0.031^{*}
H2A2	0.868683	0.240345	0.787679	0.031^{*}
C1A	$0.7936(3)$	$0.3181(3)$	$0.84685(7)$	$0.0234(5)$
H1A1	0.709624	0.231135	0.850210	0.028^{*}
H1A2	0.893143	0.277918	0.860881	0.028^{*}
O1B	$0.6478(2)$	$0.3186(2)$	$0.58347(6)$	$0.0246(4)$
O2B	$0.3447(2)$	$0.9370(2)$	$0.68172(6)$	$0.0260(4)$
N10B	$0.5127(2)$	$0.4739(2)$	$0.63232(6)$	$0.0182(4)$
N5B	$0.5164(4)$	$0.7649(2)$	$0.62934(9)$	$0.0175(5)$
H5B	$0.482(4)$	$0.861(3)$	$0.6411(12)$	$0.031(5)^{*}$
C10B	$0.6112(3)$	$0.4574(3)$	$0.59674(7)$	$0.0188(4)$

C4BA	$0.4630(3)$	$0.6258(3)$	$0.64828(8)$	$0.0186(5)$
C5BA	$0.6149(4)$	$0.7667(3)$	$0.59430(11)$	$0.0206(7)$
C9BA	$0.6647(3)$	$0.6125(3)$	$0.57672(8)$	$0.0166(5)$
C9B	$0.7593(4)$	$0.6123(3)$	$0.54056(10)$	$0.0214(6)$
H9B	0.788639	0.508758	0.528072	0.026^{*}
C8B	$0.8117(4)$	$0.7591(3)$	$0.52233(13)$	$0.0232(8)$
H8B	0.880004	0.757998	0.498217	0.028^{*}
C7B	$0.7611(4)$	$0.9097(4)$	$0.54040(10)$	$0.0244(6)$
H7B	0.793649	1.011674	0.527607	0.029^{*}
C6B	$0.6666(3)$	$0.9156(4)$	$0.57585(9)$	$0.0196(5)$
H6B	0.636423	1.020004	0.587748	0.023^{*}
C4B	$0.3593(3)$	$0.6378(3)$	$0.68323(8)$	$0.0205(5)$
C11B	$0.3090(3)$	$0.7967(4)$	$0.69727(8)$	$0.0234(4)$
H11B	0.239986	0.798223	0.721255	0.028^{*}
C3B	$0.3026(3)$	$0.4828(3)$	$0.70566(7)$	$0.0238(5)$
H3B1	0.196540	0.447861	0.694240	0.029^{*}
H3B2	0.289541	0.506169	0.736197	0.029^{*}
C2B	$0.4255(3)$	$0.3433(3)$	$0.69938(8)$	$0.0254(5)$
H2B1	0.527309	0.372514	0.714023	0.030^{*}
H2B2	0.383741	0.238507	0.711861	0.030^{*}
C1B	$0.4583(3)$	$0.3175(3)$	$0.65270(7)$	$0.0226(5)$
H1B1	0.542250	0.230628	0.649173	0.027^{*}
H1B2	0.358647	0.277673	0.638669	0.027^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	$0.0349(8)$	$0.0136(9)$	$0.0228(8)$	$-0.0017(6)$	$0.0023(6)$	$0.0010(5)$
O2A	$0.0321(9)$	$0.0214(9)$	$0.0282(10)$	$-0.0033(7)$	$-0.0001(7)$	$-0.0003(8)$
N10A	$0.0238(8)$	$0.0142(9)$	$0.0185(9)$	$0.0011(7)$	$-0.0015(7)$	$-0.0010(7)$
N5A	$0.0249(14)$	$0.0170(11)$	$0.0196(13)$	$-0.0012(7)$	$-0.0001(11)$	$-0.0019(7)$
C10A	$0.0225(10)$	$0.0184(11)$	$0.0170(10)$	$0.0010(7)$	$-0.0047(8)$	$-0.0013(7)$
C4AA	$0.0207(10)$	$0.0172(12)$	$0.0171(11)$	$0.0013(8)$	$-0.0046(8)$	$0.0005(8)$
C5AA	$0.0155(14)$	$0.0179(12)$	$0.0133(12)$	$0.0008(7)$	$-0.0040(10)$	$0.0000(8)$
C9AA	$0.0217(12)$	$0.0192(15)$	$0.0189(12)$	$0.0017(8)$	$-0.0050(11)$	$-0.0019(10)$
C9A	$0.0225(12)$	$0.0216(14)$	$0.0153(11)$	$0.0016(9)$	$-0.0026(9)$	$0.0015(9)$
C8A	$0.0249(17)$	$0.0211(16)$	$0.0165(17)$	$0.0007(8)$	$-0.0021(11)$	$-0.0021(7)$
C7A	$0.0251(12)$	$0.0166(12)$	$0.0185(12)$	$0.0035(10)$	$-0.0036(10)$	$-0.0042(10)$
C6A	$0.0246(12)$	$0.0179(13)$	$0.0237(12)$	$0.0008(10)$	$-0.0052(11)$	$0.0000(10)$
C4A	$0.0239(12)$	$0.0204(12)$	$0.0214(12)$	$0.0025(10)$	$-0.0023(9)$	$-0.0030(10)$
C11A	$0.0248(11)$	$0.0254(13)$	$0.0205(12)$	$-0.0006(11)$	$0.0001(9)$	$0.0032(11)$
C3A	$0.0299(11)$	$0.0247(12)$	$0.0208(12)$	$0.0057(9)$	$0.0040(8)$	$0.0022(9)$
C2A	$0.0370(12)$	$0.0216(10)$	$0.0197(12)$	$0.0022(9)$	$0.0011(8)$	$-0.0028(8)$
C1A	$0.0317(11)$	$0.0180(13)$	$0.0204(13)$	$0.0027(9)$	$0.0008(9)$	$-0.0022(8)$
O1B	$0.0348(8)$	$0.0165(9)$	$0.0226(8)$	$0.0016(6)$	$0.0030(6)$	$-0.0001(5)$
O2B	$0.0311(8)$	$0.0213(8)$	$0.0256(9)$	$0.0023(8)$	$0.0014(6)$	$-0.0046(7)$
N10B	$0.0237(9)$	$0.0141(9)$	$0.0169(8)$	$-0.0007(7)$	$-0.0017(7)$	$0.0009(7)$
N5B	$0.0209(12)$	$0.0146(11)$	$0.0170(12)$	$0.0002(7)$	$-0.0024(10)$	$-0.0021(7)$

C10B	$0.0228(10)$	$0.0159(10)$	$0.0176(10)$	$0.0004(8)$	$-0.0030(8)$	$-0.0006(7)$
C4BA	$0.0213(10)$	$0.0150(12)$	$0.0194(11)$	$0.0006(7)$	$-0.0065(8)$	$-0.0005(8)$
C5BA	$0.0243(17)$	$0.0169(13)$	$0.0205(15)$	$0.0008(8)$	$-0.0056(12)$	$-0.0005(9)$
C9BA	$0.0197(11)$	$0.0139(14)$	$0.0163(11)$	$-0.0004(8)$	$-0.0030(10)$	$0.0017(8)$
C9B	$0.0228(12)$	$0.0178(13)$	$0.0235(13)$	$0.0027(9)$	$-0.0029(10)$	$-0.0008(10)$
C8B	$0.0207(16)$	$0.0280(17)$	$0.0209(19)$	$-0.0026(8)$	$-0.0001(11)$	$0.0022(8)$
C7B	$0.0235(13)$	$0.0231(13)$	$0.0265(14)$	$-0.0021(11)$	$-0.0043(11)$	$0.0065(11)$
C6B	$0.0238(12)$	$0.0144(12)$	$0.0205(12)$	$0.0001(9)$	$-0.0038(10)$	$0.0025(9)$
C4B	$0.0200(11)$	$0.0262(13)$	$0.0154(10)$	$-0.0002(9)$	$-0.0031(8)$	$-0.0023(9)$
C11B	$0.0240(11)$	$0.0261(12)$	$0.0201(12)$	$0.0003(10)$	$-0.0019(8)$	$-0.0017(11)$
C3B	$0.0314(11)$	$0.0215(11)$	$0.0185(11)$	$-0.0044(9)$	$0.0031(8)$	$0.0004(8)$
C2B	$0.0380(12)$	$0.0210(10)$	$0.0170(11)$	$-0.0012(9)$	$0.0015(9)$	$0.0035(7)$
C1B	$0.0330(11)$	$0.0129(12)$	$0.0220(12)$	$-0.0020(8)$	$0.0005(9)$	$0.0021(8)$

Geometric parameters ($A,{ }^{\circ}$)

O1A-C10A	1.220 (3)	O1B-C10B	1.226 (3)
O2A-C11A	1.259 (4)	O2B-C11B	1.262 (4)
N10A-C4AA	1.382 (3)	N10B-C4BA	1.380 (3)
N10A-C10A	1.396 (3)	N10B-C10B	1.397 (3)
N10A-C1A	1.485 (3)	N10B-C1B	1.478 (3)
N5A-C4AA	1.359 (3)	N5B-C4BA	1.340 (3)
N5A-C5AA	1.377 (4)	N5B-C5BA	1.377 (5)
N5A-H5A	0.93 (2)	N5B-H5B	0.90 (2)
C10A-C9AA	1.467 (3)	C10B-C9BA	1.463 (3)
C4AA-C4A	1.397 (4)	C4BA-C4B	1.404 (4)
C5AA-C9AA	1.382 (4)	C5BA-C6B	1.395 (4)
C5AA-C6A	1.409 (4)	C5BA-C9BA	1.415 (4)
C9AA-C9A	1.414 (4)	C9BA-C9B	1.386 (4)
C9A-C8A	1.390 (4)	C9B-C8B	1.380 (4)
C9A-H9A	0.9500	C9B-H9B	0.9500
C8A-C7A	1.402 (4)	C8B-C7B	1.398 (4)
C8A-H8A	0.9500	C8B-H8B	0.9500
C7A-C6A	1.391 (4)	C7B-C6B	1.369 (4)
C7A-H7A	0.9500	C7B-H7B	0.9500
C6A-H6A	0.9500	C6B-H6B	0.9500
C4A-C11A	1.409 (4)	C4B-C11B	1.410 (4)
C4A-C3A	1.520 (3)	C4B-C3B	1.505 (3)
C11A-H11A	0.9500	C11B-H11B	0.9500
C3A-C2A	1.523 (3)	C3B-C2B	1.524 (3)
C3A-H3A1	0.9900	C3B-H3B1	0.9900
C3A-H3A2	0.9900	C3B-H3B2	0.9900
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	1.514 (3)	C2B-C1B	1.516 (3)
C2A-H2A1	0.9900	C2B-H2B1	0.9900
C2A-H2A2	0.9900	$\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	0.9900
C1A-H1A1	0.9900	C1B-H1B1	0.9900
C1A-H1A2	0.9900	C1B-H1B2	0.9900

C4AA-N10A-C10A	123.88 (18)
C4AA-N10A-C1A	119.42 (18)
C10A-N10A-C1A	116.69 (17)
C4AA-N5A-C5AA	123.9 (2)
$\mathrm{C} 4 \mathrm{AA}-\mathrm{N} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{~A}$	110 (2)
C5AA-N5A-H5A	126 (2)
O1A-C10A-N10A	120.6 (2)
O1A-C10A-C9AA	123.7 (2)
N10A-C10A-C9AA	115.7 (2)
N5A-C4AA-N10A	117.4 (2)
N5A-C4AA-C4A	119.7 (2)
N10A-C4AA-C4A	122.9 (2)
N5A-C5AA-C9AA	119.1 (2)
N5A-C5AA-C6A	119.5 (2)
C9AA-C5AA-C6A	121.4 (3)
C5AA-C9AA-C9A	120.4 (2)
C5AA-C9AA-C10A	120.0 (2)
C9A-C9AA-C10A	119.6 (2)
C8A-C9A-C9AA	118.3 (3)
C8A-C9A-H9A	120.9
C9AA-C9A-H9A	120.9
C9A-C8A-C7A	120.8 (3)
C9A-C8A-H8A	119.6
C7A-C8A-H8A	119.6
C6A-C7A-C8A	120.9 (3)
C6A-C7A-H7A	119.5
C8A-C7A-H7A	119.5
C7A-C6A-C5AA	117.9 (3)
C7A-C6A-H6A	121.0
C5AA-C6A-H6A	121.0
C4AA-C4A-C11A	120.0 (2)
C4AA-C4A-C3A	119.6 (2)
$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	120.4 (3)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	127.6 (2)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 11 \mathrm{~A}$	116.2
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 11 \mathrm{~A}$	116.2
C4A-C3A-C2A	109.80 (19)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 1$	109.7
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 1$	109.7
C4A-C3A-H3A2	109.7
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 2$	109.7
H3A1-C3A-H3A2	108.2
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	110.31 (19)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 1$	109.6
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 1$	109.6
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 2$	109.6
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 2$	109.6
$\mathrm{H} 2 \mathrm{~A} 1-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 2$	108.1

C4BA-N10B-C10B	123.5 (2)
C4BA-N10B-C1B	119.72 (19)
C10B-N10B-C1B	116.73 (18)
C4BA-N5B-C5BA	124.3 (2)
C4BA-N5B-H5B	115 (3)
C5BA-N5B-H5B	121 (3)
O1B-C10B-N10B	120.4 (2)
O1B-C10B-C9BA	123.1 (2)
N10B-C10B-C9BA	116.5 (2)
N5B-C4BA-N10B	118.1 (2)
N5B-C4BA-C4B	119.8 (2)
N10B-C4BA-C4B	122.1 (2)
N5B-C5BA-C6B	121.8 (3)
N5B-C5BA-C9BA	118.7 (2)
C6B-C5BA-C9BA	119.4 (3)
C9B-C9BA-C5BA	119.3 (2)
C9B-C9BA-C10B	121.8 (2)
C5BA-C9BA-C10B	118.8 (2)
C8B-C9B-C9BA	121.5 (3)
C8B-C9B-H9B	119.3
C9BA-C9B-H9B	119.3
C9B-C8B-C7B	118.0 (4)
C9B-C8B-H8B	121.0
C7B-C8B-H8B	121.0
C6B-C7B-C8B	122.4 (3)
C6B-C7B-H7B	118.8
C8B-C7B-H7B	118.8
C7B-C6B-C5BA	119.3 (3)
C7B-C6B-H6B	120.4
C5BA-C6B-H6B	120.4
C4BA-C4B-C11B	119.4 (2)
C4BA-C4B-C3B	120.4 (2)
C11B-C4B-C3B	120.2 (2)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	127.6 (2)
O2B-C11B-H11B	116.2
C4B-C11B-H11B	116.2
C4B-C3B-C2B	109.50 (19)
C4B-C3B-H3B1	109.8
C2B-C3B-H3B1	109.8
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	109.8
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	109.8
H3B1-C3B-H3B2	108.2
C1B-C2B-C3B	110.27 (19)
C1B-C2B-H2B1	109.6
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 1$	109.6
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	109.6
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	109.6
$\mathrm{H} 2 \mathrm{~B} 1-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	108.1

$\mathrm{N} 10 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	111.38 (18)
N10A-C1A-H1A1	109.4
C2A-C1A-H1A1	109.4
N10A-C1A-H1A2	109.4
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} 2$	109.4
$\mathrm{H} 1 \mathrm{~A} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} 2$	108.0
$\mathrm{C} 4 \mathrm{AA}-\mathrm{N} 10 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	-178.06 (19)
C1A-N10A-C10A-O1A	0.6 (3)
C4AA-N10A-C10A-C9AA	1.4 (3)
C1A-N10A-C10A-C9AA	-179.96 (19)
C5AA-N5A-C4AA-N10A	-0.8 (4)
C5AA-N5A-C4AA-C4A	179.6 (3)
C10A-N10A-C4AA-N5A	-1.1 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 10 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}-\mathrm{N} 5 \mathrm{~A}$	-179.7 (2)
C10A-N10A-C4AA-C4A	178.4 (2)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 10 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}-\mathrm{C} 4 \mathrm{~A}$	-0.2 (3)
C4AA-N5A-C5AA-C9AA	2.4 (4)
$\mathrm{C} 4 \mathrm{AA}-\mathrm{N} 5 \mathrm{~A}-\mathrm{C} 5 \mathrm{AA}-\mathrm{C} 6 \mathrm{~A}$	-179.6 (3)
N5A-C5AA-C9AA-C9A	177.3 (3)
C6A-C5AA-C9AA-C9A	-0.7 (5)
N5A-C5AA-C9AA-C10A	-2.0 (4)
C6A-C5AA-C9AA-C10A	-179.9 (2)
O1A-C10A-C9AA-C5AA	179.6 (2)
N10A-C10A-C9AA-C5AA	0.2 (3)
O1A-C10A-C9AA-C9A	0.4 (4)
N10A-C10A-C9AA-C9A	-179.1 (2)
C5AA-C9AA-C9A-C8A	-2.0 (4)
C10A-C9AA-C9A-C8A	177.3 (3)
C9AA-C9A-C8A-C7A	5.1 (5)
C9A-C8A-C7A-C6A	-5.5 (5)
C8A-C7A-C6A-C5AA	2.7 (4)
N5A-C5AA-C6A-C7A	-177.7 (3)
C9AA-C5AA-C6A-C7A	0.3 (5)
N5A-C4AA-C4A-C11A	0.5 (4)
N10A-C4AA-C4A-C11A	-179.0 (2)
N5A-C4AA-C4A-C3A	-179.2 (2)
N10A-C4AA-C4A-C3A	1.3 (3)
$\mathrm{C} 4 \mathrm{AA}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	1.3 (4)
C3A-C4A-C11A-O2A	-179.1 (2)
$\mathrm{C} 4 \mathrm{AA}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	26.3 (3)
$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	-153.4 (2)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	-54.1 (3)
C4AA-N10A-C1A-C2A	-28.9 (3)
$\mathrm{C} 10 \mathrm{~A}-\mathrm{N} 10 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	152.38 (19)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 10 \mathrm{~A}$	56.2 (2)

N10B-C1B-C2B	111.35
N10B-C1B-H1B1	109.4
C2B-C1B-H1B1	109.4
N10B-C1B-H1B2	109.4
C2B-C1B-H1B2	109.4
H1B1-C1B-H1B2	108.0

$\mathrm{C} 4 \mathrm{BA}-\mathrm{N} 10 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B} \quad-178.11$ (19)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 10 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B} \quad 0.6$ (3)
C4BA-N10B-C10B-C9BA 1.3 (3)
C1B-N10B-C10B-C9BA -179.99 (19)
C5BA-N5B-C4BA-N10B 1.5 (4)
$\mathrm{C} 5 \mathrm{BA}-\mathrm{N} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{BA}-\mathrm{C} 4 \mathrm{~B} \quad-178.3$ (3)
$\mathrm{C} 10 \mathrm{~B}-\mathrm{N} 10 \mathrm{~B}-\mathrm{C} 4 \mathrm{BA}-\mathrm{N} 5 \mathrm{~B} \quad-2.1$ (3)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 10 \mathrm{~B}-\mathrm{C} 4 \mathrm{BA}-\mathrm{N} 5 \mathrm{~B} \quad 179.2$ (2)
C10B-N10B-C4BA-C4B 177.7 (2)
C1B-N10B-C4BA-C4B -1.0 (3)
C4BA-N5B-C5BA-C6B 179.9 (3)
C4BA-N5B-C5BA-C9BA -0.1 (5)
N5B-C5BA-C9BA-C9B 177.7 (3)
C6B-C5BA-C9BA-C9B -2.3 (5)
N5B-C5BA-C9BA-C10B -0.7 (4)
C6B-C5BA-C9BA-C10B 179.2 (2)
O1B-C10B-C9BA-C9B 1.1 (4)
N10B-C10B-C9BA-C9B -178.3 (2)
O1B-C10B-C9BA-C5BA 179.5 (2)
N10B-C10B-C9BA-C5BA 0.2 (3)
C5BA-C9BA-C9B-C8B 2.8 (5)
C10B-C9BA-C9B-C8B -178.8 (3)
$\mathrm{C} 9 \mathrm{BA}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B} \quad-2.6(6)$
C9B-C8B-C7B-C6B 1.9 (6)
$\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5 \mathrm{BA} \quad-1.5(5)$
N5B-C5BA-C6B-C7B $\quad-178.4$ (3)
C9BA-C5BA-C6B-C7B 1.7 (5)
$\mathrm{N} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{BA}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B} \quad 1.7$ (4)
N10B-C4BA-C4B-C11B -178.1 (2)
N5B-C4BA-C4B-C3B $\quad-178.1$ (2)
N10B-C4BA-C4B-C3B 2.1 (3)
$\mathrm{C} 4 \mathrm{BA}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B} \quad 0.8$ (4)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B} \quad-179.4(2)$
$\mathrm{C} 4 \mathrm{BA}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B} \quad 26.0$ (3)
$\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B} \quad-153.9$ (2)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B} \quad-54.1$ (3)
$\mathrm{C} 4 \mathrm{BA}-\mathrm{N} 10 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B} \quad-28.5$ (3)
$\mathrm{C} 10 \mathrm{~B}-\mathrm{N} 10 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B} \quad 152.68$ (19)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 10 \mathrm{~B} \quad 56.2$ (2)

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 A-\mathrm{H} 5 A \cdots \mathrm{O} 2 A$	$0.93(3)$	$1.77(3)$	$2.592(3)$	$146(3)$
$\mathrm{N} 5 B-\mathrm{H} 5 B \cdots \mathrm{O} 2 B$	$0.90(3)$	$1.82(3)$	$2.582(3)$	$141(3)$
$\mathrm{C} 1 A-\mathrm{H} 1 A 2 \cdots \mathrm{O} 1 A^{\mathrm{i}}$	0.99	2.57	$3.535(3)$	164
$\mathrm{C} 6 A-\mathrm{H} 6 A \cdots \mathrm{O} 1 A^{\mathrm{ii}}$	0.95	2.39	$3.230(4)$	147
$\mathrm{C} 6 B-\mathrm{H} 6 B \cdots \mathrm{O} 1 B^{\mathrm{ii}}$	0.95	2.40	$3.239(4)$	148
$\mathrm{C} 8 A-\mathrm{H} 8 A \cdots \mathrm{O} 1 B^{\text {iii }}$	0.95	2.60	$3.469(4)$	153
$\mathrm{C} 1 B — \mathrm{H} 1 B 2 \cdots \mathrm{O} 1 B^{\text {iv }}$	0.99	2.59	$3.550(3)$	164

Symmetry codes: (i) $x+1 / 2,-y+1 / 2, z$; (ii) $x, y+1, z$; (iii) $-x+1,-y+1, z+1 / 2$; (iv) $x-1 / 2,-y+1 / 2, z$.

