

Received 27 October 2020 Accepted 10 November 2020

Edited by C. Schulzke, Universität Greifswald, Germany

Keywords: crystal structure; pyrrole ring; C— H $\cdots \pi$ interactions; $\pi - \pi$ stacking interactions; Hirshfeld surface analysis.

CCDC reference: 2043609

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld analysis of di-tertbutyl 2,2'-[(ethylazanediyl)bis(methylene)]bis(1*H*pyrrole-1-carboxylate)

Elizaveta A. Kvyatkovskaya,^a Zeliha Atioğlu,^b Mehmet Akkurt,^c Polina P. Epifanova,^a Karina S. Valchuk,^a Victor N. Khrustalev^{a,d} and Ajaya Bhattarai^e*

^aFaculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation, ^bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, and ^eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal. *Correspondence e-mail: bkajaya@yahoo.com

The title compound, $C_{22}H_{33}N_3O_4$, crystallizes in the triclinic space group $P\overline{1}$ with two molecules in a unit cell. The two pyrrole rings are essentially planar (r.m.s. deviation = 0.002 Å) and they form a dihedral angle of 81.24 (10)° with each other. The crystal packing is stabilized by $C-H\cdots\pi$ interactions and $\pi-\pi$ stacking interactions, forming a three-dimensional network. The Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that the most important contributions for the crystal packing are from $H\cdots H$ (74.3%), $C\cdots H/$ $H\cdots C$ (11.5%) and $O\cdots H/H\cdots O$ (9.1%) contacts.

1. Chemical context

This work is a continuation of the study of Diels-Alder reactions on bis-diene systems, which was previously carried out on the example of the tandem [4 + 2]/[4 + 2] cycloaddition between bis-furyl dienes similar to 1 and activated alkynes, leading to adducts such as 2, as shown in Fig. 1 (Borisova et al., 2018a,b; Kvyatkovskaya et al., 2020; Lautens & Fillion, 1997; Domingo et al., 2000). Here we aimed to investigate substrates containing two pyrrole moieties under the same reaction conditions. For this reason, N,N-bis(1H-pyrrol-2-ylmethyl) ethanamine (3) was synthesized using a Mannich reaction according to the described procedure (Raines & Kovacs, 1970). It is known that pyrrole fragments are capable of reacting with the most active dienophiles in the [4 + 2]cycloaddition reaction, which requires the presence of electron-deficient groups at the nitrogen atom (Winkler, 1996; Visnick & Battiste, 1985; Butler et al., 2000; Warrener et al., 2003). Thus, the pyrrole rings of amine 3 were activated by

research communications

Boc-protecting groups to give the title substance 4. Considering that a single example of a successful domino [4 + 2] cycloaddition between hexafluorobut-2-yne and N,N'-dipyrrolylmethane is reported in the literature (Visnick & Battiste, 1985), we tested amine 4 in the reaction with such an active dienophile as dimethyl acetylenedicarboxylate (DMAD). The experiments were performed in a wide temperature range (from room temperature to 413 K) and led to multicomponent mixtures of products at elevated temperatures, from which we were unable to isolate the target adduct 5.

However, taking into account the importance of the noncovalent bond-donor/acceptor properties of the nitrogen atom in N-heterocycles for synthesis, catalysis and the design of new materials (Asadov *et al.*, 2016; Gurbanov *et al.*, 2017, 2018*a,b*; Karmakar *et al.*, 2017; Maharramov *et al.*, 2018; Mahmoudi *et al.*, 2017, 2019; Mahmudov *et al.*, 2010, 2013, 2017*a,b*, 2019, 2020; Shixaliyev *et al.*, 2014), we describe in this work the structural features of compound **4**.

2. Structural commentary

As shown in Fig. 2, the two pyrrole rings (N1/C2–C5 and N3/C8–C11) in the title compound **4** form a dihedral angle of 81.24 (10)°. The C6–N2–C17–C18 and C7–N2–C17–C18, C5–C6–N2–C17, C8–C7–N2–C17 and C6–N2–C7–C8 torsion angles are -163.52 (15), 71.9 (2), -87.35 (17), -155.20 (14) and 80.67 (16)°, respectively. All of the bond lengths and angles in the title compound **4** are of usual values.

Table 1 Hydrogen-bond geometry (Å, °).	
Cg2 is the centroid of the N3/C8–C11 pyrrole ring.	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C16-H16B\cdots Cg2^{i}$	0.98	2.85	3.779 (2)	158

Symmetry code: (i) x, y, z - 1.

3. Supramolecular features

The supramolecular structure of the title compound **4** is defined by $\pi - \pi$ stacking $[Cg1 \cdots Cg1^i = 3.6892 (13) \text{ Å}$, symmetry code (i): 2 - x, 2 - y, 1 - z, slippage = 1.794 Å, where Cg1 is the centroid of the N1/C2–C5 pyrrole ring] and C–H··· π [C16–H16B··· $Cg2^{ii}$, symmetry code (ii): x, y, -1 + z, where Cg2 is the centroid of the N3/C8–C11 pyrrole ring] interactions, forming a three-dimensional network (Fig. 3; Table 1). There are no conventional hydrogen bonds in the structure.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed and the associated two-dimensional fingerprint plots (McKinnon, *et al.*, 2007) were obtained with *Crystal Explorer17* (Turner *et al.*, 2017) to investigate the intermolecular interactions and surface morphology. The Hirshfeld surface mapped over d_{norm} using a standard surface resolution with a fixed colour scale of -0.0919 (red) to 1.6027 (blue) a.u. is shown in Fig. 4.

The percentage contributions of various contacts (Table 2) to the total Hirshfeld surface are listed in Table 3 and shown in the two-dimensional fingerprint plots in Fig. 5, revealing that the crystal packing is dominated by $H \cdots H$ contacts, representing van der Waals interactions (74.3% contribution to the overall surface), followed by $C \cdots H/H \cdots C$ and $O \cdots H/H \cdots O$ interactions, which contribute 11.5% and 9.1%, respectively.

Figure 2

The molecular structure of the title compound **4** with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

A view of the intermolecular C-H··· π interactions and π - π - stacking interactions of the title compound 4. Symmetry codes: (i) 2 - x, 2 - y, 1 - z; (ii) x, y, -1 + z.

Table 2 Summary of short interatomic contacts (Å) in the title compound 4.

Distance

2.73

272

2.59

2.48

2.75

3.06

2 96

2.58

Table 3
Percentage contributions of interatomic contacts to the Hirshfeld surface
for the title compound 4 .

Contact	Percentage contribution
$H \cdot \cdot \cdot H$	74.3
$C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$	11.5
$O \cdots H/H \cdots O$	9.1
$N \cdot \cdot \cdot H/H \cdot \cdot \cdot N$	3.4
$N \cdots C/C \cdots N$	0.7
$O \cdots C/C \cdots O$	0.5
$\mathbf{C} \cdot \cdot \cdot \mathbf{C}$	0.5
	$\begin{array}{c} \vdots \\ \hline Contact \\ \hline H \cdot \cdot \cdot H \\ C \cdot \cdot \cdot H / H \cdot \cdot \cdot C \\ O \cdot \cdot \cdot H / H \cdot \cdot \cdot O \\ N \cdot \cdot \cdot H / H \cdot \cdot \cdot N \\ N \cdot \cdot \cdot C / C \cdot \cdot \cdot N \\ O \cdot \cdot \cdot C / C \cdot \cdot \cdot O \\ C \cdot \cdot \cdot C \end{array}$

5. Database survey

Contact

H17A···O1

H22B...01

 $H22A \cdot \cdot \cdot H2$

 $C8 \cdot \cdot \cdot H16B$

H20B···H10

H16A...C18

H18C···C21

H18A...H18A

A search of the Cambridge Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016) using Conquest (Bruno et al., 2002) for the di-tert-butyl 2,2'-[(ethylazanediyl)bis(methylene)[bis(1H-pyrrole-1-carboxylate)] skeleton revealed 37 structures similar to the title compound 4. Only three of them are closely related to the title compound, viz. di-tert-butyl 2,2'-(anthracene-9,10-diyl)bis-(1*H*-pyrrole-1-carboxylate) in the space group $P2_1/n$ (CSD refcode PUKKEO; Wang et al., 2020), tert-butyl 2-{4-[1-(tertbutoxycarbonyl)-1*H*-pyrrol-2-yl]-2,5-bis (2,2-dicyanovinyl)phenyl}-1H-pyrrole-1-carboxylate in the space group C2/c (IVIJAA; Zhang et al., 2017) and bis(3-bromo-1- (tert-butyloxycarbonyl)-5-(methoxycarbonyl)-pyrrol-2-yl)methane in the space group $P\overline{1}$ (NANLAP; Kitamura & Yamashita, 1997).

In the crystal of PUKKEO, the distance between two parallel molecules within one column was measured to be 9.333 Å, indicating that $\pi - \pi$ interactions cannot be formed in the molecule. In the crystal structure of IVIJAA, multiple intermolecular C-H···N (or C-H···O) and C-H··· π interactions were found, which could help to rigidify the molecular conformation. In NANLAP, the dihedral angle between the two pyrrole ring is 82.77°.

In the three structures closely related to the title compound, the different linkers between the two pyrrole units (aromatic

Figure 4

A view of the three-dimensional Hirshfeld surface for the title compound **4**, plotted over d_{norm} in the range -0.0919 to 1.6027 a.u.

vs aliphatic, large vs small) may account for the distinct intermolecular interactions in the crystals.

6. Synthesis and crystallization

Di-tert-butyl dicarbonate [(Boc)₂O, 27.8 mL, 0.13 mol] was added to a solution of N,N-bis(1H-pyrrol-2-ylmethyl)ethanamine (12.0 g, 0.06 mol) and DMAP (1.1 g, 0.009 mol) in CH₃CN (50 mL) at room temperature under an argon atmosphere. The mixture was stirred for 6 h at room temperature. The reaction mixture was poured into a 5% solution of NH₃ in H_2O (300 mL) and extracted with CH_2Cl_2 (3 × 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated. Flash chromatography purification on alumin-

Figure 5

A view of the two-dimensional fingerprint plots for the title compound 4, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $C \cdots H/d$ $H \cdots C$ and (d) $O \cdots H/H \cdots O$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.

ium oxide (hexane) of the residue yielded the title compound as colourless crystals. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an EtOAc/hexane solution at room temperature. Colourless prisms. Yield 14.25 g (60%). M.p. = 349.8-351.5 K (hexane, Al₂O₃). IR (KBr), ν (cm⁻¹): 3112, 3172. ¹H NMR (CDCl₃, 600.1 MHz): δ = 1.08 (*t*, 3H, NCH₂CH₃, *J* = 6.6), 1.57 (*s*, 18H, $2 \times {}^{t}Bu$, 2.67 (q, 2H, N-CH₂-CH₃, J = 6.6), 3.90 (s, 4H, 2 × N-CH₂), 6.09 (t, 2H, H-4, pyrrole, J = 3.3), 6.31 (m, 2H, H-3, pyrrole), 7.16 (*dd*, 2H, H-5, pyrrole, J = 1.7, J = 3.3). ¹³C NMR (100.6 MHz, CDCl₃): δ = 12.6 (NCH₂CH₃), 28.1 [2C, 2 × C(CH₃)₃], 48.9 (N-CH₂-CH₃), 52.8 (2C, CH₂-N-CH₂), 83.3 $[2C, 2 \times O-C(CH_3)_3], 110.2 (2C, 2 \times C-3, pyrrole), 111.7 (2C, C)$ 2 × C-4, pyrrole), 120.9 (2C, 2 × C-5, pyrrole), 134.9 (2C, 2 × C-2, pyrrole), 149.5 (2C, $2 \times CO$). Elemental analysis calculated for C₂₂H₃₃N₃O₄ (%): C 65.12, H 7.88, N 10.73; found (%): C 65.48, H 8.24, N 10.41.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were included as riding contributions in idealized positions (C-H = 0.95-0.99 Å with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Funding information

Funding for this research was provided by the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)].

References

- Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153.
- Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). *Acta Cryst.* D67, 271–281.
- Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840– 4850.
- Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). *Chem. Commun.* 54, 2850–2853.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Butler, D. N., Hammond, M. L. A., Johnston, M. R., Sun, G., Malpass, J. R., Fawcett, J. & Warrener, R. N. (2000). Org. Lett. 2, 721–724.
- Domingo, L. R., Picher, M. T. & Andrés, J. (2000). J. Org. Chem. 65, 3473–3477.
- Doyle, R. A. (2011). *Marccd software manual*. Rayonix L. L. C., Evanston, IL 60201, USA.
- Evans, P. (2006). Acta Cryst. D62, 72-82.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
- Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). *Inorg. Chim. Acta*, **471**, 130–136.

Table 4	
Experimental	details.

Crystal data	
Chemical formula	$C_{22}H_{33}N_3O_4$
M _r	403.51
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	9.6579 (19), 11.798 (2), 12.216 (2)
α, β, γ (°)	100.95 (3), 109.41 (3), 111.12 (3)
$V(Å^3)$	1146.3 (7)
Z	2
Radiation type	Synchrotron, $\lambda = 0.96990 \text{ Å}$
$\mu \ (\mathrm{mm}^{-1})$	0.17
Crystal size (mm)	$0.25 \times 0.15 \times 0.12$
Data collection	
Diffractometer	Payoniy SY165 CCD
Absorption correction	Multi-scan (SCALA: Evans 2006)
T T	0 050 0 070
¹ min, ¹ max No of measured independent and	14236 4609 3323
observed $[I > 2\sigma(I)]$ reflections	14250, 4009, 5525
R _{int}	0.081
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.642
Refinement	
$R[F^2 > 2\sigma(F^2)] = wR(F^2)$ S	0.067 0.180 1.04
No of reflections	4609
No. of parameters	270
H-atom treatment	H-atom parameters constrained
$\Lambda_0 = \Lambda_0 \cdot (e^{\hat{\Delta}^{-3}})$	0.36 = 0.32
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (\sim 1)$	0.50, 0.52

Computer programs: *Marccd* (Doyle, 2011), *iMosflm* (Battye et al., 2011), *SHELXT* (Sheldrick, 2015a), *SHELXL* (Sheldrick, 2015b), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2020).

- Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.
- Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). *Dalton Trans.* 46, 8649–8657.
- Kitamura, C. & Yamashita, Y. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1443–1448.
- Kvyatkovskaya, E. A., Nikitina, E. V., Khrustalev, V. N., Galmes, B.,
 Zubkov, F. I. & Frontera, A. (2020). *Eur. J. Org. Chem.* pp. 156–161.
 Lautens, M. & Fillion, E. (1997). *J. Org. Chem.* 62, 4418–4427.
- Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L.
- (2018). Dyes Pigments, 159, 135–141.
 Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). *Inorg. Chim. Acta*, 461, 192–205.
- Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). *CrystEngComm*, 21, 108–117.
- Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). *Coord. Chem. Rev.* **418**, 213381.
- Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
- Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017*a*). *Dalton Trans.* **46**, 10121–10138.
- Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). *Coord. Chem. Rev.* 345, 54–72.
- Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). *J. Mol. Struct.* **1048**, 108–112.
- Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). *Anal. Lett.* 43, 2923– 2938.

- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Raines, S. & Kovacs, C. A. (1970). J. Heterocycl. Chem. 7, 223-225.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
- Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, **11**, 19–32. Spek, A. L. (2020). *Acta Cryst.* E**76**, 1–11.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. The University of Western Australia.
- Visnick, M. & Battiste, M. A. (1985). J. Chem. Soc. Chem. Commun. pp. 1621–1622.
- Wang, R., Liang, Y., Liu, G. & Pu, S. (2020). RSC Adv. 10, 2170–2179.
- Warrener, R. N., Margetic, D., Sun, G. & Russell, R. A. (2003). Aust. J. Chem. 56, 263–267.
- Winkler, J. D. (1996). Chem. Rev. 96, 167–176.
- Zhang, J. N., Kang, H., Li, N., Zhou, S. M., Sun, H. M., Yin, S. W., Zhao, N. & Tang, B. Z. (2017). *Chem. Sci.* **8**, 577–582.

supporting information

Acta Cryst. (2020). E76, 1827-1831 [https://doi.org/10.1107/S2056989020014966]

Crystal structure and Hirshfeld analysis of di-*tert*-butyl 2,2'-[(ethylazanediyl)bis(methylene)]bis(1*H*-pyrrole-1-carboxylate)

Elizaveta A. Kvyatkovskaya, Zeliha Atioğlu, Mehmet Akkurt, Polina P. Epifanova, Karina S. Valchuk, Victor N. Khrustalev and Ajaya Bhattarai

Computing details

Data collection: *Marccd* (Doyle, 2011); cell refinement: *iMosflm* (Battye *et al.*, 2011); data reduction: *iMosflm* (Battye *et al.*, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

Di-tert-butyl 2,2'-[(ethylazanediyl)bis(methylene)]bis(1H-pyrrole-1-carboxylate)

Crystal data

 $C_{22}H_{33}N_{3}O_{4}$ $M_{r} = 403.51$ Triclinic, *P*1 a = 9.6579 (19) Å b = 11.798 (2) Å c = 12.216 (2) Å $a = 100.95 (3)^{\circ}$ $\beta = 109.41 (3)^{\circ}$ $\gamma = 111.12 (3)^{\circ}$ $V = 1146.3 (7) \text{ Å}^{3}$

Data collection

Rayonix SX165 CCD diffractometer /f scan Absorption correction: multi-scan (Scala; Evans, 2006) $T_{min} = 0.950, T_{max} = 0.970$ 14236 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.180$ S = 1.044609 reflections 270 parameters 0 restraints Z = 2 F(000) = 436 $D_x = 1.169 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.96990 \text{ Å}$ Cell parameters from 600 reflections $\theta = 3.4-34.0^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.25 \times 0.15 \times 0.12 \text{ mm}$

4609 independent reflections 3323 reflections with $I > 2\sigma(I)$ $R_{int} = 0.081$ $\theta_{max} = 38.5^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -11 \rightarrow 11$ $k = -15 \rightarrow 15$ $l = -15 \rightarrow 10$

Primary atom site location: difference Fourier map Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0405P)^2]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\min} = -0.32 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.039 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.54208 (15)	0.82396 (12)	0.31750 (10)	0.0262 (4)	
O2	0.71965 (15)	0.80484 (11)	0.23867 (10)	0.0227 (3)	
03	0.22197 (15)	0.72623 (11)	0.74478 (11)	0.0245 (3)	
O4	0.11894 (14)	0.51479 (10)	0.73408 (11)	0.0222 (3)	
N1	0.79450 (17)	0.84298 (12)	0.44180 (12)	0.0172 (4)	
N2	0.67247 (17)	0.89738 (12)	0.70376 (12)	0.0194 (4)	
N3	0.35254 (17)	0.60263 (12)	0.71412 (12)	0.0179 (4)	
C1	0.6716 (2)	0.82405 (15)	0.32830 (15)	0.0196 (4)	
C2	0.9456 (2)	0.84337 (15)	0.45916 (15)	0.0194 (4)	
H2	0.9835	0.8329	0.3972	0.023*	
C3	1.0283 (2)	0.86130 (15)	0.58039 (16)	0.0221 (4)	
Н3	1.1340	0.8651	0.6182	0.027*	
C4	0.9274 (2)	0.87346 (15)	0.64092 (15)	0.0212 (4)	
H4	0.9553	0.8871	0.7262	0.025*	
C5	0.7845 (2)	0.86223 (14)	0.55571 (15)	0.0187 (4)	
C6	0.6378 (2)	0.86467 (16)	0.57186 (15)	0.0218 (4)	
H6A	0.6124	0.9298	0.5408	0.026*	
H6B	0.5404	0.7786	0.5230	0.026*	
C7	0.5214 (2)	0.83163 (15)	0.71812 (15)	0.0198 (4)	
H7A	0.4270	0.8326	0.6541	0.024*	
H7B	0.5353	0.8777	0.8007	0.024*	
C8	0.4879 (2)	0.69338 (15)	0.70485 (14)	0.0177 (4)	
C9	0.5758 (2)	0.63131 (16)	0.68252 (15)	0.0218 (4)	
Н9	0.6736	0.6684	0.6721	0.026*	
C10	0.4954 (2)	0.50002 (16)	0.67744 (16)	0.0253 (5)	
H10	0.5308	0.4355	0.6633	0.030*	
C11	0.3603 (2)	0.48460 (15)	0.69642 (16)	0.0230 (5)	
H11	0.2841	0.4072	0.6975	0.028*	
C12	0.2268 (2)	0.62378 (15)	0.73226 (14)	0.0177 (4)	
C13	0.6074 (2)	0.77552 (16)	0.10726 (15)	0.0235 (5)	
C14	0.5794 (3)	0.89213 (19)	0.09584 (17)	0.0336 (5)	
H14A	0.5206	0.9074	0.1442	0.050*	
H14B	0.5135	0.8755	0.0085	0.050*	
H14C	0.6861	0.9688	0.1274	0.050*	
C15	0.4477 (2)	0.65187 (18)	0.06423 (17)	0.0341 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H15A	0.4740	0.5843	0.0870	0.051*
H15B	0.3852	0.6221	-0.0260	0.051*
H15C	0.3812	0.6699	0.1041	0.051*
C16	0.7089 (3)	0.7536 (2)	0.04130 (17)	0.0363 (6)
H16A	0.8146	0.8318	0.0752	0.055*
H16B	0.6486	0.7344	-0.0475	0.055*
H16C	0.7292	0.6803	0.0536	0.055*
C17	0.7538 (2)	1.03940 (15)	0.76618 (16)	0.0247 (5)
H17A	0.6706	1.0716	0.7420	0.030*
H17B	0.8378	1.0801	0.7377	0.030*
C18	0.8364 (2)	1.08057 (17)	0.90690 (16)	0.0323 (5)
H18A	0.9061	1.0379	0.9308	0.048*
H18B	0.7517	1.0554	0.9371	0.048*
H18C	0.9047	1.1750	0.9433	0.048*
C19	-0.0459 (2)	0.49847 (16)	0.72438 (15)	0.0208 (4)
C20	-0.1389 (2)	0.50783 (18)	0.60138 (16)	0.0284 (5)
H20A	-0.0858	0.5970	0.6037	0.043*
H20B	-0.2534	0.4839	0.5870	0.043*
H20C	-0.1373	0.4486	0.5342	0.043*
C21	-0.0258 (2)	0.59732 (18)	0.83598 (17)	0.0304 (5)
H21A	0.0432	0.5918	0.9123	0.046*
H21B	-0.1345	0.5791	0.8332	0.046*
H21C	0.0267	0.6848	0.8343	0.046*
C22	-0.1245 (2)	0.36136 (17)	0.72450 (19)	0.0353 (5)
H22A	-0.1313	0.3003	0.6539	0.053*
H22B	-0.2357	0.3392	0.7179	0.053*
H22C	-0.0572	0.3562	0.8018	0.053*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0223 (8)	0.0387 (8)	0.0215 (7)	0.0145 (6)	0.0118 (6)	0.0133 (6)
O2	0.0238 (7)	0.0281 (7)	0.0129 (6)	0.0086 (5)	0.0090 (5)	0.0056 (5)
O3	0.0240 (7)	0.0220 (6)	0.0296 (7)	0.0103 (5)	0.0139 (6)	0.0099 (5)
O4	0.0179 (7)	0.0214 (6)	0.0287 (7)	0.0063 (5)	0.0134 (6)	0.0110 (5)
N1	0.0181 (8)	0.0174 (7)	0.0145 (8)	0.0058 (6)	0.0084 (6)	0.0053 (6)
N2	0.0220 (8)	0.0167 (7)	0.0179 (8)	0.0044 (6)	0.0127 (6)	0.0049 (6)
N3	0.0179 (8)	0.0159 (7)	0.0203 (8)	0.0055 (6)	0.0113 (6)	0.0063 (6)
C1	0.0212 (10)	0.0187 (8)	0.0155 (9)	0.0048 (7)	0.0093 (8)	0.0049 (7)
C2	0.0197 (10)	0.0190 (8)	0.0192 (9)	0.0066 (7)	0.0111 (8)	0.0056 (7)
C3	0.0197 (10)	0.0198 (8)	0.0243 (10)	0.0075 (7)	0.0084 (8)	0.0080 (7)
C4	0.0221 (10)	0.0230 (9)	0.0146 (9)	0.0064 (7)	0.0080 (8)	0.0070 (7)
C5	0.0234 (10)	0.0152 (8)	0.0172 (9)	0.0052 (7)	0.0126 (8)	0.0058 (7)
C6	0.0251 (10)	0.0213 (9)	0.0183 (9)	0.0075 (8)	0.0115 (8)	0.0080 (7)
C7	0.0210 (10)	0.0212 (9)	0.0183 (9)	0.0076 (7)	0.0115 (8)	0.0081 (7)
C8	0.0181 (9)	0.0172 (8)	0.0142 (8)	0.0036 (7)	0.0083 (7)	0.0048 (7)
C9	0.0204 (10)	0.0219 (9)	0.0240 (10)	0.0075 (7)	0.0132 (8)	0.0083 (7)
C10	0.0256 (11)	0.0209 (9)	0.0336 (11)	0.0119 (8)	0.0167 (9)	0.0085 (8)
	. ,	• •	. ,		. ,	

supporting information

C11	0.0227 (10)	0.0167 (8)	0.0283 (10)	0.0064 (7)	0.0124 (8)	0.0084 (7)	
C12	0.0169 (10)	0.0192 (8)	0.0130 (9)	0.0045 (7)	0.0063 (7)	0.0056 (7)	
C13	0.0251 (11)	0.0303 (10)	0.0111 (9)	0.0103 (8)	0.0070 (8)	0.0054 (7)	
C14	0.0429 (13)	0.0428 (11)	0.0246 (10)	0.0239 (10)	0.0172 (9)	0.0183 (9)	
C15	0.0314 (12)	0.0355 (11)	0.0197 (10)	0.0059 (9)	0.0059 (9)	0.0058 (8)	
C16	0.0389 (13)	0.0514 (13)	0.0177 (10)	0.0198 (10)	0.0150 (9)	0.0072 (9)	
C17	0.0285 (11)	0.0173 (8)	0.0279 (10)	0.0060 (8)	0.0174 (9)	0.0070 (8)	
C18	0.0308 (12)	0.0261 (10)	0.0265 (11)	0.0027 (8)	0.0141 (9)	-0.0002 (8)	
C19	0.0157 (10)	0.0258 (9)	0.0222 (9)	0.0084 (7)	0.0115 (8)	0.0072 (7)	
C20	0.0225 (11)	0.0332 (10)	0.0230 (10)	0.0087 (8)	0.0094 (8)	0.0057 (8)	
C21	0.0290 (11)	0.0392 (11)	0.0231 (10)	0.0138 (9)	0.0153 (9)	0.0076 (9)	
C22	0.0283 (12)	0.0315 (10)	0.0507 (13)	0.0098 (9)	0.0239 (10)	0.0193 (10)	

Geometric parameters (Å, °)

01—C1	1.213 (2)	C11—H11	0.9500	
O2—C1	1.336 (2)	C13—C14	1.517 (3)	
O2—C13	1.495 (2)	C13—C16	1.519 (3)	
O3—C12	1.209 (2)	C13—C15	1.527 (3)	
O4—C12	1.3415 (19)	C14—H14A	0.9800	
O4—C19	1.494 (2)	C14—H14B	0.9800	
N1—C2	1.401 (2)	C14—H14C	0.9800	
N1-C1	1.407 (2)	C15—H15A	0.9800	
N1—C5	1.408 (2)	C15—H15B	0.9800	
N2—C7	1.472 (2)	C15—H15C	0.9800	
N2—C6	1.473 (2)	C16—H16A	0.9800	
N2—C17	1.475 (2)	C16—H16B	0.9800	
N3—C12	1.401 (2)	C16—H16C	0.9800	
N3—C11	1.401 (2)	C17—C18	1.523 (3)	
N3—C8	1.415 (2)	C17—H17A	0.9900	
C2—C3	1.360 (2)	C17—H17B	0.9900	
С2—Н2	0.9500	C18—H18A	0.9800	
C3—C4	1.434 (3)	C18—H18B	0.9800	
С3—Н3	0.9500	C18—H18C	0.9800	
C4—C5	1.366 (2)	C19—C22	1.520 (2)	
C4—H4	0.9500	C19—C21	1.521 (3)	
C5—C6	1.503 (2)	C19—C20	1.521 (2)	
С6—Н6А	0.9900	C20—H20A	0.9800	
С6—Н6В	0.9900	C20—H20B	0.9800	
С7—С8	1.508 (2)	C20—H20C	0.9800	
C7—H7A	0.9900	C21—H21A	0.9800	
С7—Н7В	0.9900	C21—H21B	0.9800	
С8—С9	1.364 (3)	C21—H21C	0.9800	
C9—C10	1.439 (2)	C22—H22A	0.9800	
С9—Н9	0.9500	C22—H22B	0.9800	
C10-C11	1.354 (3)	C22—H22C	0.9800	
C10—H10	0.9500			

C1—O2—C13	120.54 (15)	C14—C13—C15	113.23 (17)
C12—O4—C19	121.12 (14)	C16—C13—C15	111.00 (16)
C2—N1—C1	125.39 (14)	C13—C14—H14A	109.5
C2—N1—C5	109.01 (14)	C13—C14—H14B	109.5
C1—N1—C5	125.59 (15)	H14A—C14—H14B	109.5
C7—N2—C6	111.01 (13)	C13—C14—H14C	109.5
C7—N2—C17	112.51 (14)	H14A—C14—H14C	109.5
C6—N2—C17	110.28 (13)	H14B—C14—H14C	109.5
C12—N3—C11	125.04 (14)	С13—С15—Н15А	109.5
C12 - N3 - C8	126 37 (14)	C13—C15—H15B	109.5
C11 - N3 - C8	10854(14)	H15A-C15-H15B	109.5
01-C1-02	127 13 (16)	C13 - C15 - H15C	109.5
O1 C1 N1	127.13(10) 123 13(15)	H_{15} C_{15} H_{15} H_{15} C_{15} H_{15} H_{15} H_{15} C_{15} H_{15} H	109.5
$O_2 = C_1 = N_1$	123.13(15) 100.73(16)	H15R C15 H15C	109.5
$C_2 = C_1 = N_1$	107.75(10) 107.96(15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_2 = C_2 = M_1$	107.80 (15)	C12 - C16 - H16A	109.5
С3—С2—П2	120.1		109.5
NI = C2 = H2	126.1	HI6A - CI6 - HI6B	109.5
$C_2 = C_3 = C_4$	107.70(17)	CI3-CI6-HI6C	109.5
С2—С3—Н3	126.2	H16A—C16—H16C	109.5
С4—С3—Н3	126.2	H16B—C16—H16C	109.5
C5—C4—C3	108.77 (15)	N2—C17—C18	112.62 (15)
C5—C4—H4	125.6	N2—C17—H17A	109.1
C3—C4—H4	125.6	C18—C17—H17A	109.1
C4—C5—N1	106.67 (16)	N2—C17—H17B	109.1
C4—C5—C6	129.41 (15)	C18—C17—H17B	109.1
N1—C5—C6	123.90 (15)	H17A—C17—H17B	107.8
N2—C6—C5	110.12 (14)	C17—C18—H18A	109.5
N2—C6—H6A	109.6	C17—C18—H18B	109.5
С5—С6—Н6А	109.6	H18A—C18—H18B	109.5
N2—C6—H6B	109.6	C17—C18—H18C	109.5
С5—С6—Н6В	109.6	H18A—C18—H18C	109.5
H6A—C6—H6B	108.2	H18B—C18—H18C	109.5
N2—C7—C8	109.26 (14)	O4—C19—C22	102.03 (14)
N2—C7—H7A	109.8	O4—C19—C21	110.41 (14)
C8—C7—H7A	109.8	C22—C19—C21	111.25 (15)
N2—C7—H7B	109.8	Q4—C19—C20	108.05 (14)
C8-C7-H7B	109.8	C^{22} C^{19} C^{20}	11112(15)
H7A - C7 - H7B	108.3	$C_{21} - C_{19} - C_{20}$	113 35 (16)
C9-C8-N3	107.00(14)	C19 - C20 - H20A	109 5
C9-C8-C7	128 71 (15)	C19 - C20 - H20B	109.5
N3 C8 C7	120.71(15) 124.28(16)	$H_{20A} = C_{20} = H_{20B}$	109.5
$C_8 = C_9 = C_10$	108 38 (16)	1120A - C20 - 1120B	109.5
$C_8 = C_9 = C_{10}$	106.56 (10)	H_{20}^{-1}	109.5
$C_0 - C_2 - 11_2$	125.0	$H_{20R} = C_{20} = H_{20C}$	109.5
C_{10} C_{20} C_{10} C_{10} C_{10} C_{10}	123.0	$\frac{1120D}{C10} = C20 = \frac{1121A}{C10}$	109.5
$C_{11} = C_{10} = U_{10}$	107.95 (10)	C19 - C21 - H21A	109.5
$C_{11} - C_{10} - H_{10}$	120.0	$U_{19} - U_{21} - H_{21B}$	109.5
	120.0	$H_2IA - U_2I - H_2IB$	109.5
C10-C11-N3	108.12 (15)	C19—C21—H21C	109.5

C10—C11—H11	125.9	H21A—C21—H21C	109.5
N3—C11—H11	125.9	H21B—C21—H21C	109.5
O3—C12—O4	127.40 (17)	C19—C22—H22A	109.5
O3—C12—N3	123.38 (15)	C19—C22—H22B	109.5
O4—C12—N3	109.21 (14)	H22A—C22—H22B	109.5
O2—C13—C14	109.60 (13)	C19—C22—H22C	109.5
O2—C13—C16	101.24 (15)	H22A—C22—H22C	109.5
C14—C13—C16	111.47 (16)	H22B—C22—H22C	109.5
O2—C13—C15	109.64 (13)		
C13-02-C1-01	-2.0(2)	C12—N3—C8—C7	2.4 (2)
C13—O2—C1—N1	176.90 (12)	C11—N3—C8—C7	179.74 (15)
C2—N1—C1—O1	179.68 (15)	N2—C7—C8—C9	-0.3 (2)
C5—N1—C1—O1	0.9 (2)	N2-C7-C8-N3	179.67 (14)
C2—N1—C1—O2	0.7 (2)	N3—C8—C9—C10	0.08 (18)
C5—N1—C1—O2	-178.04 (13)	C7—C8—C9—C10	-179.92 (16)
C1—N1—C2—C3	-178.48 (14)	C8—C9—C10—C11	0.1 (2)
C5—N1—C2—C3	0.47 (17)	C9—C10—C11—N3	-0.29 (19)
N1-C2-C3-C4	-0.43 (17)	C12—N3—C11—C10	177.71 (15)
C2—C3—C4—C5	0.25 (18)	C8—N3—C11—C10	0.34 (19)
C3—C4—C5—N1	0.04 (17)	C19—O4—C12—O3	13.9 (2)
C3—C4—C5—C6	178.28 (15)	C19—O4—C12—N3	-166.59 (12)
C2—N1—C5—C4	-0.31 (16)	C11—N3—C12—O3	-178.45 (15)
C1—N1—C5—C4	178.64 (14)	C8—N3—C12—O3	-1.5 (2)
C2-N1-C5-C6	-178.67 (14)	C11—N3—C12—O4	2.0 (2)
C1—N1—C5—C6	0.3 (2)	C8—N3—C12—O4	178.95 (13)
C7—N2—C6—C5	-147.26 (14)	C1—O2—C13—C14	65.63 (19)
C17—N2—C6—C5	87.35 (17)	C1—O2—C13—C16	-176.54 (14)
C4—C5—C6—N2	6.7 (2)	C1—O2—C13—C15	-59.2 (2)
N1-C5-C6-N2	-175.38 (13)	C7—N2—C17—C18	71.9 (2)
C6—N2—C7—C8	80.67 (16)	C6—N2—C17—C18	-163.52 (15)
C17—N2—C7—C8	-155.20 (14)	C12—O4—C19—C22	177.50 (13)
C12—N3—C8—C9	-177.58 (15)	C12-O4-C19-C21	-64.16 (18)
C11—N3—C8—C9	-0.26 (18)	C12-O4-C19-C20	60.31 (18)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N3/C8–C11 pyrrole ring.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C14—H14A…O1	0.98	2.48	3.062 (3)	118
C15—H15C…O1	0.98	2.45	2.989 (2)	114
C20—H20A····O3	0.98	2.54	3.100 (3)	116
C21—H21C···O3	0.98	2.43	3.012 (3)	118
C16—H16 <i>B</i> ··· <i>Cg</i> 2 ⁱ	0.98	2.85	3.779 (2)	158

Symmetry code: (i) x, y, z-1.