Six 1-halobenzoyl-4-(2-methoxyphenyl)piperazines having Z' values of one, two or four; disorder, pseudosymmetry, twinning and supramolecular assembly in one, two or three dimensions

Chayanna Harish Chinthal,^a Channappa N. Kavitha,^b Hemmige S. Yathirajan,^a* Sabine Foro^c and Christopher Glidewell^d

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, ^bDepartment of Chemistry, Maharani's Science College for Women, Mysuru-570 001, India, ^cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and ^dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. *Correspondence e-mail: yathirajan@hotmail.com

Six 1-halobenzoyl-4-(2-methoxyphenyl)piperazines have been prepared using carbodiimide-mediated coupling reactions between halobenzoic acids and N-(2methoxyphenyl)piperazine. The molecules of 1-(4-fluorobenzoyl)-4-(2-methoxyphenyl)piperazine, C₁₈H₁₉FN₂O₂ (I), are linked into a chain of rings by a combination of C-H···O and C-H··· π (arene) hydrogen bonds. 1-(4-Chlorobenzoyl)-4-(2-methoxyphenyl)piperazine, $C_{18}H_{19}ClN_2O_2$ (II), crystallizes in the space group $Pca2_1$ with Z' = 4 and it exhibits both pseudosymmetry and inversion twinning: a combination of six $C-H \cdots O$ and two $C-H \cdots \pi$ (arene) hydrogen bonds generate a three-dimensional assembly. In 1-(4-bromobenzoyl)-4-(2-methoxyphenyl)piperazine, $C_{18}H_{19}BrN_2O_2$ (III), which also crystallizes in space group $Pca2_1$ but with Z' = 2, the bromobenzoyl unit in one of the molecules is disordered. Pseudosymmetry and inversion twinning are again present, and a combination of three $C-H \cdots O$ and one $C-H \cdots \pi$ (arene) hydrogen bonds generate a two-dimensional assembly. A single C-H···O hydrogen bond links the molecules of 1-(4-iodobenzoyl)-4-(2-methoxyphenvl)piperazine, $C_{18}H_{19}IN_2O_2$ (IV), into simple chains but in the isomeric 3-iodobenzoyl analogue (V), which crystallizes in space group $P2_12_12_1$ with Z' = 2, a two-dimensional assembly is generated by a combination of four C- $H \cdots O$ and two $C - H \cdots \pi$ (arene) hydrogen bonds; pseudosymmetry and inversion twinning are again present. A single $C-H \cdots O$ hydrogen bond links the molecules of 1-(2-fluorobenzoyl)-4-(2-methoxyphenyl)piperazine, $C_{18}H_{19}FN_2O_2$ (VI), into simple chains. Comparisons are made with the structures of some related compounds.

Received 27 November 2020 Accepted 28 November 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

COMMUNICATIONS

Keywords: piperazines; synthesis; crystal structure; molecular conformation; disorder; pseudosymmetry; inversion twinning; hydrogen bonding; supramolecular assembly.

CCDC references: 2046985; 2046984; 2046983; 2046982; 2046981; 2046980

Supporting information: this article has supporting information at journals.iucr.org/e

1. Chemical context

N-(2-Methoxyphenyl)piperazine (2-MeOPP) has been used as a building block in the synthesis of both 5-HT_{1A} receptor ligands (Orjales et al., 1995) and dopamine D₂ and D₃ ligands (Hackling et al., 2003), and also as a building block for the synthesis of derivatives exhibiting antidepressant-like activity (Waszkielewicz et al., 2015). We have recently reported the structures of a range of salts derived from 2-MeOPP (Harish Chinthal et al., 2020a) and here we report the syntheses and structures of six 1-haloaroyl-4-(2-methoxyphenyl)piperazines, (I)-(VI). The work reported here represents a continuation of an earlier study on the isomeric N-(4-methoxyphenyl)piperazine (4-MeOPP) (Kiran Kumar et al., 2020) and a range of salts and N-aroyl derivatives derived from 4-MeOPP (Kiran

ISSN 2056-9890

Kumar, Yathirajan, Foro *et al.*, 2019; Kiran Kumar, Yathirajan, Sagar *et al.*, 2019; Kiran Kumar *et al.*, 2020). Compounds (I)–(VI) were prepared using carbodiimide-mediated reactions between N-(2-methoxyphenyl)piperazine and a halogen-substituted benzoic acid.

(II)
$$X = 4$$
-CI
(III) $X = 4$ -Br
(IV) $X = 4$ -I
(V) $X = 3$ -I
(VI) $X = 2$ -F

2. Structural commentary

Despite differing only in the identity of their halogen substituents, no two of compounds (I)–(IV) are isomorphous (Figs. 1–6). The chloro and bromo compounds (II) and (III) both crystallize in space group $Pca2_1$, but with Z' values of 2 and 4, respectively; the unit-cell repeat vectors b and c for these two compounds are quite similar, but the a repeat vector for (II) is roughly twice that for (III). Compound (V) also crystallizes with Z' = 2, but in space group $P2_12_12_1$.

Figure 1

The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The structures of the four independent molecules in the selected asymmetric unit of compound (II), viewed approximately along [001], showing the atom-labelling scheme, and the approximate spacial relationships between the molecules. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, the H atoms have been omitted.

In none of the compounds reported here do the molecules exhibit any internal symmetry and hence they are conformationally chiral. The space groups for compounds (II), (III), (IV) and (VI) confirm the presence in the crystal of equal numbers of the two conformational enantiomers. For each of (II), (III) and (V), having Z' > 1, there is considerable flex-

The structures of the two independent molecules in the selected asymmetric unit of compound (III), viewed approximately along [001], showing the atom-labelling scheme, the disorder in one of the molecules and the approximate glide relationship between the two molecules. The major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines: displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.

Figure 4

ibility available for the choice of the asymmetric unit: in each case, the asymmetric unit was selected such that the independent molecules in it were linked by $C-H\cdots O$ hydrogen bonds (Table 1).

For compound (I), which crystallizes in space group $P2_12_12_1$ with Z' = 1, it was not possible to establish the absolute configuration of the molecules in the crystal selected for data collection (see Section 6). In compound (V), the two independent molecules in the selected asymmetric unit have opposite conformations and they are related by an approximate, but non-crystallographic, inversion close to (0.25, 0.60, 0.25) (cf. Fig. 5), and so (V) may be regarded as a kryptoracemate (Fábián & Brock, 2010). Pseudosymmetry is also apparent in compounds (II) and (III). In (III), where Z' = 2, molecule 1 containing atom Br14 and the major disorder component of molecule 2 containing atom Br24 are related by an approximate, but non-crystallographic *b*-glide plane at x =ca 0.62 (cf. Fig. III). The arrangement of the molecules in compound (II) is slightly more complex: molecules 1 and 3, containing atoms Cl14 and Cl34, respectively, are related by an approximate, but non-crystallographic, 21 screw axis along (0.56, y, 0.68), as also are molecules 2 and 4, containing atoms

Figure 5

The structures of the two independent molecules in the selected asymmetric unit of compound (V), showing the atom-labelling scheme and the approximate inversion symmetry relating the two molecules. Displacement ellipsoids are drawn at the 30% probability level.

Figure 6

The molecular structure of compound (VI), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Cl24 and Cl44 (cf. Fig. 2). In addition, molecules 1 and 2 are approximately related by the translation (x - 0.25, y + 0.06, z), while molecules 3 and 4 are approximately related by the translation (x + 0.25, y + 0.06, z). Compounds (II), (III) and (V) all exhibit a measure of inversion twinning (Section 6, below) and it seems likely that this is underpinned by the pseudosymmetry in these structures.

All of the piperazine rings in compounds (I)-(VI) adopt chair type conformations, with values of the ring-puckering angle θ (Cremer & Pople, 1975) close to zero, as calculated for the atom sequences (N1,C2,C3,N4,C5,C6) in (I), (IV) and (VI), or (Nx1,Cx2,Cx3,Nx4,Cx5,Cx6) where x = 1 or 2 in (III) and (V) and x = 1, 2, 3 or 4 in (II). For an ideal chair conformation, the value of θ is zero (Boeyens, 1978). The substituents at the N atoms all occupy equatorial sites.

In each of (I)–(IV), the methoxy C atom is close to coplanar with the adjacent aryl ring, with displacements from the plane of the ring ranging from 0.024 (7) Å in molecule 4 of (II) to 0.130 (3) Å in (I): for (V) and (VI) the displacements are rather larger, up to 0.447 (1) Å in molecule 2 of (V). However, in every molecule the two exocyclic C-C-O angles differ by ca 10°, as typically found in planar, or near-planar, alkoxyarenes (Seip & Seip, 1973; Ferguson et al., 1996).

3. Supramolecular features

In assessing the intermolecular interactions, we have discounted hydrogen bonds having $D - H \cdots A$ angles that are significantly less than 140°, as the interaction energies associated with such contacts are likely to be very low, so that these cannot be regarded as structurally significant (Wood et al., 2009). We have also discounted short contacts involving the H atoms of the methyl groups, as such groups are likely to be undergoing rapid rotation about the adjacent C-O bonds (Riddell & Rogerson, 1996, 1997). The C-H $\cdots\pi$ (arene) contacts have been included only where the $H \cdot \cdot \cdot Cg$ distances are less than 2.85 Å. It should perhaps be conceded here that these are somewhat arbitrary judgments, made with the primary aim of avoiding over-interpretation of the longer

Table 1

Hydrogen bonds (Å, $^\circ).$

Cg1-Cg7 represent the centroids of the rings (C41-C46), (C441-C446), (C241-C246), (C241-C246), (C141-C146), (C211-C216) and (C111-C116), respectively.

Compound	$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
	$C15-H15\cdots O17^{i}$	0.93	2.48	3.409 (4)	173
()	$C13-H13\cdots Cg1^{ii}$	0.93	2.82	3.559 (4)	151
(II)	$C15-H15B\cdots O417^{iii}$	0.97	2.39	3.314 (9)	160
	C35-H365B···O217	0.97	2.41	3.333 (9)	159
	C115-H115···O217	0.93	2.60	3.522 (9)	174
	$C215-H215\cdots O117^{iv}$	0.93	2.56	3.482 (8)	170
	C315-H315···O417	0.93	2.56	3.486 (9)	177
	$C415 - H415 \cdots O317^{v}$	0.93	2.52	3.428 (8)	165
	C213-H213···Cg2 ^{vi}	0.93	2.71	3.604 (8)	161
	C313 $-$ H313 \cdots Cg3 ^{vii}	0.93	2.79	3.633 (8)	151
(III)	C15-H15B···O217	0.97	2.56	3.483 (10)	159
	$C25-H25B\cdots O115^{iii}$	0.97	2.55	3.483 (11)	160
	C213-H213···O217 ^{viii}	0.93	2.54	3.425 (10)	158
	$C312 - H312 \cdot \cdot \cdot N14^{viii}$	0.93	2.59	3.45 (9)	154
	$C115-H115\cdots Cg4^{ix}$	0.93	2.65	3.549 (9)	162
	C315-H315····Cg5 ^x	0.93	2.74	3.59 (10)	151
(IV)	$C3-H3A\cdots O17^{xi}$	0.97	2.50	3.422 (4)	159
(V)	C112-H112····O242	0.93	2.55	3.388 (9)	150
	C116-H116···O217 ^{xii}	0.93	2.41	3.301 (10)	159
	C212-H212···O142	0.93	2.55	3.363 (9)	147
	C216-H216···O117 ^{xiii}	0.93	2.49	3.407 (11)	169
	$C115 - H115 \cdots Cg6^{xii}$	0.93	2.67	3.505 (9)	149
	C215-H215···· $Cg7^{xiii}$	0.93	2.81	3.566 (9)	140
(VI)	$C15-H15\cdots O17^{i}$	0.93	2.58	3.510 (3)	177

Symmetry codes: (i) -1 + x, y, z; (ii) $-\frac{1}{2} + x, \frac{1}{2} - y, -z$; (iii) x, -1 + y, z; (iv) $-\frac{1}{2} + x, 1 - y, z$; (v) $\frac{1}{2} + x, 2 - y, z$; (vi) $1 - x, 1 - y, -\frac{1}{2} + z$; (vii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $\frac{1}{2} + x, 1 - y, z$; (ix) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$; (viii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii)

contacts and over-complication of the crystal-structure descriptions. It is convenient to consider first the supramolecular assembly in compounds (I), (IV) and (VI) where Z' = 1 and the aggregation is one-dimensional, followed by (III) and (V) where Z' = 2 and the aggregation is two-dimensional, and finally (II) where Z' = 4 and the aggregation is threedimensional.

The assembly in compounds (I), (IV) and (VI) is very simple. In (I), a single $C-H\cdots O$ hydrogen bond (Table 1) links molecules which are related by translation to form a C(6)(Etter, 1990; Etter *et al.*, 1990; Bernstein *et al.*, 1995) chain, which is weakly reinforced by a $C-H\cdots\pi$ (arene) hydrogen bond to form a chain of rings running along (x, 0.25, 0) (Fig. 7). Simple C(6) chains are also formed in compounds (IV) and (VI), although these involve different donors. The chain in (IV) is built from molecules related by the 2₁ screw axis along (0.5, y, 0.25) (Fig. 8), while that in (VI) contains molecules related by translation along [100] (Fig. 9), analogous to that in (I). In none of (I), (IV) and (VI) are there any directionspecific interactions between adjacent chains so that, in each case, the assembly is one-dimensional.

Because of the very low occupancy of the minor disorder component in (III), it is necessary to consider only the interactions involving the major disorder component, where a combination of $C-H\cdots O$ and $C-H\cdots \pi$ (arene) hydrogen bonds links the molecules into a sheet lying parallel to (100) (Fig. 10). The assembly in (V) is also two-dimensional, but it is

Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of rings running parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.

Figure 8

Part of the crystal structure of compound (IV), showing the formation of a hydrogen-bonded chain running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to the C atoms which are not involved in the motif shown have been omitted.

Figure 9

Part of the crystal structure of compound (VI), showing the formation of a hydrogen-bonded chain running parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are not involved in the motif shown have been omitted.

Part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded sheet lying parallel to (100). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms bonded to the C atoms which are not involved in the motif shown have been omitted.

Part of the crystal structure of compound (V), showing the formation of a hydrogen-bonded chain of rings running along (1/2, y, 1/4). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are not involved in the motif shown have been omitted.

Figure 12

Part of the crystal structure of compound (V), showing the formation of a hydrogen-bonded chain of rings running along (0, y, 1/4). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are not involved in the motif shown have been omitted.

rather more complex than that in (III); however, it is possible to analyse the sheet formation in (V) in terms of three simpler sub-structures (Ferguson *et al.*, 1998*a*,*b*; Gregson *et al.*, 2000). The first of these sub-structures, which can be regarded as the basic building block in the structure, consists of the two molecules within the selected asymmetric unit (Fig. 5), which are linked by two C-H···O hydrogen bonds to form a cyclic dimeric unit containing an $R_2^2(22)$ motif, and dimers of this type are linked to form two types of chains of rings. One of these chains contains dimers which are related by the 2₁ screw

Figure 13

Part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded sheet lying parallel to (001). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted.

Figure 14

Part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded chain running parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted.

axis along (0.5, y, 0.25) (Fig. 11) and the other is built from dimers related by the 2₁ screw axis along (0, y, 0.25) (Fig. 12). Within these two chains, the hydrogen bonds are directed in opposite directions (Table 1), and the combination of the two chains generates a complex sheet lying parallel to (001). There are no direction-specific interactions between adjacent sheets in either (III) or (V).

No fewer than six independent C-H···O hydrogen bonds, three of them within the selected asymmetric unit, link the molecules of compound (II) into a complex sheet lying parallel to (001) (Fig. 13). In addition, two independent C-H··· π (arene) hydrogen bonds link molecules related by the 2₁ screw axis along (0.5, 0.5, z) to generate a chain running parallel to the [001] direction (Fig. 14) and chains of this type link the (001) sheets to form a continuous three-dimensional network.

4. Database survey

Here we briefly compare the structures of compounds (I)–(VI) with those of some analogous compounds. In the structure of 1-(2-fluorobenzoyl)-4-(4-methoxyphenyl)piperazine (VII),

Table 2Experimental details.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(I)	(II)	(III)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Crystal data			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chemical formula	$C_{18}H_{10}FN_2O_2$	$C_{18}H_{10}ClN_2O_2$	$C_{12}H_{10}BrN_2O_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>M</i> .	314.35	330.80	375.26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Crystal system, space group	Orthorhombic, $P2_12_12_1$	Orthorhombic, $Pca2_1$	Orthorhombic, $Pca2_1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Temperature (K)	296	296	293
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a, b, c (Å)	7.3286 (6), 11.3388 (7), 20.304 (1)	29.769 (1), 11.3173 (4), 20.4028 (8)	15.0779 (7), 11.2868 (6), 20.5297 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$V(\dot{A}^3)$	1687.21 (19)	6873.8 (4)	3493.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Z	4	16	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Radiation type	Μο Κα	Μο Κα	Μο Κα
$ \begin{array}{cccc} \mbox{Crystal size (mm)} & 0.44 \times 0.14 & 0.48 \times 0.38 \times 0.28 & 0.50 \times 0.48 \times 0.24 \\ \hline \mbox{Data collection} \\ \mbox{Diffractometer} & Oxford Diffraction Xcalibur CCD & Multi-scan (CrysAlis RED; & Multi-scan (CrysAlis Method) & M$	$\mu (\mathrm{mm}^{-1})^{31}$	0.09	0.23	2.36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Crystal size (mm)	$0.44\times0.14\times0.14$	$0.48 \times 0.38 \times 0.28$	$0.50\times0.48\times0.24$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Data collection			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Diffractometer	Oxford Diffraction Xcalibur CCD	Oxford Diffraction Xcalibur CCD	Oxford Diffraction Xcalibur CCD
Oxford Diffraction, 2009) Oxford Diffraction, 2009) Oxford Diffraction, 2009) Oxford Diffraction, 2009) Oxford Diffraction, 2009) T_{min}, T_{max} 0.938, 0.988 0.874, 0.937 0.294, 0.567 No. of measured, independent 6377, 3377, 1918 17985, 8328, 4822 13342, 5910, 3300 and observed $[I > 2\sigma(I)]$ reflections 0.036 0.030 0.031 R_{int} 0.036 0.606 0.606 Refinement $R[f^2 > 2\sigma(F^2)], wR(F^2), S$ 0.044, 0.088, 0.92 0.055, 0.143, 0.95 0.051, 0.130, 0.93 No. of reflections 3377 8328 5910 5910 No. of restraints 0 1 21 1 H-atom treatment H-atom parameters constrained H-atom parameters constrained 0.55, -0.19 0.85, -0.49 Absolute structure - Flack x determined using 1164 Flack x determined using 1109 quotients $[(I^*) - (I^*)]/[(I^*) + (I^*)]$ Absolute structure parameter - 0.22 (6) 0.300 (6)	Absorption correction	Multi-scan (CrysAlis RED;	Multi-scan (CrysAlis RED;	Multi-scan (CrysAlis RED;
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 6377, 3377, 1918 17985, 8328, 4822 13342, 5910, 3300 R_{int} (sin $\theta/\lambda)_{max}$ (Å ⁻¹) 0.036 0.030 0.031 Second Control 0.628 0.606 0.606 Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S 0.044, 0.088, 0.92 0.055, 0.143, 0.95 0.051, 0.130, 0.93 No. of reflections 3377 8328 5910 No. of parameters 209 833 445 No. of restraints 0 1 21 H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³) 0.12, -0.14 0.52, -0.19 0.85, -0.49 Absolute structure - Flack x determined using 1164 Flack x determined using 1109 quotients $[(I^*) - (I^-)]/[(I^*) + (I^-)]$ (Parsons et al., 2013) 0.300 (6) - 0.22 (6) 0.300 (6) 0.300 (6)	T_{\min}, T_{\max}	0.938, 0.988	0.874, 0.937	0.294, 0.567
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No. of measured, independent	6377, 3377, 1918	17985, 8328, 4822	13342, 5910, 3300
R_{int} 0.036 0.030 0.031 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.628 0.606 0.606 Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S 0.044, 0.088, 0.92 0.055, 0.143, 0.95 0.051, 0.130, 0.93 No. of reflections 3377 8328 5910 No. of restraints 0 1 21 H-atom treatment H-atom parameters constrained H-atom parameters constrained $\Delta \rho_{max}$, $\Delta \rho_{min}$ (eÅ ⁻³) 0.12, -0.14 0.52, -0.19 0.85, -0.49 Absolute structure - Flack x determined using 1164 Flack x determined using 1109 quotients [(I ⁺)-(I ⁻)]/[(I ⁺)+(I ⁻)] (Parsons et al., 2013) 0.300 (6)	and observed $[I > 2\sigma(I)]$ reflections			
(sin $\theta/\lambda)_{max}$ (Å ⁻¹) 0.628 0.606 0.606 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.044, 0.088, 0.92 0.055, 0.143, 0.95 0.051, 0.130, 0.93 No. of reflections 3377 8328 5910 No. of parameters 209 833 445 No. of restraints 0 1 21 H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained Absolute structure - Flack x determined using 1164 Flack x determined using 1109 quotients [(I ⁺)-(I ⁻)]/[(I ⁺)+(I ⁻)] (Parsons et al., 2013) 0.300 (6)	R _{int}	0.036	0.030	0.031
Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.044, 0.088, 0.92 0.055, 0.143, 0.95 0.051, 0.130, 0.93 No. of reflections 3377 8328 5910 No. of parameters 209 833 445 No. of restraints 0 1 21 H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³) 0.12, -0.14 0.52, -0.19 0.85, -0.49 Absolute structure - Flack x determined using 1164 Flack x determined using 1164 (Parsons et al., 2013) (Parsons et al., 2013) 0.300 (6)	$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.628	0.606	0.606
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Refinement			
No. of reflections337783285910No. of parameters209833445No. of restraints0121H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.12, -0.140.52, -0.190.85, -0.49Absolute structure-Flack x determined using 1164 (Parsons et al., 2013)Flack x determined using 1109 (Quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)Quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)Model-(IV)(V)(VI)	$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.088, 0.92	0.055, 0.143, 0.95	0.051, 0.130, 0.93
No. of parameters209833445No. of restraints0121H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.12, -0.140.52, -0.190.85, -0.49Absolute structure-Flack x determined using 1164 (Parsons et al., 2013)Flack x determined using 1109 (Parsons et al., 2013)Absolute structure parameter-0.22 (6)0.300 (6)	No. of reflections	3377	8328	5910
No. of restraints0121H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.12, -0.140.52, -0.190.85, -0.49Absolute structure-Flack x determined using 1164Flack x determined using 1109quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)0.300 (6)Absolute structure parameter-0.22 (6)0.300 (6)	No. of parameters	209	833	445
H-atom treatment $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å $^{-3}$)H-atom parameters constrained $0.12, -0.14$ H-atom parameters constrained $0.52, -0.19$ H-atom parameters constrained $0.85, -0.49$ Absolute structure-Flack x determined using 1164 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons et al., 2013)H-atom parameters constrained $0.85, -0.49$ Absolute structure parameter-0.22 (6)0.300 (6)(IV)(V)(V)(VI)	No. of restraints	0	1	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
Absolute structure-Flack x determined using 1164 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)Flack x determined using 1109 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)Absolute structure parameter-0.22 (6)0.300 (6)(IV)(V)(VI)	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.12, -0.14	0.52, -0.19	0.85, -0.49
Absolute structure parameter - 0.22 (6) 0.300 (6) (IV) (V) (VI)	Absolute structure	-	Flack x determined using 1164 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 1109 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
(IV) (V) (VI)	Absolute structure parameter	-	0.22 (6)	0.300 (6)
			(V)	
		(1 v)	(v)	(• 1)
Crystal data	Crystal data			
Chemical formula $C_{18}H_{19}IN_2O_2$ $C_{18}H_{19}IN_2O_2$ $C_{18}H_{19}IN_2O_2$	Chemical formula	$C_{18}H_{19}IN_2O_2$	$C_{18}H_{19}IN_2O_2$	$C_{18}H_{19}FN_2O_2$

Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta/\lambda)_{\max} (\mathring{A}^{-1})$

Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters No. of restraints H-atom treatment $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å⁻³) Absolute structure $\begin{array}{l} C_{18}H_{19}IN_2O_2\\ 422.25\\ Monoclinic, P2_1/c\\ 296\\ 10.9626\ (5),\,11.3258\ (6),\,14.8234\ (7)\\ 90,\,104.520\ (5),\,90\\ 1781.69\ (16)\\ 4\\ Mo\ K\alpha\\ 1.81\\ 0.42\ \times\ 0.40\ \times\ 0.28\\ \end{array}$ Oxford Diffraction Xcalibur CCD Multi-scan (CrysAlis RED;

Oxford Diffraction, 2009) 0.423, 0.603 7512, 3816, 2690 0.015 0.651

0.035, 0.092, 1.05 3816 208 0 H-atom parameters constrained 0.43, -0.91 $\begin{array}{l} C_{18}H_{19}IN_2O_2\\ 422.25\\ Orthorhombic, P2_12_12_1\\ 296\\ 7.4528\ (4), 17.1306\ (9), 27.903\ (1)\\ 90, 90, 90\\ 3562.4\ (3)\\ 8\\ Mo\ K\alpha\\ 1.81\\ 0.36\ \times\ 0.22\ \times\ 0.18\\ \end{array}$

Oxford Diffraction Xcalibur CCD Multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) 0.542, 0.722 13774, 7653, 5048

0.025 0.650

0.048, 0.116, 1.04 7653 417 0 H-atom parameters constrained 1.12, -0.69 Flack *x* determined using 1728 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) $\begin{array}{l} C_{18}H_{19}FN_2O_2\\ 314.35\\ Monoclinic, P2_1/n\\ 296\\ 7.451\ (1),\ 11.199\ (3),\ 19.138\ (5)\\ 90,\ 99.59\ (2),\ 90\\ 1574.6\ (6)\\ 4\\ Mo\ K\alpha\\ 0.10\\ 0.48\ \times\ 0.48\ \times\ 0.24\\ \end{array}$

Multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) 0.898, 0.955 6456, 3467, 2081

0.025 0.659

0.049, 0.128, 1.02 3467 208 0 H-atom parameters constrained 0.17, -0.17

Table 2 (continued)				
	(IV)	(V)	(VI)	
Absolute structure parameter	-	0.456 (12)	-	

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a), SHELX2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

which is isomeric with compound (VI) reported here, the molecules are linked by two C-H···O hydrogen bonds to form a chain of centrosymmetric rings containing two distinct types of $R_2^2(10)$ ring (Kiran Kumar, Yathirajan, Sagar *et al.*, 2019). The 2-chloro, 2-bromo and 2-iodo analogues of (VII), [compounds (VIII)-(X)], are isomorphous in space group *Pbca*, all with Z' = 1 (Kiran Kumar, Yathirajan, Sagar *et al.*, 2019), whereas no two of compounds (I)-(IV) reported here are isomorphous. In each of (VIII)-(X), the molecules are linked into sheets by two C-H··· π (arene) hydrogen bonds: the assembly in (VIII)-(X) thus differs markedly from that in the isomeric compounds (I)-(IV). By contrast with the assembly in (VIII)-(X), there are no significant hydrogen bonds in the structure of the unsubstituted analogue 1-benzoyl-4-(4-methoxyphenyl)piperazine (XI) (Kiran Kumar, Yathirajan, Sagar et al., 2019), just as there are none in the structure of 1-(3,5-dinitrobenzoyl)-4-(2-methoxyphenyl)piperazine (XII) (Harish Chinthal et al., 2020b). Finally, we note that structures have been reported recently for 1-(2iodobenzoyl)-4-(pyrimidin-2-yl)piperazine (Mahesha, Yathirajan et al., 2019) and for three 1-(1,3-benzodioxol-5-yl)methyl-4-(halobenzoyl)piperazines (Mahesha, Sagar et al., 2019).

5. Synthesis and crystallization

All reagents were commercially available and all were used as received. For the synthesis of compounds (I)-(VI), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (134 mg, 0.7 mmol), 1-hydroxybenzotriazole (68 mg, 0.5 mmol) and triethylamine (0.5 ml, 1.5 mmol) were added to a solution of the appropriately substituted benzoic acid (0.52 mmol) in methanol (10 ml), thus 4-fluorobenzoic acid (73 mg) for (I), 4-chlorobenzoic acid (82 mg) for (II), 4-bromobenzoic acid (103 mg) for (III), 4-iodobenzoic acid (129 mg) for (IV), 3-iodobenzoic acid (129 mg) for (V) and 2-fluorobenzoic acid (73 mg) for (VI). Each mixture was stirred at 323 K for a few minutes and then set aside for two days at room temperature. A solution of N-(2-methoxyphenyl)piperazine (100 mg, 0.52 mmol) in N,Ndimethylformamide (5 ml) was then added to each of the mixtures prepared as above, followed by stirring that was continued overnight at room temperature. When the reactions were confirmed to be complete using thin-layer chromatography, each mixture was then quenched with water (10 ml) and extracted with ethyl acetate (20 ml). Each organic fraction was separated and washed successively with an aqueous hydrochloric acid solution (1 M), a saturated solution of sodium hydrogencarbonate and then with brine. The organic phases were dried over anhydrous sodium sulfate and the solvent was then removed under reduced pressure. The resulting solid products were then crystallized from acetoneethyl acetate (1:1, v/v) for (I) or methanol–ethyl acetate (1:1. v/v) solvent mixtures for (II)–(VI): m.p. (I) 375–377 K, (II) 383–387 K, (III) 377–379 K, (IV) 378–381 K, (V) 379–381 K and (VI) 341–345 K. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethyl acetate.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. One bad outlier reflection (2,0,2)was omitted from the final refinement for compound (IV), and two bad outlier reflections, (1,5,18) and (1,18,15), were omitted from the final refinement for compound (V). All H atoms, apart from those in the minor disorder component of compound (III), were located in difference maps and subsequently treated as riding atoms in geometrically idealized positions, with C-H distances 0.93 Å (aromatic), 0.96 Å (CH₃) and 0.97 Å (CH₂), and with $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for the methyl groups, which were allowed to rotate but not to tilt, and 1.2 for all other H atoms. For the minor disorder component in (III), the bonded distances and the 1,3 nonbonded distances were restrained to be the same as the corresponding distances in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displacement parameters for pairs of atoms occupying essentially the same physical space were constrained to be identical. Subject to these conditions, the refined disorder occupancies were 0.939 (4) and 0.061 (4). In the absence of significant resonant scattering, it was not possible to determine the absolute configuration of the molecules of (I) in the crystal selected for data collection. The value of the Flack x parameter [Flack (1983), x = -0.2 (8), calculated (Parsons et al., 2013) using 612 quotients of the type $[(I^+) - (I^-)]/[(I^+) + (I^-)]$, means that the absolute structure is indeterminate (Flack & Bernardinelli, 2000), although this has no chemical significance. For each of (II), (III) and (V), the Flack x parameter indicated the occurrence of inversion twinning (Flack & Bernardinelli, 2000), thus: for (II), x =0.22 (8) calculated using 1164 quotients; for (III), x = 0.300 (6) calculated using 1164 quotients; and for (V), x = 0.456 (12) calculated using 1728 quotients. The structure of (I) contains two void spaces, each of volume 65 \AA^3 and centred close to (0, (0.25, 0) and (0, 0.75, 0.5); however, examination of the refined structure using SQUEEZE (Spek, 2015) showed that these voids contained negligible electron density. There are four small voids in the structure of (II), each of volume *ca* 32 $Å^3$, and all too small to accommodate even a water molecule (Hofmann, 2002).

Acknowledgements

CHC thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Fábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94-103.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
- Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.
- Hackling, A., Ghosh, R., Perachon, S., Mann, A., Höltje, H. D., Wermuth, C. G., Schwartz, J. C., Sippl, W., Sokoloff, P. & Stark, H. (2003). J. Med. Chem. 46, 3883–3899.
- Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020b). *IUCrData*, **5**, x201523.

- Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020a). Acta Cryst. E76, 1779– 1793.
- Hofmann, D. W. M. (2002). Acta Cryst. B58, 489-493.
- Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). *Acta Cryst.* E75, 1494–1506.
- Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.
- Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.
- Mahesha, N., Sagar, B. K., Yathirajan, H. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). *Acta Cryst.* E75, 202–207.
- Mahesha, N., Yathirajan, H. S., Furuya, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 129–133.
- Orjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273–1277.
- Oxford Diffraction (2009). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.
- Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.
- Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Waszkielewicz, A. M., Pytka, K., Rapacz, A., Wełna, E., Jarzyna, M., Satała, G., Bojarski, A. J., Sapa, J., Żmudzki, P., Filipek, B. & Marona, H. (2015). *Chem. Biol. Drug Des.* 85, 326–335.
- Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.

Acta Cryst. (2021). E77, 5-13 [https://doi.org/10.1107/S2056989020015649]

Six 1-halobenzoyl-4-(2-methoxyphenyl)piperazines having Z' values of one, two or four; disorder, pseudosymmetry, twinning and supramolecular assembly in one, two or three dimensions

Chayanna Harish Chinthal, Channappa N. Kavitha, Hemmige S. Yathirajan, Sabine Foro and Christopher Glidewell

Computing details

For all structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *PLATON* (Spek, 2020); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b) and *PLATON* (Spek, 2020).

1-(4-Fluorobenzoyl)-4-(2-methoxyphenyl)piperazine (I)

Crystal data

C₁₈H₁₉FN₂O₂ $M_r = 314.35$ Orthorhombic, P2₁2₁2₁ a = 7.3286 (6) Å b = 11.3388 (7) Å c = 20.304 (1) Å V = 1687.21 (19) Å³ Z = 4F(000) = 664

Data collection

Oxford Diffraction Xcalibur CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysalisRed; Oxford Diffraction, 2009) $T_{\min} = 0.938, T_{\max} = 0.988$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.088$ S = 0.92 $D_x = 1.238 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3523 reflections $\theta = 3.0-27.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KNeedle, yellow $0.44 \times 0.14 \times 0.14 \text{ mm}$

6377 measured reflections 3377 independent reflections 1918 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -8 \rightarrow 9$ $k = -10 \rightarrow 14$ $l = -16 \rightarrow 25$

3377 reflections209 parameters0 restraintsPrimary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_0^2) + (0.0379P)^2]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.6727 (4)	0.2259 (2)	0.20993 (12)	0.0536 (7)	
C2	0.8380 (5)	0.2651 (3)	0.24390 (16)	0.0595 (9)	
H2A	0.9060	0.1970	0.2591	0.071*	
H2B	0.8046	0.3118	0.2821	0.071*	
C3	0.9566 (4)	0.3381 (3)	0.19839 (14)	0.0538 (9)	
H3A	1.0612	0.3678	0.2225	0.065*	
H3B	1.0010	0.2890	0.1627	0.065*	
N4	0.8517 (3)	0.4376 (2)	0.17130 (11)	0.0465 (7)	
C5	0.6898 (4)	0.3946 (3)	0.13597 (15)	0.0525 (9)	
H5A	0.7276	0.3458	0.0992	0.063*	
H5B	0.6219	0.4612	0.1186	0.063*	
C6	0.5689 (4)	0.3238 (3)	0.18136 (16)	0.0563 (9)	
H6A	0.5229	0.3741	0.2163	0.068*	
H6B	0.4654	0.2932	0.1569	0.068*	
C17	0.6446 (5)	0.1113 (3)	0.19657 (14)	0.0478 (8)	
O17	0.7472 (3)	0.03302 (19)	0.21678 (12)	0.0737 (7)	
C11	0.4817 (4)	0.0807 (2)	0.15457 (14)	0.0425 (7)	
C12	0.5086 (5)	0.0571 (3)	0.08810 (16)	0.0624 (10)	
H12	0.6255	0.0608	0.0704	0.075*	
C13	0.3629 (6)	0.0284 (4)	0.04822 (17)	0.0740 (11)	
H13	0.3799	0.0132	0.0036	0.089*	
C14	0.1935 (5)	0.0228 (3)	0.07572 (19)	0.0656 (10)	
F14	0.0480 (3)	-0.0036 (2)	0.03598 (11)	0.1066 (9)	
C15	0.1623 (5)	0.0423 (3)	0.14120 (19)	0.0620 (9)	
H15	0.0455	0.0361	0.1588	0.074*	
C16	0.3097 (5)	0.0716 (3)	0.18063 (16)	0.0530 (8)	
H16	0.2918	0.0852	0.2253	0.064*	
C41	0.9543 (4)	0.5233 (3)	0.13506 (13)	0.0445 (7)	
C42	0.8745 (4)	0.6348 (3)	0.12306 (14)	0.0450 (8)	
C43	0.9689 (5)	0.7194 (3)	0.08778 (15)	0.0568 (9)	
H43	0.9146	0.7918	0.0791	0.068*	
C44	1.1429 (6)	0.6969 (3)	0.06546 (16)	0.0696 (11)	
H44	1.2055	0.7544	0.0419	0.083*	
C45	1.2242 (5)	0.5907 (4)	0.07779 (17)	0.0719 (11)	

H45	1.3425	0.5763	0.0633	0.086*
C46	1.1291 (4)	0.5041 (3)	0.11218 (16)	0.0609 (9)
H46	1.1847	0.4317	0.1199	0.073*
O42	0.7039 (3)	0.65179 (17)	0.14915 (10)	0.0576 (6)
C47	0.6206 (5)	0.7644 (3)	0.14019 (17)	0.0716 (11)
H47A	0.5031	0.7649	0.1611	0.107*
H47B	0.6063	0.7797	0.0940	0.107*
H47C	0.6962	0.8242	0.1595	0.107*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0602 (19)	0.0310 (14)	0.0697 (18)	-0.0018 (14)	-0.0176 (15)	0.0067 (12)
C2	0.064 (2)	0.0433 (18)	0.071 (2)	-0.0053 (18)	-0.0241 (19)	0.0046 (17)
C3	0.053 (2)	0.0427 (19)	0.066 (2)	0.0021 (17)	-0.0190 (17)	0.0030 (16)
N4	0.0440 (16)	0.0376 (14)	0.0580 (15)	0.0012 (13)	-0.0101 (14)	0.0038 (12)
C5	0.052 (2)	0.0403 (17)	0.065 (2)	0.0001 (16)	-0.0163 (18)	0.0060 (15)
C6	0.055 (2)	0.0352 (18)	0.079 (2)	0.0003 (17)	-0.0104 (18)	0.0036 (16)
C17	0.051 (2)	0.0403 (19)	0.0524 (19)	0.0035 (18)	0.0005 (16)	0.0064 (14)
O17	0.0726 (17)	0.0409 (13)	0.108 (2)	0.0047 (13)	-0.0297 (14)	0.0048 (12)
C11	0.048 (2)	0.0314 (16)	0.0484 (19)	-0.0022 (14)	-0.0011 (16)	0.0033 (13)
C12	0.061 (2)	0.070 (2)	0.056 (2)	-0.0033 (19)	0.0045 (19)	-0.0008 (17)
C13	0.085 (3)	0.085 (3)	0.051 (2)	-0.010 (3)	-0.006 (2)	-0.0045 (19)
C14	0.072 (3)	0.055 (2)	0.070 (3)	-0.016 (2)	-0.029 (2)	0.0045 (19)
F14	0.1058 (18)	0.1026 (19)	0.1113 (17)	-0.0293 (16)	-0.0557 (15)	0.0085 (15)
C15	0.047 (2)	0.053 (2)	0.086 (3)	-0.0059 (18)	0.000(2)	0.0089 (18)
C16	0.054 (2)	0.051 (2)	0.0537 (19)	-0.0048 (17)	0.0025 (18)	-0.0015 (15)
C41	0.0445 (18)	0.0440 (19)	0.0451 (17)	-0.0018 (17)	-0.0018 (15)	-0.0028 (15)
C42	0.044 (2)	0.0434 (19)	0.0480 (17)	-0.0050 (16)	-0.0010 (16)	-0.0031 (15)
C43	0.059 (2)	0.051 (2)	0.061 (2)	-0.0106 (19)	-0.0007 (19)	0.0067 (17)
C44	0.062 (3)	0.074 (3)	0.072 (2)	-0.015 (2)	0.005 (2)	0.0121 (19)
C45	0.046 (2)	0.092 (3)	0.078 (3)	-0.002 (2)	0.013 (2)	0.000 (2)
C46	0.051 (2)	0.060(2)	0.071 (2)	0.0048 (19)	-0.0026 (18)	0.0027 (19)
O42	0.0617 (16)	0.0372 (12)	0.0739 (15)	0.0044 (11)	0.0126 (13)	0.0058 (10)
C47	0.076 (3)	0.045 (2)	0.093 (3)	0.0152 (19)	0.010 (2)	-0.0019 (18)

Geometric parameters (Å, °)

N1—C17	1.343 (4)	C13—C14	1.363 (5)
N1—C2	1.463 (4)	C13—H13	0.9300
N1—C6	1.466 (4)	C14—C15	1.367 (5)
C2—C3	1.515 (4)	C14—F14	1.370 (4)
C2—H2A	0.9700	C15—C16	1.385 (4)
C2—H2B	0.9700	C15—H15	0.9300
C3—N4	1.472 (3)	C16—H16	0.9300
С3—НЗА	0.9700	C41—C46	1.380 (4)
С3—Н3В	0.9700	C41—C42	1.414 (4)
N4—C41	1.432 (4)	C42—O42	1.372 (3)

NA C5	1 470 (4)	C42 C42	1 202 (1)
N4—C3	1.470(4)	C42 - C43	1.385 (4)
C_{5}	1.510 (4)	$C_{43} = C_{44}$	1.377 (5)
C5—H5A	0.9700	C43—H43	0.9300
С5—Н5В	0.9700	C44—C45	1.367 (5)
С6—Н6А	0.9700	C44—H44	0.9300
С6—Н6В	0.9700	C45—C46	1.392 (4)
C17—O17	1.233 (3)	C45—H45	0.9300
C17—C11	1.508 (4)	C46—H46	0.9300
C11—C16	1.371 (4)	O42—C47	1.427 (4)
C11—C12	1.390 (4)	C47—H47A	0.9600
C12—C13	1.379 (5)	C47—H47B	0.9600
C12—H12	0.9300	С47—Н47С	0.9600
C17—N1—C2	121.1 (3)	C11—C12—H12	119.8
C17—N1—C6	125.0 (3)	C14—C13—C12	118.4 (3)
C_2 —N1—C6	112.7 (2)	C14—C13—H13	120.8
N1 - C2 - C3	112.7(2) 110.7(3)	C12_C13_H13	120.8
N1 C2 H2A	100.5	C_{12} C_{13} C_{14} C_{15}	120.0 122.0(3)
C_{3} C_{2} H_{2}	109.5	$C_{13} = C_{14} = C_{13}$	122.9(3) 118 5 (3)
NI C2 H2P	109.5	C15 - C14 - F14	118.5(3)
N1 - C2 - H2B	109.5	C13 - C14 - F14	118.0(4)
	109.5	C14 - C15 - C16	118.1 (5)
$H_2A - C_2 - H_2B$	108.1	C14—C15—H15	121.0
N4—C3—C2	110.3 (3)	С16—С15—Н15	121.0
N4—C3—H3A	109.6	C11—C16—C15	120.8 (3)
С2—С3—НЗА	109.6	C11—C16—H16	119.6
N4—C3—H3B	109.6	C15—C16—H16	119.6
С2—С3—Н3В	109.6	C46—C41—C42	117.8 (3)
НЗА—СЗ—НЗВ	108.1	C46—C41—N4	123.6 (3)
C41—N4—C5	113.4 (2)	C42—C41—N4	118.6 (3)
C41—N4—C3	116.0 (2)	O42—C42—C43	124.0 (3)
C5—N4—C3	110.5 (2)	O42—C42—C41	115.8 (2)
N4—C5—C6	110.6 (2)	C43—C42—C41	120.2 (3)
N4—C5—H5A	109.5	C44—C43—C42	120.4 (3)
С6—С5—Н5А	109.5	C44—C43—H43	119.8
N4—C5—H5B	109.5	C42—C43—H43	119.8
C6—C5—H5B	109.5	C45—C44—C43	120.4 (3)
H5A-C5-H5B	108.1	C45—C44—H44	119.8
N1-C6-C5	109.9 (3)	C43—C44—H44	119.8
N1-C6-H6A	109.7	C44 - C45 - C46	119.0 119.7(3)
$C_5 C_6 H_{6A}$	109.7	CAA CA5 HA5	120.2
N1 C6 H6P	109.7	$C_{44} = C_{45} = H_{45}$	120.2
C_{5} C_{6} H_{6} H_{6}	109.7	$C_{40} = C_{43} = 1143$	120.2 121.5(2)
	109.7	C41 - C40 - C43	121.3 (3)
$\Pi 0A - C 0 - \Pi 0B$	108.2	C41 - C40 - H40	119.2
$O_1 / - O_1 / - N_1$	122.4 (3)	$\begin{array}{c} \mathbf{C}4\mathbf{J} \longrightarrow \mathbf{C}4\mathbf{D} \longrightarrow \mathbf{H}4\mathbf{D} \\ \mathbf{C}4\mathbf{J} \longrightarrow \mathbf{C}4\mathbf{D} \longrightarrow \mathbf{C}4\mathbf{D} \\ \mathbf{C}4\mathbf{D} \longrightarrow \mathbf{C}4\mathbf{D} \longrightarrow \mathbf{C}4\mathbf{D} \longrightarrow \mathbf{C}4\mathbf{D} \longrightarrow \mathbf{C}4\mathbf{D} $	117.2
UI/-UI/-UII	120.4 (3)	U42 - U42 - U47	117.8(2)
	11/.3 (3)	U42 - U47 - H4/A	109.5
C16—C11—C12	119.4 (3)	O42—C47—H47B	109.5
C16—C11—C17	121.8 (3)	H47A—C47—H47B	109.5

C12—C11—C17	118.8 (3)	O42—C47—H47C	109.5
C13—C12—C11	120.4 (3)	H47A—C47—H47C	109.5
C13—C12—H12	119.8	H47B—C47—H47C	109.5
C17—N1—C2—C3	112.8 (3)	C13—C14—C15—C16	1.5 (5)
C6—N1—C2—C3	-55.1 (3)	F14-C14-C15-C16	-178.6 (3)
N1-C2-C3-N4	55.4 (3)	C12-C11-C16-C15	-1.7 (4)
C2-C3-N4-C41	171.3 (2)	C17—C11—C16—C15	-179.4 (3)
C2—C3—N4—C5	-57.8 (3)	C14-C15-C16-C11	0.0 (5)
C41—N4—C5—C6	-168.9 (2)	C5—N4—C41—C46	-114.2 (3)
C3—N4—C5—C6	58.9 (3)	C3—N4—C41—C46	15.3 (4)
C17—N1—C6—C5	-111.8 (3)	C5—N4—C41—C42	67.2 (3)
C2—N1—C6—C5	55.5 (3)	C3—N4—C41—C42	-163.3 (2)
N4—C5—C6—N1	-56.9 (3)	C46—C41—C42—O42	-177.2 (2)
C2-N1-C17-O17	6.3 (5)	N4—C41—C42—O42	1.4 (4)
C6—N1—C17—O17	172.6 (3)	C46—C41—C42—C43	1.9 (4)
C2-N1-C17-C11	-173.0 (3)	N4—C41—C42—C43	-179.5 (3)
C6—N1—C17—C11	-6.7 (4)	O42—C42—C43—C44	177.4 (3)
O17—C17—C11—C16	98.8 (4)	C41—C42—C43—C44	-1.6 (5)
N1-C17-C11-C16	-81.9 (3)	C42—C43—C44—C45	0.2 (5)
O17—C17—C11—C12	-79.0 (4)	C43—C44—C45—C46	1.1 (5)
N1-C17-C11-C12	100.3 (3)	C42—C41—C46—C45	-0.7 (4)
C16—C11—C12—C13	2.0 (5)	N4—C41—C46—C45	-179.3 (3)
C17—C11—C12—C13	179.7 (3)	C44—C45—C46—C41	-0.8 (5)
C11—C12—C13—C14	-0.5 (5)	C43—C42—O42—C47	-1.1 (4)
C12—C13—C14—C15	-1.3 (6)	C41—C42—O42—C47	177.9 (3)
C12-C13-C14-F14	178.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C15—H15…O17 ⁱ	0.93	2.48	3.409 (4)	173
C13—H13··· <i>Cg</i> 1 ⁱⁱ	0.93	2.82	3.559 (4)	151

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*-1/2, -*y*+1/2, -*z*.

1-(4-Chlorobenzoyl)-4-(2-methoxyphenyl)piperazine (II)

Crystal data

 $C_{18}H_{19}ClN_2O_2$ $M_r = 330.80$ Orthorhombic, $Pca2_1$ a = 29.769 (1) Å b = 11.3173 (4) Å c = 20.4028 (8) Å V = 6873.8 (4) Å³ Z = 16F(000) = 2784 $D_x = 1.279 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9521 reflections $\theta = 2.7-28.0^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.48 \times 0.38 \times 0.28 \text{ mm}$ Data collection

Oxford Diffraction Xcalibur CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysalisRed; Oxford Diffraction, 2009) $T_{\min} = 0.874, T_{\max} = 0.937$ Refinement	17985 measured reflections 8328 independent reflections 4822 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 25.5^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -36 \rightarrow 16$ $k = -13 \rightarrow 10$ $l = -24 \rightarrow 14$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H-atom parameters constrained
$wR(F^2) = 0.143$	$w = 1/[\sigma^2(F_o^2) + (0.0848P)^2]$
<i>S</i> = 0.95	where $P = (F_o^2 + 2F_c^2)/3$
8328 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
833 parameters	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: difference Fourier map	Absolute structure: Flack x determined using 1164 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013) Absolute structure permetter 0.22 (6)
	Absolute structure parameter: 0.22 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N11	0.60851 (17)	0.2852 (4)	0.6321 (3)	0.0554 (15)	
C12	0.5808 (2)	0.1870 (5)	0.6056 (4)	0.056 (2)	
H12A	0.5682	0.1417	0.6416	0.068*	
H12B	0.5561	0.2191	0.5802	0.068*	
C13	0.6084 (2)	0.1091 (6)	0.5639 (3)	0.0554 (19)	
H13A	0.5902	0.0428	0.5494	0.067*	
H13B	0.6178	0.1525	0.5252	0.067*	
N14	0.64833 (16)	0.0640 (4)	0.5981 (3)	0.0459 (14)	
C15	0.6758 (2)	0.1638 (6)	0.6203 (4)	0.0590 (19)	
H15A	0.6862	0.2084	0.5827	0.071*	
H15B	0.7019	0.1344	0.6436	0.071*	
C16	0.6492 (2)	0.2432 (5)	0.6646 (3)	0.0583 (19)	
H16A	0.6410	0.2004	0.7040	0.070*	
H16B	0.6675	0.3102	0.6772	0.070*	
C117	0.6019 (2)	0.4008 (6)	0.6206 (3)	0.0529 (17)	
O117	0.62648 (18)	0.4766 (4)	0.6393 (3)	0.0773 (18)	
C111	0.5609 (2)	0.4314 (5)	0.5810 (3)	0.0476 (16)	
C112	0.5649 (2)	0.4468 (7)	0.5130 (4)	0.069 (2)	

11110	0.5000	0.4405	0.4020	0.000*
HII2	0.5928	0.4405	0.4930	0.082*
C113	0.5280 (3)	0.4709 (7)	0.4764 (4)	0.071 (2)
H113	0.5303	0.4765	0.4311	0.085*
C114	0.4866 (2)	0.4871 (6)	0.5067 (4)	0.0528 (19)
Cl14	0.44067 (7)	0.5176 (2)	0.45801 (12)	0.0904 (7)
C115	0.4828 (2)	0.4822 (5)	0.5729 (4)	0.0481 (19)
H115	0.4554	0.4975	0.5931	0.058*
C116	0.5202 (2)	0.4541 (5)	0.6099 (3)	0.0522 (18)
H116	0.5178	0.4505	0.6553	0.063*
C141	0.6709 (2)	-0.0286 (5)	0.5655 (4)	0.0430 (17)
C142	0.6498 (2)	-0.1368 (6)	0.5593 (4)	0.0547 (19)
C143	0.6705 (2)	-0.2321 (6)	0.5287 (4)	0.067 (2)
H143	0.6552	-0.3031	0.5232	0.081*
C144	0.7142 (3)	-0.2195 (7)	0.5063 (4)	0.077 (2)
H144	0.7291	-0.2830	0.4871	0.092*
C145	0.7351 (2)	-0.1137 (8)	0.5128 (4)	0.071 (2)
H145	0.7641	-0.1045	0.4965	0.085*
C146	0.7139 (2)	-0.0171 (6)	0.5437 (4)	0.054 (2)
H146	0.7291	0.0539	0.5492	0.065*
O142	0.60683 (14)	-0.1474 (3)	0.5834 (2)	0.0616 (13)
C147	0.5844 (2)	-0.2559 (6)	0.5776 (4)	0.072 (2)
H17A	0.6016	-0.3164	0.5990	0.108*
H17B	0.5809	-0.2753	0.5321	0.108*
H17C	0.5554	-0.2501	0.5978	0.108*
N21	0.36031 (17)	0.3352 (4)	0.6249 (3)	0.0517 (15)
C22	0.3338 (2)	0.2403 (5)	0.5947 (3)	0.0533 (19)
H22A	0.3109	0.2741	0.5666	0.064*
H22B	0.3190	0.1944	0.6286	0.064*
C23	0.3638 (2)	0.1617 (5)	0.5553(3)	0.0516 (18)
H23A	0.3464	0.0975	0.5367	0.062*
H23B	0.3770	0.2063	0.5196	0.062*
N24	0 39956 (17)	0.1136 (4)	0.5972 (3)	0.0491(14)
C25	0.3773(2)	0.2089(5)	0.6228(4)	0.0578 (19)
H25A	0.4409	0.2518	0.5868	0.069*
H25R	0.4511	0.1765	0.6498	0.069*
C26	0.3984(2)	0.2924 (5)	0.6634 (3)	0.005
H26A	0.3875	0.2515	0.7020	0.0552 (17)
H26R	0.4165	0.3580	0.7020	0.000
C217	0.4105 0.3525 (2)	0.5589	0.0777 0.6176(3)	0.000
0217	0.3323(2) 0.37517(10)	0.4313(3) 0.5257(4)	0.0170(3)	0.0495(18)
C211	0.37317(19) 0.2121(2)	0.3237(4) 0.4872(5)	0.0404(3)	0.0794(18)
C211	0.3121(2) 0.3152(2)	0.4672(3) 0.5063(6)	0.5707(5)	0.0413(13)
U212	0.3132(2)	0.3003 (0)	0.3109 (4)	0.0314 (19)
H212	0.3423	0.4934	0.4898	0.062°
C213	0.2792 (2)	0.3440 (7)	0.4708	0.007 (2)
H213	0.2821	0.5592	0.4308	0.081°
C214	0.2380 (2)	0.5591 (6)	0.5065 (4)	0.0553 (19)
CI24	0.19252 (7)	0.6062 (2)	0.46025 (13)	0.1053 (8)
C215	0.2338 (2)	0.5356 (6)	0.5718 (4)	0.058 (2)

		0	0.0010	0.000
H215	0.2058	0.5426	0.5917	0.069*
C216	0.2704 (2)	0.5016 (5)	0.6078 (4)	0.0474 (18)
H216	0.2676	0.4880	0.6526	0.057*
C241	0.4218 (2)	0.0166 (5)	0.5688 (4)	0.0412 (18)
C242	0.3997 (2)	-0.0895 (5)	0.5609 (4)	0.0537 (19)
C243	0.4200 (3)	-0.1866 (6)	0.5307 (4)	0.066 (2)
H243	0.4040	-0.2563	0.5247	0.079*
C244	0.4635 (3)	-0.1785 (7)	0.5101 (4)	0.085 (3)
H244	0.4772	-0.2433	0.4905	0.102*
C245	0.4873 (2)	-0.0742 (7)	0.5184 (4)	0.078 (2)
H245	0.5172	-0.0691	0.5054	0.093*
C246	0.4661 (3)	0.0219 (6)	0.5462 (4)	0.065 (2)
H246	0.4818	0.0926	0.5501	0.078*
O242	0.35673 (15)	-0.0912(3)	0.5854 (2)	0.0653 (14)
C247	0.3316 (3)	-0.1973 (6)	0.5820 (5)	0.086 (3)
H27A	0.3477	-0.2595	0.6037	0.129*
H27B	0.3269	-0.2183	0.5369	0.129*
H27C	0.3030	-0.1861	0.6031	0.129*
N31	0 51402 (18)	0 7839 (4)	0.7264(3)	0.0543 (15)
C32	0.5403(2)	0.6882(5)	0.7201(3) 0.7510(4)	0.0513(19)
H32A	0.5660	0.7190	0 7748	0.066*
H32R	0.5514	0.6411	0.7147	0.066*
C33	0.5514 0.51241 (19)	0.6115(5)	0.7960(3)	0.000 (18)
Н33 Л	0.5301	0.5444	0.7500 (5)	0.0499 (10)
1133A 1122D	0.5038	0.5444	0.8345	0.000
N34	0.3038 0.47232(17)	0.0500	0.0343 0.7625 (3)	0.000°
N34 C25	0.47232(17)	0.5098(4)	0.7023(3)	0.0479(14)
	0.4438 (2)	0.0081 (3)	0.7595 (4)	0.0550 (18)
H35A	0.4558	0./14/	0.7707	0.064*
НЭЭВ	0.4194	0.0388	0.7108	0.064°
C36	0.4730 (2)	0.7450 (5)	0.6937 (4)	0.061 (2)
H36A	0.4805	0.7008	0.6545	0.0/3*
H36B	0.4553	0.8132	0.6808	0.073*
C317	0.5217 (2)	0.8983 (5)	0.7386 (3)	0.0463 (16)
O317	0.49520 (18)	0.9776 (4)	0.7174 (3)	0.0718 (16)
C311	0.5620 (2)	0.9302 (5)	0.7773 (3)	0.0469 (16)
C312	0.5590 (2)	0.9389 (7)	0.8444 (4)	0.068 (2)
H312	0.5314	0.9256	0.8646	0.082*
C313	0.5957 (2)	0.9669 (6)	0.8828 (4)	0.064 (2)
H313	0.5929	0.9738	0.9280	0.077*
C314	0.6350 (2)	0.9836 (5)	0.8536 (4)	0.0483 (18)
C134	0.68265 (6)	1.01261 (19)	0.90174 (13)	0.0937 (8)
C315	0.6405 (2)	0.9784 (5)	0.7873 (4)	0.058 (2)
H315	0.6683	0.9928	0.7681	0.069*
C316	0.6028 (2)	0.9503 (6)	0.7492 (4)	0.0535 (19)
H316	0.6057	0.9454	0.7039	0.064*
C341	0.4485 (2)	0.4783 (6)	0.7950 (4)	0.0440 (18)
C342	0.4697 (2)	0.3656 (6)	0.8040 (3)	0.0525 (18)
C343	0.4473 (3)	0.2761 (5)	0.8370 (4)	0.063 (2)

H343	0.4607	0.2024	0.8421	0.076*
C344	0.4048 (3)	0.2968 (8)	0.8623 (4)	0.079 (3)
H344	0.3902	0.2374	0.8854	0.094*
C345	0.3841 (3)	0.4037 (8)	0.8537 (4)	0.076 (2)
H345	0.3552	0.4159	0.8697	0.091*
C346	0.4063 (2)	0.4928 (6)	0.8216 (4)	0.056 (2)
H346	0.3922	0.5658	0.8175	0.068*
O342	0.51047 (15)	0.3541 (3)	0.7760 (2)	0.0627 (13)
C347	0.5334 (2)	0.2433 (5)	0.7824 (4)	0.073 (2)
H37A	0.5616	0.2470	0.7598	0.109*
H37B	0.5153	0.1815	0.7639	0.109*
H37C	0.5386	0.2271	0.8280	0.109*
N41	0.76184 (16)	0.8298 (4)	0.7384 (3)	0.0496 (14)
C42	0.7884 (2)	0.7361 (5)	0.7680 (4)	0.0513 (18)
H42A	0.8099	0.7701	0.7984	0.062*
H42B	0.8050	0.6944	0.7343	0.062*
C43	0.7579 (2)	0.6502 (5)	0.8042 (3)	0.0493 (17)
H43A	0.7758	0.5852	0.8211	0.059*
H43B	0.7442	0.6902	0.8412	0.059*
N44	0.72332 (15)	0.6044 (4)	0.7622 (3)	0.0421 (12)
C45	0.69544 (19)	0.6998 (5)	0.7359 (3)	0.0505 (17)
H45A	0.6804	0.7405	0.7716	0.061*
H45B	0.6727	0.6672	0.7072	0.061*
C46	0.7242 (2)	0.7854 (5)	0.6985 (3)	0.0533 (17)
H46A	0.7360	0.7468	0.6597	0.064*
H46B	0.7059	0.8516	0.6843	0.064*
C417	0.7706 (2)	0.9443 (6)	0.7429 (3)	0.0517(17)
O417	0.74624 (19)	1.0202 (4)	0.7176 (3)	0.0764 (18)
C411	0.8114 (2)	0.9795 (5)	0.7815 (3)	0.0437 (16)
C412	0.8091 (3)	1.0004 (6)	0.8471 (4)	0.065 (2)
H412	0.7817	0.9911	0.8686	0.078*
C413	0.8463 (3)	1.0350(7)	0.8826 (4)	0.074(2)
H413	0.8445	1.0484	0.9275	0.088*
C414	0.8860 (2)	1.0489 (7)	0.8495 (4)	0.061 (2)
Cl44	0.93398 (6)	1.0942 (2)	0.89333 (12)	0.1122 (9)
C415	0.8895 (2)	1.0318 (6)	0.7838 (4)	0.059 (2)
H415	0.9167	1.0436	0.7623	0.071*
C416	0.8525 (3)	0.9972 (5)	0.7503 (4)	0.053 (2)
H416	0.8546	0.9849	0.7053	0.064*
C441	0.7014 (2)	0.5048 (5)	0.7872 (4)	0.0427 (18)
C442	0.7250 (2)	0.3989 (5)	0.7907 (3)	0.0452 (16)
C443	0.7041 (2)	0.3003 (6)	0.8165 (3)	0.0619 (19)
H443	0.7202	0.2303	0.8206	0.074*
C444	0.6596 (3)	0.3034 (6)	0.8362 (4)	0.0650 (19)
H444	0.6457	0.2360	0.8527	0.078*
C445	0.6364 (2)	0.4066 (7)	0.8312 (4)	0.069 (2)
H445	0.6066	0.4094	0.8447	0.082*
C446	0.6563 (2)	0.5062 (6)	0.8068 (4)	0.057 (2)
	× /	× /	× /	\ /

H446	0.6397	0.5755	0.8031	0.069*
O442	0.76813 (15)	0.4015 (3)	0.7700 (3)	0.0609 (13)
C447	0.7927 (2)	0.2936 (6)	0.7641 (5)	0.083 (3)
H47A	0.8213	0.3092	0.7441	0.124*
H47B	0.7761	0.2391	0.7374	0.124*
H57C	0.7973	0.2600	0.8068	0.124*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N11	0.062 (3)	0.037 (3)	0.067 (4)	-0.003 (3)	-0.022 (3)	-0.003 (3)
C12	0.048 (4)	0.045 (4)	0.076 (5)	-0.003 (3)	-0.009(4)	-0.012 (4)
C13	0.050 (4)	0.054 (4)	0.062 (5)	-0.007 (3)	-0.016 (4)	-0.001 (4)
N14	0.041 (3)	0.045 (3)	0.051 (4)	-0.007(2)	-0.015 (3)	0.007 (3)
C15	0.053 (4)	0.057 (4)	0.067 (5)	-0.003 (3)	-0.023 (4)	0.017 (4)
C16	0.069 (5)	0.048 (4)	0.058 (5)	-0.005 (3)	-0.030 (4)	0.005 (4)
C117	0.056 (4)	0.053 (4)	0.049 (4)	0.005 (3)	-0.008(4)	-0.003 (4)
O117	0.080 (4)	0.047 (3)	0.105 (5)	-0.020(3)	-0.047 (4)	-0.009(3)
C111	0.051 (4)	0.055 (4)	0.038 (4)	0.006 (3)	-0.008(3)	-0.009 (3)
C112	0.045 (4)	0.119 (7)	0.042 (5)	0.012 (4)	0.003 (4)	-0.012 (5)
C113	0.065 (6)	0.102 (6)	0.045 (5)	0.019 (5)	-0.007 (5)	0.000 (5)
C114	0.041 (4)	0.071 (5)	0.047 (5)	0.000 (3)	-0.005 (4)	0.001 (4)
Cl14	0.0625 (12)	0.1277 (18)	0.0809 (16)	0.0193 (11)	-0.0213 (12)	-0.0112 (14)
C115	0.039 (4)	0.050 (4)	0.055 (6)	0.006 (3)	0.001 (4)	-0.006 (4)
C116	0.064 (5)	0.057 (4)	0.035 (4)	-0.002 (4)	0.012 (4)	-0.002 (4)
C141	0.048 (4)	0.045 (4)	0.036 (4)	0.002 (3)	-0.005 (4)	0.008 (3)
C142	0.039 (4)	0.061 (4)	0.064 (5)	0.010 (3)	0.006 (4)	0.010 (4)
C143	0.073 (5)	0.061 (4)	0.068 (5)	0.006 (4)	-0.004 (4)	-0.009 (4)
C144	0.074 (5)	0.080 (6)	0.077 (6)	0.027 (5)	0.020 (5)	0.007 (5)
C145	0.046 (4)	0.106 (6)	0.061 (5)	0.013 (5)	0.012 (4)	0.026 (5)
C146	0.041 (4)	0.072 (5)	0.049 (5)	0.000 (3)	0.007 (4)	0.018 (4)
O142	0.054 (3)	0.047 (2)	0.084 (4)	-0.008(2)	0.011 (3)	0.001 (3)
C147	0.064 (5)	0.056 (4)	0.095 (7)	-0.014 (4)	-0.002 (5)	-0.001 (4)
N21	0.057 (3)	0.038 (3)	0.060 (4)	-0.005 (3)	-0.021 (3)	-0.010 (3)
C22	0.056 (4)	0.039 (3)	0.065 (5)	-0.001 (3)	-0.018 (4)	0.003 (3)
C23	0.058 (4)	0.040 (3)	0.057 (5)	0.008 (3)	-0.024 (4)	-0.009 (3)
N24	0.055 (3)	0.040 (3)	0.053 (4)	0.002 (2)	-0.007 (3)	-0.006 (3)
C25	0.067 (5)	0.045 (4)	0.061 (5)	-0.003 (3)	-0.022 (4)	-0.001 (4)
C26	0.066 (4)	0.043 (4)	0.056 (5)	-0.002 (3)	-0.030 (4)	-0.005 (3)
C217	0.066 (5)	0.035 (4)	0.047 (4)	-0.003 (3)	-0.001 (4)	-0.011 (3)
O217	0.088 (4)	0.043 (3)	0.107 (5)	0.005 (3)	-0.046 (4)	-0.016 (3)
C211	0.048 (4)	0.038 (3)	0.039 (4)	-0.002 (3)	-0.011 (3)	-0.006 (3)
C212	0.041 (4)	0.074 (5)	0.039 (5)	0.000 (3)	0.010 (4)	0.003 (4)
C213	0.058 (5)	0.098 (6)	0.046 (5)	-0.010 (4)	-0.004 (4)	0.007 (5)
C214	0.055 (5)	0.056 (4)	0.054 (5)	0.003 (3)	-0.011 (4)	0.003 (4)
Cl24	0.0828 (14)	0.138 (2)	0.0947 (17)	0.0210 (14)	-0.0322 (13)	0.0055 (17)
C215	0.049 (5)	0.067 (4)	0.057 (6)	0.004 (3)	0.002 (4)	-0.004 (4)
C216	0.052 (4)	0.047 (4)	0.043 (5)	0.005 (3)	0.004 (4)	0.000 (3)

C241	0.046 (4)	0.040 (3)	0.038 (4)	0.004 (3)	-0.007(3)	0.008 (3)
C242	0.058 (5)	0.044 (4)	0.060 (5)	-0.001(3)	-0.009(4)	0.003 (4)
C243	0.070 (5)	0.047 (4)	0.080 (6)	0.010 (4)	-0.010 (5)	-0.011 (4)
C244	0.097 (7)	0.064 (5)	0.093 (7)	0.037 (5)	-0.005 (6)	-0.006(5)
C245	0.044 (4)	0.092 (6)	0.097 (7)	0.007 (4)	0.000 (4)	-0.004(5)
C246	0.062 (5)	0.058 (4)	0.075 (6)	0.010 (4)	-0.009(5)	-0.007(4)
0242	0.064(3)	0.048 (3)	0.084(4)	-0.015(2)	0.016 (3)	0.006 (3)
C247	0.086 (6)	0.051 (4)	0.122 (8)	-0.012(4)	-0.005(5)	0.003(5)
N31	0.057(3)	0.038(3)	0.067(4)	-0.004(3)	-0.018(3)	0.000(3)
C32	0.059(4)	0.020(0)	0.066(5)	0.005(3)	-0.010(4)	0.006(4)
C33	0.023(1) 0.047(4)	0.036(3)	0.000(5)	-0.002(3)	-0.016(4)	-0.002(3)
N34	0.011(1)	0.030(3) 0.042(3)	0.000(0)	0.002(3)	-0.009(3)	0.002(3)
C35	0.051(3)	0.047(4)	0.063(5)	0.000(3)	-0.019(4)	-0.013(4)
C36	0.031(1) 0.074(5)	0.045(4)	0.065(5)	0.007(3)	-0.018(4)	0.013(1)
C317	0.077(3)	0.043(4)	0.004(3) 0.043(4)	0.000(4)	-0.006(3)	0.001(4)
0317	0.032(4) 0.079(4)	0.045(4)	0.043(4) 0.091(4)	-0.004(3)	-0.037(3)	-0.003(3)
C311	0.079(4)	0.043(3)	0.091(4)	0.004(3)	0.037(3)	-0.003(3)
C212	0.001(3)	0.037(3)	0.042(4)	-0.015(4)	0.007(4)	-0.002(3)
C312	0.048(3)	0.099(0)	0.037(3)	-0.013(4)	0.009(4)	-0.004(3)
C315	0.047(4)	0.110(0)	0.030(3)	-0.012(4)	0.003(4)	0.008(3)
C314	0.048(4)	0.049(4) 0.1206(10)	0.048(5)	0.000(3)	-0.012(4)	0.012(3)
C154	0.0013(12)	0.1300(19)	0.0890(18)	-0.01/8(11)	-0.0287(11)	0.0300(13)
C315	0.055(5)	0.051(4)	0.069 (6)	0.002(3)	0.017(4)	0.013(4)
C310	0.061(5)	0.057(4)	0.042(5)	-0.010(4)	0.000 (4)	0.002(4)
C341	0.046 (4)	0.051 (4)	0.035 (4)	-0.010(3)	-0.009(3)	-0.015(3)
C342	0.068 (5)	0.048 (4)	0.042 (4)	-0.002(4)	-0.005 (4)	-0.00/(3)
C343	0.081 (5)	0.038 (4)	0.070 (5)	-0.011 (4)	0.006 (5)	0.003 (4)
C344	0.063 (5)	0.102 (7)	0.072 (6)	-0.037(5)	-0.004(4)	0.001 (5)
C345	0.063 (5)	0.090 (6)	0.074 (6)	-0.010 (5)	-0.001 (5)	-0.020 (5)
C346	0.035 (4)	0.062 (5)	0.072 (6)	-0.005 (3)	-0.003 (4)	-0.015 (4)
O342	0.066 (3)	0.049 (3)	0.073 (3)	0.011 (2)	0.007 (3)	-0.001 (3)
C347	0.069 (5)	0.046 (4)	0.104 (7)	0.014 (4)	-0.011 (4)	-0.012 (4)
N41	0.049 (3)	0.044 (3)	0.057 (4)	-0.001 (2)	-0.020 (3)	0.005 (3)
C42	0.051 (4)	0.042 (3)	0.061 (5)	0.001 (3)	-0.017 (4)	0.018 (3)
C43	0.058 (4)	0.041 (3)	0.050 (4)	0.003 (3)	-0.006 (4)	0.009 (3)
N44	0.041 (3)	0.034 (3)	0.051 (3)	-0.004 (2)	-0.011 (3)	0.006 (3)
C45	0.048 (4)	0.042 (3)	0.061 (5)	0.002 (3)	-0.013 (3)	0.003 (3)
C46	0.062 (4)	0.042 (3)	0.055 (4)	-0.004 (3)	-0.016 (4)	0.008 (3)
C417	0.052 (4)	0.045 (4)	0.058 (5)	-0.003 (3)	-0.006 (4)	0.002 (4)
O417	0.071 (3)	0.047 (3)	0.112 (5)	0.008 (3)	-0.041 (4)	0.030 (3)
C411	0.045 (4)	0.035 (3)	0.051 (5)	0.006 (3)	-0.001 (4)	0.001 (3)
C412	0.045 (5)	0.100 (6)	0.049 (5)	-0.007 (4)	0.002 (4)	-0.002 (4)
C413	0.056 (5)	0.131 (7)	0.034 (5)	-0.016 (4)	0.002 (4)	0.010 (5)
C414	0.047 (5)	0.086 (5)	0.050 (5)	-0.008 (4)	-0.011 (4)	-0.001 (4)
Cl44	0.0610 (13)	0.205 (3)	0.0701 (15)	-0.0411 (14)	-0.0115 (11)	-0.0034 (18)
C415	0.049 (5)	0.068 (4)	0.060 (6)	-0.016 (4)	0.017 (4)	-0.002 (4)
C416	0.068 (5)	0.058 (4)	0.034 (4)	-0.008 (4)	0.009 (4)	-0.007 (3)
C441	0.041 (4)	0.042 (4)	0.046 (5)	-0.006 (3)	-0.002 (4)	-0.001 (3)
C442	0.049 (4)	0.037 (3)	0.050 (4)	-0.002(3)	-0.005 (3)	-0.004 (3)

C443	0.084 (5)	0.046 (4)	0.056 (5)	-0.005(4)	-0.005(4)	0.006 (4)
C444	0.073 (5)	0.064 (5)	0.058 (5)	-0.020 (4)	-0.001 (4)	0.003 (4)
C445	0.052 (4)	0.078 (5)	0.076 (6)	-0.015 (4)	0.015 (4)	-0.013 (4)
C446	0.059 (5)	0.046 (4)	0.066 (6)	-0.005 (3)	-0.004 (5)	-0.001 (4)
O442	0.059 (3)	0.038 (2)	0.086 (4)	0.001 (2)	0.003 (3)	-0.002 (3)
C447	0.076 (5)	0.052 (4)	0.121 (7)	0.026 (4)	0.004 (5)	-0.017 (5)

Geometric parameters (Å, °)

N11—C117	1.344 (7)	N31—C317	1.337 (7)
N11—C16	1.459 (7)	N31—C32	1.428 (7)
N11—C12	1.485 (7)	N31—C36	1.461 (8)
C12—C13	1.476 (9)	C32—C33	1.513 (8)
C12—H12A	0.9700	С32—Н32А	0.9700
C12—H12B	0.9700	С32—Н32В	0.9700
C13—N14	1.471 (7)	C33—N34	1.455 (7)
C13—H13A	0.9700	С33—Н33А	0.9700
C13—H13B	0.9700	С33—Н33В	0.9700
N14—C141	1.412 (8)	N34—C341	1.420 (8)
N14—C15	1.465 (7)	N34—C35	1.442 (7)
C15—C16	1.499 (9)	C35—C36	1.512 (9)
C15—H15A	0.9700	С35—Н35А	0.9700
C15—H15B	0.9700	С35—Н35В	0.9700
C16—H16A	0.9700	С36—Н36А	0.9700
C16—H16B	0.9700	С36—Н36В	0.9700
C117—O117	1.191 (7)	C317—O317	1.270 (7)
C117—C111	1.503 (8)	C317—C311	1.481 (9)
C111—C116	1.371 (8)	C311—C316	1.363 (8)
C111—C112	1.404 (9)	C311—C312	1.377 (9)
C112—C113	1.355 (10)	C312—C313	1.380 (10)
C112—H112	0.9300	С312—Н312	0.9300
C113—C114	1.389 (10)	C313—C314	1.328 (9)
С113—Н113	0.9300	С313—Н313	0.9300
C114—C115	1.356 (10)	C314—C315	1.363 (10)
C114—C114	1.726 (7)	C314—Cl34	1.756 (7)
C115—C116	1.382 (9)	C315—C316	1.402 (9)
С115—Н115	0.9300	С315—Н315	0.9300
C116—H116	0.9300	С316—Н316	0.9300
C141—C146	1.360 (9)	C341—C346	1.379 (9)
C141—C142	1.382 (9)	C341—C342	1.436 (9)
C142—O142	1.375 (7)	C342—O342	1.347 (8)
C142—C143	1.390 (9)	C342—C343	1.388 (9)
C143—C144	1.388 (9)	C343—C344	1.385 (9)
C143—H143	0.9300	С343—Н343	0.9300
C144—C145	1.356 (10)	C344—C345	1.369 (10)
C144—H144	0.9300	C344—H344	0.9300
C145—C146	1.412 (10)	C345—C346	1.372 (10)
C145—H145	0.9300	С345—Н345	0.9300

C146—H146	0.9300	С346—Н346	0.9300
O142—C147	1.403 (7)	O342—C347	1.433 (7)
C147—H17A	0.9600	С347—Н37А	0.9600
C147—H17B	0.9600	С347—Н37В	0.9600
C147—H17C	0.9600	С347—Н37С	0.9600
N21—C217	1.342 (7)	N41—C417	1.326 (7)
N21—C26	1.462 (7)	N41—C42	1.454 (7)
N21—C22	1 469 (7)	N41—C46	1473(7)
C^{22} C^{23}	1 495 (8)	C42-C43	1 521 (8)
C22_H22A	0.9700	C42—H42A	0.9700
C_{22} H22R	0.9700	C42—H42B	0.9700
C23_N24	1,470(7)	C43—N44	1.437(7)
	0.0700	$C_{43} = H_{43} \Lambda$	1.437(7)
C23—1123A	0.9700	C_{43} H_{43} H_{43} C_{43} H_{43} H_{43} C_{43} H_{43} H	0.9700
N24 C241	1 409 (9)	C43—n43B	0.9700
N24	1.408 (8)	N44	1.398(7)
N24-C25	1.454 (7)	N44—C45	1.464 (7)
C25—C26	1.522 (9)	C45—C46	1.501 (8)
С25—Н25А	0.9700	С45—Н45А	0.9700
С25—Н25В	0.9700	C45—H45B	0.9700
C26—H26A	0.9700	C46—H46A	0.9700
C26—H26B	0.9700	C46—H46B	0.9700
C217—O217	1.175 (7)	C417—O417	1.236 (7)
C217—C211	1.518 (9)	C417—C411	1.503 (8)
C211—C212	1.362 (9)	C411—C412	1.361 (9)
C211—C216	1.405 (8)	C411—C416	1.395 (9)
C212—C213	1.362 (9)	C412—C413	1.381 (10)
C212—H212	0.9300	C412—H412	0.9300
C213—C214	1.377 (9)	C413—C414	1.371 (10)
C213—H213	0.9300	C413—H413	0.9300
C214—C215	1.366 (10)	C414—C415	1.359 (10)
C214—Cl24	1.748 (7)	C414—Cl44	1.760 (7)
C215—C216	1.369 (9)	C415—C416	1.354 (9)
С215—Н215	0.9300	C415—H415	0.9300
C216—H216	0.9300	C416—H416	0.9300
C241—C242	1.379 (8)	C441—C442	1.391 (8)
C241—C246	1 395 (10)	C441—C446	1 402 (9)
$C^{242} = 0^{242}$	1 374 (8)	C442 - 0442	1.351(7)
$C_{242} - C_{243}$	1 397 (9)	C442 - C443	1.383(8)
$C_{242} = C_{243}$ $C_{243} = C_{244}$	1 363 (9)	C443 - C444	1.385(8)
C_{243} C_{243} C_{244}	0.9300	C443 H443	0.9300
$C_{243} = 11243$	1.387(10)	C444 C445	1 360 (0)
$C_{244} = C_{245}$	0.0300	$C_{444} = C_{443}$	1.300(9)
$C_{244} = H_{244}$	0.9300	C444—I1444	1.2(8.(0)
$C_{245} = C_{240}$	1.300 (10)	C445 = U440	1.308 (9)
C_{243} H243	0.9300	C445—H445	0.9300
C240—H240	0.9300	C440—H440	0.9300
0242-0247	1.41/(/)	U442—U447	1.429 (7)
C24/—H2/A	0.9600	C44/—H4/A	0.9600
C247—H27B	0.9600	C447—H47B	0.9600

С247—Н27С	0.9600	С447—Н57С	0.9600
C117—N11—C16	121.2 (5)	C317—N31—C32	125.2 (6)
C117—N11—C12	125.7 (6)	C317—N31—C36	121.3 (5)
C16—N11—C12	112.4 (5)	C32—N31—C36	113.0 (5)
C13—C12—N11	110.4 (5)	N31—C32—C33	110.3 (5)
C13—C12—H12A	109.6	N31—C32—H32A	109.6
N11—C12—H12A	109.6	C33—C32—H32A	109.6
C_{13} C_{12} H_{12B}	109.6	N31—C32—H32B	109.6
N11-C12-H12B	109.6	C33—C32—H32B	109.6
H12A - C12 - H12B	108.1	H32A_C32_H32B	108.1
N14-C13-C12	112.5 (6)	N34-C33-C32	110.5(5)
N14_C13_H13A	109.1	N34_C33_H33A	109.5
C_{12} C_{13} H_{13A}	109.1	C32_C33_H33A	109.5
N14 C13 H13R	109.1	N34 C33 H33R	109.5
C_{12} C_{13} H_{13B}	109.1	C32 C33 H33B	109.5
H_{12} C_{13} H_{13} H_{12}	107.8	H22A C22 H22B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.8	C241 N24 C25	106.1
C141 - N14 - C13	110.9(3)	$C_{341} = N_{34} = C_{33}$	110.2(3)
C141 - N14 - C13	114.7(3) 100.2(5)	$C_{25} N_{24} C_{22}$	113.2(3)
C13 - N14 - C13	109.5(3)	N24 C25 C26	110.0(4)
N14 - C15 - U15 A	110.7 (3)	N34 - C35 - C30	110.0 (3)
NI4—CI5—HI5A	109.5	N34—C35—H35A	109.5
CI6—CI5—HI5A	109.5	C30—C35—H35A	109.5
NI4—CI5—HI5B	109.5	N34—C35—H35B	109.5
	109.5	C30-C35-H35B	109.5
HI5A—CI5—HI5B	108.1	H35A—C35—H35B	108.1
NII—CI6—CI5	111.1 (5)	N31 - C36 - C35	109.8 (6)
NII—CI6—HI6A	109.4	N31—C36—H36A	109.7
C15—C16—H16A	109.4	C35—C36—H36A	109.7
NII—CI6—HI6B	109.4	N31—C36—H36B	109.7
C15—C16—H16B	109.4	С35—С36—Н36В	109.7
H16A—C16—H16B	108.0	H36A—C36—H36B	108.2
O117—C117—N11	123.7 (6)	O317—C317—N31	121.0 (6)
0117—C117—C111	120.3 (6)	0317—C317—C311	120.7 (6)
N11—C117—C111	116.0 (6)	N31—C317—C311	118.3 (5)
C116—C111—C112	118.4 (6)	C316—C311—C312	117.6 (7)
C116—C111—C117	121.9 (6)	C316—C311—C317	122.7 (6)
C112—C111—C117	119.5 (6)	C312—C311—C317	119.7 (7)
C113—C112—C111	120.1 (7)	C311—C312—C313	122.0 (7)
C113—C112—H112	119.9	C311—C312—H312	119.0
C111—C112—H112	119.9	C313—C312—H312	119.0
C112—C113—C114	119.9 (8)	C314—C313—C312	118.4 (8)
С112—С113—Н113	120.0	C314—C313—H313	120.8
C114—C113—H113	120.0	C312—C313—H313	120.8
C115—C114—C113	120.8 (8)	C313—C314—C315	123.0 (7)
C115—C114—C114	121.0 (6)	C313—C314—Cl34	119.2 (6)
C113—C114—C114	118.2 (7)	C315—C314—Cl34	117.8 (6)
C114—C115—C116	119.0 (7)	C314—C315—C316	117.6 (7)

C114—C115—H115	120.5	С314—С315—Н315	121.2
C116—C115—H115	120.5	С316—С315—Н315	121.2
C111—C116—C115	121.4 (7)	C311—C316—C315	121.2 (7)
C111—C116—H116	119.3	C311—C316—H316	119.4
C115—C116—H116	119.3	C315—C316—H316	119.4
C146—C141—C142	118.8 (6)	C346—C341—N34	123.5 (6)
C146—C141—N14	122.0 (6)	C346—C341—C342	117.2 (7)
C142—C141—N14	119.0 (6)	N34—C341—C342	119.2 (6)
O142—C142—C141	117.9 (6)	O342—C342—C343	124.7 (6)
O142—C142—C143	120.3 (6)	O342—C342—C341	115.4 (6)
C141—C142—C143	121.8 (7)	C343—C342—C341	119.9 (7)
C144—C143—C142	119.0 (7)	C344—C343—C342	119.7 (7)
C144—C143—H143	120.5	C344—C343—H343	120.1
C142—C143—H143	120.5	C342—C343—H343	120.1
C145—C144—C143	119.2 (7)	C345—C344—C343	120.9 (7)
C145—C144—H144	120.4	C345—C344—H344	119.5
C143—C144—H144	120.4	C343—C344—H344	119.5
C144-C145-C146	121.5 (7)	C344 - C345 - C346	119.6 (8)
C144—C145—H145	119.3	C344—C345—H345	120.2
C146—C145—H145	119.3	C346—C345—H345	120.2
C141 - C146 - C145	119.6 (7)	C345—C346—C341	122.6 (7)
C141—C146—H146	120.2	C345—C346—H346	118.7
C145—C146—H146	120.2	C341—C346—H346	118.7
C142—O142—C147	119.3 (5)	$C_{342} - C_{342} - C_{347}$	118.3 (5)
0142—C147—H17A	109.5	O342—C347—H37A	109.5
0142—C147—H17B	109.5	O342—C347—H37B	109.5
H17A—C147—H17B	109.5	H37A—C347—H37B	109.5
O142—C147—H17C	109.5	O342—C347—H37C	109.5
H17A—C147—H17C	109.5	H37A—C347—H37C	109.5
H17B—C147—H17C	109.5	H37B—C347—H37C	109.5
C217—N21—C26	121.3 (5)	C417—N41—C42	125.3 (5)
C217—N21—C22	125.2 (6)	C417—N41—C46	121.4 (5)
C26—N21—C22	113.5 (5)	C42—N41—C46	113.3 (5)
N21—C22—C23	109.9 (5)	N41—C42—C43	110.1 (5)
N21—C22—H22A	109.7	N41—C42—H42A	109.7
С23—С22—Н22А	109.7	C43—C42—H42A	109.7
N21—C22—H22B	109.7	N41—C42—H42B	109.7
С23—С22—Н22В	109.7	C43—C42—H42B	109.7
H22A—C22—H22B	108.2	H42A—C42—H42B	108.2
N24—C23—C22	109.8 (5)	N44—C43—C42	111.7 (5)
N24—C23—H23A	109.7	N44—C43—H43A	109.3
С22—С23—Н23А	109.7	С42—С43—Н43А	109.3
N24—C23—H23B	109.7	N44—C43—H43B	109.3
С22—С23—Н23В	109.7	C42—C43—H43B	109.3
H23A—C23—H23B	108.2	H43A—C43—H43B	107.9
C241—N24—C25	117.3 (5)	C441—N44—C43	114.1 (5)
C241—N24—C23	112.9 (5)	C441—N44—C45	117.7 (5)
C25—N24—C23	110.2 (5)	C43—N44—C45	111.0 (4)
			(.)

NO4 $OO5$ $OO($	100(C(5))	NIAA CAE CAC	100.0(5)
N24-C25-C26	109.6 (5)	N44	109.8 (5)
N24—C25—H25A	109.7	N44—C45—H45A	109.7
C26—C25—H25A	109.7	C46—C45—H45A	109.7
N24—C25—H25B	109.7	N44—C45—H45B	109.7
C26—C25—H25B	109.7	C46—C45—H45B	109.7
H25A—C25—H25B	108.2	H45A—C45—H45B	108.2
N21—C26—C25	110.6 (5)	N41—C46—C45	111.9 (5)
N21—C26—H26A	109.5	N41—C46—H46A	109.2
С25—С26—Н26А	109.5	C45—C46—H46A	109.2
N21—C26—H26B	109.5	N41—C46—H46B	109.2
C25—C26—H26B	109.5	C45—C46—H46B	109.2
H26A—C26—H26B	108.1	H46A—C46—H46B	107.9
O217—C217—N21	123.9 (7)	O417—C417—N41	122.4 (6)
0217—C217—C211	118.7 (6)	O417—C417—C411	120.6 (6)
N21—C217—C211	1174(6)	N41—C417—C411	117.0(5)
$C_{212} - C_{211} - C_{216}$	1191(6)	C_{412} C 411 - C 416	117.0(3) 118.0(7)
$C_{212} = C_{211} = C_{210}$	122.1 (6)	C_{412} C_{411} C_{417}	121.3(7)
$C_{212} = C_{211} = C_{217}$	122.1(0) 118.8(6)	$C_{412} = C_{411} = C_{417}$	121.5(7)
$C_{210} = C_{211} = C_{217}$	110.0(0) 121.4(7)	$C_{410} = C_{411} = C_{417}$	120.0(0) 121.6(8)
$C_{213} = C_{212} = C_{211}$	121.4(7)	C411 - C412 - C413	121.0 (8)
$C_{213} - C_{212} - H_{212}$	119.5	C412 = C412 = H412	119.2
C211—C212—H212	119.5	C413 - C412 - H412	119.2
$C_{212} = C_{213} = C_{214}$	119.1 (/)	C414 - C413 - C412	117.9(8)
C212—C213—H213	120.5	C414—C413—H413	121.1
C214—C213—H213	120.5	C412—C413—H413	121.1
C215—C214—C213	121.1 (7)	C415—C414—C413	122.4 (8)
C215—C214—Cl24	120.3 (6)	C415—C414—Cl44	118.8 (6)
C213—C214—Cl24	118.6 (6)	C413—C414—C144	118.8 (7)
C214—C215—C216	119.7 (7)	C416—C415—C414	118.5 (7)
C214—C215—H215	120.2	C416—C415—H415	120.7
C216—C215—H215	120.2	C414—C415—H415	120.7
C215—C216—C211	119.6 (7)	C415—C416—C411	121.7 (7)
C215—C216—H216	120.2	C415—C416—H416	119.2
C211—C216—H216	120.2	C411—C416—H416	119.2
C242—C241—C246	116.8 (7)	C442—C441—N44	118.6 (6)
C242—C241—N24	120.1 (7)	C442—C441—C446	118.6 (6)
C246—C241—N24	123.1 (6)	N44—C441—C446	122.8 (6)
O242—C242—C241	114.5 (6)	O442—C442—C443	124.4 (6)
0242 - C242 - C243	123 5 (6)	0442 - C442 - C441	116 4 (6)
$C_{241} - C_{242} - C_{243}$	121.9(7)	C443 - C442 - C441	119.2 (6)
$C_{244} C_{243} C_{242}$	1196(7)	C442 - C443 - C444	1214(6)
C_{244} C_{243} C_{242}	120.2	C442 $C443$ $H443$	110.3
$C_{244} = C_{243} = 11243$	120.2	C442 - C443 - H443	119.5
$C_{242} = C_{243} = 11243$	120.2 120.3 (7)	$C_{445} = C_{443} = C_{443}$	119.5
$C_{243} = C_{244} = C_{243}$	120.3 (7)	$C_{44} = C_{444} = C_{443}$	119.0(/)
$C_{245} = C_{244} = \Pi_{244}$	117.7	$C_{443} = C_{444} = \Pi_{444}$	120.5
$C_{243} - C_{244} - H_{244}$	119.9	C443 - C444 - H444	120.3
$C_{240} - C_{243} - C_{244}$	119.1 (8)	C444 - C445 - C446	121.0 (7)
C246—C245—H245	120.4	C444—C445—H445	119.5
C244—C245—H245	120.4	C446—C445—H445	119.5

C245 - C246 - C241	122 2 (7)	C445 - C446 - C441	120.7(7)
$C_{245} = C_{246} = H_{246}$	118.9	C445-C446-H446	119.7
$C_{241} - C_{246} + H_{246}$	118.9	C441 - C446 - H446	119.7
$C_{241} = C_{240} = 11240$	110.1 (5)	C442 O442 C447	119.7
0242 - 0242 - 0247	100.5	0442 - 0442 - 0447	100 5
$O_2 42 - C_2 47 - H_27P$	109.5	0442 - 0447 - 1147R	109.5
$U_{242} - C_{247} - H_{27B}$	109.5	U442 - C447 - H47D	109.5
$\Pi Z / A = C Z 4 / = \Pi Z / B$	109.5	$\Pi 4/A - C44/ - \Pi 4/B$	109.5
0242 - C247 - H27C	109.5	0442—C447—H57C	109.5
$H_2/A \rightarrow C_24/-H_2/C$	109.5	H4/A—C44/—H5/C	109.5
H27B—C247—H27C	109.5	H47B—C447—H57C	109.5
C117—N11—C12—C13	118.3 (7)	C317—N31—C32—C33	116.0 (7)
C16—N11—C12—C13	-52.6 (8)	C36—N31—C32—C33	-55.4 (7)
N11—C12—C13—N14	55.1 (7)	N31—C32—C33—N34	56.0 (7)
C12-C13-N14-C141	167.9 (6)	C_{32} C_{33} N_{34} C_{341}	167.6 (5)
C12 - C13 - N14 - C15	-585(7)	C_{32} C_{33} N_{34} C_{35}	-58.2(7)
$C_{141} = N_{14} = C_{15} = C_{16}$	-1694(5)	$C_{341} = N_{34} = C_{35} = C_{36}$	-167.7(5)
C_{13} N14 C_{15} C_{16}	58 1 (7)	C_{33} N34 C_{35} C_{36}	58 5 (7)
C_{117} N11 C_{16} C15	-1176(7)	C_{317} N31 C_{36} C35	-1164(7)
C_{12} N11 C_{16} C_{15}	53.7(7)	$C_{31} = N_{31} = C_{30} = C_{33}$	55 3 (7)
N14 C15 C16 N11	-567(7)	$N_{24} = C_{35} = C_{36} = C_{35}$	-55.9(7)
C16 N11 C117 O117	30.7(7)	$N_{34} = C_{35} = C_{30} = N_{31}$	33.9(7)
C12 N11 $C117$ $O117$	-4.9(11)	C_{32} N21 C217 O217	-1/0.4(7)
C12 NII $-C117$ $-C111$	-1/3.0(7)	$C_{30} = N_{31} = C_{317} = C_{317}$	-3.7(10)
	1/4.2 (6)	C_{32} N31 $-C_{317}$ C311	3.8 (10)
	4.1 (10)	C36—N31—C317—C311	174.5 (6)
011/	-90.4 (9)	O317—C317—C311—C316	-91.3 (8)
N11—C117—C111—C116	90.5 (8)	N31—C317—C311—C316	88.5 (8)
O117—C117—C111—C112	84.4 (9)	O317—C317—C311—C312	89.6 (9)
N11—C117—C111—C112	-94.7 (8)	N31—C317—C311—C312	-90.6 (8)
C116—C111—C112—C113	-7.1 (11)	C316—C311—C312—C313	0.0 (11)
C117—C111—C112—C113	178.0 (7)	C317—C311—C312—C313	179.1 (6)
C111—C112—C113—C114	3.7 (12)	C311—C312—C313—C314	-1.2 (12)
C112—C113—C114—C115	1.7 (11)	C312—C313—C314—C315	2.3 (11)
C112—C113—C114—C114	180.0 (6)	C312—C313—C314—Cl34	-177.1 (6)
C113—C114—C115—C116	-3.6 (10)	C313—C314—C315—C316	-2.0 (10)
Cl14—C114—C115—C116	178.1 (5)	Cl34—C314—C315—C316	177.4 (5)
C112—C111—C116—C115	5.2 (10)	C312—C311—C316—C315	0.3 (10)
C117—C111—C116—C115	180.0 (6)	C317—C311—C316—C315	-178.8 (6)
C114—C115—C116—C111	0.1 (10)	C314—C315—C316—C311	0.7 (10)
C15—N14—C141—C146	-12.9(9)	C35—N34—C341—C346	-19.2 (9)
C13—N14—C141—C146	117.1 (7)	C33—N34—C341—C346	112.5 (7)
C15—N14—C141—C142	162.7 (6)	C35—N34—C341—C342	163.9 (6)
C13 - N14 - C141 - C142	-673(8)	C_{33} N34 C_{341} C342	-644(8)
$C_{146} - C_{141} - C_{142} - O_{142}$	178 2 (6)	$C_{346} - C_{341} - C_{342} - O_{342}$	178 5 (6)
N14— $C141$ — $C142$ — $O142$	24(10)	N34-C341-C342-O342	-44(9)
C146-C141-C142-C143	-32(11)	$C_{346} - C_{341} - C_{342} - C_{343}$	14(10)
N14 C141 C142 C143	-1700(6)	N34 C341 C342 C242	178 5 (6)
$0142 C142 C142 C143 \\ 0142 C142 C144 \\ 0144 C144 C144 C144 \\ 0144 C144 C144 C144 C144 \\ 0144 C144 $	-179.0(0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179 1 (7)
U142 - U142 - U143 - U144	-1/8.3(0)	0342-0342-0343-0344	-1/8.1(/)

C141—C142—C143—C144	2.9 (11)	C341—C342—C343—C344	-1.3 (11)
C142—C143—C144—C145	-2.3(11)	C342—C343—C344—C345	1.7 (12)
C143—C144—C145—C146	2.1 (12)	C343—C344—C345—C346	-2.1(12)
C142—C141—C146—C145	2.9 (11)	C344—C345—C346—C341	2.3 (12)
N14—C141—C146—C145	178.5 (6)	N34—C341—C346—C345	-178.9(7)
$C_{144} - C_{145} - C_{146} - C_{141}$	-24(12)	$C_{342} - C_{341} - C_{346} - C_{345}$	-1.9(11)
$C_{141} - C_{142} - O_{142} - C_{147}$	179 7 (6)	$C_{343} = C_{342} = C_{342} = C_{347}$	-24(10)
C_{143} C_{142} C_{142} C_{142} C_{147}	1 1 (10)	$C_{341} - C_{342} - C_{342} - C_{347}$	-1794(6)
$C_{217} N_{21} C_{22} C_{23}$	1.1(10) 124 0 (7)	C417 - N41 - C42 - C43	1317(6)
C_{26} N21 C_{22} C_{23}	-53.9(7)	C46 N41 C42 C43	-51.3(7)
N21 C22 C23 N24	57 3 (7)	N41 C42 C43 N44	51.5(7)
$C_{22} C_{23} N_{24} C_{241}$	164 5 (5)	C42 C43 N44 C441	165.0(5)
$C_{22} = C_{23} = N_{24} = C_{24}$	-62.2(7)	C42 - C43 - N44 - C441	-50.2(7)
$C_{22} = C_{23} = N_{24} = C_{23}$	-168.6(5)	C42 - C43 - N44 - C43	-167.6(6)
$C_{241} = N_{24} = C_{25} = C_{20}$	-108.0(3)	C441 - N44 - C43 - C46	-107.0(0)
C_{23} N24 C_{23} C_{20}	125.2(6)	C43 - N44 - C43 - C40	38.4(7)
$C_{21} = N_{21} = C_{20} = C_{23}$	-123.3(0)	C41 / - N41 - C40 - C43	-130.4(0)
$V_{22} = N_{21} = V_{26} = V_{25}$	52.6 (7)	C42 - N41 - C46 - C45	52.5 (7)
N24—C25—C26—N21	-55.1 (/)	N44-C45-C46-N41	-54.3 (7)
$C_{26} = N_{21} = C_{21} / = O_{21} / O_{21} /$	0.7(11)	C42 - N41 - C417 - O417	-1/8./(/)
C22—N21—C217—O217	-177.0(7)	C46—N41—C417—O417	4.6 (10)
C26—N21—C217—C211	179.8 (6)	C42—N41—C417—C411	0.4 (10)
C22—N21—C217—C211	2.1 (10)	C46—N41—C417—C411	-176.4 (5)
O217—C217—C211—C212	88.5 (9)	O417—C417—C411—C412	89.6 (9)
N21—C217—C211—C212	-90.6 (8)	N41—C417—C411—C412	-89.4 (8)
O217—C217—C211—C216	-91.2 (8)	O417—C417—C411—C416	-87.2 (8)
N21—C217—C211—C216	89.6 (7)	N41—C417—C411—C416	93.7 (7)
C216—C211—C212—C213	2.9 (9)	C416—C411—C412—C413	-1.7 (10)
C217—C211—C212—C213	-176.9 (6)	C417—C411—C412—C413	-178.7 (6)
C211—C212—C213—C214	-2.2 (11)	C411—C412—C413—C414	0.6 (12)
C212—C213—C214—C215	-0.9 (11)	C412—C413—C414—C415	1.1 (13)
C212—C213—C214—Cl24	-179.5 (5)	C412—C413—C414—C144	179.5 (6)
C213—C214—C215—C216	3.0 (11)	C413—C414—C415—C416	-1.5 (12)
Cl24—C214—C215—C216	-178.4 (5)	Cl44—C414—C415—C416	-179.9 (5)
C214—C215—C216—C211	-2.2 (10)	C414—C415—C416—C411	0.3 (11)
C212—C211—C216—C215	-0.7 (9)	C412—C411—C416—C415	1.3 (10)
C217—C211—C216—C215	179.1 (6)	C417—C411—C416—C415	178.3 (6)
C25—N24—C241—C242	161.3 (7)	C43—N44—C441—C442	-69.9 (8)
C23—N24—C241—C242	-68.9 (8)	C45—N44—C441—C442	157.4 (6)
C25—N24—C241—C246	-19.9 (10)	C43—N44—C441—C446	112.5 (8)
C23—N24—C241—C246	109.8 (8)	C45—N44—C441—C446	-20.2(10)
C246—C241—C242—O242	178.3 (6)	N44—C441—C442—O442	0.9 (10)
N24—C241—C242—O242	-2.8(10)	C446—C441—C442—O442	178.7 (6)
C246—C241—C242—C243	-1.2(11)	N44—C441—C442—C443	178.8 (6)
N24—C241—C242—C243	177.6 (7)	C446—C441—C442—C443	-3.5(11)
0242 - C242 - C243 - C244	-177.4(7)	O442—C442—C443—C444	-179.5 (6)
$C_{241} - C_{242} - C_{243} - C_{244}$	2.2 (11)	C441—C442—C443—C444	2.9 (10)
C_{242} C_{243} C_{244} C_{245}	-0.7(12)	C442 - C443 - C444 - C445	-1.3(11)
C_{243} C_{244} C_{245} C_{246}	-1.6(13)	C443 - C444 - C445 - C446	04(11)
			···(··)

C244—C245—C246—C241 C242—C241—C246—C245	2.5 (13) -1.1 (12)	C444—C445—C446—C441 C442—C441—C446—C445	-1.1 (12) 2.6 (12)
N24—C241—C246—C245	-180.0 (7)	N44—C441—C446—C445	-179.7 (7)
C241—C242—O242—C247	-177.7 (6)	C443—C442—O442—C447	10.3 (10)
C243—C242—O242—C247	1.8 (10)	C441—C442—O442—C447	-172.0 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C15—H15 <i>B</i> ···O417 ⁱ	0.97	2.39	3.314 (9)	160
C35—H35 <i>B</i> ···O217	0.97	2.41	3.333 (9)	159
С115—Н115…О217	0.93	2.60	3.522 (9)	174
C215—H215…O117 ⁱⁱ	0.93	2.56	3.482 (8)	170
С315—Н315…О417	0.93	2.56	3.486 (9)	177
C415—H415…O317 ⁱⁱⁱ	0.93	2.52	3.428 (8)	165
C213—H213··· <i>Cg</i> 2 ^{iv}	0.93	2.71	3.604 (8)	161
C313—H313··· <i>Cg</i> 3 ^v	0.93	2.79	3.633 (8)	151

Symmetry codes: (i) x, y-1, z; (ii) x-1/2, -y+1, z; (iii) x+1/2, -y+2, z; (iv) -x+1, -y+1, z-1/2; (v) -x+1, -y+1, z+1/2.

1-(4-Bromobenzoyl)-4-(2-methoxyphenyl)piperazine (III)

Crystal data

C₁₈H₁₉BrN₂O₂ $M_r = 375.26$ Orthorhombic, $Pca2_1$ a = 15.0779 (7) Å b = 11.2868 (6) Å c = 20.5297 (9) Å V = 3493.8 (3) Å³ Z = 8F(000) = 1536

Data collection

Oxford Diffraction Xcalibur CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysalisRed; Oxford Diffraction, 2009) $T_{\min} = 0.294, T_{\max} = 0.567$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.130$ S = 0.935910 reflections 445 parameters 21 restraints Primary atom site location: difference Fourier map $D_x = 1.427 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6870 reflections $\theta = 2.7-27.8^{\circ}$ $\mu = 2.36 \text{ mm}^{-1}$ T = 293 KPlate, yellow $0.50 \times 0.48 \times 0.24 \text{ mm}$

13342 measured reflections 5910 independent reflections 3300 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -15 \rightarrow 18$ $k = -6 \rightarrow 13$ $l = -23 \rightarrow 24$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0736P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.85$ e Å⁻³ $\Delta\rho_{min} = -0.49$ e Å⁻³ Absolute structure: Flack *x* determined using 1109 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.300 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N11	0.4662 (4)	0.8287 (6)	0.4090 (3)	0.0484 (17)	
C12	0.4124 (5)	0.7342 (7)	0.3813 (4)	0.051 (2)	
H12A	0.3689	0.7676	0.3517	0.061*	
H12B	0.3810	0.6931	0.4157	0.061*	
C13	0.4698 (5)	0.6491 (7)	0.3455 (4)	0.041 (2)	
H13A	0.4338	0.5840	0.3296	0.050*	
H13B	0.4958	0.6886	0.3081	0.050*	
N14	0.5405 (4)	0.6024 (5)	0.3866 (3)	0.0420 (16)	
C15	0.5982 (5)	0.6980 (7)	0.4117 (4)	0.048 (2)	
H15A	0.6279	0.7374	0.3758	0.058*	
H15B	0.6430	0.6652	0.4404	0.058*	
C16	0.5414 (5)	0.7856 (7)	0.4484 (4)	0.052 (2)	
H16A	0.5188	0.7482	0.4876	0.062*	
H16B	0.5776	0.8525	0.4615	0.062*	
C117	0.4531 (6)	0.9435 (7)	0.3982 (4)	0.043 (2)	
O117	0.5025 (5)	1.0208 (7)	0.4197 (4)	0.080(2)	
C111	0.3746 (5)	0.9789 (7)	0.3586 (4)	0.038 (2)	
C112	0.2909 (6)	0.9914 (7)	0.3872 (4)	0.047 (2)	
H112	0.2853	0.9791	0.4318	0.057*	
C113	0.2174 (5)	1.0208 (7)	0.3525 (4)	0.046 (2)	
H113	0.1620	1.0245	0.3722	0.056*	
C114	0.2277 (5)	1.0449 (7)	0.2872 (4)	0.048 (2)	
Br14	0.12850 (7)	1.09205 (11)	0.23607 (7)	0.0933 (5)	
C115	0.3084 (6)	1.0379 (8)	0.2579 (4)	0.062 (3)	
H115	0.3147	1.0560	0.2139	0.074*	
C116	0.3820 (5)	1.0030(7)	0.2949 (4)	0.047 (2)	
H116	0.4371	0.9966	0.2749	0.056*	
C141	0.5860 (6)	0.5030 (8)	0.3584 (4)	0.042 (2)	
C142	0.5363 (6)	0.4000 (7)	0.3524 (4)	0.051 (2)	
C143	0.5777 (8)	0.2964 (8)	0.3230 (5)	0.075 (3)	
H143	0.5466	0.2259	0.3182	0.090*	
C144	0.6638 (8)	0.3059 (11)	0.3028 (6)	0.083 (4)	
H144	0.6896	0.2421	0.2813	0.100*	
C145	0.7122 (8)	0.4031 (12)	0.3126 (5)	0.079 (3)	
H145	0.7723	0.4033	0.3025	0.094*	

C146	0.6722 (6)	0.5049 (9)	0.3382 (5)	0.058 (3)	
H146	0.7048	0.5746	0.3414	0.070*	
O142	0.4522 (4)	0.3980 (5)	0.3738 (3)	0.0636 (17)	
C147	0.4020 (7)	0.2964 (9)	0.3674 (7)	0.097 (4)	
H17A	0.3444	0.3091	0.3862	0.146*	
H17B	0.4308	0.2322	0.3895	0.146*	
H17C	0.3957	0.2772	0.3221	0.146*	
N21	0.7612 (4)	0.3202 (5)	0.5239 (3)	0.0449 (17)	
C22	0.8178 (5)	0.2274 (6)	0.5513 (4)	0.045 (2)	
H22A	0.8617	0.2626	0.5800	0.054*	
H22B	0.8489	0.1867	0.5165	0.054*	
C23	0.7622(5)	0.1406 (7)	0.5887(4)	0.0415(19)	
H23A	0 7993	0.0768	0.6047	0.050*	
H23B	0.7356	0 1799	0.6260	0.050*	
N24	0.6921 (4)	0.0919(5)	0.5470(3)	0.020	
C25	0.6329(4)	0.0919(3) 0.1868(7)	0.5470(5) 0.5259(4)	0.0427(10) 0.041(2)	
H25A	0.6071	0.2256	0.5636	0.050*	
H25R	0.5850	0.1541	0.3030	0.050*	
C26	0.5850	0.1341 0.2750 (7)	0.4999	0.030	
U20	0.0047 (3)	0.2739(7)	0.462	0.047 (2)	
H26R	0.7050	0.2388	0.4402	0.056*	
C217	0.0+0.5	0.3410 0.4305(11)	0.4741 0.5310 (6)	0.030	0.030(4)
0217	0.7740(7) 0.7231(4)	0.4393(11) 0.5117(7)	0.5319(0)	0.042(2)	0.939(4)
O217	0.7231(4)	0.3117(7)	0.5111(5)	0.034(2)	0.939(4)
C211	0.8332(0)	0.4743(13)	0.3081(0)	0.042(2)	0.939 (4)
C212	0.9355 (6)	0.4928 (7)	0.5353 (4)	0.038 (3)	0.939 (4)
H212	0.9375	0.4831	0.4904	0.045*	0.939 (4)
C213	1.0114 (5)	0.5248 (8)	0.5681 (4)	0.044 (2)	0.939 (4)
H213	1.0648	0.5340	0.5460	0.053*	0.939 (4)
C214	1.0065 (5)	0.5430 (9)	0.6344 (4)	0.046 (2)	0.939 (4)
Br24	1.11227 (7)	0.5820 (2)	0.67954 (7)	0.0915 (7)	0.939 (4)
C215	0.9303 (5)	0.5269 (12)	0.6674 (5)	0.059 (4)	0.939 (4)
H215	0.9289	0.5393	0.7122	0.071*	0.939 (4)
C216	0.8535 (7)	0.492 (3)	0.6350 (6)	0.057 (3)	0.939 (4)
H216	0.8012	0.4797	0.6582	0.068*	0.939 (4)
C317	0.784 (7)	0.435 (14)	0.527 (7)	0.042 (2)	0.061 (4)
O317	0.752 (7)	0.501 (12)	0.488 (5)	0.054 (2)	0.061 (4)
C311	0.864 (5)	0.47 (2)	0.565 (5)	0.042 (2)	0.061 (4)
C312	0.949 (6)	0.451 (14)	0.538 (4)	0.038 (3)	0.061 (4)
H312	0.9556	0.4474	0.4930	0.045*	0.061 (4)
C313	1.022 (5)	0.439 (11)	0.577 (3)	0.044 (2)	0.061 (4)
H313	1.0749	0.4073	0.5617	0.053*	0.061 (4)
C314	1.015 (2)	0.477 (12)	0.641 (3)	0.046 (2)	0.061 (4)
Br34	1.1196 (11)	0.486 (4)	0.6922 (10)	0.0915 (7)	0.061 (4)
C315	0.935 (2)	0.49 (2)	0.669 (4)	0.059 (4)	0.061 (4)
H315	0.9299	0.4948	0.7144	0.071*	0.061 (4)
C316	0.859 (4)	0.50 (4)	0.631 (7)	0.057 (3)	0.061 (4)
H316	0.8048	0.5180	0.6488	0.068*	0.061 (4)
C241	0.6512 (5)	-0.0094 (7)	0.5745 (4)	0.039 (2)	

C242	0.6990 (6)	-0.1170 (8)	0.5741 (4)	0.048 (2)
C243	0.6623 (6)	-0.2178 (8)	0.6005 (4)	0.059 (2)
H243	0.6946	-0.2880	0.6006	0.071*
C244	0.5793 (8)	-0.2160 (9)	0.6263 (5)	0.069 (3)
H244	0.5554	-0.2848	0.6441	0.083*
C245	0.5290 (6)	-0.1107 (9)	0.6265 (5)	0.062 (2)
H245	0.4729	-0.1080	0.6451	0.074*
C246	0.5658 (6)	-0.0125 (8)	0.5982 (4)	0.055 (2)
H246	0.5314	0.0556	0.5949	0.066*
O242	0.7811 (4)	-0.1095 (5)	0.5471 (3)	0.0621 (17)
C247	0.8328 (6)	-0.2165 (8)	0.5463 (6)	0.075 (3)
H27A	0.8858	-0.2038	0.5214	0.112*
H27B	0.7987	-0.2790	0.5268	0.112*
H27C	0.8483	-0.2380	0.5901	0.112*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
N11	0.050 (4)	0.045 (4)	0.050 (4)	-0.002 (4)	-0.019 (3)	-0.003 (4)
C12	0.040 (4)	0.049 (6)	0.063 (6)	-0.006 (4)	-0.012 (4)	0.001 (5)
C13	0.042 (5)	0.035 (4)	0.048 (5)	0.004 (4)	-0.012 (4)	-0.003 (4)
N14	0.050 (4)	0.032 (4)	0.043 (4)	-0.002 (3)	-0.004 (4)	0.000 (3)
C15	0.040 (4)	0.053 (5)	0.052 (5)	-0.008(4)	-0.006 (4)	0.003 (4)
C16	0.057 (5)	0.046 (5)	0.053 (5)	-0.001 (4)	-0.007 (4)	0.007 (4)
C117	0.045 (5)	0.035 (5)	0.049 (5)	-0.010 (4)	-0.002 (4)	-0.002 (4)
O117	0.080 (4)	0.064 (5)	0.097 (6)	-0.002(4)	-0.035 (4)	-0.007 (4)
C111	0.037 (5)	0.030 (4)	0.049 (5)	-0.006(4)	-0.003 (4)	-0.010 (4)
C112	0.058 (5)	0.047 (6)	0.037 (5)	0.010 (5)	0.014 (5)	-0.002 (4)
C113	0.044 (5)	0.044 (5)	0.050 (6)	0.009 (4)	0.010 (4)	0.002 (4)
C114	0.041 (5)	0.053 (5)	0.049 (5)	0.011 (4)	-0.005 (4)	-0.001 (5)
Br14	0.0623 (6)	0.1423 (11)	0.0755 (8)	0.0258 (6)	-0.0143 (6)	0.0010 (8)
C115	0.065 (6)	0.080(7)	0.039 (5)	0.006 (5)	0.007 (5)	0.009 (5)
C116	0.027 (4)	0.067 (6)	0.046 (6)	0.007 (4)	0.002 (4)	0.000 (4)
C141	0.048 (5)	0.057 (6)	0.022 (4)	0.007 (5)	-0.007 (4)	0.005 (4)
C142	0.068 (6)	0.036 (5)	0.047 (5)	0.010 (5)	-0.001 (5)	-0.009 (4)
C143	0.091 (8)	0.058 (6)	0.076 (8)	0.007 (6)	-0.013 (6)	-0.004 (5)
C144	0.087 (9)	0.088 (9)	0.075 (8)	0.051 (7)	-0.006 (7)	-0.022 (7)
C145	0.067 (7)	0.121 (10)	0.048 (6)	0.044 (7)	0.004 (5)	0.014 (7)
C146	0.054 (6)	0.062 (7)	0.059 (6)	0.009 (5)	-0.004 (5)	0.010 (5)
O142	0.058 (4)	0.040 (4)	0.093 (5)	-0.002(3)	0.003 (4)	0.001 (3)
C147	0.085 (7)	0.052 (7)	0.154 (12)	-0.006 (6)	0.010 (8)	-0.004 (7)
N21	0.053 (4)	0.038 (4)	0.045 (4)	0.000 (3)	-0.012 (3)	0.003 (3)
C22	0.038 (4)	0.037 (5)	0.059 (5)	0.002 (4)	-0.011 (4)	0.011 (4)
C23	0.040 (4)	0.038 (5)	0.047 (5)	0.001 (4)	-0.010 (4)	-0.001 (4)
N24	0.042 (4)	0.034 (4)	0.051 (4)	0.004 (3)	-0.011 (3)	0.003 (3)
C25	0.043 (4)	0.038 (4)	0.044 (5)	-0.001 (4)	-0.017 (4)	-0.009 (4)
C26	0.055 (5)	0.036 (5)	0.050 (5)	-0.003 (4)	-0.015 (4)	0.002 (4)
C217	0.044 (5)	0.045 (6)	0.037 (5)	-0.011 (5)	0.007 (4)	-0.001 (4)

O217	0.060 (4)	0.031 (4)	0.071 (5)	0.011 (4)	-0.023 (4)	0.004 (4)
C211	0.050 (5)	0.033 (5)	0.044 (5)	-0.007 (4)	-0.004(5)	-0.001 (4)
C212	0.039 (5)	0.047 (7)	0.028 (4)	0.002 (5)	0.001 (4)	-0.001 (4)
C213	0.050 (5)	0.048 (6)	0.034 (5)	-0.008(5)	0.009 (4)	-0.005 (5)
C214	0.042 (5)	0.056 (6)	0.039 (5)	-0.006 (4)	0.001 (4)	0.008 (5)
Br24	0.0498 (5)	0.168 (2)	0.0568 (7)	-0.0298 (8)	-0.0039 (6)	-0.0131 (11)
C215	0.040 (5)	0.110 (13)	0.029 (5)	-0.009 (5)	-0.002 (4)	0.001 (5)
C216	0.043 (5)	0.090 (9)	0.037 (5)	-0.008 (6)	0.014 (5)	0.002 (6)
C317	0.044 (5)	0.045 (6)	0.037 (5)	-0.011 (5)	0.007 (4)	-0.001 (4)
O317	0.060 (4)	0.031 (4)	0.071 (5)	0.011 (4)	-0.023 (4)	0.004 (4)
C311	0.050 (5)	0.033 (5)	0.044 (5)	-0.007 (4)	-0.004 (5)	-0.001 (4)
C312	0.039 (5)	0.047 (7)	0.028 (4)	0.002 (5)	0.001 (4)	-0.001 (4)
C313	0.050 (5)	0.048 (6)	0.034 (5)	-0.008 (5)	0.009 (4)	-0.005 (5)
C314	0.042 (5)	0.056 (6)	0.039 (5)	-0.006 (4)	0.001 (4)	0.008 (5)
Br34	0.0498 (5)	0.168 (2)	0.0568 (7)	-0.0298 (8)	-0.0039 (6)	-0.0131 (11)
C315	0.040 (5)	0.110 (13)	0.029 (5)	-0.009 (5)	-0.002 (4)	0.001 (5)
C316	0.043 (5)	0.090 (9)	0.037 (5)	-0.008 (6)	0.014 (5)	0.002 (6)
C241	0.038 (4)	0.043 (6)	0.036 (5)	0.000 (5)	-0.007 (4)	0.002 (4)
C242	0.055 (5)	0.045 (6)	0.044 (5)	-0.004 (5)	-0.004 (4)	-0.008 (4)
C243	0.075 (7)	0.044 (6)	0.058 (6)	-0.004 (5)	0.004 (5)	-0.007 (5)
C244	0.099 (8)	0.055 (7)	0.053 (6)	-0.032 (6)	-0.002 (6)	-0.004 (5)
C245	0.059 (5)	0.067 (7)	0.059 (6)	-0.023 (5)	-0.001 (5)	-0.010 (5)
C246	0.066 (6)	0.043 (6)	0.057 (6)	-0.002 (5)	-0.011 (5)	-0.008 (5)
O242	0.063 (4)	0.048 (4)	0.075 (4)	0.012 (3)	0.006 (4)	0.001 (3)
C247	0.073 (6)	0.055 (6)	0.096 (8)	0.019 (5)	-0.006 (6)	-0.022 (6)

Geometric parameters (Å, °)

N11—C117	1.330 (9)	C23—N24	1.467 (9)
N11—C12	1.456 (9)	C23—H23A	0.9700
N11—C16	1.475 (9)	C23—H23B	0.9700
C12—C13	1.487 (10)	N24—C241	1.418 (9)
C12—H12A	0.9700	N24—C25	1.461 (9)
C12—H12B	0.9700	C25—C26	1.515 (10)
C13—N14	1.459 (9)	C25—H25A	0.9700
C13—H13A	0.9700	C25—H25B	0.9700
C13—H13B	0.9700	C26—H26A	0.9700
N14—C141	1.437 (10)	C26—H26B	0.9700
N14—C15	1.478 (9)	C217—O217	1.203 (10)
C15—C16	1.510 (11)	C217—C211	1.479 (11)
C15—H15A	0.9700	C211—C216	1.389 (12)
C15—H15B	0.9700	C211—C212	1.399 (12)
C16—H16A	0.9700	C212—C213	1.377 (11)
C16—H16B	0.9700	C212—H212	0.9300
C117—O117	1.229 (9)	C213—C214	1.378 (12)
C117—C111	1.491 (11)	C213—H213	0.9300
C111—C116	1.340 (12)	C214—C215	1.347 (11)
C111—C112	1.398 (10)	C214—Br24	1.896 (8)

C112—C113	1.358 (11)	C215—C216	1.393 (14)
C112—H112	0.9300	C215—H215	0.9300
C113—C114	1.376 (12)	C216—H216	0.9300
С113—Н113	0.9300	C317—O317	1.203 (17)
C114—C115	1.360 (11)	C317—C311	1.480 (17)
C114—Br14	1.904 (8)	C311—C316	1.390 (17)
C115—C116	1.402 (11)	C311—C312	1.402 (17)
С115—Н115	0.9300	C312—C313	1.378 (18)
С116—Н116	0.9300	C312—H312	0.9300
C141—C146	1.365 (12)	C313—C314	1.380 (18)
C141—C142	1.389 (11)	C313—H313	0.9300
C142—O142	1.342 (10)	C314—C315	1.348 (17)
C142—C143	1.456 (12)	C314—Br34	1.896 (15)
C143—C144	1.367 (15)	C315—C316	1.39 (2)
C143—H143	0.9300	C315—H315	0.9300
C144—C145	1.332 (13)	C316—H316	0.9300
C144—H144	0.9300	C241—C246	1 377 (11)
C145-C146	1 399 (13)	$C_{241} - C_{242}$	1.377(11) 1 412 (11)
C145—H145	0.9300	$C^{242} = O^{242}$	1 359 (9)
C146—H146	0.9300	C^{242} C^{243}	1.377(12)
0142 - C147	1.381 (10)	C_{243} C_{244}	1.359 (12)
C147—H17A	0.9600	C243—H243	0.9300
C147—H17B	0.9600	$C_{244} - C_{245}$	1.409 (12)
C147—H17C	0.9600	C244—H244	0.9300
N21—C317	1.35 (15)	C245—C246	1.368 (11)
N21—C217	1.371 (13)	C245—H245	0.9300
N21—C22	1.464 (9)	C246—H246	0.9300
N21—C26	1.479 (9)	O242—C247	1.437 (9)
C22—C23	1.502 (10)	C247—H27A	0.9600
C22—H22A	0.9700	C247—H27B	0.9600
C22—H22B	0.9700	C247—H27C	0.9600
C117—N11—C12	124.5 (7)	N24—C23—H23A	109.6
C117—N11—C16	121.8 (7)	C22—C23—H23A	109.6
C12—N11—C16	113.6 (6)	N24—C23—H23B	109.6
N11-C12-C13	110.0 (6)	C22—C23—H23B	109.6
N11—C12—H12A	109.7	H23A—C23—H23B	108.1
C13—C12—H12A	109.7	C241—N24—C25	116.3 (6)
N11—C12—H12B	109.7	C241—N24—C23	112.5 (6)
C13—C12—H12B	109.7	C25—N24—C23	109.8 (5)
H12A—C12—H12B	108.2	N24—C25—C26	109.4 (6)
N14—C13—C12	111.9 (7)	N24—C25—H25A	109.8
N14-C13-H13A	109.2	C26—C25—H25A	109.8
C12—C13—H13A	109.2	N24—C25—H25B	109.8
N14—C13—H13B	109.2	C26—C25—H25B	109.8
С12—С13—Н13В	109.2	H25A—C25—H25B	108.3
H13A—C13—H13B	107.9	N21—C26—C25	110.0 (6)
C141—N14—C13	113.4 (6)	N21—C26—H26A	109.7

C141—N14—C15	115.4 (6)	C25—C26—H26A	109.7
C13—N14—C15	111.6 (6)	N21—C26—H26B	109.7
N14—C15—C16	108.5 (6)	C25—C26—H26B	109.7
N14—C15—H15A	110.0	H26A—C26—H26B	108.2
C16—C15—H15A	110.0	O217—C217—N21	121.9 (8)
N14—C15—H15B	110.0	O217—C217—C211	121.8 (8)
C16—C15—H15B	110.0	N21—C217—C211	116.4 (9)
H15A—C15—H15B	108.4	C216—C211—C212	118.1 (8)
N11—C16—C15	112.2 (7)	C216—C211—C217	121.3 (8)
N11—C16—H16A	109.2	C212—C211—C217	120.6 (8)
C15—C16—H16A	109.2	C213—C212—C211	121.5 (8)
N11—C16—H16B	109.2	C213—C212—H212	119.2
C15—C16—H16B	109.2	C211—C212—H212	119.2
H16A—C16—H16B	107.9	C212—C213—C214	118.5 (8)
O117—C117—N11	122.8 (8)	С212—С213—Н213	120.7
O117—C117—C111	119.1 (8)	С214—С213—Н213	120.7
N11—C117—C111	118.0 (7)	C215—C214—C213	121.5 (8)
C116—C111—C112	117.6 (8)	C215—C214—Br24	120.2 (7)
C116—C111—C117	121.3 (7)	C213—C214—Br24	118.2 (6)
C112—C111—C117	121.0 (8)	C214—C215—C216	120.5 (8)
C113—C112—C111	122.7 (8)	C214—C215—H215	119.7
C113—C112—H112	118.6	C216—C215—H215	119.7
C111—C112—H112	118.6	C211—C216—C215	119.8 (10)
C112—C113—C114	117.8 (8)	C211—C216—H216	120.1
C112—C113—H113	121.1	C215—C216—H216	120.1
C114—C113—H113	121.1	O317—C317—N21	117 (10)
C115—C114—C113	121.4 (8)	O317—C317—C311	122 (3)
C115—C114—Br14	118.4 (7)	N21—C317—C311	119 (8)
C113—C114—Br14	120.2 (6)	C316—C311—C312	117.8 (17)
C114—C115—C116	118.9 (8)	C316—C311—C317	121 (2)
C114—C115—H115	120.5	C312—C311—C317	120 (3)
C116—C115—H115	120.5	C313—C312—C311	121 (2)
C111—C116—C115	121.4 (8)	C313—C312—H312	119.5
C111—C116—H116	119.3	C311—C312—H312	119.5
C115—C116—H116	119.3	C312—C313—C314	118 (2)
C146—C141—C142	120.0 (9)	С312—С313—Н313	121.2
C146—C141—N14	124.4 (9)	C314—C313—H313	121.2
C142—C141—N14	115.6 (8)	C315—C314—C313	121 (2)
O142—C142—C141	119.6 (7)	C315—C314—Br34	120.3 (19)
O142—C142—C143	121.8 (8)	C313—C314—Br34	118.3 (19)
C141—C142—C143	118.5 (9)	C314—C315—C316	120 (3)
C144—C143—C142	118.1 (10)	C314—C315—H315	120.1
C144—C143—H143	121.0	C316—C315—H315	120.1
C142—C143—H143	121.0	C311—C316—C315	120 (3)
C145—C144—C143	122.5 (10)	C311—C316—H316	120.2
C145—C144—H144	118.7	C315—C316—H316	120.2
C143—C144—H144	118.7	C246—C241—C242	117.2 (8)
C144—C145—C146	119.8 (10)	C246—C241—N24	124.6 (8)

C144—C145—H145	120.1	C242—C241—N24	118.0 (7)
C146—C145—H145	120.1	O242—C242—C243	125.3 (8)
C141—C146—C145	120.8 (10)	O242—C242—C241	114.5 (8)
C141—C146—H146	119.6	C243—C242—C241	120.2 (8)
C145—C146—H146	119.6	C244—C243—C242	120.7 (9)
C142—O142—C147	120.1 (7)	C244—C243—H243	119.6
O142—C147—H17A	109.5	C242—C243—H243	119.6
O142—C147—H17B	109.5	C243—C244—C245	120.6 (9)
H17A—C147—H17B	109.5	C243—C244—H244	119.7
O142—C147—H17C	109.5	C245—C244—H244	119.7
H17A—C147—H17C	109.5	C246—C245—C244	117.7 (9)
H17B—C147—H17C	109.5	C246—C245—H245	121.2
C317—N21—C22	121 (3)	C244—C245—H245	121.2
C217—N21—C22	124.8 (7)	C245—C246—C241	123.3 (9)
C317—N21—C26	124 (2)	C245—C246—H246	118.3
C217—N21—C26	120.7 (6)	C241—C246—H246	118.3
C22 - N21 - C26	114.5 (6)	C242—O242—C247	116.5 (7)
N21-C22-C23	109.7 (6)	0242—C247—H27A	109.5
N21—C22—H22A	109.7	0242—C247—H27B	109.5
C23—C22—H22A	109.7	H27A—C247—H27B	109.5
N21—C22—H22B	109.7	O242 - C247 - H27C	109.5
C23—C22—H22B	109.7	H27A—C247—H27C	109.5
H22A—C22—H22B	108.2	H27B—C247—H27C	109.5
N24—C23—C22	110.4 (6)		
C117—N11—C12—C13	124.5 (8)	C241—N24—C25—C26	-168.7(7)
C16—N11—C12—C13	-52.3 (9)	C23—N24—C25—C26	62.0 (8)
N11—C12—C13—N14	55.3 (9)	C317—N21—C26—C25	-135(10)
C12—C13—N14—C141	168.1 (7)	C217—N21—C26—C25	-127.2(9)
C12—C13—N14—C15	-59.6 (8)	C22—N21—C26—C25	52.3 (9)
C141—N14—C15—C16	-171.5 (6)	N24—C25—C26—N21	-55.8 (8)
C13—N14—C15—C16	57.1 (9)	C22—N21—C217—O217	-176.0 (9)
C117—N11—C16—C15	-123.9 (8)	C26—N21—C217—O217	3.5 (15)
C12—N11—C16—C15	53.0 (9)	C22—N21—C217—C211	3.3 (13)
N14—C15—C16—N11	-53.5 (9)	C26—N21—C217—C211	-177.2 (7)
C12—N11—C117—O117	-176.2 (8)	O217—C217—C211—C216	87.7 (14)
C16—N11—C117—O117	0.4 (12)	N21—C217—C211—C216	-91.6 (16)
C12—N11—C117—C111	4.4 (11)	O217—C217—C211—C212	-91.5 (13)
C16—N11—C117—C111	-179.1 (7)	N21—C217—C211—C212	89.2 (15)
O117—C117—C111—C116	82.5 (11)	C216—C211—C212—C213	1.2 (15)
N11—C117—C111—C116	-98.0 (9)	C217—C211—C212—C213	-179.6 (9)
O117—C117—C111—C112	-95.6 (10)	C211—C212—C213—C214	-2.3 (15)
N11—C117—C111—C112	83.9 (10)	C212—C213—C214—C215	1.9 (16)
C116—C111—C112—C113	3.4 (12)	C212—C213—C214—Br24	178.0 (6)
C117—C111—C112—C113	-178.4 (8)	C213—C214—C215—C216	0 (2)
C111—C112—C113—C114	-3.4 (13)	Br24—C214—C215—C216	-176.4 (14)
C112—C113—C114—C115	1.0 (13)	C212—C211—C216—C215	0 (2)
C112—C113—C114—Br14	-177.8 (6)	C217—C211—C216—C215	-178.8 (17)
	× /		× /

C113—C114—C115—C116	1.3 (13)	C214—C215—C216—C211	-1 (2)
Br14-C114-C115-C116	-179.9 (7)	C22—N21—C317—O317	157 (12)
C112—C111—C116—C115	-1.0 (13)	C26—N21—C317—O317	-15 (20)
C117—C111—C116—C115	-179.1 (8)	C22—N21—C317—C311	-6 (13)
C114—C115—C116—C111	-1.3 (14)	C26—N21—C317—C311	-178 (4)
C13—N14—C141—C146	112.4 (9)	O317—C317—C311—C312	-85 (17)
C15—N14—C141—C146	-18.1 (11)	N21-C317-C311-C312	77 (21)
C13—N14—C141—C142	-67.6 (9)	C317—C311—C312—C313	-156 (14)
C15—N14—C141—C142	161.9 (7)	C311—C312—C313—C314	-17 (18)
C146—C141—C142—O142	178.5 (8)	C312—C313—C314—C315	20 (17)
N14—C141—C142—O142	-1.5 (11)	C312—C313—C314—Br34	-170 (11)
C146—C141—C142—C143	-1.2 (12)	C25—N24—C241—C246	-18.1 (11)
N14—C141—C142—C143	178.8 (7)	C23—N24—C241—C246	109.8 (9)
O142—C142—C143—C144	-179.7 (9)	C25—N24—C241—C242	157.8 (7)
C141—C142—C143—C144	-0.1 (13)	C23—N24—C241—C242	-74.2 (9)
C142—C143—C144—C145	4.3 (16)	C246—C241—C242—O242	176.8 (7)
C143—C144—C145—C146	-7.1 (17)	N24—C241—C242—O242	0.6 (10)
C142—C141—C146—C145	-1.5 (13)	C246—C241—C242—C243	-4.0 (12)
N14—C141—C146—C145	178.5 (8)	N24—C241—C242—C243	179.8 (7)
C144—C145—C146—C141	5.6 (15)	O242—C242—C243—C244	-179.9 (8)
C141—C142—O142—C147	179.3 (9)	C241—C242—C243—C244	0.9 (13)
C143—C142—O142—C147	-1.0 (13)	C242—C243—C244—C245	0.2 (14)
C317—N21—C22—C23	135 (9)	C243—C244—C245—C246	1.8 (13)
C217—N21—C22—C23	127.4 (9)	C244—C245—C246—C241	-5.2 (13)
C26—N21—C22—C23	-52.1 (8)	C242—C241—C246—C245	6.2 (13)
N21—C22—C23—N24	56.0 (8)	N24—C241—C246—C245	-177.8 (8)
C22—C23—N24—C241	166.1 (6)	C243—C242—O242—C247	0.2 (13)
C22—C23—N24—C25	-62.6 (8)	C241—C242—O242—C247	179.3 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A
C15—H15B····O217	0.97	2.56	3.483 (10)	159
C25—H25 <i>B</i> ···O117 ⁱ	0.97	2.55	3.483 (11)	160
C213—H213…O217 ⁱⁱ	0.93	2.54	3.425 (10)	158
C312—H312…N14 ⁱⁱ	0.93	2.59	3.45 (9)	154
C115—H115…Cg4 ⁱⁱⁱ	0.93	2.65	3.549 (9)	162
C315—H315…Cg5 ^{iv}	0.93	2.74	3.59 (10)	151

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*+1/2, -*y*+1, *z*; (iii) -*x*+1, -*y*+1, *z*-1/2; (iv) -*x*+3/2, *y*, *z*+1/2.

1-(4-Iodobenzoyl)-4-(2-methoxyphenyl)piperazine (IV)

Crystal data

$C_{18}H_{19}IN_2O_2$	c = 14.8234 (7) Å
$M_r = 422.25$	$\beta = 104.520 (5)^{\circ}$
Monoclinic, $P2_1/c$	$V = 1781.69 (16) \text{ Å}^3$
a = 10.9626 (5) Å	Z = 4
b = 11.3258 (6) Å	F(000) = 840

 $D_x = 1.574 \text{ Mg m}^{-3}$ Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3824 reflections $\theta = 2.6-27.8^{\circ}$

Data collection

Oxford Diffraction Xcalibur CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysalisRed; Oxford Diffraction, 2009) $T_{\min} = 0.423, T_{\max} = 0.603$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.092$ S = 1.053816 reflections 208 parameters 0 restraints

$\mu = 1.81 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.42 \times 0.40 \times 0.28 \text{ mm}$

7512 measured reflections 3816 independent reflections 2690 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -13 \rightarrow 14$ $k = -13 \rightarrow 14$ $l = -19 \rightarrow 9$

Primary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0499P)^2 + 0.0876P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.91$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.3873 (2)	0.4258 (2)	0.37476 (16)	0.0455 (6)	
C2	0.4605 (3)	0.4724 (3)	0.3125 (2)	0.0498 (7)	
H2A	0.4840	0.4081	0.2770	0.060*	
H2B	0.5372	0.5085	0.3493	0.060*	
C3	0.3855 (3)	0.5627 (2)	0.2466 (2)	0.0450 (7)	
H3A	0.4373	0.5967	0.2090	0.054*	
H3B	0.3133	0.5252	0.2052	0.054*	
N4	0.3431 (2)	0.65533 (19)	0.29992 (16)	0.0417 (5)	
C5	0.2621 (3)	0.6056 (2)	0.3557 (2)	0.0455 (7)	
H5A	0.1898	0.5673	0.3151	0.055*	
H5B	0.2318	0.6683	0.3890	0.055*	
C6	0.3355 (3)	0.5175 (2)	0.4240 (2)	0.0484 (7)	
H6A	0.4035	0.5573	0.4680	0.058*	
H6B	0.2808	0.4817	0.4586	0.058*	
C17	0.3711 (3)	0.3096 (3)	0.3832 (2)	0.0479 (7)	
017	0.4138 (3)	0.23600 (19)	0.3391 (2)	0.0806 (8)	

C11	0.2936 (3)	0.2704 (2)	0.4481 (2)	0.0432 (6)
C12	0.1691 (3)	0.2393 (3)	0.4107 (2)	0.0545 (8)
H12	0.1349	0.2448	0.3468	0.065*
C13	0.0952 (3)	0.2003 (3)	0.4677 (2)	0.0558 (8)
H13	0.0115	0.1802	0.4421	0.067*
C14	0.1450 (3)	0.1910 (3)	0.5617 (2)	0.0444 (7)
I14	0.02671 (2)	0.13596 (2)	0.64562 (2)	0.06954 (12)
C15	0.2690 (3)	0.2190 (2)	0.6004 (2)	0.0452 (7)
H15	0.3028	0.2120	0.6643	0.054*
C16	0.3432 (3)	0.2578 (2)	0.5431 (2)	0.0456 (7)
H16	0.4276	0.2756	0.5689	0.055*
C41	0.2909 (2)	0.7580 (2)	0.2498 (2)	0.0428 (7)
C42	0.2875 (3)	0.8622 (2)	0.3012 (2)	0.0469 (7)
C43	0.2366 (3)	0.9643 (3)	0.2570 (3)	0.0602 (9)
H43	0.2338	1.0324	0.2913	0.072*
C44	0.1895 (3)	0.9651 (3)	0.1611 (3)	0.0685 (10)
H44	0.1541	1.0339	0.1314	0.082*
C45	0.1944 (3)	0.8660 (3)	0.1098 (3)	0.0667 (10)
H45	0.1638	0.8679	0.0454	0.080*
C46	0.2448 (3)	0.7628 (3)	0.1535 (2)	0.0548 (8)
H46	0.2480	0.6957	0.1180	0.066*
O42	0.3380 (2)	0.85339 (17)	0.39492 (16)	0.0572 (6)
C47	0.3405 (3)	0.9558 (3)	0.4503 (3)	0.0708 (10)
H47A	0.3783	0.9371	0.5144	0.106*
H47B	0.3889	1.0162	0.4299	0.106*
H47C	0.2561	0.9834	0.4441	0.106*

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0542 (13)	0.0294 (13)	0.0607 (15)	0.0040 (11)	0.0290 (12)	0.0009 (11)
0.0506 (16)	0.0394 (17)	0.0663 (18)	0.0016 (13)	0.0277 (14)	-0.0025 (15)
0.0513 (15)	0.0349 (16)	0.0567 (17)	-0.0043 (13)	0.0280 (13)	-0.0043 (13)
0.0455 (13)	0.0318 (13)	0.0524 (14)	-0.0003 (10)	0.0208 (11)	-0.0002 (10)
0.0481 (16)	0.0333 (15)	0.0615 (18)	0.0013 (12)	0.0256 (14)	0.0011 (14)
0.0654 (18)	0.0284 (15)	0.0604 (17)	0.0045 (13)	0.0328 (15)	-0.0014 (14)
0.0566 (17)	0.0328 (16)	0.0586 (18)	0.0029 (14)	0.0225 (14)	-0.0005 (15)
0.120 (2)	0.0344 (12)	0.114 (2)	0.0046 (13)	0.0793 (17)	-0.0058 (13)
0.0488 (16)	0.0260 (14)	0.0577 (17)	0.0045 (12)	0.0187 (13)	0.0013 (13)
0.0504 (18)	0.062 (2)	0.0482 (16)	0.0070 (15)	0.0073 (14)	0.0055 (16)
0.0400 (15)	0.060 (2)	0.066 (2)	-0.0020 (15)	0.0103 (14)	0.0016 (17)
0.0450 (15)	0.0344 (15)	0.0560 (18)	0.0027 (13)	0.0167 (13)	0.0037 (14)
0.05888 (16)	0.0820 (2)	0.07440 (18)	-0.00787 (11)	0.02923 (12)	0.00640 (13)
0.0475 (16)	0.0401 (17)	0.0455 (16)	-0.0031 (13)	0.0068 (13)	0.0017 (13)
0.0424 (15)	0.0332 (16)	0.0593 (18)	-0.0055 (12)	0.0091 (13)	-0.0011 (14)
0.0382 (14)	0.0327 (15)	0.0612 (18)	-0.0036 (11)	0.0192 (13)	0.0059 (14)
0.0418 (15)	0.0348 (16)	0.068 (2)	-0.0022 (12)	0.0208 (14)	0.0052 (15)
0.0592 (19)	0.0376 (18)	0.089 (3)	0.0042 (15)	0.0273 (18)	0.0115 (18)
	$\begin{array}{c} U^{11} \\ \hline 0.0542 \ (13) \\ 0.0506 \ (16) \\ 0.0513 \ (15) \\ 0.0455 \ (13) \\ 0.0455 \ (13) \\ 0.0481 \ (16) \\ 0.0654 \ (18) \\ 0.0566 \ (17) \\ 0.120 \ (2) \\ 0.0488 \ (16) \\ 0.0504 \ (18) \\ 0.0400 \ (15) \\ 0.0450 \ (15) \\ 0.0450 \ (15) \\ 0.0475 \ (16) \\ 0.0475 \ (16) \\ 0.0424 \ (15) \\ 0.0382 \ (14) \\ 0.0418 \ (15) \\ 0.0592 \ (19) \end{array}$	U^{11} U^{22} $0.0542 (13)$ $0.0294 (13)$ $0.0506 (16)$ $0.0394 (17)$ $0.0513 (15)$ $0.0349 (16)$ $0.0455 (13)$ $0.0318 (13)$ $0.0481 (16)$ $0.0333 (15)$ $0.0654 (18)$ $0.0284 (15)$ $0.0566 (17)$ $0.0328 (16)$ $0.120 (2)$ $0.0344 (12)$ $0.0488 (16)$ $0.0260 (14)$ $0.0504 (18)$ $0.062 (2)$ $0.0400 (15)$ $0.060 (2)$ $0.0450 (15)$ $0.0344 (15)$ $0.05888 (16)$ $0.0820 (2)$ $0.0475 (16)$ $0.0401 (17)$ $0.0424 (15)$ $0.0332 (16)$ $0.0382 (14)$ $0.0327 (15)$ $0.0418 (15)$ $0.0376 (18)$	U^{11} U^{22} U^{33} $0.0542 (13)$ $0.0294 (13)$ $0.0607 (15)$ $0.0506 (16)$ $0.0394 (17)$ $0.0663 (18)$ $0.0513 (15)$ $0.0349 (16)$ $0.0567 (17)$ $0.0455 (13)$ $0.0318 (13)$ $0.0524 (14)$ $0.0455 (13)$ $0.0333 (15)$ $0.0615 (18)$ $0.0654 (18)$ $0.0284 (15)$ $0.0604 (17)$ $0.0566 (17)$ $0.0328 (16)$ $0.0586 (18)$ $0.120 (2)$ $0.0344 (12)$ $0.114 (2)$ $0.0488 (16)$ $0.0260 (14)$ $0.0577 (17)$ $0.0504 (18)$ $0.062 (2)$ $0.0482 (16)$ $0.0400 (15)$ $0.060 (2)$ $0.066 (2)$ $0.0450 (15)$ $0.0344 (15)$ $0.0560 (18)$ $0.0575 (16)$ $0.0401 (17)$ $0.0455 (16)$ $0.0475 (16)$ $0.0401 (17)$ $0.0455 (16)$ $0.0382 (14)$ $0.0327 (15)$ $0.0612 (18)$ $0.0418 (15)$ $0.0376 (18)$ $0.089 (3)$	U^{11} U^{22} U^{33} U^{12} 0.0542 (13)0.0294 (13)0.0607 (15)0.0040 (11)0.0506 (16)0.0394 (17)0.0663 (18)0.0016 (13)0.0513 (15)0.0349 (16)0.0567 (17) $-0.0043 (13)$ 0.0455 (13)0.0318 (13)0.0524 (14) $-0.0003 (10)$ 0.0481 (16)0.0333 (15)0.0615 (18)0.0013 (12)0.0654 (18)0.0284 (15)0.0604 (17)0.0045 (13)0.0566 (17)0.0328 (16)0.0586 (18)0.0029 (14)0.120 (2)0.0344 (12)0.114 (2)0.0046 (13)0.0488 (16)0.0260 (14)0.0577 (17)0.0045 (12)0.0504 (18)0.062 (2)0.0482 (16)0.0070 (15)0.0400 (15)0.060 (2)0.066 (2) $-0.0020 (15)$ 0.0450 (15)0.0344 (15)0.0560 (18)0.0027 (13)0.05888 (16)0.0820 (2)0.07440 (18) $-0.00787 (11)$ 0.0475 (16)0.0401 (17)0.0455 (16) $-0.0031 (13)$ 0.0424 (15)0.0327 (15)0.0612 (18) $-0.0036 (11)$ 0.0418 (15)0.0348 (16)0.068 (2) $-0.0022 (12)$ 0.0592 (19)0.0376 (18)0.089 (3)0.0042 (15)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0542 (13)0.0294 (13)0.0607 (15)0.0040 (11)0.0290 (12)0.0506 (16)0.0394 (17)0.0663 (18)0.0016 (13)0.0277 (14)0.0513 (15)0.0349 (16)0.0567 (17) -0.0043 (13)0.0280 (13)0.0455 (13)0.0318 (13)0.0524 (14) -0.0003 (10)0.0208 (11)0.0481 (16)0.0333 (15)0.0615 (18)0.0013 (12)0.0256 (14)0.0654 (18)0.0284 (15)0.0604 (17)0.0045 (13)0.0328 (15)0.0566 (17)0.0328 (16)0.0586 (18)0.0029 (14)0.0225 (14)0.120 (2)0.0344 (12)0.114 (2)0.0046 (13)0.0793 (17)0.0488 (16)0.0260 (14)0.0577 (17)0.0045 (12)0.0187 (13)0.0504 (18)0.062 (2)0.0482 (16)0.0070 (15)0.0073 (14)0.0450 (15)0.060 (2)0.066 (2) $-0.0020 (15)$ 0.0103 (14)0.0450 (15)0.0321 (15)0.0560 (18) $-0.00787 (11)$ 0.02923 (12)0.0475 (16)0.0401 (17)0.0455 (16) $-0.0031 (13)$ 0.0068 (13)0.0424 (15)0.0327 (15)0.0612 (18) $-0.0036 (11)$ 0.0192 (13)0.0382 (14)0.0327 (15)0.0612 (18) $-0.0036 (11)$ 0.0192 (13)0.0418 (15)0.0348 (16)0.068 (2) $-0.0022 (12)$ 0.0208 (14)0.0592 (19)0.0376 (18)0.089 (3)0.0042 (15)0.0273 (18)

C44	0.059 (2)	0.051 (2)	0.096 (3)	0.0032 (17)	0.0199 (19)	0.030 (2)
C45	0.059 (2)	0.072 (3)	0.067 (2)	-0.0078 (18)	0.0117 (17)	0.026 (2)
C46	0.0558 (18)	0.052 (2)	0.0573 (19)	-0.0096 (15)	0.0164 (15)	0.0025 (16)
O42	0.0707 (14)	0.0366 (12)	0.0635 (14)	0.0050 (10)	0.0157 (11)	-0.0054 (10)
C47	0.073 (2)	0.051 (2)	0.088 (3)	-0.0028 (17)	0.018 (2)	-0.022 (2)

Geometric parameters (Å, °)

N1—C17	1.338 (4)	C13—C14	1.366 (4)	
N1—C6	1.464 (3)	C13—H13	0.9300	
N1—C2	1.464 (4)	C14—C15	1.373 (4)	
C2—C3	1.509 (4)	C14—I14	2.104 (3)	
C2—H2A	0.9700	C15—C16	1.386 (4)	
C2—H2B	0.9700	C15—H15	0.9300	
C3—N4	1.457 (3)	C16—H16	0.9300	
С3—НЗА	0.9700	C41—C46	1.391 (4)	
С3—Н3В	0.9700	C41—C42	1.410 (4)	
N4—C41	1.421 (3)	C42—O42	1.364 (4)	
N4—C5	1.469 (3)	C42—C43	1.377 (4)	
C5—C6	1.502 (4)	C43—C44	1.385 (5)	
С5—Н5А	0.9700	C43—H43	0.9300	
С5—Н5В	0.9700	C44—C45	1.364 (5)	
С6—Н6А	0.9700	C44—H44	0.9300	
С6—Н6В	0.9700	C45—C46	1.383 (4)	
C17—O17	1.223 (3)	C45—H45	0.9300	
C17—C11	1.502 (4)	C46—H46	0.9300	
C11—C12	1.384 (4)	O42—C47	1.417 (4)	
C11—C16	1.384 (4)	C47—H47A	0.9600	
C12—C13	1.381 (4)	C47—H47B	0.9600	
С12—Н12	0.9300	C47—H47C	0.9600	
C17—N1—C6	125.0 (2)	C11—C12—H12	119.8	
C17—N1—C2	121.4 (2)	C14—C13—C12	120.2 (3)	
C6—N1—C2	113.6 (2)	C14—C13—H13	119.9	
N1-C2-C3	110.9 (2)	C12—C13—H13	119.9	
N1—C2—H2A	109.5	C13—C14—C15	120.6 (3)	
C3—C2—H2A	109.5	C13—C14—I14	118.5 (2)	
N1—C2—H2B	109.5	C15—C14—I14	120.9 (2)	
C3—C2—H2B	109.5	C14—C15—C16	119.2 (3)	
H2A—C2—H2B	108.0	C14—C15—H15	120.4	
N4—C3—C2	109.5 (2)	C16—C15—H15	120.4	
N4—C3—H3A	109.8	C11—C16—C15	121.0 (3)	
С2—С3—Н3А	109.8	C11—C16—H16	119.5	
N4—C3—H3B	109.8	C15—C16—H16	119.5	
С2—С3—Н3В	109.8	C46—C41—C42	118.1 (3)	
НЗА—СЗ—НЗВ	108.2	C46—C41—N4	124.3 (3)	
C41—N4—C3	116.5 (2)	C42—C41—N4	117.6 (3)	
C41—N4—C5	112.8 (2)	O42—C42—C43	124.0 (3)	

C3—N4—C5	110.4 (2)	O42—C42—C41	115.5 (2)
N4—C5—C6	109.7 (2)	C43—C42—C41	120.5 (3)
N4—C5—H5A	109.7	C42—C43—C44	119.8 (3)
С6—С5—Н5А	109.7	C42—C43—H43	120.1
N4—C5—H5B	109.7	C44—C43—H43	120.1
C6—C5—H5B	109.7	C45—C44—C43	120.6 (3)
H5A—C5—H5B	108.2	C45—C44—H44	119.7
N1—C6—C5	110.2 (2)	C43—C44—H44	119.7
N1—C6—H6A	109.6	C44—C45—C46	120.2 (3)
С5—С6—Н6А	109.6	C44—C45—H45	119.9
N1—C6—H6B	109.6	C46—C45—H45	119.9
С5—С6—Н6В	109.6	C45—C46—C41	120.8 (3)
H6A—C6—H6B	108.1	C45—C46—H46	119.6
O17—C17—N1	122.8 (3)	C41—C46—H46	119.6
O17—C17—C11	119.7 (3)	C42—O42—C47	118.3 (2)
N1—C17—C11	117.4 (2)	O42—C47—H47A	109.5
C12—C11—C16	118.6 (3)	O42—C47—H47B	109.5
C12—C11—C17	118.6 (3)	H47A—C47—H47B	109.5
C16—C11—C17	122.8 (3)	O42—C47—H47C	109.5
C13—C12—C11	120.5 (3)	H47A—C47—H47C	109.5
C13—C12—H12	119.8	H47B—C47—H47C	109.5
C17—N1—C2—C3	126.9 (3)	C13—C14—C15—C16	0.5 (5)
C6—N1—C2—C3	-52.7 (3)	I14—C14—C15—C16	-178.4 (2)
N1-C2-C3-N4	55.4 (3)	C12—C11—C16—C15	-2.3 (4)
C2-C3-N4-C41	168.9 (2)	C17—C11—C16—C15	-178.7 (3)
C2—C3—N4—C5	-60.7 (3)	C14—C15—C16—C11	1.0 (4)
C41—N4—C5—C6	-166.1 (2)	C3—N4—C41—C46	19.4 (4)
C3—N4—C5—C6	61.6 (3)	C5—N4—C41—C46	-109.9 (3)
C17—N1—C6—C5	-126.5 (3)	C3—N4—C41—C42	-159.7 (2)
C2—N1—C6—C5	53.1 (3)	C5—N4—C41—C42	71.1 (3)
N4—C5—C6—N1	-56.4 (3)	C46—C41—C42—O42	-177.7 (2)
C6—N1—C17—O17	178.3 (3)	N4—C41—C42—O42	1.4 (4)
C2-N1-C17-017	-1.3 (5)	C46—C41—C42—C43	1.8 (4)
C6—N1—C17—C11	0.1 (4)	N4—C41—C42—C43	-179.1 (2)
C2—N1—C17—C11	-179.5 (3)	O42—C42—C43—C44	178.8 (3)
O17—C17—C11—C12	-78.4 (4)	C41—C42—C43—C44	-0.7 (4)
N1—C17—C11—C12	99.8 (3)	C42—C43—C44—C45	-0.8 (5)
O17—C17—C11—C16	97.9 (4)	C43—C44—C45—C46	1.1 (5)
N1—C17—C11—C16	-83.9 (4)	C44—C45—C46—C41	0.1 (5)
C16—C11—C12—C13	2.0 (4)	C42—C41—C46—C45	-1.5 (4)
C17—C11—C12—C13	178.6 (3)	N4—C41—C46—C45	179.4 (3)
C11—C12—C13—C14	-0.5 (5)	C43—C42—O42—C47	-1.1 (4)
C12—C13—C14—C15	-0.8 (5)	C41—C42—O42—C47	178.3 (3)
C12—C13—C14—I14	178.2 (2)		. /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3 <i>A</i> ···O17 ⁱ	0.97	2.50	3.422 (4)	159

 $D_{\rm x} = 1.575 {\rm Mg m^{-3}}$

 $\theta = 2.8 - 27.9^{\circ}$

 $\mu = 1.81 \text{ mm}^{-1}$ T = 296 K

Block, orange

 $0.36 \times 0.22 \times 0.18 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7668 reflections

Symmetry code: (i) -x+1, y+1/2, -z+1/2.

1-(3-lodobenzoyl)-4-(2-methoxyphenyl)piperazine (V)

Crystal data

C₁₈H₁₉IN₂O₂ $M_r = 422.25$ Orthorhombic, P2₁2₁2₁ a = 7.4528 (4) Å b = 17.1306 (9) Å c = 27.903 (1) Å V = 3562.4 (3) Å³ Z = 8F(000) = 1680

Data collection

Oxford Diffraction Xcalibur CCD	13774 measured reflections
diffractometer	/655 independent reflections
Radiation source: Enhance (Mo) X-ray Source	5048 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 2.8^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 9$
(CrysalisRed; Oxford Diffraction, 2009)	$k = -22 \rightarrow 15$
$T_{\min} = 0.542, \ T_{\max} = 0.722$	$l = -29 \rightarrow 36$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.0552P)^2 + 0.7763P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
7653 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
417 parameters	$\Delta \rho_{\rm max} = 1.12 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.69 \text{ e} \text{ Å}^{-3}$
Primary atom site location: difference Fourier	Absolute structure: Flack x determined using
map	1728 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
	<i>al.</i> , 2013)
	Absolute structure parameter: 0.456 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N11	0.2358 (9)	0.4763 (4)	0.2308 (2)	0.0432 (17)
C12	0.4162 (11)	0.5077 (5)	0.2385 (3)	0.046 (2)

H12A	0.4546	0.4963	0.2710	0.055*
H12B	0.4139	0.5640	0.2346	0.055*
C13	0.5480 (11)	0.4728 (5)	0.2034 (3)	0.046 (2)
H13A	0.6646	0.4971	0.2073	0.056*
H13B	0.5608	0.4173	0.2095	0.056*
N14	0.4820 (8)	0.4855 (3)	0.1547 (2)	0.0371 (15)
C15	0.3113 (11)	0.4474 (5)	0.1485 (3)	0.047 (2)
H15A	0.3233	0.3922	0.1555	0.057*
H15B	0.2724	0.4529	0.1155	0.057*
C16	0.1750 (11)	0.4825 (5)	0.1809 (3)	0.049(2)
H16A	0.1570	0.5369	0.1727	0.059*
H16B	0.0614	0.4555	0.1772	0.059*
C117	0 1183 (12)	0 4600 (4)	0.2664(3)	0.0401 (18)
0117	-0.0429(8)	0.4514(4)	0.2587(2)	0.0657(17)
C111	0.1887(10)	0.4497(4)	0.2367(2) 0.3164(3)	0.0007(17)
C112	0.1335(10)	0.4497(4) 0.4990(4)	0.3524(3)	0.0400(17) 0.0345(17)
H112	0.0589	0.5411	0.3456	0.0345 (17)
C112	0.0389	0.3411 0.4853 (4)	0.3450	0.041
1112	0.1097(10) 0.00026(11)	0.4855(4)	0.3383(3)	0.0380(18)
C114	0.09920(11) 0.2004(11)	0.33040(4)	0.43473(2)	0.0712(2)
U114	0.3004 (11)	0.4230(4)	0.4104(3)	0.044(2) 0.052*
ПП4	0.3372 0.2544 (11)	0.4147 0.2722 (5)	0.4419 0.2722 (2)	0.053
U115	0.3344 (11)	0.3733 (5)	0.3732 (3)	0.051 (2)
HII5	0.4285	0.3310	0.3799	0.061*
	0.2999 (11)	0.3861 (5)	0.3274 (3)	0.04/(2)
H116	0.3365	0.3524	0.3032	0.056*
C141	0.6137 (12)	0.4734 (4)	0.1186 (3)	0.0407 (18)
C142	0.7486 (11)	0.5304 (5)	0.1124 (3)	0.048 (2)
C143	0.8713 (13)	0.5237 (6)	0.0762 (3)	0.064 (3)
H143	0.9604	0.5613	0.0728	0.077*
C144	0.8645 (16)	0.4629 (7)	0.0452 (3)	0.078 (3)
H144	0.9494	0.4590	0.0208	0.093*
C145	0.7317 (15)	0.4064 (7)	0.0495 (4)	0.072 (3)
H145	0.7257	0.3652	0.0278	0.087*
C146	0.6085 (14)	0.4123 (5)	0.0863 (3)	0.054 (2)
H146	0.5202	0.3742	0.0895	0.064*
O142	0.7427 (8)	0.5911 (3)	0.1439 (2)	0.0599 (17)
C147	0.8367 (13)	0.6603 (6)	0.1330 (4)	0.075 (3)
H17A	0.7972	0.7014	0.1539	0.113*
H17B	0.8140	0.6747	0.1004	0.113*
H17C	0.9630	0.6519	0.1375	0.113*
N21	0.2574 (9)	0.7192 (4)	0.2625 (2)	0.0410 (16)
C22	0.3201 (11)	0.7090 (5)	0.3111 (3)	0.046 (2)
H22A	0.4368	0.7335	0.3146	0.055*
H22B	0.3337	0.6538	0.3178	0.055*
C23	0.1894 (12)	0.7449 (5)	0.3471 (3)	0.050 (2)
H23A	0.2306	0.7351	0.3795	0.059*
H23B	0.1824	0.8009	0.3424	0.059*
N24	0.0133 (8)	0.7098 (4)	0.3400 (2)	0.0370 (15)
	~ /	× /	× /	× /

C25	-0.0519 (10)	0.7253 (5)	0.2915 (3)	0.0403 (19)
H25A	-0.0619	0.7812	0.2867	0.048*
H25B	-0.1702	0.7025	0.2876	0.048*
C26	0.0736 (10)	0.6914 (5)	0.2548 (3)	0.043 (2)
H26A	0.0712	0.6349	0.2568	0.052*
H26B	0.0340	0.7062	0.2230	0.052*
C217	0.3746 (11)	0.7340 (4)	0.2273 (3)	0.0384 (17)
O217	0.5362 (8)	0.7387 (4)	0.2348 (2)	0.0592 (17)
C211	0.3042 (10)	0.7458 (4)	0.1784 (3)	0.0360 (17)
C212	0.3596 (11)	0.6946 (4)	0.1411 (3)	0.0387 (18)
H212	0.4307	0.6513	0.1476	0.046*
C213	0.3053 (11)	0.7109 (4)	0.0950 (3)	0.0422 (19)
I213	0.38276 (10)	0.63124 (4)	0.04062 (2)	0.0694 (2)
C214	0.2027 (12)	0.7747 (5)	0.0834 (3)	0.051 (2)
H214	0.1679	0.7842	0.0520	0.062*
C215	0.1535 (12)	0.8239 (5)	0.1198 (3)	0.053 (2)
H215	0.0857	0.8679	0.1126	0.063*
C216	0.2007 (11)	0.8103 (5)	0.1664 (3)	0.047 (2)
H216	0.1633	0.8446	0.1902	0.057*
C241	-0.1152 (11)	0.7211 (4)	0.3769 (2)	0.0396 (17)
C242	-0.2523 (11)	0.6650 (5)	0.3815 (3)	0.046 (2)
C243	-0.3767 (13)	0.6729 (6)	0.4185 (3)	0.063 (3)
H243	-0.4674	0.6360	0.4217	0.075*
C244	-0.3675 (14)	0.7364 (6)	0.4516 (3)	0.067 (3)
H244	-0.4552	0.7438	0.4749	0.080*
C245	-0.2271 (16)	0.7849 (7)	0.4476 (3)	0.077 (3)
H245	-0.2116	0.8235	0.4707	0.093*
C246	-0.1052 (14)	0.7798 (5)	0.4108 (3)	0.053 (2)
H246	-0.0139	0.8166	0.4086	0.064*
O242	-0.2497 (8)	0.6053 (3)	0.3494 (2)	0.0570 (17)
C247	-0.3468 (13)	0.5376 (5)	0.3602 (4)	0.077 (3)
H27A	-0.3146	0.4969	0.3382	0.115*
H27B	-0.4729	0.5482	0.3577	0.115*
H27C	-0.3194	0.5212	0.3923	0.115*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N11	0.035 (4)	0.062 (4)	0.033 (4)	-0.011 (3)	-0.001 (3)	0.001 (3)
C12	0.037 (5)	0.061 (5)	0.039 (4)	-0.013 (4)	0.000 (4)	-0.005 (4)
C13	0.038 (5)	0.056 (5)	0.045 (5)	-0.005 (4)	-0.004 (4)	0.000 (4)
N14	0.035 (4)	0.044 (4)	0.032 (3)	-0.005 (3)	-0.002 (3)	-0.001 (3)
C15	0.047 (5)	0.059 (5)	0.037 (4)	-0.005 (4)	-0.004 (4)	-0.014 (4)
C16	0.026 (5)	0.073 (6)	0.049 (5)	-0.010 (4)	-0.008 (4)	0.006 (4)
C117	0.035 (5)	0.041 (4)	0.044 (4)	0.008 (4)	-0.001 (4)	0.003 (3)
O117	0.037 (4)	0.100 (5)	0.060 (4)	-0.005 (3)	-0.002(3)	0.011 (3)
C111	0.029 (4)	0.039 (4)	0.054 (5)	-0.001 (3)	0.012 (4)	-0.003 (4)
C112	0.028 (4)	0.029 (4)	0.047 (4)	-0.002(3)	-0.001(4)	0.002 (3)

C113	0.031 (4)	0.038 (4)	0.047 (5)	0.001 (3)	0.004 (4)	-0.008 (3)
I113	0.0901 (5)	0.0754 (4)	0.0481 (3)	0.0307 (4)	-0.0073 (4)	-0.0164 (3)
C114	0.040 (5)	0.050 (5)	0.043 (5)	0.004 (4)	-0.003 (4)	0.012 (4)
C115	0.042 (5)	0.046 (4)	0.063 (5)	0.010 (4)	0.004 (5)	0.003 (4)
C116	0.047 (5)	0.048 (5)	0.046 (5)	0.007 (4)	0.011 (4)	0.007 (4)
C141	0.037 (5)	0.047 (4)	0.039 (4)	0.008 (4)	-0.003 (4)	0.001 (3)
C142	0.035 (5)	0.061 (6)	0.047 (5)	0.011 (4)	0.000 (4)	-0.001 (4)
C143	0.045 (6)	0.077 (6)	0.070 (6)	0.010 (5)	0.017 (6)	0.015 (5)
C144	0.070 (8)	0.123 (9)	0.040 (5)	0.047 (7)	0.014 (7)	0.012 (6)
C145	0.068 (7)	0.097 (8)	0.052 (6)	0.037 (6)	-0.013 (6)	-0.024 (6)
C146	0.056 (6)	0.062 (5)	0.042 (4)	0.010 (5)	-0.005 (5)	-0.005 (4)
O142	0.047 (4)	0.057 (4)	0.076 (4)	-0.008(3)	0.009 (3)	-0.003 (3)
C147	0.056 (7)	0.081 (8)	0.089 (8)	-0.026 (5)	-0.011 (6)	0.019 (6)
N21	0.032 (4)	0.062 (4)	0.029 (3)	-0.007 (3)	0.002 (3)	0.003 (3)
C22	0.033 (5)	0.069 (5)	0.037 (4)	-0.005 (4)	-0.002 (4)	0.002 (4)
C23	0.041 (5)	0.059 (6)	0.048 (5)	-0.009 (4)	-0.008 (4)	0.002 (4)
N24	0.028 (4)	0.049 (4)	0.034 (4)	0.001 (3)	-0.001 (3)	0.005 (3)
C25	0.029 (4)	0.054 (5)	0.037 (4)	-0.003 (3)	-0.002 (4)	0.008 (4)
C26	0.036 (5)	0.061 (5)	0.033 (4)	-0.014 (4)	-0.001 (4)	0.000 (3)
C217	0.034 (5)	0.038 (4)	0.044 (4)	-0.007 (4)	0.005 (4)	0.001 (3)
O217	0.033 (4)	0.090 (5)	0.055 (4)	-0.011 (3)	-0.003 (3)	0.018 (3)
C211	0.027 (4)	0.040 (4)	0.040 (4)	-0.007 (3)	0.007 (4)	0.003 (3)
C212	0.031 (5)	0.046 (5)	0.039 (4)	-0.001 (4)	0.002 (4)	0.006 (3)
C213	0.032 (4)	0.047 (5)	0.048 (5)	0.002 (4)	0.004 (4)	-0.004 (4)
I213	0.0749 (5)	0.0825 (4)	0.0509 (4)	0.0113 (4)	-0.0022 (4)	-0.0170 (3)
C214	0.044 (5)	0.065 (6)	0.046 (5)	-0.002 (4)	-0.007 (4)	0.013 (4)
C215	0.052 (6)	0.046 (5)	0.059 (6)	0.021 (4)	0.006 (5)	0.012 (4)
C216	0.038 (5)	0.048 (5)	0.056 (6)	0.007 (4)	0.009 (4)	-0.006 (4)
C241	0.038 (5)	0.051 (4)	0.030 (4)	0.012 (4)	0.003 (4)	0.007 (3)
C242	0.034 (5)	0.054 (5)	0.049 (5)	0.003 (4)	0.006 (4)	0.012 (4)
C243	0.040 (5)	0.085 (6)	0.063 (6)	0.019 (5)	0.011 (5)	0.033 (5)
C244	0.050 (6)	0.106 (8)	0.044 (5)	0.023 (6)	0.014 (6)	0.022 (5)
C245	0.083 (9)	0.110 (9)	0.039 (5)	0.052 (7)	0.007 (6)	-0.012 (5)
C246	0.057 (6)	0.057 (5)	0.046 (4)	0.018 (5)	-0.008 (5)	-0.004 (4)
O242	0.049 (4)	0.048 (4)	0.074 (4)	-0.013 (3)	0.004 (3)	-0.001 (3)
C247	0.048 (6)	0.055 (6)	0.128 (10)	-0.022 (5)	-0.016 (6)	0.024 (6)

Geometric parameters (Å, °)

N11—C117	1.352 (10)	N21—C217	1.339 (9)
N11—C12	1.464 (10)	N21—C22	1.445 (9)
N11—C16	1.468 (10)	N21—C26	1.466 (9)
C12—C13	1.511 (11)	C22—C23	1.529 (12)
C12—H12A	0.9700	C22—H22A	0.9700
C12—H12B	0.9700	C22—H22B	0.9700
C13—N14	1.462 (9)	C23—N24	1.457 (10)
C13—H13A	0.9700	C23—H23A	0.9700
С13—Н13В	0.9700	C23—H23B	0.9700

N14—C141	1.422 (9)	N24—C241	1.420 (9)
N14—C15	1.440 (10)	N24—C25	1.461 (9)
C15—C16	1.487 (11)	C25—C26	1.504 (10)
С15—Н15А	0.9700	С25—Н25А	0.9700
C15—H15B	0.9700	С25—Н25В	0.9700
C16—H16A	0.9700	C26—H26A	0.9700
C16—H16B	0.9700	C26—H26B	0.9700
C117—O117	1.229 (10)	C217—O217	1.225 (9)
C117—C111	1.503 (11)	C217—C211	1.476 (10)
C111—C112	1.374 (10)	C211—C216	1.389 (11)
C111—C116	1 403 (11)	$C_{211} - C_{212}$	1 423 (10)
C112—C113	1.373 (10)	C_{212} C_{213}	1.375 (10)
C112—H112	0.9300	C212—H212	0.9300
C113—C114	1 389 (10)	C_{213} C_{214}	1.372(11)
C113—I113	2 098 (7)	C_{213} C_{2	2 121 (8)
C114—C115	1404(11)	C_{214} C_{215}	1.369(11)
C114—H114	0.9300	C214 C213	0.9300
	1 357 (11)	$C_{214} = 11214$	1 366 (11)
C115 H115	0.0300	$C_{215} = C_{215}$	0.0300
C116 H116	0.9300	$C_{215} - H_{215}$	0.9300
C_{110} C_{141} C_{146}	1 381 (10)	$C_{210} - H_{210}$	1.382(10)
$C_{141} = C_{140}$	1.361(10) 1.412(11)	$C_{241} = C_{240}$	1.382(10)
C141 - C142	1.412(11) 1.262(10)	$C_{241} = C_{242}$	1.409 (11)
C142 - 0142	1.302(10)	$C_{242} = 0_{242}$	1.339 (10)
C142 - C143	1.308 (12)	$C_{242} = C_{243}$	1.395 (12)
C143 - C144	1.355 (13)	$C_{243} = C_{244}$	1.429 (13)
C143—H143	0.9300	C243—H243	0.9300
C144—C145	1.390 (15)	C244—C245	1.340 (14)
С144—Н144	0.9300	C244—H244	0.9300
C145—C146	1.383 (13)	C245—C246	1.375 (12)
С145—Н145	0.9300	С245—Н245	0.9300
C146—H146	0.9300	C246—H246	0.9300
O142—C147	1.410 (10)	O242—C247	1.400 (9)
С147—Н17А	0.9600	С247—Н27А	0.9600
C147—H17B	0.9600	С247—Н27В	0.9600
C147—H17C	0.9600	С247—Н27С	0.9600
C117—N11—C12	124.3 (7)	C217—N21—C22	120.0 (7)
C117—N11—C16	120.7 (7)	C217—N21—C26	124.3 (7)
C12—N11—C16	113.3 (6)	C22—N21—C26	113.6 (6)
N11—C12—C13	110.9 (6)	N21—C22—C23	111.2 (7)
N11—C12—H12A	109.5	N21—C22—H22A	109.4
C13—C12—H12A	109.5	C23—C22—H22A	109.4
N11—C12—H12B	109.5	N21—C22—H22B	109.4
C13—C12—H12B	109.5	C23—C22—H22B	109.4
H12A—C12—H12B	108.1	H22A—C22—H22B	108.0
N14—C13—C12	109.0 (7)	N24—C23—C22	108.6 (7)
N14—C13—H13A	109.9	N24—C23—H23A	110.0
C12—C13—H13A	109.9	C22—C23—H23A	110.0

N14—C13—H13B	109.9	N24—C23—H23B	110.0
C12—C13—H13B	109.9	С22—С23—Н23В	110.0
H13A—C13—H13B	108.3	H23A—C23—H23B	108.3
C141—N14—C15	117.3 (6)	C241—N24—C23	116.9 (6)
C141—N14—C13	113.9 (6)	C241—N24—C25	115.0 (6)
C15—N14—C13	110.0 (6)	C23—N24—C25	110.5 (6)
N14—C15—C16	110.4 (6)	N24—C25—C26	110.7 (6)
N14—C15—H15A	109.6	N24—C25—H25A	109.5
C16—C15—H15A	109.6	C26—C25—H25A	109.5
N14-C15-H15B	109.6	N24—C25—H25B	109.5
C16—C15—H15B	109.6	$C_{26} = C_{25} = H_{25B}$	109.5
H15A - C15 - H15B	108.1	$H_{25}^{-} = H_{25}^{-} = H_{$	108.1
N11-C16-C15	109.7(7)	$N_{21} - C_{26} - C_{25}$	110.9 (6)
N11-C16-H16A	109.7 (7)	N21—C26—H26A	109.5
C_{15} C_{16} H_{16A}	109.7	C_{25} C_{26} H_{26A}	109.5
N11-C16-H16B	109.7	N21_C26_H26B	109.5
C_{15} C_{16} H_{16B}	109.7	C_{25} C_{26} H_{26B}	109.5
	109.7	H26A C26 H26D	109.5
0117 0117 0117 0111	100.2 122.0 (7)	$M_{20}^{-1} M_{20}^{-1} M_{2$	100.1 121.0(7)
$O_{117} = O_{117} = O_{111}$	122.0(7)	$O_{21} = O_{21} = O$	121.9(7)
	119.2(7)	$V_{21} = C_{21} = C_{211}$	120.0(7)
	110.7(7)	$N_{21} = C_{217} = C_{211}$	110.1(7)
	119.7 (8)	$C_{216} - C_{211} - C_{212}$	118.3(7)
	120.1 (7)	$C_{210} = C_{211} = C_{217}$	122.0(7)
	120.0 (7)	C212—C211—C217	119.3 (7)
C113—C112—C111	119.2 (7)	C213—C212—C211	118.3 (7)
C113—C112—H112	120.4	C213—C212—H212	120.9
C111—C112—H112	120.4	C211—C212—H212	120.9
C112—C113—C114	122.5 (7)	C214—C213—C212	123.1 (7)
C112—C113—I113	120.2 (5)	C214—C213—I213	119.7 (6)
C114—C113—I113	117.2 (6)	C212—C213—I213	117.2 (6)
C113—C114—C115	117.3 (8)	C215—C214—C213	117.7 (8)
C113—C114—H114	121.3	C215—C214—H214	121.1
C115—C114—H114	121.3	C213—C214—H214	121.1
C116—C115—C114	120.8 (8)	C216—C215—C214	122.0 (8)
C116—C115—H115	119.6	C216—C215—H215	119.0
C114—C115—H115	119.6	C214—C215—H215	119.0
C115—C116—C111	120.5 (8)	C215—C216—C211	120.6 (8)
C115—C116—H116	119.7	C215—C216—H216	119.7
С111—С116—Н116	119.7	С211—С216—Н216	119.7
C146—C141—C142	117.7 (8)	C246—C241—C242	118.3 (8)
C146—C141—N14	123.5 (8)	C246—C241—N24	124.0 (8)
C142—C141—N14	118.5 (7)	C242—C241—N24	117.5 (7)
O142—C142—C143	124.3 (8)	O242—C242—C243	124.8 (8)
O142—C142—C141	115.2 (7)	O242—C242—C241	116.3 (7)
C143—C142—C141	120.5 (8)	C243—C242—C241	118.9 (8)
C144—C143—C142	120.8 (10)	C242—C243—C244	121.4 (9)
C144—C143—H143	119.6	C242—C243—H243	119.3
C142—C143—H143	119.6	C244—C243—H243	119.3

C143—C144—C145	120.4 (10)	C245—C244—C243	117.1 (9)
C143—C144—H144	119.8	C245—C244—H244	121.5
C145—C144—H144	119.8	C243—C244—H244	121.5
C146—C145—C144	119.1 (10)	C244—C245—C246	122.6 (10)
C146—C145—H145	120.4	C244—C245—H245	118.7
C144—C145—H145	120.4	C246—C245—H245	118.7
C141 - C146 - C145	121.4 (10)	$C_{245} - C_{246} - C_{241}$	121.5(10)
C141—C146—H146	1193	$C_{245} - C_{246} - H_{246}$	119.3
C145—C146—H146	119.3	$C_{241} - C_{246} - H_{246}$	119.3
$C_{142} - O_{142} - C_{147}$	119.1 (8)	$C_{242} = 0.242 = C_{247}$	118 3 (8)
0142 - C147 - H17A	109.5	0242 - 0242 - 0217	109.5
0142 - C147 - H17B	109.5	0242 - 0247 - H27R	109.5
H17A C147 H17B	109.5	$H_{27A} = C_{247} = H_{27B}$	109.5
1117A - C147 - 1117B 0142 - C147 - H17C	109.5	Ω_{247}^{-127}	109.5
$H_{174} = C_{147} = H_{17C}$	109.5	1274 - 2247 - 11270	109.5
H17A - C147 - H17C	109.5	$H_2/A = C_2 4/ = H_2/C$	109.5
n1/b	109.3	$n_2/B - C_2 4/ - n_2/C$	109.5
C117—N11—C12—C13	142 6 (7)	C217—N21—C22—C23	142 6 (7)
C16-N11-C12-C13	-522(9)	$C_{26} N_{21} C_{22} C_{23}$	-53.0(9)
N11 - C12 - C13 - N14	55.0.(9)	$N_{21} = C_{22} = C_{23} = N_{24}$	56 7 (9)
C12 - C13 - N14 - C141	164.7(6)	$C_{22} = C_{23} = N_{24} = C_{241}$	1653(6)
C12 - C13 - N14 - C15	-61.2(8)	$C_{22} = C_{23} = N_{24} = C_{25}$	-60.6(8)
$C_{12} = C_{13} = N_{14} = C_{15}$	-1643(6)	$C_{22} = C_{23} = N_{24} = C_{23}$	-1645(6)
$C_{13} = N_{14} + C_{15} + C_{16}$	63 4 (0)	$C_{241} = N_{24} = C_{25} = C_{26}$	60.4(8)
$C_{117} N_{11} C_{16} C_{15}$	-1414(7)	$C_{23} = N_{24} = C_{23} = C_{20}$	-145.0(7)
C12 N11 $C16$ $C15$	141.4(7)	$C_{21} = N_{21} = C_{20} = C_{23}$	143.0(7)
N14 C15 C16 N11	-57.7(9)	N24 C25 C26 N21	-541(9)
114 - 15 - 10 - 117	162 6 (8)	$N_{24} = C_{23} = C_{20} = N_{21}$	34.1(9)
C_{12} N11 C_{117} O117	-1.6(11)	$C_{22} = N_{21} = C_{21} = C_{21} = C_{21}$	-1621(7)
C12 N11 $C117$ $C111$	-1.0(11) -10.2(11)	$C_{20} = N_{21} = C_{217} = C_{217} = C_{217}$	-102.1(7)
C12 NII $C117$ $C111$	-19.5(11)	$C_{22} = N_{21} = C_{217} = C_{211}$	-1/8.0(0)
	1/0.5(7)	$C_{20} = N_{21} = C_{217} = C_{211}$	18.8(11)
	-03.4(10)	021/-021/-0211-0210	-111.5(9)
	118.4 (8)	$N_{21} = C_{21} = C_{211} = C_{210}$	67.6(10)
	111.6(9)	021/-021/-0211-0212	61.3(10)
	-66.6(10)	$N_{21} = C_{21} = C_{211} = C_{212}$	-119.5 (8)
CII6—CIII—CII2—CII3	0.6(11)	$C_{216} - C_{211} - C_{212} - C_{213}$	-1.1(11)
	1/5.5(/)	$C_{21} = C_{211} = C_{212} = C_{213}$	-1/4.2(7)
CIII—CII2—CII3—CII4	-0.3(12)	$C_{211} = C_{212} = C_{213} = C_{214}$	1.0 (12)
	-1//.4(5)	$C_{211} - C_{212} - C_{213} - I_{213}$	-1//.9(5)
C112—C113—C114—C115	0.0 (12)	C212—C213—C214—C215	0.1 (13)
1113—C113—C114—C115	177.2 (6)	1213—C213—C214—C215	179.0 (6)
C113—C114—C115—C116	0.0 (13)	C213—C214—C215—C216	-1.1 (14)
C114—C115—C116—C111	0.3 (13)	C214—C215—C216—C211	1.0 (14)
C112—C111—C116—C115	-0.6 (12)	C212—C211—C216—C215	0.2 (12)
C117—C111—C116—C115	-175.6 (8)	C217—C211—C216—C215	173.0 (8)
C15—N14—C141—C146	-19.2 (11)	C23—N24—C241—C246	20.0 (10)
C13—N14—C141—C146	111.4 (8)	C25—N24—C241—C246	-112.1 (8)
C15—N14—C141—C142	155.1 (7)	C23—N24—C241—C242	-154.4 (7)

C13—N14—C141—C142 C146—C141—C142—O142 N14—C141—C142—O142 C146—C141—C142—C143 N14—C141—C142—C143 O142—C142—C143—C144 C141—C142—C143—C144 C142—C143—C144—C145 C143—C144—C145—C146 C142—C141—C146—C145 N14—C141—C146—C145 C144—C145—C146—C141 C143—C142—O142—C147	-74.3 (9) 177.3 (7) 2.7 (10) -1.3 (12) -175.9 (7) -177.7 (8) 0.9 (14) 0.4 (15) -1.2 (15) 0.5 (13) 174.9 (7) 0.7 (14) 16.0 (12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73.5 (8) -175.5 (7) -0.8 (10) 2.9 (11) 177.6 (7) 178.3 (8) 0.1 (12) -4.7 (13) 6.4 (14) -3.6 (14) -1.3 (12) -175.7 (7) -16.5 (12)
C143—C142—O142—C147	16.0 (12)	C243—C242—O242—C247	-16.5 (12)
C141—C142—O142—C147	-162.5 (7)	C241—C242—O242—C247	161.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
С112—Н112…О242	0.93	2.55	3.388 (9)	150
C116—H116…O217 ⁱ	0.93	2.41	3.301 (10)	159
C212—H212…O142	0.93	2.55	3.363 (9)	147
C216—H216…O117 ⁱⁱ	0.93	2.49	3.407 (11)	169
C115—H115…Cg6 ⁱ	0.93	2.67	3.505 (9)	149
C215—H215····Cg7 ⁱⁱ	0.93	2.81	3.566 (9)	140

F(000) = 664

 $\theta = 2.8 - 27.9^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Plate, yellow

 $0.48 \times 0.48 \times 0.24 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.326 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3467 reflections

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) -*x*, *y*+1/2, -*z*+1/2.

1-(2-Fluorobenzoyl)-4-(2-methoxyphenyl)piperazine (VI)

Crystal data

C₁₈H₁₉FN₂O₂ $M_r = 314.35$ Monoclinic, $P2_1/n$ a = 7.451 (1) Å b = 11.199 (3) Å c = 19.138 (5) Å $\beta = 99.59$ (2)° V = 1574.6 (6) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur CCD	6456 measured reflections
diffractometer	3467 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2081 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
ω scans	$\theta_{\rm max} = 27.9^\circ, \ \theta_{\rm min} = 2.8^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 5$
(CrysalisRed; Oxford Diffraction, 2009)	$k = -14 \rightarrow 11$
$T_{\min} = 0.898, T_{\max} = 0.955$	$l = -16 \rightarrow 25$

Refinement

Refinement on F^2	Primary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.02	H-atom parameters constrained
3467 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0558P)^2 + 0.1876P]$
208 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.39928 (19)	0.44822 (13)	0.20339 (9)	0.0579 (4)	
C2	0.2874 (2)	0.35004 (15)	0.17138 (11)	0.0612 (5)	
H2A	0.1763	0.3810	0.1436	0.073*	
H2B	0.2545	0.2988	0.2081	0.073*	
C3	0.3905 (2)	0.27991 (16)	0.12493 (10)	0.0579 (5)	
H3A	0.3172	0.2130	0.1045	0.069*	
H3B	0.4166	0.3300	0.0865	0.069*	
N4	0.56074 (18)	0.23587 (12)	0.16578 (7)	0.0474 (4)	
C5	0.6732 (2)	0.33501 (16)	0.19588 (10)	0.0563 (5)	
H5A	0.7048	0.3843	0.1580	0.068*	
H5B	0.7850	0.3047	0.2234	0.068*	
C6	0.5738 (2)	0.40891 (16)	0.24239 (11)	0.0594 (5)	
H6A	0.5543	0.3622	0.2831	0.071*	
H6B	0.6469	0.4779	0.2594	0.071*	
C17	0.3616 (2)	0.56321 (16)	0.19222 (10)	0.0542 (5)	
O17	0.46610 (18)	0.64224 (11)	0.21579 (8)	0.0794 (5)	
C11	0.1807 (2)	0.59256 (14)	0.14910 (10)	0.0501 (4)	
C12	0.1624 (3)	0.61463 (18)	0.07854 (12)	0.0662 (5)	
F12	0.3121 (2)	0.60631 (15)	0.04794 (8)	0.1099 (5)	
C13	-0.0009 (4)	0.6427 (2)	0.03739 (12)	0.0832 (7)	
H13	-0.0083	0.6570	-0.0109	0.100*	
C14	-0.1508 (3)	0.64914 (19)	0.06847 (14)	0.0803 (7)	
H14	-0.2630	0.6669	0.0413	0.096*	
C15	-0.1387 (3)	0.63003 (18)	0.13860 (14)	0.0716 (6)	
H15	-0.2421	0.6361	0.1597	0.086*	
C16	0.0262 (3)	0.60163 (16)	0.17912 (11)	0.0604 (5)	
H16	0.0330	0.5884	0.2275	0.073*	
C41	0.6480 (2)	0.14823 (15)	0.13071 (9)	0.0474 (4)	
C42	0.5643 (2)	0.03737 (15)	0.11612 (9)	0.0485 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C43	0.6482 (3)	-0.04929 (17)	0.08283 (10)	0.0619 (5)
H43	0.5901	-0.1221	0.0719	0.074*
C44	0.8164 (3)	-0.0300 (2)	0.06540 (12)	0.0757 (6)
H44	0.8722	-0.0897	0.0429	0.091*
C45	0.9016 (3)	0.0750 (2)	0.08078 (13)	0.0803 (7)
H45	1.0172	0.0874	0.0699	0.096*
C46	0.8171 (3)	0.16411 (19)	0.11264 (11)	0.0655 (5)
H46	0.8760	0.2369	0.1222	0.079*
O42	0.40191 (17)	0.02227 (10)	0.13810 (7)	0.0611 (4)
C47	0.3216 (3)	-0.09241 (18)	0.13149 (14)	0.0790 (7)
H47A	0.2080	-0.0905	0.1489	0.119*
H47B	0.3004	-0.1158	0.0825	0.119*
H47C	0.4018	-0.1488	0.1585	0.119*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0582 (9)	0.0372 (8)	0.0731 (11)	0.0040 (7)	-0.0045 (8)	-0.0065 (7)
C2	0.0549 (10)	0.0353 (9)	0.0878 (14)	0.0019 (8)	-0.0046 (9)	-0.0050 (9)
C3	0.0621 (11)	0.0386 (10)	0.0658 (12)	0.0001 (8)	-0.0100 (9)	-0.0035 (9)
N4	0.0506 (8)	0.0354 (7)	0.0535 (9)	0.0012 (6)	0.0005 (6)	-0.0030 (6)
C5	0.0556 (10)	0.0421 (10)	0.0666 (13)	-0.0011 (8)	-0.0035 (9)	-0.0039 (9)
C6	0.0627 (11)	0.0443 (10)	0.0646 (12)	0.0044 (8)	-0.0089 (9)	-0.0067 (9)
C17	0.0622 (11)	0.0374 (10)	0.0617 (12)	0.0019 (8)	0.0060 (9)	-0.0052 (8)
O17	0.0789 (9)	0.0420 (8)	0.1078 (12)	-0.0044 (7)	-0.0123 (8)	-0.0074 (8)
C11	0.0639 (11)	0.0300 (8)	0.0553 (12)	0.0017 (7)	0.0065 (9)	-0.0025 (8)
C12	0.0794 (14)	0.0551 (12)	0.0662 (14)	0.0059 (10)	0.0182 (11)	-0.0026 (10)
F12	0.1203 (11)	0.1322 (13)	0.0871 (10)	0.0165 (10)	0.0457 (9)	0.0106 (9)
C13	0.1147 (19)	0.0718 (15)	0.0559 (13)	0.0156 (14)	-0.0068 (13)	0.0054 (11)
C14	0.0832 (16)	0.0598 (14)	0.0884 (19)	0.0162 (11)	-0.0137 (13)	-0.0055 (12)
C15	0.0657 (13)	0.0527 (12)	0.0955 (18)	0.0073 (9)	0.0108 (12)	-0.0055 (12)
C16	0.0701 (13)	0.0493 (11)	0.0613 (12)	0.0049 (9)	0.0090 (10)	0.0003 (9)
C41	0.0557 (10)	0.0419 (9)	0.0439 (10)	0.0034 (8)	0.0065 (8)	0.0021 (8)
C42	0.0529 (10)	0.0431 (10)	0.0485 (10)	0.0050 (8)	0.0050 (8)	0.0011 (8)
C43	0.0756 (13)	0.0482 (11)	0.0609 (12)	0.0059 (9)	0.0089 (10)	-0.0102 (9)
C44	0.0900 (16)	0.0676 (15)	0.0767 (15)	0.0144 (12)	0.0351 (13)	-0.0088 (12)
C45	0.0776 (15)	0.0797 (16)	0.0935 (17)	0.0048 (13)	0.0429 (13)	-0.0002 (13)
C46	0.0706 (13)	0.0580 (12)	0.0722 (14)	-0.0045 (10)	0.0241 (10)	0.0009 (10)
O42	0.0608 (8)	0.0385 (7)	0.0858 (10)	-0.0039 (5)	0.0179 (7)	-0.0074 (6)
C47	0.0788 (14)	0.0439 (12)	0.114 (2)	-0.0097 (10)	0.0165 (13)	-0.0006 (12)

Geometric parameters (Å, °)

N1—C17	1.328 (2)	C13—C14	1.352 (3)	
N1—C2	1.452 (2)	C13—H13	0.9300	
N1—C6	1.456 (2)	C14—C15	1.347 (3)	
С2—С3	1.492 (3)	C14—H14	0.9300	
C2—H2A	0.9700	C15—C16	1.376 (3)	

С2—Н2В	0.9700	C15—H15	0.9300
C3—N4	1 461 (2)	C16—H16	0.9300
C3—H3A	0.9700	C41-C46	1 372 (2)
C3—H3B	0.9700	C41-C42	1.372(2) 1 396(2)
N4-C41	1408(2)	C41 - C42 C42 - 042	1.356(2)
N4 C5	1.400(2) 1.451(2)	$C_{+2} = C_{+2}$	1.350(2)
Γ_{5}	1.431(2) 1.408(2)	$C_{42} - C_{43}$	1.308(2) 1.367(3)
C5 U5A	0.0700	C_{+3} H_{43}	0.0300
C5 U5P	0.9700	C_{45}	1.346(3)
	0.9700	C44 - C43	1.340 (3)
	0.9700		0.9300
Со—нов	0.9700	C45 - C46	1.375 (3)
017-017	1.215 (2)	C45—H45	0.9300
	1.495 (3)	C46—H46	0.9300
CII—CI2	1.357 (3)	042	1.414 (2)
CII—CI6	1.374 (2)	C47—H47A	0.9600
C12—F12	1.347 (2)	C47—H47B	0.9600
C12—C13	1.371 (3)	С47—Н47С	0.9600
C17—N1—C2	125.13 (15)	C11—C12—C13	123.1 (2)
C17—N1—C6	121.51 (15)	C14—C13—C12	118.6 (2)
C2—N1—C6	112.85 (14)	C14—C13—H13	120.7
N1—C2—C3	109.49 (15)	C12—C13—H13	120.7
N1—C2—H2A	109.8	C15—C14—C13	120.4 (2)
С3—С2—Н2А	109.8	C15—C14—H14	119.8
N1—C2—H2B	109.8	C13—C14—H14	119.8
C3—C2—H2B	109.8	C14—C15—C16	120.2 (2)
H2A—C2—H2B	108.2	C14—C15—H15	119.9
N4—C3—C2	110.25 (15)	C16—C15—H15	119.9
N4—C3—H3A	109.6	C11—C16—C15	120.9 (2)
C2—C3—H3A	109.6	C11—C16—H16	119.6
N4-C3-H3B	109.6	C15-C16-H16	119.6
C^2 — C^3 — H^3B	109.6	C46-C41-C42	117.56 (16)
$H_{3A} = C_{3} = H_{3B}$	108.1	C46-C41-N4	123 10 (16)
C41 - N4 - C5	116 16 (14)	C42-C41-N4	119 27 (14)
C41 - N4 - C3	114 14 (14)	042 - C42 - C43	119.27(11) 123.81(17)
C_{5} N4 C_{3}	110.28(13)	042 - C42 - C41	125.01(17) 116.13(14)
N4 - C5 - C6	110.20(13) 110.41(14)	$C_{42} = C_{42} = C_{41}$	120.04(17)
N4 C5 C0	109.6	C44 - C43 - C42	120.64 (17)
C6-C5-H5A	109.6	C44 - C43 - H43	110.7
NA C5 H5B	109.0	C42 $C43$ $H43$	110.7
N4-C5-H5B	109.0	$C_{42} = C_{43} = 1143$	119.7
	109.0	C45 C44 H44	120.19 (19)
$\frac{113}{100}$	110.1	$C_{43} = C_{44} = H_{44}$	119.9
N1 C6 H6A	100.49 (13)	$C_{43} = C_{44} = \Pi_{44}$	119.9
$C_5 C_6 U_6 \Lambda$	107.0	C44 C45 U45	119.0 (2)
N1 C6 H6P	109.0	$C_{44} - C_{43} - \Pi_{43}$	120.1
	107.0	$C_{40} - C_{43} - \Pi_{43}$	120.1 121.7(2)
	109.0	C41 - C40 - C43	121.7(2)
поч—со—нов	100.1	U41-U40-H40	119.2

O17—C17—N1	122.81 (17)	C45—C46—H46	119.2
O17—C17—C11	120.51 (16)	C42—O42—C47	118.15 (14)
N1—C17—C11	116.68 (15)	O42—C47—H47A	109.5
C12—C11—C16	116.74 (18)	O42—C47—H47B	109.5
C12—C11—C17	121.44 (17)	H47A—C47—H47B	109.5
C16—C11—C17	121.80 (17)	O42—C47—H47C	109.5
F12—C12—C11	117.80 (19)	H47A—C47—H47C	109.5
F12—C12—C13	119.1 (2)	H47B—C47—H47C	109.5
C17—N1—C2—C3	116.05 (19)	C11—C12—C13—C14	0.2 (3)
C6—N1—C2—C3	-55.8 (2)	C12—C13—C14—C15	0.9 (3)
N1—C2—C3—N4	57.7 (2)	C13—C14—C15—C16	-1.1 (3)
C2—C3—N4—C41	167.03 (14)	C12—C11—C16—C15	0.9 (3)
C2—C3—N4—C5	-60.08 (19)	C17—C11—C16—C15	179.28 (17)
C41—N4—C5—C6	-169.72 (14)	C14—C15—C16—C11	0.2 (3)
C3—N4—C5—C6	58.43 (19)	C5—N4—C41—C46	-12.8 (2)
C17—N1—C6—C5	-117.53 (19)	C3—N4—C41—C46	117.23 (19)
C2—N1—C6—C5	54.7 (2)	C5—N4—C41—C42	164.13 (15)
N4—C5—C6—N1	-55.2 (2)	C3—N4—C41—C42	-65.8 (2)
C2-N1-C17-O17	-174.09 (19)	C46—C41—C42—O42	176.51 (16)
C6—N1—C17—O17	-2.9 (3)	N4—C41—C42—O42	-0.6 (2)
C2-N1-C17-C11	6.5 (3)	C46—C41—C42—C43	-2.1 (3)
C6—N1—C17—C11	177.72 (17)	N4—C41—C42—C43	-179.23 (16)
O17—C17—C11—C12	84.1 (2)	O42—C42—C43—C44	-176.56 (18)
N1-C17-C11-C12	-96.5 (2)	C41—C42—C43—C44	2.0 (3)
O17—C17—C11—C16	-94.2 (2)	C42—C43—C44—C45	-0.1 (3)
N1-C17-C11-C16	85.2 (2)	C43—C44—C45—C46	-1.5 (4)
C16-C11-C12-F12	179.99 (17)	C42—C41—C46—C45	0.5 (3)
C17—C11—C12—F12	1.7 (3)	N4—C41—C46—C45	177.51 (19)
C16—C11—C12—C13	-1.2 (3)	C44—C45—C46—C41	1.3 (4)
C17—C11—C12—C13	-179.50 (19)	C43—C42—O42—C47	5.4 (3)
F12-C12-C13-C14	179.1 (2)	C41—C42—O42—C47	-173.24 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
C15—H15…O17 ⁱ	0.93	2.58	3.510 (3)	177
C6—H6 <i>B</i> … <i>Cg</i> 1 ⁱⁱ	0.97	2.87	3.565 (2)	130

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+3/2, *y*+1/2, -*z*+1/2.