

Received 20 July 2020 Accepted 20 November 2020

Edited by P. Roussel, ENSCL, France

Keywords: rare-earth molybdate; lanthanide molybdate; single-crystal XRD.

CCDC references: 2045648; 2045647; 2045646; 2045645; 2045644; 2045643

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures and comparisons of potassium rare-earth molybdates $KRE(MoO_4)_2$ (*RE* = Tb, Dy, Ho, Er, Yb, and Lu)

Saehwa Chong,^a* Samuel Perry,^b Brian J. Riley^a and Zayne J. Nelson^a

^aPacific Northwest National Laboratory, Richland, WA 99354, USA, and ^bDepartment of Civil and Environmental Engineering and Earth Sciences, University, of Notre Dame, Notre Dame, IN 46556, USA. *Correspondence e-mail: saehwa.chong@pnnl.gov

Six potassium rare-earth molybdates $KRE(MoO_4)_2$ (RE = Tb, Dy, Ho, Er, Yb, and Lu) were synthesized by flux-assisted growth in K₂Mo₃O₁₀. The crystal structures were determined using single-crystal X-ray diffraction data. The synthesized molybdates crystallize with the orthorhombic *Pbcn* space group (No. 60). Trendlines for unit-cell parameters were calculated using data from the current study. The unit-cell parameters *a* and *c* increase linearly whereas *b* decreases with larger *RE* cations, based on crystal radii. The unit-cell volumes increase linearly and the densities decrease linearly with larger *RE* cations. The average distances between the *RE* cations and the nearest O atoms increase with larger cations whereas the average distances of Mo–O and K–O do not show specific trends.

1. Chemical context

Rare-earth (RE) molybdates have been studied extensively because of their luminescent, magnetoelectric, and ferroelectric properties (Borchardt & Bierstedt, 1967; Axe et al., 1971; Pratap et al., 1987; Ponomarev et al., 1994; Shi et al., 1996; Kut'ko, 2005; Wang et al., 2007; Ponomarev & Zhukov, 2012). The RE molybdates of $ARE(MoO_4)_2$ (A = Li, Na, K, Rb, Cs, Ag) generally crystallize with the tetragonal $I4_1/a$ space group with the scheelite (CaWO₄) structure or the orthorhombic Pbcn space group (Wanklyn & Wondre, 1978; Hanuza & Fomitsev, 1980; Leask et al., 1981; Hanuza et al., 1994; Stedman et al., 1994; Shi et al., 1996; Voron'ko et al., 2004; Kut'ko, 2005; Wang et al., 2007; Mat'aš et al., 2010; Poperezhai et al., 2017). The $ARE(MoO_4)_2$ compounds having the $I4_1/a$ space group have luminescent properties with high thermal and hydrolytic stability (Stedman et al., 1994; Shi et al., 1996; Voron'ko et al., 2004; Wang et al., 2007) whereas the compounds with the Pbcn space group are known for the structural phase transition by the Jahn-Teller effect (Kut'ko, 2005; Mat'aš et al., 2010; Kamenskyi et al., 2014; Poperezhai et al., 2017). Other wellknown RE molybdates $RE_2(MoO_4)_3$ (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) crystallize with different space groups including $P2_1/c$, C2/c, or P2m depending on the RE cations and the synthesis conditions (Brixner et al., 1979; Jeitschko, 1973; Ponomarev & Zhukov, 2012; Pratap et al., 1987); these phases exhibit magnetoelectric and ferroelectric properties (Borchardt & Bierstedt, 1967; Axe et al., 1971; Ponomarev et al., 1994; Ponomarev & Zhukov, 2012). The RE molybdate compounds are synthesized using flux-assisted or solid-state synthesis methods. Wanklyn & Wondre (1978) synthesized

research communications

Figure 1

(a) Crystal structure of $KRE(MOO_4)_2$ and (b) $[RE(MOO_4)_2]^-$ layer showing the chains composed of REO_8 octahedra connected by MoO_4 tetrahedra along the *c*-axis direction.

 $KRE(MoO_4)_2$ (*RE* = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu) compounds by the flux-assisted method using *REO*₃,

MoO₃, and K₂SO₄ at 1000°C for 24 h. They reported that crystals containing $RE = \text{Tb} \rightarrow \text{Lu}$ crystallized in the *Pbcn* space group whereas RE = La and Pr crystallized in the *I*4₁/*a* space group and others were not defined (Wanklyn & Wondre, 1978). Shi *et al.* (1996) synthesized the Ag*RE*(MoO₄)₂ (*RE* = Eu, Gd, Tb) compounds with a tetragonal scheelite-type structure by heating the stoichiometric mixtures of *REO*_x, Ag₂O, and MoO₃ at 800°C for 50 h. Wang *et al.* (2007) synthesized the tetragonal *AEu*(MoO₄)₂ (*A* = Li, Na, K) compounds by heating a mixture of *REO*_x, LiCO₃, NaHCO₃, K₂CO₃, and (NH₄)₆Mo₇O₂₄·4H₂O at 550–750°C for 4 h. The *RE*₂(MoO₄)₃ compounds were synthesized by heating a mixture of *REO*_x and MoO₃ at 900–1000°C (Borchardt & Bierstedt, 1967; Guzmán-Afonso *et al.*, 2013).

2. Structural commentary

The title $KRE(MoO_4)_2$ compounds crystallized in the orthorhombic *Pbcn* space group and have alternating layers of $[RE(MoO_4)_2]^-$ and K⁺ ions (Fig. 1*a*). The $[RE(MoO_4)_2]^-$ layer contains chains formed by edge-sharing REO_8 octahedra connected by MoO₄ tetrahedra along the *c*-axis direction (Fig. 1*b*). The trendlines of the structural parameters were calculated using data from the current study. The unit-cell parameters of *a* and *c* increase while those of *b* decrease linearly with increasing size of the *RE* cations (Fig. 2). Although these trends are shown clearly, there are large deviations from the trendlines for some molybdates including

Figure 2

Summary of (a) unit-cell parameter a, (b) unit-cell parameter b, (c) unit-cell parameter c, (d) unit-cell volume (V), and (e) density (ρ) as a function of the average crystal radii of the RE in the crystal structures (coordination number = 8) from Shannon (1976).

Table 1	
Bond-valence (v.u.) calculations for the	e title $KRE(MoO_4)_2$ compounds.

Detailed tables are included in the supporting information.

	KTb(MoO ₄) ₂	KDy(MoO ₄) ₂	KHo(MoO ₄) ₂	KEr(MoO ₄) ₂	KYb(MoO ₄) ₂	KLu(MoO ₄) ₂
RE	3.11	2.97	3.25	3.00	2.97	3.13
Мо	5.66	5.66	5.62	5.65	5.66	5.70
Κ	1.20	1.21	1.19	1.20	1.10	1.13
O_1	1.99	1.97	2.00	1.98	1.98	2.00
O ₂	1.82	1.80	1.82	1.80	1.79	1.82
0 ₃	1.90	1.92	1.97	1.92	1.91	1.91
O_4	2.06	2.07	2.07	2.05	2.03	2.09

Tb and Tm molybdates for unit-cell parameter a, and Tb and Yb for unit-cell parameter b. The unit-cell volume of the Yb compound also shows a large deviation. Compared to the structural parameters from the previous studies (PDF 00-050-1762 and PDF 00-052-1688) on the Yb compound, the cell length b is longer by ~ 0.02 Å, and the unit-cell volume is larger by $\sim 2 \text{ Å}^3$. The structural parameters in these previous studies are from powder samples whereas the data in this study are from single-crystal studies. These inconsistencies could be due to possible mixed valences of RE or nonstoichiometry of RE sites. However, the bond-valence calculations for all the $KRE(MoO_4)_2$ compounds show that the bond-valence sums of RE cations are close to 3 (Table 1). The average distances between the RE cations and neighboring O atoms increase with larger RE cations whereas there are no trends for $\langle Mo - O \rangle$ or $\langle K - O \rangle$ (Fig. 3). Further investigation should be done in the future to understand these deviations from the law. The unit-cell volumes increase linearly whereas the densities of the phases decrease linearly as the radius of the RE cations increases (Fig. 2).

3. Synthesis and crystallization

The single crystals of $KRE(MoO_4)_2$ were synthesized using Tb₄O₇ (Alfa Aesar, 99.9%), Dy₂O₃ (Alfa Aesar, 99.9%),

Ho₂O₃ (Alfa Aesar, 99.9%), Er₂O₃ (Alfa Aesar, 99.9%), Yb₂O₃ (Alfa Aesar, 99.9%), Lu₂O₃ (Alfa Aesar, 99.9%), K₂CO₃ (Alfa Aesar, 99%), and MoO₃ (Alfa Aesar, 99.5%). All the chemicals were used as received. First, K₂Mo₃O₁₀ was synthesized using K₂CO₃ and MoO₃ by heating at 520°C for 8 h as described in a previous study (Chong et al., 2020). The stoichiometric mixture of REO_x and $K_2Mo_3O_{10}$ was put into a Pt/10%Rh crucible with a lid and placed in a Thermolyne box furnace. The furnace was heated to 1150°C at 5°C min⁻¹, dwelled for 10 h, cooled to 400°C at 5°C h⁻¹ in air, and then shut off. The single crystals were recovered from the solidified flux after washing in an ultrasonic bath with deionized water and using vacuum filtration. In addition to the listed six crystals, $KTm(MoO_4)_2$ was synthesized similarly, but it was not reported in this study due to the unresolved residual electron densities during structural refinement. All the $KRE(MoO_4)_2$ crystals were plates (Fig. 4) with different colors (Fig. 5).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. A hemisphere of data was collected on two crystals (RE = Ho, Yb) using a Bruker APEXII Quazar diffractometer equipped with a microsource tube emitting monochromated Mo K α X-ray radiation and collected on a CCD detector. Data were collected for five

Figure 3 Average distances of (a) $\langle K-O \rangle$, (b) $\langle RE-O \rangle$, and (c) $\langle Mo-O \rangle$ of $KRE(MoO_4)_2$ compounds.

research communications

Table 2Experimental details.

	KTb(MoO ₄) ₂	KDy(MoO ₄) ₂	KHo(MoO ₄) ₂
Crystal data	() <u>-</u>	2	(····2
M_	517.90	521.48	523.91
Crystal system, space group	Orthorhombic, Pbcn	Orthorhombic, Pbcn	Orthorhombic, Pbcn
Temperature (K)	100	100	273
a, b, c (Å)	5.0826 (1), 18.1273 (7), 7.9875 (2)	5.0776 (2), 18.1214 (7), 7.9428 (3)	5.0770 (15), 18.161 (5), 7.934 (2)
$V(Å^3)$	735.92 (4)	730.84 (5)	731.5 (4)
Z	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	13.43	14.07	14.66
Crystal size (mm)	$0.36 \times 0.20 \times 0.04$	$0.11 \times 0.11 \times 0.03$	$0.06\times0.06\times0.04$
Data collection			
Diffractometer	Rigaku XtaLAB	Rigaku XtaLAB	Bruker APEXII CCD
	Synergy-S, HyPix	Synergy-S, HyPix	
Absorption correction	Gaussian (CrysAlis PRO; Bigaku OD 2019)	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD 2019)	Multi-scan (SADABS; Krause et al. 2015)
T _{min} , T _{max}	0.035, 0.703	0.247, 0.695	0.248, 0.343
No. of measured, independent and	13792, 1350, 1238	17317, 1388, 1196	7665, 936, 818
observed $[I > 2\sigma(I)]$ reflections	,,		,,
R _{int}	0.069	0.075	0.032
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.102, 1.08	0.033, 0.088, 1.10	0.027, 0.063, 1.25
No. of reflections	1350	1388	936
No. of parameters	56	56	56
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	2.63, -2.78	2.38, -2.65	1.51, -1.37
	$KEr(MoO_4)_2$	KYb(MoO ₄) ₂	KLu(MoO ₄) ₂
Crystal data			
$M_{ m r}$	526.24	532.02	533.95
Crystal system, space group	Orthorhombic, Pbcn	Orthorhombic, Pbcn	Orthorhombic, Pbcn
Temperature (K)	100	273	100
a, b, c (Å)	5.0602 (2), 18.1965 (8), 7.8920 (3)	5.0417 (5), 18.3039 (19), 7.8693 (8)	5.0292 (2), 18.2519 (10), 7.8174 (4)
$V(\dot{A}^3)$	726.68 (5)	726.20 (13)	717.58 (6)
Ζ	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	15.42	16.75	17.68
Crystal size (mm)	$0.28 \times 0.15 \times 0.02$	$0.06 \times 0.06 \times 0.04$	$0.44 \times 0.15 \times 0.04$
Data collection			
Diffractometer	Rigaku XtaLAB	Bruker APEXII CCD	Rigaku XtaLAB
Absorption correction	Gaussian (CrysAlis PRO:	Multi-scan (SADARS:	Multi-scan (Crys Alis PRO:
Absolption concetion	Rigaku OD 2019)	Krause et al. 2015)	Rigaku OD 2019)
T , T	0.001 0.011	0.198_0.301	0.240, 1.000
No of measured independent and	21246 1386 1255	8164 078 845	19857 1105 1004
observed $[I > 2\sigma(I)]$ reflections	21240, 1360, 1233	0104, 770, 043	19657, 1105, 1004
R _{int}	0.072	0.038	0.087
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.073, 1.06	0.022, 0.063, 1.11	0.027, 0.077, 1.17
No. of reflections	1386	978	1105
No. of parameters	56	56	57
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	2.04, -1.62	1.55, -1.14	2.05, -3.03

Computer programs: CrysAlis PRO (Rigaku OD, 2019), APEX3 (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).

crystals (RE = Dy, Er, Lu, Tb, Tm) with a Rigaku XtaLab Synergy diffractometer using a single microfocus Mo K α X-ray radiation source in a sealed tube, equipped with a Hybrid Pixel (HyPix) Array detector and using an Oxford liquid-nitrogen Cryostream. For the Bruker datasets, *APEX3* software (Bruker, 2014) was used for determining the unit cell and integrating the collected reflection data. Absorption corrections were applied with the *SADABS* software package (Krause *et al.*, 2015). For the Rigaku datasets, the *CrysAlis Pro* software package was used for unit-cell determination and data integration (Rigaku OD, 2019). The numerical absorption correction was applied utilizing SCALE3 ABSPACK (Clark & Reid, 1995). All structures were solved by the intrinsic phasing method using *SHELXT* and refined with *SHELXL* (Sheldrick, 2015*a*,*b*) within the *OLEX2* software package (Dolomanov *et al.*, 2009).

Figure 4

SEM micrographs of $KRE(MOO_4)_2$. Artifacts on the surface of several crystals shown resemble residual flux not fully removed during rinsing.

Acknowledgements

The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05–76RL01830.

References

- Axe, J., Dorner, B. & Shirane, G. (1971). Phys. Rev. Lett. 26, 519-523.
- Borchardt, H. J. & Bierstedt, P. E. (1967). J. Appl. Phys. 38, 2057–2060.
- Brixner, L. H., Barkley, J. R. & Jeitschko, W. (1979). *Handbook on the Physics and Chemistry of Rare Earths*, Vol. 3, pp. 609–654. Berlin, Heidelberg, New York: Springer.
- Bruker (2014). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Chong, S., Riley, B. J., Nelson, Z. J. & Perry, S. N. (2020). Acta Cryst.
- E76, 339–343. Clark, R. C. & Reid, J. S. (1995). *Acta Cryst.* A51, 887–897.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. &
- Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341. Guzmán-Afonso, C., González-Silgo, C., Torres, M., Matesanz, E. &
- Mujica, A. (2013). J. Phys. Condens. Matter, **25**, 035902–1–03590, 2– 10.
- Hanuza, J. & Fomitsev, V. V. (1980). J. Mol. Struct. 66, 1-24.
- Hanuza, J., Macalik, L. & Hermanowicz, K. (1994). J. Mol. Struct. **319**, 17–30.
- Jeitschko, W. (1973). Acta Cryst. B29, 2074-2081.
- Kamenskyi, D., Poperezhai, S., Gogoi, P., Engelkamp, H., Maan, J., Wosnitza, J. & Kut'ko, V. (2014). *Phys. Rev. B*, 89, 014410–1–01441.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. *Appl. Cryst.* **48**, 3–10.

Figure 5

Pictures of recovered crystals of $KRE(MoO_4)_2$ showing various sizes and colors.

Kut'ko, V. I. (2005). Low Temp. Phys. 31, 1-31.

- Leask, M. J. M., Tropper, A. C. & Wells, M. R. (1981). J. Phys. C.: Solid State Phys. 14, 3481–3498.
- Mat'aš, S., Dudzik, E., Feyerherm, R., Gerischer, S., Klemke, S., Prokeš, K. & Orendáčová, A. (2010). *Phys. Rev. B*, 82, 184427–1– 18442, 7–8.
- Ponomarev, B. K., Ivanov, S. A., Popov, Y. F., Negrii, V. D. & Red'Kin, B. S. (1994). *Ferroelectrics*, **161**, 43–48.
- Ponomarev, B. K. & Zhukov, A. (2012). *Phys. Res. Int.* **2012**, 276348– 1–27634, 8–22.
- Poperezhai, S., Gogoi, P., Zubenko, N., Kutko, K., Kutko, V. I., Kovalev, A. S. & Kamenskyi, D. (2017). J. Phys. Condens. Matter, 29, 095402–1–09540, 2–6.
- Pratap, V., Gaur, K. & Lal, H. B. (1987). *Mater. Res. Bull.* 22, 1381–1393.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shi, F., Meng, J. & Ren, Y. (1996). J. Solid State Chem. 121, 236–239.
- Stedman, N. J., Cheetham, A. K. & Battle, P. D. (1994). J. Mater. Chem. 4, 707–711.
- Voron'ko, Y. K., Zharikov, E. V., Lis, D., Sobol, A. A., Subbotin, K. A., Ushakov, S. N. & Shukshin, V. E. (2004). *Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion*, pp. 60–68. International Society for Optics and Photonics.
- Wang, Z., Liang, H., Gong, M. & Su, Q. (2007). J. Alloys Compd. 432, 308–312.
- Wanklyn, B. M. & Wondre, F. R. (1978). J. Cryst. Growth, 43, 93–100.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2020). E76, 1871-1875 [https://doi.org/10.1107/S205698902001542X]

Crystal structures and comparisons of potassium rare-earth molybdates $KRE(MoO_4)_2$ (*RE* = Tb, Dy, Ho, Er, Yb, and Lu)

Saehwa Chong, Samuel Perry, Brian J. Riley and Zayne J. Nelson

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2019) for Tb_Molybdate, Dy_Molybdate, Er_Molybdate, Lu_Molybdate; *APEX3* (Bruker, 2014) for Ho_Molybdate, Yb_Molybdate. Cell refinement: *CrysAlis PRO* (Rigaku OD, 2019) for Tb_Molybdate, Dy_Molybdate, Er_Molybdate, Lu_Molybdate; *APEX3* (Bruker, 2014) for Ho_Molybdate, Yb_Molybdate. Data reduction: *CrysAlis PRO* (Rigaku OD, 2019) for Tb_Molybdate, Dy_Molybdate, Er_Molybdate, Lu_Molybdate; *APEX3* (Bruker, 2014) for Ho_Molybdate, Yb_Molybdate. For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Potassium terbium bis(molybdate) (Tb_Molybdate)

Crystal data

KTb(MoO₄)₂ $M_r = 517.90$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 5.0826 (1) Å b = 18.1273 (7) Å c = 7.9875 (2) Å V = 735.92 (4) Å³ Z = 4

Data collection

Rigaku XtaLAB Synergy-S, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019) $T_{min} = 0.035, T_{max} = 0.703$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.102$ S = 1.08 F(000) = 928 $D_x = 4.674 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6923 reflections $\theta = 2.3-33.5^{\circ}$ $\mu = 13.43 \text{ mm}^{-1}$ T = 100 KPlate, white $0.36 \times 0.20 \times 0.04 \text{ mm}$

13792 measured reflections 1350 independent reflections 1238 reflections with $I > 2\sigma(I)$ $R_{int} = 0.069$ $\theta_{max} = 33.7^\circ, \ \theta_{min} = 2.3^\circ$ $h = -7 \rightarrow 6$ $k = -27 \rightarrow 27$ $l = -12 \rightarrow 12$

1350 reflections56 parameters0 restraints0 constraintsPrimary atom site location: dual

 $w = 1/[\sigma^2(F_o^2) + (0.0705P)^2 + 1.3389P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.002$ $\Delta \rho_{\rm max} = 2.63 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -2.78 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement pa	oarameters (.	A^2
---	---------------	-------

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Tb1	0.000000	0.49384 (2)	0.250000	0.00653 (12)	
Mo1	0.48012 (7)	0.60289 (2)	0.48337 (5)	0.00701 (12)	
K1	0.500000	0.77012 (8)	0.750000	0.0114 (2)	
O2	0.7489 (5)	0.53496 (13)	0.5042 (2)	0.0089 (4)	
04	0.6111 (5)	0.69028 (13)	0.4759 (3)	0.0105 (5)	
01	0.2592 (5)	0.59503 (12)	0.3093 (3)	0.0099 (4)	
O3	0.2716 (5)	0.60251 (12)	0.6603 (3)	0.0102 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Tb1	0.00409 (18)	0.01076 (18)	0.00476 (17)	0.000	-0.00033 (5)	0.000
Mo1	0.00425 (19)	0.01069 (19)	0.00610 (19)	0.00024 (8)	-0.00066 (7)	-0.00020 (10)
K1	0.0118 (5)	0.0136 (5)	0.0089 (5)	0.000	-0.0008(3)	0.000
O2	0.0056 (12)	0.0138 (9)	0.0073 (9)	0.0017 (9)	-0.0008 (6)	0.0002 (7)
04	0.0096 (12)	0.0130 (10)	0.0089 (10)	-0.0036 (9)	0.0011 (7)	-0.0007 (8)
01	0.0069 (10)	0.0143 (10)	0.0084 (10)	-0.0001 (8)	-0.0021 (8)	0.0002 (8)
03	0.0089 (10)	0.0144 (10)	0.0073 (9)	-0.0003 (8)	0.0003 (8)	-0.0008 (7)

Geometric parameters (Å, °)

Tb1—Tb1 ⁱ	4.0000(1)	Mo1—O3	1.767 (2)
Tb1—Tb1 ⁱⁱ	4.0000(1)	K1—Mo1 ^{xi}	3.8378 (9)
Tb1—K1 ⁱⁱⁱ	4.2788 (14)	K1—Mo1 ^{xii}	3.7062 (11)
Tb1—O2 ^{iv}	2.399 (2)	K1—Mo1 ^{xiii}	3.8378 (9)
Tb1—O2 ^v	2.399 (2)	K1—O4	2.684 (2)
Tb1—O2 ^{vi}	2.511 (2)	K1—O4 ^{xiv}	2.771 (2)
Tb1—O2 ^{vii}	2.511 (2)	K1—O4 ^{xii}	2.684 (2)
Tb1—O1 ^{viii}	2.308 (2)	K1—O4 ^{xv}	2.771 (2)
Tb1—O1	2.308 (2)	K1—O1 ^{xiii}	2.817 (3)
Tb1—O3 ^{ix}	2.339 (2)	K1—O1 ^{xi}	2.817 (3)
Tb1—O3 ⁱⁱ	2.339 (2)	K1—O3	3.330 (3)

Mo1—K1	3.7062 (11)	K1—O3 ^{xii}	3.330 (3)
Mo1—K1 ^x	3.9694 (9)	O2—Tb1 ^{iv}	2.399 (2)
Mo1—K1 ⁱⁱⁱ	3.8378 (9)	O2—Tb1 ^{xvi}	2.511 (2)
Mo1—O2	1.847 (2)	O4—K1 ^x	2.771 (2)
Mo1—O4	1.719 (2)	O1—K1 ⁱⁱⁱ	2.817 (3)
Mo1—O1	1.793 (2)	O3—Tb1 ⁱⁱ	2.339 (2)
Tb1 ⁱⁱ —Tb1—Tb1 ⁱ	173.598 (18)	Mo1 ^{xiii} —K1—Mo1 ^{xi}	106.29 (4)
Tb1 ⁱⁱ —Tb1—K1 ⁱⁱⁱ	86.799 (9)	Mo1—K1—Mo1 ^{xiii}	103.230 (11)
Tb1 ⁱ —Tb1—K1 ⁱⁱⁱ	86.799 (9)	Mo1 ^{xii} —K1—Mo1 ^{xiii}	138.798 (13)
$O2^{iv}$ —Tb1—Tb1 ⁱ	146.02 (5)	Mo1—K1—Mo1 ^{xii}	70.24 (3)
$O2^v$ —Tb1—Tb1 ⁱ	36.40 (5)	Mo1 ^{xii} —K1—Mo1 ^{xi}	103.230 (11)
$O2^{vi}$ —Tb1—Tb1 ⁱ	34.54 (5)	O4 ^{xii} —K1—Mo1	91.25 (6)
$O2^{vii}$ —Tb1—Tb1 ⁱ	142.24 (5)	O4—K1—Mo1 ^{xii}	91.25 (6)
O2 ^{iv} —Tb1—Tb1 ⁱⁱ	36.40 (5)	O4 ^{xiv} —K1—Mo1 ^{xi}	72.98 (5)
O2 ^v —Tb1—Tb1 ⁱⁱ	146.02 (5)	O4 ^{xiv} —K1—Mo1 ^{xii}	127.27 (6)
O2 ^{vi} —Tb1—Tb1 ⁱⁱ	142.24 (5)	O4 ^{xii} —K1—Mo1 ^{xi}	78.09 (5)
O2 ^{vii} —Tb1—Tb1 ⁱⁱ	34.54 (5)	O4—K1—Mo1	25.32 (5)
O2 ^{vi} —Tb1—K1 ⁱⁱⁱ	72.73 (5)	O4 ^{xiv} —K1—Mo1	79.53 (5)
O2 ^{vii} —Tb1—K1 ⁱⁱⁱ	72.73 (5)	O4—K1—Mo1 ^{xiii}	78.09 (5)
O2 ^v —Tb1—K1 ⁱⁱⁱ	102.57 (6)	O4—K1—Mo1 ^{xi}	148.56 (6)
O2 ^{iv} —Tb1—K1 ⁱⁱⁱ	102.57 (6)	O4 ^{xii} —K1—Mo1 ^{xiii}	148.57 (6)
$O2^{vii}$ —Tb1— $O2^{vi}$	145.47 (11)	O4 ^{xv} —K1—Mo1 ^{xi}	88.96 (6)
$O2^{iv}$ —Tb1— $O2^{vi}$	117.12 (10)	O4 ^{xv} —K1—Mo1 ^{xiii}	72.98 (5)
O2 ^{iv} —Tb1—O2 ^{vii}	70.93 (9)	O4 ^{xii} —K1—Mo1 ^{xii}	25.32 (5)
$O2^v$ —Tb1— $O2^{vi}$	70.93 (9)	O4 ^{xiv} —K1—Mo1 ^{xiii}	88.96 (6)
$O2^v$ —Tb1— $O2^{vii}$	117.12 (10)	O4 ^{xv} —K1—Mo1	127.27 (6)
$O2^v$ —Tb1— $O2^{iv}$	154.87 (11)	O4 ^{xv} —K1—Mo1 ^{xii}	79.53 (5)
O1—Tb1—Tb1 ⁱ	99.23 (6)	$O4^{xii}$ —K1— $O4^{xv}$	76.03 (6)
O1 ^{viii} —Tb1—Tb1 ⁱ	75.57 (6)	O4—K1—O4 ^{xv}	121.38 (3)
O1—Tb1—Tb1 ⁱⁱ	75.57 (6)	$O4^{xv}$ —K1— $O4^{xiv}$	149.97 (11)
O1 ^{viii} —Tb1—Tb1 ⁱⁱ	99.23 (6)	O4—K1—O4 ^{xiv}	76.03 (6)
O1 ^{viii} —Tb1—K1 ⁱⁱⁱ	37.35 (6)	$O4^{xii}$ —K1— $O4^{xiv}$	121.38 (3)
O1—Tb1—K1 ⁱⁱⁱ	37.35 (6)	O4—K1—O4 ^{xii}	114.75 (11)
$O1^{viii}$ —Tb1— $O2^{iv}$	130.14 (8)	$O4^{xii}$ —K1— $O1^{xi}$	103.44 (7)
O1—Tb1—O2 ^{vi}	68.88 (7)	O4—K1—O1 ^{xi}	134.69 (7)
O1 ^{viii} —Tb1—O2 ^{vii}	68.88 (7)	O4—K1—O1 ^{xiii}	103.44 (7)
$O1^{viii}$ —Tb1— $O2^{vi}$	83.59 (8)	O4 ^{xiv} —K1—O1 ^{xiii}	89.97 (8)
O1—Tb1—O2 ^{iv}	72.62 (8)	$O4^{xiv}$ —K1—O1 ^{xi}	63.32 (7)
O1—Tb1—O2 ^{vii}	83.59 (8)	O4 ^{xii} —K1—O1 ^{xiii}	134.69 (7)
$O1^{viii}$ —Tb1— $O2^{v}$	72.62 (8)	O4 ^{xv} —K1—O1 ^{xiii}	63.32 (7)
$O1$ — $Tb1$ — $O2^{v}$	130.14 (8)	$O4^{xv}$ —K1— $O1^{xi}$	89.97 (8)
O1—Tb1—O1 ^{viii}	74.71 (11)	O4 ^{xv} —K1—O3	128.69 (7)
O1 ^{viii} —Tb1—O3 ^{ix}	150.21 (8)	O4 ^{xv} —K1—O3 ^{xii}	81.24 (7)
O1 ^{viii} —Tb1—O3 ⁱⁱ	108.63 (9)	O4 ^{xii} —K1—O3	67.06 (7)
O1—Tb1—O3 ^{ix}	108.63 (9)	O4 ^{xiv} —K1—O3	81.24 (7)
O1—Tb1—O3 ⁱⁱ	150.21 (8)	O4 ^{xiv} —K1—O3 ^{xii}	128.69 (7)
$O3^{ix}$ —Tb1—Tb1 ⁱ	74.69 (5)	O4—K1—O3 ^{xii}	67.06 (7)

O3 ^{ix} —Tb1—Tb1 ⁱⁱ	110.34 (5)	O4—K1—O3	53.56 (7)
O3 ⁱⁱ —Tb1—Tb1 ⁱⁱ	74.69 (5)	$O4^{xii}$ —K1— $O3^{xii}$	53.56 (7)
O3 ⁱⁱ —Tb1—Tb1 ⁱ	110.34 (5)	O1 ^{xiii} —K1—Mo1	128.75 (5)
O3 ⁱⁱ —Tb1—K1 ⁱⁱⁱ	138.32 (6)	O1 ^{xiii} —K1—Mo1 ^{xi}	81.87 (6)
O3 ^{ix} —Tb1—K1 ⁱⁱⁱ	138.32 (6)	O1 ^{xi} —K1—Mo1 ^{xii}	128.75 (5)
O3 ^{ix} —Tb1—O2 ^{vii}	140.29 (7)	O1 ^{xi} —K1—Mo1	142.52 (5)
O3 ^{ix} —Tb1—O2 ^{iv}	76.95 (8)	O1 ^{xiii} —K1—Mo1 ^{xii}	142.52 (5)
O3 ⁱⁱ —Tb1—O2 ^{vii}	70.98 (8)	O1 ^{xiii} —K1—Mo1 ^{xiii}	25.90 (5)
O3 ⁱⁱ —Tb1—O2 ^v	76.95 (8)	O1 ^{xi} —K1—Mo1 ^{xiii}	81.87 (6)
O3 ^{ix} —Tb1—O2 ^{vi}	70.98 (8)	O1 ^{xi} —K1—Mo1 ^{xi}	25.90 (5)
$O3^{ii}$ —Tb1— $O2^{vi}$	140.29 (7)	O1 ^{xiii} —K1—O1 ^{xi}	59.61 (10)
O3 ⁱⁱ —Tb1—O2 ^{iv}	84.31 (8)	O1 ^{xiii} —K1—O3 ^{xii}	131.66 (6)
O3 ^{ix} —Tb1—O2 ^v	84.31 (8)	O1 ^{xi} —K1—O3	131.66 (6)
O3 ⁱⁱ —Tb1—O3 ^{ix}	83.37 (11)	O1 ^{xi} —K1—O3 ^{xii}	156.71 (6)
K1—Mo1—K1 ^x	77.135 (10)	O1 ^{xiii} —K1—O3	156.71 (6)
K1 ⁱⁱⁱ —Mo1—K1 ^x	81.22 (2)	O3—K1—Mo1 ^{xiii}	131.63 (4)
K1—Mo1—K1 ⁱⁱⁱ	78.802 (10)	O3—K1—Mo1	28.44 (4)
O2—Mo1—K1 ⁱⁱⁱ	156.08 (6)	O3 ^{xii} —K1—Mo1 ^{xi}	131.63 (4)
O2—Mo1—K1 ^x	86.36 (7)	O3 ^{xii} —K1—Mo1 ^{xiii}	115.47 (4)
O2—Mo1—K1	118.26 (7)	O3 ^{xii} —K1—Mo1	52.19 (4)
O4—Mo1—K1 ⁱⁱⁱ	71.14 (9)	O3—K1—Mo1 ^{xi}	115.47 (4)
O4—Mo1—K1 ^x	36.07 (8)	O3 ^{xii} —K1—Mo1 ^{xii}	28.44 (4)
O4—Mo1—K1	41.90 (7)	O3—K1—Mo1 ^{xii}	52.19 (4)
O4—Mo1—O2	109.34 (11)	O3—K1—O3 ^{xii}	48.36 (8)
O4—Mo1—O1	106.78 (11)	$Tb1^{iv}$ —O2— $Tb1^{xvi}$	109.07 (9)
O4—Mo1—O3	105.28 (10)	Mo1—O2—Tb1 ^{iv}	127.76 (10)
O1—Mo1—K1	121.85 (7)	Mo1—O2—Tb1 ^{xvi}	120.07 (9)
O1—Mo1—K1 ⁱⁱⁱ	43.35 (7)	Mo1—O4—K1	112.78 (11)
O1—Mo1—K1 ^x	95.66 (7)	Mo1—O4—K1 ^x	122.51 (11)
O1—Mo1—O2	118.69 (10)	K1—O4—K1 ^x	122.78 (9)
O3—Mo1—K1	63.88 (7)	Tb1—O1—K1 ⁱⁱⁱ	112.84 (9)
O3—Mo1—K1 ⁱⁱⁱ	90.54 (8)	Mo1—O1—Tb1	125.44 (11)
O3—Mo1—K1 ^x	141.01 (7)	Mo1—O1—K1 ⁱⁱⁱ	110.75 (10)
O3—Mo1—O2	111.67 (10)	Tb1 ⁱⁱ —O3—K1	145.20 (9)
O3—Mo1—O1	104.16 (12)	Mo1—O3—Tb1 ⁱⁱ	127.02 (11)
Mo1—K1—Mo1 ^{xi}	138.799 (13)	Mo1—O3—K1	87.68 (8)

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) -x+1/2, -y+3/2, z-1/2; (iv) -x+1, -y+1, -z+1; (v) x-1, -y+1, z-1/2; (vi) -x+1, y, -z+1/2; (vii) x-1, y, z; (viii) -x, y, -z+1/2; (ix) x, -y+1, z-1/2; (x) -x+3/2, -y+3/2, z-1/2; (ix) -x+1/2, -y+3/2, z+1/2; (xii) -x+1, y, -z+3/2; (xiii) x+1/2, -y+3/2, z+1/2; (xii) -x+1, y, -z+3/2; (xiii) x+1/2, -y+3/2, z+1/2; (xiv) x-1/2, -y+3/2, -z+1; (xv) -x+3/2, -y+3/2, z+1/2; (xvi) x+1, y, z.

Potassium dysprosium bis(molybdate) (Dy_Molybdate)

Crystal data	
$KDy(MoO_4)_2$	c = 7.9428 (3) Å
$M_r = 521.48$	V = 730.84 (5) Å ³
Orthorhombic, <i>Pbcn</i>	Z = 4
Hall symbol: -P 2n 2ab	F(000) = 932
a = 5.0776 (2) Å	$D_{\rm x} = 4.739 {\rm ~Mg} {\rm ~m}^{-3}$
b = 18.1214 (7) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å

Cell parameters from 5121 reflections $\theta = 2.3-33.3^{\circ}$ $\mu = 14.07 \text{ mm}^{-1}$

Data collection

Rigaku XtaLAB Synergy-S, HyPix
diffractometer
Radiation source: micro-focus sealed X-ray tube
Mirror monochromator
Detector resolution: 10.0000 pixels mm ⁻¹
ω scans
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2019)
$T_{\min} = 0.247, \ T_{\max} = 0.695$

Refinement

Refinement on F^2	0 constraints
Least-squares matrix: full	Primary atom site location: dual
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F_o^2) + (0.0343P)^2 + 8.538P]$
$wR(F^2) = 0.088$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} = 0.001$
1388 reflections	$\Delta \rho_{\rm max} = 2.38 \text{ e} \text{ Å}^{-3}$
56 parameters	$\Delta \rho_{\rm min} = -2.65 \text{ e } \text{\AA}^{-3}$
0 restraints	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

T = 100 K

 $R_{\rm int} = 0.075$

 $k = -27 \longrightarrow 27$ $l = -11 \longrightarrow 11$

Plate, light yellow

 $0.11 \times 0.11 \times 0.03 \text{ mm}$

 $\theta_{\text{max}} = 34.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ $h = -7 \rightarrow 7$

17317 measured reflections 1388 independent reflections 1196 reflections with $I > 2\sigma(I)$

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional	atomic	coordinates	and iso	otropic	or ed	nuivalent	isotropic	c disp	olacement	parameters ((Å ²	2
1		000101111101000		n opro	0. 00	100000000000000000000000000000000000000	100110010	, which he has been been been been been been been bee	recenterie	pen ennerens ((/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Dy1	0.000000	0.49408 (2)	0.250000	0.00749 (11)	
Mo1	0.48037 (7)	0.60238 (2)	0.48347 (5)	0.00769 (11)	
K1	0.500000	0.77076 (9)	0.750000	0.0118 (3)	
O4	0.6101 (7)	0.6900 (2)	0.4770 (4)	0.0121 (6)	
02	0.7489 (7)	0.53449 (19)	0.5049 (4)	0.0100 (6)	
01	0.2588 (6)	0.59449 (19)	0.3083 (4)	0.0111 (6)	
03	0.2709 (6)	0.60172 (19)	0.6610 (4)	0.0109 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Dy1	0.00510 (15)	0.01210 (17)	0.00526 (16)	0.000	-0.00001 (8)	0.000
Mo1	0.00512 (18)	0.0115 (2)	0.00648 (18)	0.00032 (12)	-0.00022 (10)	-0.00023 (12)
K1	0.0125 (6)	0.0147 (6)	0.0083 (6)	0.000	-0.0006 (4)	0.000

O4	0.0098 (15)	0.0154 (16)	0.0109 (15)	-0.0020 (12)	0.0006 (11)	-0.0004 (12)
O2	0.0066 (13)	0.0161 (16)	0.0072 (14)	0.0018 (11)	-0.0009 (11)	-0.0015 (11)
01	0.0081 (13)	0.0178 (16)	0.0074 (14)	-0.0013 (12)	-0.0010 (11)	0.0001 (12)
O3	0.0073 (13)	0.0171 (16)	0.0082 (14)	-0.0003 (12)	0.0008 (11)	0.0006 (11)

Geometric parameters (Å, °)

Dy1—Dy1 ⁱ	3.9772 (1)	Mo1—O3	1.766 (3)	
Dy1—Dy1 ⁱⁱ	3.9772 (2)	K1—Mo1 ^{xi}	3.8305 (10)	
Dy1—K1 ⁱⁱⁱ	4.2614 (16)	K1—Mo1 ^{xii}	3.7150 (13)	
Dy1—O2 ^{iv}	2.384 (3)	K1—Mo1 ^{xiii}	3.8305 (10)	
Dy1—O2 ^v	2.384 (3)	K1—O4	2.676 (4)	
Dy1—O2 ^{vi}	2.502 (3)	K1—O4 ^{xiv}	2.770 (3)	
Dy1—O2 ^{vii}	2.502 (3)	K1—O4 ^{xii}	2.676 (4)	
Dy1—O1	2.292 (3)	$K1 - O4^{xv}$	2.770 (3)	
Dy1—O1 ^{viii}	2.292 (3)	K1—O1 ^{xiii}	2.812 (4)	
Dy1—O3 ^{ix}	2.325 (3)	K1—O1 ^{xi}	2.812 (4)	
Dy1—O3 ⁱⁱ	2.325 (3)	K1—O3 ^{xii}	3.352 (4)	
Mo1—K1	3.7150 (13)	K1—O3	3.352 (4)	
Mo1—K1 ^x	3.9604 (10)	O4—K1 ^x	2.770 (3)	
Mo1—K1 ⁱⁱⁱ	3.8305 (10)	O2—Dy1 ^{xvi}	2.502 (3)	
Mo1—O4	1.720 (4)	O2—Dy1 ^{iv}	2.384 (3)	
Mo1—O2	1.845 (3)	O1—K1 ⁱⁱⁱ	2.812 (4)	
Mo1—O1	1.795 (3)	O3—Dy1 ⁱⁱ	2.325 (3)	
Dy1 ⁱⁱ —Dy1—Dy1 ⁱ	173.818 (18)	Mo1—K1—Mo1 ^{xii}	69.57 (3)	
Dy1 ⁱⁱ —Dy1—K1 ⁱⁱⁱ	86.909 (9)	Mo1—K1—Mo1 ^{xi}	138.737 (15)	
Dy1 ⁱ —Dy1—K1 ⁱⁱⁱ	86.909 (9)	Mo1 ^{xii} —K1—Mo1 ^{xiii}	138.737 (15)	
$O2^{iv}$ — $Dy1$ — $Dy1^i$	145.80 (8)	Mo1 ^{xiii} —K1—Mo1 ^{xi}	106.24 (4)	
$O2^v$ —Dy1—Dy1 ⁱ	36.52 (8)	Mo1 ^{xii} —K1—Mo1 ^{xi}	103.540 (12)	
$O2^{vi}$ — $Dy1$ — $Dy1^i$	34.53 (8)	O4 ^{xv} —K1—Mo1 ^{xii}	79.68 (8)	
$O2^{vii}$ — $Dy1$ — $Dy1^i$	142.40 (8)	O4—K1—Mo1 ^{xii}	90.40 (9)	
$O2^{iv}$ — $Dy1$ — $Dy1^{ii}$	36.52 (8)	O4 ^{xiv} —K1—Mo1 ^{xi}	72.90 (7)	
O2 ^v —Dy1—Dy1 ⁱⁱ	145.80 (8)	O4 ^{xii} —K1—Mo1	90.40 (9)	
$O2^{vi}$ — $Dy1$ — $Dy1^{ii}$	142.40 (8)	O4 ^{xii} —K1—Mo1 ^{xi}	78.63 (8)	
O2 ^{vii} —Dy1—Dy1 ⁱⁱ	34.53 (8)	O4 ^{xv} —K1—Mo1	126.93 (8)	
$O2^{vi}$ — $Dy1$ — $K1^{iii}$	72.98 (8)	O4 ^{xiv} —K1—Mo1	79.68 (8)	
O2 ^{vii} —Dy1—K1 ⁱⁱⁱ	72.98 (8)	O4—K1—Mo1 ^{xiii}	78.63 (8)	
O2 ^v —Dy1—K1 ⁱⁱⁱ	102.55 (8)	O4—K1—Mo1 ^{xi}	148.63 (8)	
O2 ^{iv} —Dy1—K1 ⁱⁱⁱ	102.55 (8)	O4 ^{xii} —K1—Mo1 ^{xiii}	148.63 (8)	
$O2^{vii}$ — $Dy1$ — $O2^{vi}$	145.97 (16)	O4 ^{xv} —K1—Mo1 ^{xi}	89.19 (8)	
$O2^{iv}$ — $Dy1$ — $O2^{vi}$	116.87 (14)	O4 ^{xv} —K1—Mo1 ^{xiii}	72.90 (7)	
$O2^{iv}$ — $Dy1$ — $O2^{vii}$	71.05 (13)	O4—K1—Mo1	25.09 (8)	
$O2^{v}$ — $Dy1$ — $O2^{vi}$	71.05 (13)	O4 ^{xiv} —K1—Mo1 ^{xiii}	89.19 (8)	
O2 ^v —Dy1—O2 ^{vii}	116.87 (14)	O4 ^{xii} —K1—Mo1 ^{xii}	25.09 (8)	
$O2^v$ — $Dy1$ — $O2^{iv}$	154.91 (17)	O4 ^{xiv} —K1—Mo1 ^{xii}	126.93 (8)	
$O1^{viii}$ — $Dy1$ — $Dy1^i$	75.84 (8)	$O4^{xii}$ —K1— $O4^{xv}$	76.26 (9)	
$O1$ — $Dy1$ — $Dy1^i$	99.15 (8)	O4—K1—O4 ^{xv}	121.24 (5)	

O1 ^{viii} —Dy1—Dy1 ⁱⁱ	99.15 (8)	$O4^{xv}$ —K1— $O4^{xiv}$	150.24 (16)
O1—Dy1—Dy1 ⁱⁱ	75.84 (8)	O4—K1—O4 ^{xiv}	76.25 (8)
O1—Dy1—K1 ⁱⁱⁱ	37.45 (8)	$O4^{xii}$ —K1— $O4^{xiv}$	121.24 (5)
O1 ^{viii} —Dy1—K1 ⁱⁱⁱ	37.45 (8)	O4—K1—O4 ^{xii}	113.67 (16)
O1—Dy1—O2 ^{iv}	72.59 (12)	$O4^{xii}$ —K1— $O1^{xi}$	104.12 (10)
$O1^{viii}$ — $Dy1$ — $O2^{vi}$	84.04 (12)	O4—K1—O1 ^{xi}	134.94 (11)
O1—Dy1—O2 ^{vii}	84.04 (12)	O4—K1—O1 ^{xiiii}	104.12 (10)
$O1$ — $Dy1$ — $O2^{vi}$	68.85 (11)	O4 ^{xiv} —K1—O1 ^{xiii}	90.21 (11)
O1 ^{viii} —Dy1—O2 ^{iv}	130.11 (12)	$O4^{xiv}$ — $K1$ — $O1^{xi}$	63.27 (10)
$O1^{viii}$ — $Dy1$ — $O2^{vii}$	68.85 (11)	O4 ^{xii} —K1—O1 ^{xiii}	134.94 (11)
O1—Dy1—O2 ^v	130.11 (12)	O4 ^{xv} —K1—O1 ^{xiii}	63.27 (10)
$O1^{viii}$ — $Dy1$ — $O2^{v}$	72.59 (12)	$O4^{xv}$ — $K1$ — $O1^{xi}$	90.21 (11)
O1 ^{viii} —Dy1—O1	74.89 (17)	O4 ^{xv} —K1—O3 ^{xii}	81.35 (10)
O1—Dy1—O3 ^{ix}	108.36 (12)	O4 ^{xv} —K1—O3	128.30 (10)
O1—Dy1—O3 ⁱⁱ	150.54 (12)	O4 ^{xii} —K1—O3 ^{xii}	53.25 (10)
O1 ^{viii} —Dy1—O3 ^{ix}	150.54 (12)	$O4^{xiv}$ —K1— $O3^{xii}$	128.30 (10)
O1 ^{viii} —Dy1—O3 ⁱⁱ	108.36 (12)	O4 ^{xiv} —K1—O3	81.35 (10)
$O3^{ix}$ — $Dy1$ — $Dy1^{i}$	74.74 (8)	O4—K1—O3	53.25 (10)
O3 ^{ix} —Dy1—Dy1 ⁱⁱ	110.11 (8)	O4—K1—O3 ^{xii}	66.32 (10)
O3 ⁱⁱ —Dy1—Dy1 ⁱⁱ	74.74 (8)	O4 ^{xii} —K1—O3	66.32 (10)
O3 ⁱⁱ —Dy1—Dy1 ⁱ	110.11 (8)	O1 ^{xiii} —K1—Mo1	129.20 (7)
O3 ⁱⁱ —Dy1—K1 ⁱⁱⁱ	138.31 (8)	O1 ^{xiii} —K1—Mo1 ^{xi}	81.73 (8)
O3 ^{ix} —Dy1—K1 ⁱⁱⁱ	138.31 (8)	O1 ^{xi} —K1—Mo1 ^{xii}	129.20 (7)
O3 ^{ix} —Dy1—O2 ^{vii}	139.98 (11)	O1 ^{xi} —K1—Mo1	142.63 (7)
$O3^{ix}$ — $Dy1$ — $O2^{iv}$	76.68 (11)	O1 ^{xiii} —K1—Mo1 ^{xii}	142.63 (7)
O3 ⁱⁱ —Dy1—O2 ^{vii}	70.80 (12)	O1 ^{xiii} —K1—Mo1 ^{xiii}	26.02 (7)
O3 ⁱⁱ —Dy1—O2 ^v	76.68 (11)	O1 ^{xi} —K1—Mo1 ^{xiii}	81.73 (8)
$O3^{ix}$ — $Dy1$ — $O2^{v}$	84.61 (12)	$O1^{xi}$ —K1—Mo 1^{xi}	26.02 (7)
$O3^{ix}$ — $Dy1$ — $O2^{vi}$	70.80 (12)	$O1^{xiii}$ — $K1$ — $O1^{xi}$	59.42 (14)
O3 ⁱⁱ —Dy1—O2 ^{iv}	84.61 (12)	O1 ^{xiii} —K1—O3	157.10 (9)
O3 ⁱⁱ —Dy1—O2 ^{vi}	139.98 (11)	$O1^{xi}$ — $K1$ — $O3^{xii}$	157.10 (9)
O3 ⁱⁱ —Dy1—O3 ^{ix}	83.39 (16)	O1 ^{xi} —K1—O3	131.78 (9)
K1—Mo1—K1 ⁱⁱⁱ	78.467 (11)	$O1^{xiii}$ —K1— $O3^{xii}$	131.78 (9)
K1—Mo1—K1 ^x	76.833 (11)	O3 ^{xii} —K1—Mo1 ^{xiii}	115.44 (6)
K1 ⁱⁱⁱ —Mo1—K1 ^x	81.33 (3)	O3 ^{xii} —K1—Mo1	51.60 (6)
O4—Mo1—K1 ^x	36.37 (12)	O3—K1—Mo1 ^{xi}	115.44 (6)
O4—Mo1—K1	41.29 (11)	O3—K1—Mo1 ^{xiii}	131.86 (6)
O4—Mo1—K1 ⁱⁱⁱ	71.06 (12)	O3—K1—Mo1	28.36 (6)
O4—Mo1—O2	109.59 (16)	O3 ^{xii} —K1—Mo1 ^{xi}	131.86 (6)
O4—Mo1—O1	106.89 (16)	O3—K1—Mo1 ^{xii}	51.60 (6)
O4—Mo1—O3	105.13 (16)	O3 ^{xii} —K1—Mo1 ^{xii}	28.36 (6)
O2—Mo1—K1 ^x	86.44 (11)	O3 ^{xii} —K1—O3	47.91 (11)
O2—Mo1—K1 ⁱⁱⁱ	156.32 (9)	Mo1—O4—K1 ^x	122.04 (17)
O2—Mo1—K1	118.38 (10)	Mo1—O4—K1	113.61 (16)
O1—Mo1—K1 ⁱⁱⁱ	43.41 (11)	K1—O4—K1 ^x	122.44 (13)
O1—Mo1—K1	121.60 (11)	$Dy1^{iv}$ — $O2$ — $Dy1^{xvi}$	108.95 (13)
O1—Mo1—K1 ^x	95.79 (11)	Mo1—O2—Dy1 ^{xvi}	119.80 (14)
O1—Mo1—O2	118.81 (15)	Mo1—O2—Dy1 ^{iv}	128.01 (15)

O3—Mo1—K1 ⁱⁱⁱ	90.42 (11)	Dy1—O1—K1 ⁱⁱⁱ	112.84 (12)
O3—Mo1—K1 ^x	141.16 (11)	Mo1—O1—Dy1	125.41 (17)
O3—Mo1—K1	64.32 (11)	Mo1—O1—K1 ⁱⁱⁱ	110.57 (15)
O3—Mo1—O2	111.51 (15)	Dy1 ⁱⁱ —O3—K1	145.45 (13)
O3—Mo1—O1	103.94 (16)	Mo1—O3—Dy1 ⁱⁱ	127.15 (18)
Mo1—K1—Mo1 ^{xiii}	103.540 (12)	Mo1—O3—K1	87.32 (12)

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) -x+1/2, -y+3/2, z-1/2; (iv) -x+1, -y+1, -z+1; (v) x-1, -y+1, z-1/2; (vi) -x+1, y, -z+1/2; (vii) x-1, y, z; (viii) -x, y, -z+1/2; (ix) x, -y+1, z-1/2; (x) -x+1/2, -y+3/2, z-1/2; (iv) -x+1, y, -z+1/2; (vi) -x+1, y, -z+3/2; (viii) -x+1, y, -z+3/2; (viii) x+1/2, -y+3/2, z-1/2; (iv) -x+1/2, -y+3/2, z+1/2; (iv) -x+1, y, -z+3/2; (ivi) x+1/2, -y+3/2, -z+1; (iv) x-1/2, -y+3/2, -z+1; (iv) -x+3/2, -y+3/2, z+1/2; (iv) x+1, y, z.

F(000) = 936

 $\theta = 3.4 - 28.8^{\circ}$ $\mu = 14.66 \text{ mm}^{-1}$

Plate, light red

 $0.06 \times 0.06 \times 0.04$ mm

 $\theta_{\text{max}} = 28.9^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

936 independent reflections 818 reflections with $I > 2\sigma(I)$

T = 273 K

 $R_{\rm int} = 0.032$

 $h = -6 \rightarrow 6$ $k = -24 \rightarrow 24$ $l = -10 \rightarrow 10$

 $D_{\rm x} = 4.757 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2917 reflections

Potassium holmium bis(molybdate) (Ho_Molybdate)

Crystal data

KHo(MoO₄)₂ $M_r = 523.91$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 5.0770 (15) Å b = 18.161 (5) Å c = 7.934 (2) Å V = 731.5 (4) Å³ Z = 4

Data collection

Bruker APEXII CCD	
diffractometer	
Radiation source: X-ray tube	
φ and ω scans	
Absorption correction: multi-scan	
(SADABS; Krause et al., 2015)	
$T_{\min} = 0.248, T_{\max} = 0.343$	
7665 measured reflections	

Refinement

nstraints
nary atom site location: dual
$1/[\sigma^2(F_o^2) + 11.609P]$
here $P = (F_o^2 + 2F_c^2)/3$
$m_{max} = 0.001$
$ax = 1.51 \text{ e} \text{ Å}^{-3}$
$h_{\rm in} = -1.37 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ho1	0.000000	0.49423 (2)	0.750000	0.00704 (12)	
Mol	0.47909 (9)	0.60179 (3)	0.51614 (6)	0.00726 (13)	
K1	0.500000	0.77102 (11)	0.250000	0.0141 (4)	
04	0.6095 (9)	0.6894 (3)	0.5227 (6)	0.0122 (9)	
O2	0.7503 (9)	0.5342 (2)	0.4941 (5)	0.0095 (8)	
01	0.2583 (8)	0.5939 (2)	0.6923 (5)	0.0096 (8)	
O3	0.2700 (9)	0.6008 (2)	0.3389 (5)	0.0093 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ho1	0.00566 (18)	0.0094 (2)	0.00606 (18)	0.000	-0.00040 (14)	0.000
Mo1	0.0058 (2)	0.0084 (3)	0.0076 (2)	0.00040 (19)	-0.00009 (17)	0.00032 (17)
K1	0.0177 (9)	0.0132 (9)	0.0115 (8)	0.000	0.0013 (8)	0.000
O4	0.013 (2)	0.014 (2)	0.010(2)	-0.0011 (18)	0.0002 (17)	0.0016 (17)
O2	0.0080 (19)	0.014 (2)	0.0061 (19)	0.0016 (17)	0.0037 (18)	-0.0005 (17)
01	0.0072 (19)	0.013 (2)	0.0085 (19)	-0.0001 (17)	0.0015 (16)	0.0001 (17)
O3	0.013 (2)	0.012 (2)	0.0035 (19)	-0.0008 (19)	-0.0005 (15)	0.0000 (16)

Geometric parameters (Å, °)

Ho1—Ho1 ⁱ	3.9723 (11)	Mo1—O3	1.762 (4)
Ho1—Ho1 ⁱⁱ	3.9723 (11)	K1—Mo1 ^{xi}	3.8332 (14)
Ho1—K1 ⁱⁱⁱ	4.263 (2)	K1—Mo1 ^{xii}	3.7303 (18)
Ho1—O2 ^{iv}	2.372 (4)	K1—Mo1 ^{xiii}	3.8332 (14)
Ho1—O2 ^v	2.372 (4)	K1—O4	2.680 (5)
Ho1—O2 ^{vi}	2.501 (4)	K1—O4 ^{xiv}	2.775 (5)
Ho1—O2 ^{vii}	2.501 (4)	K1—O4 ^{xii}	2.681 (5)
Ho1—O1 ^{viii}	2.282 (4)	K1—O4 ^{xv}	2.775 (5)
Ho101	2.282 (4)	K1—O1 ^{xiii}	2.819 (5)
Ho1—O3 ^{ix}	2.314 (4)	K1—O1 ^{xi}	2.819 (5)
Ho1—O3 ⁱ	2.314 (4)	K1—O3	3.380 (5)
Mo1—K1	3.7303 (18)	K1—O3 ^{xii}	3.380 (5)
Mo1—K1 ^x	3.9713 (14)	O4—K1 ^x	2.775 (5)
Mo1—K1 ⁱⁱⁱ	3.8332 (14)	O2—Ho1 ^{xvi}	2.501 (4)
Mo1—O4	1.724 (5)	O2—Ho1 ^v	2.372 (4)
Mo1—O2	1.853 (4)	O1—K1 ⁱⁱⁱ	2.819 (5)
Mo1—O1	1.797 (4)	O3—Ho1 ⁱ	2.314 (4)
Ho1 ⁱⁱ —Ho1—Ho1 ⁱ	173.96 (2)	Mo1 ^{xii} —K1—Mo1	69.05 (4)
Ho1 ⁱⁱ —Ho1—K1 ⁱⁱⁱ	86.979 (11)	Mo1 ^{xii} —K1—Mo1 ^{xi}	103.92 (2)
Ho1 ⁱ —Ho1—K1 ⁱⁱⁱ	86.979 (11)	Mo1—K1—Mo1 ^{xiii}	103.92 (2)
O2 ^{iv} —Ho1—Ho1 ⁱ	145.79 (11)	Mo1 ^{xiii} —K1—Mo1 ^{xi}	105.89 (5)
O2 ^v —Ho1—Ho1 ⁱ	36.49 (11)	Mo1—K1—Mo1 ^{xi}	138.79 (2)
O2 ^{vi} —Ho1—Ho1 ⁱ	34.33 (10)	O4 ^{xv} —K1—Mo1	126.98 (10)

O2 ^{vii} —Ho1—Ho1 ⁱ	142.68 (10)	O4—K1—Mo1	24.98 (10)
O2 ^{iv} —Ho1—Ho1 ⁱⁱ	36.49 (11)	O4 ^{xiv} —K1—Mo1 ^{xi}	72.85 (10)
O2 ^v —Ho1—Ho1 ⁱⁱ	145.79 (11)	O4 ^{xii} —K1—Mo1 ^{xii}	24.98 (10)
O2 ^{vi} —Ho1—Ho1 ⁱⁱ	142.68 (10)	O4 ^{xii} —K1—Mo1 ^{xi}	79.11 (10)
O2 ^{vii} —Ho1—Ho1 ⁱⁱ	34.33 (10)	O4 ^{xv} —K1—Mo1 ^{xii}	79.93 (10)
O2 ^{vi} —Ho1—K1 ⁱⁱⁱ	73.13 (10)	O4 ^{xiv} —K1—Mo1 ^{xii}	126.98 (10)
O2 ^{vii} —Ho1—K1 ⁱⁱⁱ	73.13 (10)	O4—K1—Mo1 ^{xiii}	79.11 (10)
O2 ^v —Ho1—K1 ⁱⁱⁱ	102.57 (11)	O4—K1—Mo1 ^{xi}	148.80 (10)
O2 ^{iv} —Ho1—K1 ⁱⁱⁱ	102.57 (11)	O4 ^{xii} —K1—Mo1 ^{xiii}	148.80 (10)
O2 ^{vii} —Ho1—O2 ^{vi}	146.3 (2)	O4 ^{xv} —K1—Mo1 ^{xi}	89.01 (10)
O2 ^{iv} —Ho1—O2 ^{vi}	117.06 (18)	O4 ^{xv} —K1—Mo1 ^{xiii}	72.85 (10)
O2 ^{iv} —Ho1—O2 ^{vii}	70.81 (17)	O4—K1—Mo1 ^{xii}	89.73 (11)
O2 ^v —Ho1—O2 ^{vi}	70.81 (17)	O4 ^{xiv} —K1—Mo1 ^{xiii}	89.01 (10)
O2 ^v —Ho1—O2 ^{vii}	117.06 (18)	O4 ^{xii} —K1—Mo1	89.73 (11)
O2 ^v —Ho1—O2 ^{iv}	154.9 (2)	O4 ^{xiv} —K1—Mo1	79.93 (10)
O1—Ho1—Ho1 ⁱ	75.99 (11)	$O4^{xii}$ —K1— $O4^{xv}$	76.52 (11)
O1 ^{viii} —Ho1—Ho1 ⁱ	99.12 (11)	O4—K1—O4 ^{xv}	121.30 (6)
O1—Ho1—Ho1 ⁱⁱ	99.12 (11)	$O4^{xv}$ —K1— $O4^{xiv}$	150.0 (2)
O1 ^{viii} —Ho1—Ho1 ⁱⁱ	75.99 (11)	O4—K1—O4 ^{xiv}	76.52 (11)
O1 ^{viii} —Ho1—K1 ⁱⁱⁱ	37.49 (11)	O4 ^{xii} —K1—O4 ^{xiv}	121.30 (6)
01—Ho1—K1 ⁱⁱⁱ	37.50 (11)	O4—K1—O4 ^{xii}	112.9 (2)
O1 ^{viii} —Ho1—O2 ^{iv}	72.64 (15)	O4 ^{xii} —K1—O1 ^{xi}	104.69 (13)
O1—Ho1—O2 ^{vi}	84.17 (15)	O4—K1—O1 ^{xi}	135.12 (13)
O1 ^{viii} —Ho1—O2 ^{vii}	84.17 (15)	O4—K1—O1 ^{xiii}	104.69 (13)
O1 ^{viii} —Ho1—O2 ^{vi}	68.97 (15)	O4 ^{xiv} —K1—O1 ^{xiii}	90.09 (14)
O1—Ho1—O2 ^{iv}	130.07 (15)	O4 ^{xiv} —K1—O1 ^{xi}	63.11 (13)
O1—Ho1—O2 ^{vii}	68.97 (15)	O4 ^{xii} —K1—O1 ^{xiii}	135.13 (13)
O1 ^{viii} —Ho1—O2 ^v	130.06 (15)	O4 ^{xv} —K1—O1 ^{xiii}	63.11 (13)
O1—Ho1—O2 ^v	72.64 (15)	$O4^{xv}$ —K1— $O1^{xi}$	90.09 (14)
O1—Ho1—O1 ^{viii}	75.0 (2)	O4 ^{xv} —K1—O3	128.28 (13)
O1 ^{viii} —Ho1—O3 ^{ix}	150.57 (15)	O4 ^{xv} —K1—O3 ^{xii}	81.63 (12)
O1 ^{viii} —Ho1—O3 ⁱ	108.19 (16)	O4 ^{xii} —K1—O3	65.85 (13)
O1—Ho1—O3 ^{ix}	108.19 (16)	O4 ^{xiv} —K1—O3	81.63 (12)
O1—Ho1—O3 ⁱ	150.57 (15)	O4 ^{xiv} —K1—O3 ^{xii}	128.28 (13)
O3 ^{ix} —Ho1—Ho1 ⁱ	110.11 (10)	O4—K1—O3 ^{xii}	65.85 (13)
O3 ^{ix} —Ho1—Ho1 ⁱⁱ	74.62 (10)	O4—K1—O3	52.94 (12)
O3 ⁱ —Ho1—Ho1 ⁱⁱ	110.11 (10)	O4 ^{xii} —K1—O3 ^{xii}	52.93 (12)
O3 ⁱ —Ho1—Ho1 ⁱ	74.62 (10)	O1 ^{xiii} —K1—Mo1 ^{xii}	142.71 (9)
O3 ⁱ —Ho1—K1 ⁱⁱⁱ	138.22 (11)	O1 ^{xiii} —K1—Mo1 ^{xi}	81.34 (10)
O3 ^{ix} —Ho1—K1 ⁱⁱⁱ	138.21 (11)	O1 ^{xi} —K1—Mo1	142.71 (9)
O3 ^{ix} —Ho1—O2 ^{vii}	70.64 (15)	O1 ^{xi} —K1—Mo1 ^{xii}	129.66 (9)
O3 ^{ix} —Ho1—O2 ^{iv}	84.58 (15)	O1 ^{xiii} —K1—Mo1	129.66 (9)
O3 ⁱ —Ho1—O2 ^{vii}	139.83 (14)	O1 ^{xiii} —K1—Mo1 ^{xiii}	26.09 (9)
O3 ⁱ —Ho1—O2 ^v	84.58 (15)	O1 ^{xi} —K1—Mo1 ^{xiii}	81.34 (10)
O3 ^{ix} —Ho1—O2 ^v	76.70 (15)	O1 ^{xi} —K1—Mo1 ^{xi}	26.09 (9)
O3 ^{ix} —Ho1—O2 ^{vi}	139.83 (14)	O1 ^{xiii} —K1—O1 ^{xi}	59.05 (18)
O3 ⁱ —Ho1—O2 ^{iv}	76.70 (15)	O1 ^{xiii} —K1—O3 ^{xii}	132.01 (12)
O3 ⁱ —Ho1—O2 ^{vi}	70.64 (15)	O1 ^{xi} —K1—O3	132.01 (12)

O3 ⁱ —Ho1—O3 ^{ix}	83.6 (2)	O1 ^{xi} —K1—O3 ^{xii}	157.36 (11)
K1—Mo1—K1 ⁱⁱⁱ	78.20 (2)	O1 ^{xiii} —K1—O3	157.36 (11)
K1—Mo1—K1 ^x	76.49 (2)	O3—K1—Mo1 ^{xiii}	132.03 (7)
K1 ⁱⁱⁱ —Mo1—K1 ^x	81.14 (4)	O3—K1—Mo1 ^{xii}	51.26 (8)
O4—Mo1—K1 ^x	36.25 (15)	O3 ^{xii} —K1—Mo1 ^{xi}	132.03 (7)
O4—Mo1—K1	41.04 (15)	O3 ^{xii} —K1—Mo1 ^{xiii}	115.66 (8)
O4—Mo1—K1 ⁱⁱⁱ	70.92 (15)	O3 ^{xii} —K1—Mo1 ^{xii}	28.14 (7)
O4—Mo1—O2	109.2 (2)	O3—K1—Mo1 ^{xi}	115.66 (8)
O4—Mo1—O1	106.8 (2)	O3 ^{xii} —K1—Mo1	51.26 (8)
O4—Mo1—O3	105.4 (2)	O3—K1—Mo1	28.14 (7)
O2—Mo1—K1 ^x	86.25 (14)	O3—K1—O3 ^{xii}	47.61 (15)
O2—Mo1—K1 ⁱⁱⁱ	156.40 (13)	Mo1—O4—K1 ^x	122.2 (2)
O2—Mo1—K1	118.13 (13)	Mo1—O4—K1	114.0 (2)
O1—Mo1—K1 ⁱⁱⁱ	43.60 (14)	K1—O4—K1 ^x	121.97 (17)
O1—Mo1—K1	121.56 (14)	Ho1 ^v —O2—Ho1 ^{xvi}	109.19 (17)
O1—Mo1—K1 ^x	95.64 (14)	Mo1—O2—Ho1 ^{xvi}	119.50 (19)
O1—Mo1—O2	118.95 (19)	Mo1—O2—Ho1 ^v	128.2 (2)
O3—Mo1—K1 ⁱⁱⁱ	90.59 (14)	Ho1—O1—K1 ⁱⁱⁱ	112.98 (16)
O3—Mo1—K1 ^x	141.28 (15)	Mo1—O1—Ho1	125.3 (2)
O3—Mo1—K1	64.79 (14)	Mo1—O1—K1 ⁱⁱⁱ	110.32 (19)
O3—Mo1—O2	111.44 (19)	Ho1 ⁱ —O3—K1	145.41 (16)
O3—Mo1—O1	104.1 (2)	Mo1—O3—Ho1 ⁱ	127.5 (2)
Mo1 ^{xii} —K1—Mo1 ^{xiii}	138.79 (2)	Mo1—O3—K1	87.06 (16)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z+2; (iii) -x+1/2, -y+3/2, z+1/2; (iv) x-1, -y+1, z+1/2; (v) -x+1, -y+1, -z+1; (vi) x-1, y, z; (vii) -x+1, y, -z+3/2; (viii) -x, y, -z+3/2; (ix) x, -y+1, z+1/2; (x) -x+3/2, -y+3/2, z+1/2; (xi) -x+1/2, -y+3/2, z-1/2; (xii) -x+1, y, -z+1/2; (xiii) x+1/2, -y+3/2, -z+1; (xiv) x-1/2, -y+3/2, -z+1; (xv) -x+3/2, -y+3/2, -z+1/2; (xv) x+1, y, z.

Potassium erbium bis(molybdate) (Er_Molybdate)

Crystal data

KEr(MoO ₄) ₂	F(000) = 940
$M_r = 526.24$	$D_{\rm x} = 4.810 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbcn	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 7328 reflections
a = 5.0602 (2) Å	$\theta = 3.4 - 34.0^{\circ}$
b = 18.1965 (8) Å	$\mu = 15.42 \text{ mm}^{-1}$
c = 7.8920 (3) Å	T = 100 K
V = 726.68 (5) Å ³	Plate, light pink
Z = 4	$0.28 \times 0.15 \times 0.02 \text{ mm}$
Data collection	
Rigaku XtaLAB Synergy-S, HyPix	21246 measured reflections
diffractometer	1386 independent reflections
Radiation source: micro-focus sealed X-ray tube	1255 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.072$
Detector resolution: 10.0000 pixels mm ⁻¹	$\theta_{\text{max}} = 34.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
ω scans	$h = -7 \rightarrow 7$
Absorption correction: gaussian	$k = -28 \rightarrow 27$
(CrysAlisPro; Rigaku OD, 2019)	$l = -12 \rightarrow 10$
$T_{\min} = 0.091, \ T_{\max} = 0.911$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.073$ S = 1.061386 reflections 56 parameters 0 restraints

Special details

0 constraints Primary atom site location: dual $w = 1/[\sigma^2(F_o^2) + (0.0345P)^2 + 4.1539P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 2.04 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -1.62 \text{ e} \text{ Å}^{-3}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

E		1:				**-	1:1			182
Fractional	аютіс	coorainates	ana isotro	pic or e	quivaieni	isotropic	aispic	acement	parameters	(A²)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Er1	1.000000	0.50535 (2)	0.750000	0.00602 (9)	
Mo1	0.52026 (6)	0.39859 (2)	0.51517 (4)	0.00637 (9)	
K1	0.500000	0.22821 (7)	0.250000	0.0107 (2)	
O4	0.3903 (5)	0.31111 (15)	0.5213 (3)	0.0102 (5)	
O2	0.2497 (5)	0.46619 (15)	0.4954 (3)	0.0084 (5)	
01	0.7417 (5)	0.40581 (14)	0.6914 (3)	0.0100 (4)	
03	0.7315 (5)	0.39970 (14)	0.3369 (3)	0.0099 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Er1	0.00367 (12)	0.00995 (13)	0.00443 (13)	0.000	-0.00030 (6)	0.000	
Mo1	0.00374 (14)	0.00961 (16)	0.00575 (15)	0.00027 (9)	-0.00044 (8)	-0.00032 (9)	
K1	0.0112 (5)	0.0124 (5)	0.0085 (5)	0.000	-0.0007 (3)	0.000	
O4	0.0079 (11)	0.0127 (12)	0.0100 (11)	-0.0029 (9)	0.0009 (9)	-0.0003 (9)	
O2	0.0052 (10)	0.0131 (12)	0.0067 (10)	0.0007 (9)	-0.0008(8)	-0.0006 (8)	
01	0.0077 (10)	0.0142 (12)	0.0080 (10)	-0.0014 (9)	-0.0019 (9)	-0.0004 (9)	
O3	0.0068 (10)	0.0153 (12)	0.0074 (10)	-0.0014 (9)	0.0006 (8)	-0.0003 (8)	

Geometric parameters (Å, °)

Er1—Er1 ⁱ	3.9508 (2)	Mo1—O3	1.767 (2)	
Er1—Er1 ⁱⁱ	3.9508 (1)	K1—Mo1 ^{xi}	3.8277 (8)	
Er1—K1 ⁱⁱⁱ	4.2499 (13)	K1—Mo1 ^{xii}	3.7419 (10)	
Er1—O2 ^{iv}	2.370 (2)	K1—Mo1 ^{xiii}	3.8277 (8)	
Er1—O2 ^v	2.370 (2)	K1—O4	2.677 (3)	
Er1—O2 ^{vi}	2.478 (2)	K1—O4 ^{xiv}	2.770 (3)	
Er1—O2 ^{vii}	2.478 (2)	K1—O4 ^{xii}	2.677 (3)	
Er1—O1 ^{viii}	2.281 (2)	$K1 - O4^{xv}$	2.770 (3)	
Er1—01	2.281 (3)	K1—O1 ^{xiii}	2.805 (3)	
Er1—O3 ^{ix}	2.303 (3)	K1—O1 ^{xi}	2.805 (3)	

$ \begin{split} & \text{Mol}-\text{Kl} & 3.7419 (10) & \text{Kl}-\text{O3}^{\text{sil}} & 3.403 (3) \\ & \text{Mol}-\text{Kl}^{1s} & 3.9610 (8) & \text{O4}-\text{Kl}^{1s} & 2.770 (3) \\ & \text{Mol}-\text{Cl}^{1s} & 3.8278 (8) & \text{O2}-\text{Erl}^{1s} & 2.478 (2) \\ & \text{Mol}-\text{O4} & 1.723 (3) & \text{O2}-\text{Erl}^{1s} & 2.370 (2) \\ & \text{Mol}-\text{O2} & 1.847 (3) & \text{O1}-\text{Kl}^{1s} & 2.303 (3) \\ & \text{Erl}^{1s}-\text{Erl}-\text{Erl}^{1} & 174.354 (13) & \text{Mol}^{1s}-\text{Kl}-\text{Mol}^{1s} & 2.303 (3) \\ & \text{Erl}^{1s}-\text{Erl}-\text{Kl}^{1s} & 87.177 (7) & \text{Mol}^{1s}-\text{Kl}-\text{Mol}^{1s} & 104.243 (10) \\ & \text{O2}^{1s}-\text{Erl}-\text{Kl}^{1s} & 87.177 (7) & \text{Mol}^{1s}-\text{Kl}-\text{Mol}^{1s} & 104.243 (10) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1} & 45.80 (6) & \text{Mol}^{1s}-\text{Kl}-\text{Mol}^{1s} & 105.86 (3) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1} & 36.34 (6) & \text{Mol}-\text{Kl}-\text{Mol}^{1s} & 128.877 (12) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1} & 34.52 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 126.73 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1} & 34.52 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 20.0 (5) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1s} & 33.34 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 30.21 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1s} & 34.52 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 30.21 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1s} & 34.52 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 30.21 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1s} & 34.52 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 30.21 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1s} & 34.52 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 30.21 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1s} & 34.52 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 30.21 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1s} & 32.9 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 30.21 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{Erl}^{1s} & 34.52 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 39.69 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{O2}^{1s} & 116.98 (11) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 85.91 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{O2}^{1s} & 102.63 (6) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 85.91 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{O2}^{1s} & 116.98 (11) & \text{O4}^{4s}-\text{Kl}-\text{Mol}^{1s} & 85.91 (6) \\ & \text{O2}^{2s}-\text{Erl}-\text{O2}^{1s} & 116.98 (11) & \text{O4}^{4s}-\text{Kl}-\text{O4}^{1s} & 120.56 (3) \\ & \text{O1}^{4s}-\text{Kl}$	Er1—O3 ⁱⁱ	2.303 (3)	K1—O3	3.403 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo1—K1	3.7419 (10)	K1—O3 ^{xii}	3.403 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo1—K1 ^x	3.9610 (8)	O4—K1 ^x	2.770 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo1—K1 ⁱⁱⁱ	3.8278 (8)	O2—Er1 ^{xvi}	2.478 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo1—O4	1.723 (3)	O2—Er1 ^{iv}	2.370 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo1—O2	1.847 (3)	O1—K1 ⁱⁱⁱ	2.805 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo1—O1	1.791 (2)	O3—Er1 ⁱⁱ	2.303 (3)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1 ⁱⁱ —Er1—Er1 ⁱ	174.354 (13)	Mo1 ^{xii} —K1—Mo1	68.10 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1 ⁱⁱ —Er1—K1 ⁱⁱⁱ	87.177 (7)	Mo1 ^{xii} —K1—Mo1 ^{xi}	104.243 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Er1 ⁱ —Er1—K1 ⁱⁱⁱ	87.177 (7)	Mo1—K1—Mo1 ^{xiii}	104.243 (10)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O2^{iv}$ —Er1—Er1 ⁱ	145.80 (6)	Mo1 ^{xiii} —K1—Mo1 ^{xi}	105.86 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O2^{v}$ —Er1—Er1 ⁱ	36.34 (6)	Mo1—K1—Mo1 ^{xi}	138.837 (12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O2^{vi}$ —Er1—Er1 ⁱ	34.52 (6)	O4 ^{xv} —K1—Mo1	126.73 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ^{vii} —Er1—Er1 ⁱ	142.71 (6)	O4—K1—Mo1	24.71 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ^{iv} —Er1—Er1 ⁱⁱ	36.34 (6)	O4 ^{xiv} —K1—Mo1 ^{xi}	73.00 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ^v —Er1—Er1 ⁱⁱ	145.80 (6)	O4 ^{xii} —K1—Mo1 ^{xii}	24.71 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ^{vi} —Er1—Er1 ⁱⁱ	142.71 (6)	O4 ^{xii} —K1—Mo1 ^{xi}	79.69 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ^{vii} —Er1—Er1 ⁱⁱ	34.52 (6)	O4 ^{xv} —K1—Mo1 ^{xii}	80.21 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ^{vi} —Er1—K1 ⁱⁱⁱ	73.29 (6)	O4 ^{xiv} —K1—Mo1 ^{xii}	126.73 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ^{vii} —Er1—K1 ⁱⁱⁱ	73.29 (6)	O4—K1—Mo1 ^{xiii}	79.69 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ^v —Er1—K1 ⁱⁱⁱ	102.63 (6)	O4—K1—Mo1 ^{xi}	149.13 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ^{iv} —Er1—K1 ⁱⁱⁱ	102.63 (6)	O4 ^{xii} —K1—Mo1 ^{xiii}	149.13 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O2^{vii}$ —Er1— $O2^{vi}$	146.57 (12)	O4 ^{xv} —K1—Mo1 ^{xi}	88.91 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O2^{iv}$ —Er1— $O2^{vi}$	116.98 (11)	O4 ^{xv} —K1—Mo1 ^{xiii}	73.00 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ^{iv} —Er1—O2 ^{vii}	70.86 (10)	O4—K1—Mo1 ^{xii}	88.55 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O2^{v}$ —Er1— $O2^{vi}$	70.86 (10)	O4 ^{xiv} —K1—Mo1 ^{xiii}	88.91 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O2^{v}$ —Er1— $O2^{vii}$	116.98 (11)	O4 ^{xii} —K1—Mo1	88.55 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O2^{v}$ —Er1— $O2^{iv}$	154.75 (13)	O4 ^{xiv} —K1—Mo1	80.21 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O1—Er1—Er1 ⁱ	99.40 (6)	$O4^{xii}$ —K1— $O4^{xv}$	76.83 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ^{viii} —Er1—Er1 ⁱ	76.03 (6)	O4—K1—O4 ^{xv}	121.26 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Er1—Er1 ⁱⁱ	76.03 (6)	$O4^{xv}$ —K1— $O4^{xiv}$	150.06 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ^{viii} —Er1—Er1 ⁱⁱ	99.39 (6)	O4—K1—O4 ^{xiv}	76.83 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ^{viii} —Er1—K1 ⁱⁱⁱ	37.43 (6)	$O4^{xii}$ —K1— $O4^{xiv}$	121.26 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Er1—K1 ⁱⁱⁱ	37.43 (6)	O4—K1—O4 ^{xii}	111.41 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ^{viii} —Er1—O2 ^{iv}	130.14 (9)	$O4^{xii}$ —K1—O1 ^{xi}	105.16 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Er1—O2 ^{vi}	69.13 (8)	O4—K1—O1 ^{xi}	135.91 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ^{viii} —Er1—O2 ^{vii}	69.13 (8)	O4—K1—O1 ^{xiii}	105.16 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ^{viii} —Er1—O2 ^{vi}	84.23 (9)	O4 ^{xiv} —K1—O1 ^{xiii}	90.02 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O1$ — $Er1$ — $O2^{iv}$	72.69 (9)	$O4^{xiv}$ —K1—O1 ^{xi}	63.29 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Er1—O2 ^{vii}	84.23 (9)	O4 ^{xii} —K1—O1 ^{xiii}	135.91 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O1^{viii}$ — $Er1$ — $O2^{v}$	72.70 (9)	$O4^{xv}$ —K1— $O1^{xiii}$	63.29 (8)
$\begin{array}{ccccccc} O1-\!\!\!\!\!-\!$	O1—Er1—O2 ^v	130.14 (9)	$O4^{xv}$ —K1— $O1^{xi}$	90.02 (8)
$\begin{array}{ccccccc} O1^{\text{viii}} & -\text{Er1} & -\text{O3}^{\text{ix}} & 150.89\ (9) & O4^{xv} - \text{K1} - \text{O3}^{x\text{ii}} & 81.96\ (7) \\ O1^{\text{viii}} - \text{Er1} - \text{O3}^{\text{ii}} & 108.55\ (10) & O4^{x\text{ii}} - \text{K1} - \text{O3} & 64.73\ (7) \\ O1 - \text{Er1} - \text{O3}^{\text{ix}} & 108.55\ (10) & O4^{x\text{iv}} - \text{K1} - \text{O3} & 81.96\ (7) \\ O1 - \text{Er1} - \text{O3}^{\text{ii}} & 150.89\ (9) & O4^{x\text{iv}} - \text{K1} - \text{O3}^{x\text{ii}} & 127.86\ (8) \end{array}$	O1—Er1—O1 ^{viii}	74.85 (13)	O4 ^{xv} —K1—O3	127.86 (8)
$\begin{array}{cccc} O1^{\text{viii}} - Er1 - O3^{\text{ii}} & 108.55 \ (10) & O4^{\text{xii}} - K1 - O3 & 64.73 \ (7) \\ O1 - Er1 - O3^{\text{ix}} & 108.55 \ (10) & O4^{\text{xiv}} - K1 - O3 & 81.96 \ (7) \\ O1 - Er1 - O3^{\text{ii}} & 150.89 \ (9) & O4^{\text{xiv}} - K1 - O3^{\text{xii}} & 127.86 \ (8) \end{array}$	O1 ^{viii} —Er1—O3 ^{ix}	150.89 (9)	O4 ^{xv} —K1—O3 ^{xii}	81.96 (7)
$O1-Er1-O3^{ix}$ $108.55 (10)$ $O4^{xiv}-K1-O3$ $81.96 (7)$ $O1-Er1-O3^{ii}$ $150.89 (9)$ $O4^{xiv}-K1-O3^{xii}$ $127.86 (8)$	O1 ^{viii} —Er1—O3 ⁱⁱ	108.55 (10)	O4 ^{xii} —K1—O3	64.73 (7)
O1—Er1—O3 ⁱⁱ 150.89 (9) O4 ^{xiv} —K1—O3 ^{xii} 127.86 (8)	O1—Er1—O3 ^{ix}	108.55 (10)	O4 ^{xiv} —K1—O3	81.96 (7)
	O1—Er1—O3 ⁱⁱ	150.89 (9)	$O4^{xiv}$ —K1— $O3^{xii}$	127.86 (8)

O3 ^{ix} —Er1—Er1 ⁱ	74.90 (6)	O4—K1—O3 ^{xii}	64.73 (7)
O3 ^{ix} —Er1—Er1 ⁱⁱ	109.54 (6)	O4—K1—O3	52.66 (7)
O3 ⁱⁱ —Er1—Er1 ⁱⁱ	74.90 (6)	O4 ^{xii} —K1—O3 ^{xii}	52.66 (7)
O3 ⁱⁱ —Er1—Er1 ⁱ	109.54 (6)	O1 ^{xiii} —K1—Mo1 ^{xii}	143.10 (5)
O3 ⁱⁱ —Er1—K1 ⁱⁱⁱ	138.62 (6)	O1 ^{xiii} —K1—Mo1 ^{xi}	81.44 (6)
O3 ^{ix} —Er1—K1 ⁱⁱⁱ	138.62 (6)	O1 ^{xi} —K1—Mo1	143.10 (5)
O3 ^{ix} —Er1—O2 ^{vii}	139.31 (8)	O1 ^{xi} —K1—Mo1 ^{xii}	129.86 (5)
$O3^{ix}$ —Er1— $O2^{iv}$	76.40 (8)	O1 ^{xiii} —K1—Mo1	129.86 (5)
O3 ⁱⁱ —Er1—O2 ^{vii}	70.94 (9)	O1 ^{xiii} —K1—Mo1 ^{xiii}	25.94 (5)
$O3^{ii}$ —Er1— $O2^{v}$	76.40 (8)	O1 ^{xi} —K1—Mo1 ^{xiii}	81.44 (6)
$O3^{ix}$ —Er1— $O2^{v}$	84.67 (9)	O1 ^{xi} —K1—Mo1 ^{xi}	25.94 (5)
$O3^{ix}$ —Er1— $O2^{vi}$	70.94 (9)	O1 ^{xiii} —K1—O1 ^{xi}	59.23 (10)
$O3^{ii}$ —Er1— $O2^{iv}$	84.67 (9)	O1 ^{xiii} —K1—O3 ^{xii}	132.07 (6)
O3 ⁱⁱ —Er1—O2 ^{vi}	139.31 (8)	O1 ^{xi} —K1—O3	132.07 (6)
O3 ⁱⁱ —Er1—O3 ^{ix}	82.76 (13)	$O1^{xi}$ —K1— $O3^{xii}$	157.57 (7)
K1—Mo1—K1 ⁱⁱⁱ	77.802 (9)	O1 ^{xiii} —K1—O3	157.57 (7)
K1—Mo1—K1 ^x	76.162 (9)	O3—K1—Mo1 ^{xiii}	132.33 (4)
K1 ⁱⁱⁱ —Mo1—K1 ^x	81.02 (2)	O3—K1—Mo1 ^{xii}	50.39 (4)
O4—Mo1—K1 ^x	36.40 (9)	O3 ^{xii} —K1—Mo1 ^{xi}	132.33 (4)
O4—Mo1—K1	40.51 (8)	O3 ^{xii} —K1—Mo1 ^{xiii}	115.60 (4)
O4—Mo1—K1 ⁱⁱⁱ	70.83 (9)	O3 ^{xii} —K1—Mo1 ^{xii}	28.12 (4)
O4—Mo1—O2	109.56 (12)	O3—K1—Mo1 ^{xi}	115.60 (4)
O4—Mo1—O1	106.55 (12)	O3 ^{xii} —K1—Mo1	50.39 (4)
O4—Mo1—O3	105.29 (12)	O3—K1—Mo1	28.12 (4)
O2—Mo1—K1 ^x	86.26 (8)	O3—K1—O3 ^{xii}	47.02 (9)
O2—Mo1—K1 ⁱⁱⁱ	155.83 (7)	Mo1—O4—K1 ^x	121.94 (12)
O2—Mo1—K1	118.97 (8)	Mo1—O4—K1	114.78 (12)
O1—Mo1—K1 ⁱⁱⁱ	43.23 (8)	K1—O4—K1 ^x	121.57 (10)
O1—Mo1—K1	120.81 (8)	$Er1^{iv}$ — $O2$ — $Er1^{xvi}$	109.14 (10)
O1—Mo1—K1 ^x	95.46 (8)	Mo1—O2—Er1 ^{xvi}	120.07 (10)
O1—Mo1—O2	118.71 (11)	Mo1—O2—Er1 ^{iv}	127.56 (11)
O3—Mo1—K1 ⁱⁱⁱ	90.50 (8)	Er1—O1—K1 ⁱⁱⁱ	112.96 (10)
O3—Mo1—K1 ^x	141.37 (9)	Mo1—O1—Er1	125.03 (13)
O3—Mo1—K1	65.21 (8)	Mo1—O1—K1 ⁱⁱⁱ	110.84 (11)
O3—Mo1—O2	111.94 (11)	Er1 ⁱⁱ —O3—K1	146.22 (10)
O3—Mo1—O1	103.83 (12)	Mo1—O3—Er1 ⁱⁱ	127.06 (13)
Mo1 ^{xii} —K1—Mo1 ^{xiii}	138.837 (12)	Mo1—O3—K1	86.67 (9)

Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y+1, -z+1; (iii) -x+3/2, -y+1/2, z+1/2; (iv) -x+1, -y+1, -z+1; (v) x+1, -y+1, z+1/2; (vi) -x+1, y, -z+3/2; (vii) x+1, y, z; (viii) -x+2, y, -z+3/2; (ix) x, -y+1, z+1/2; (x) -x+1/2, -y+1/2, z+1/2; (xi) -x+3/2, -y+1/2, z-1/2; (xii) -x+1, y, -z+1/2; (xiii) x-1/2, -y+1/2, -z+1; (xiv) x+1/2, -y+1/2, -z+1; (xiv) x+1/2, -y+1/2, -z+1; (xiv) x-1/2, -y+1/2, -z+1; (xiv) -x+1/2, -y+1/2, -z+1/2; (xiv) x-1, y, z.

Potassium ytterbium bis(molybdate) (Yb_Molybdate)

b = 18.3039 (19) Å
c = 7.8693 (8) Å
$V = 726.20 (13) \text{ Å}^3$
Z = 4
F(000) = 948

 $D_x = 4.866 \text{ Mg m}^{-3}$ Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3007 reflections $\theta = 2.2-29.2^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: X-ray tube φ and ω scans Absorption correction: multi-scan (SADABS; Krause et al., 2015) $T_{min} = 0.198$, $T_{max} = 0.301$ 8164 measured reflections

Refinement

Refinement on F^2 0 constraintsLeast-squares matrix: fullPrimary atom site location: dual $R[F^2 > 2\sigma(F^2)] = 0.022$ $w = 1/[\sigma^2(F_o^2) + (0.0244P)^2 + 3.0168P]$ $wR(F^2) = 0.063$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.11 $(\Delta/\sigma)_{max} = 0.001$ 978 reflections $\Delta\rho_{max} = 1.55$ e Å⁻³56 parameters $\Delta\rho_{min} = -1.14$ e Å⁻³0 restraints Δ

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\mu = 16.75 \text{ mm}^{-1}$ T = 273 K

 $0.06 \times 0.06 \times 0.04 \text{ mm}$

 $\theta_{\rm max} = 29.5^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$

978 independent reflections

845 reflections with $I > 2\sigma(I)$

Plate, white

 $R_{\rm int} = 0.038$

 $h = -6 \rightarrow 6$

 $k = -24 \rightarrow 25$

 $l = -10 \rightarrow 10$

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional	atomic	coordinates	and iso	otropic	or ed	nuivalent	isotropic	c disp	olacement	parameters ((Å ²	2
1		000101111101000		n opro	0. 00	100000000000000000000000000000000000000	100110010	, which he has been been been been been been been bee	recenterie	pen ennerens ((/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Yb1	0.000000	0.49506 (2)	0.750000	0.01036 (11)	
Mo1	0.47826 (7)	0.60027 (2)	0.51395 (5)	0.01066 (12)	
K1	0.500000	0.77252 (9)	0.250000	0.0230 (3)	
04	0.6053 (7)	0.68778 (18)	0.5206 (4)	0.0188 (7)	
O2	0.7521 (6)	0.53396 (17)	0.4939 (3)	0.0128 (6)	
01	0.2572 (6)	0.59262 (17)	0.6912 (4)	0.0149 (6)	
O3	0.2661 (6)	0.59860 (17)	0.3360 (4)	0.0152 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Yb1	0.00810 (17)	0.01404 (17)	0.00894 (16)	0.000	0.00084 (9)	0.000
Mo1	0.0085 (2)	0.0117 (2)	0.0118 (2)	0.00068 (12)	0.00134 (12)	0.00054 (13)
K1	0.0306 (9)	0.0195 (7)	0.0189 (7)	0.000	0.0019 (6)	0.000

O4	0.0212 (18)	0.0179 (17)	0.0173 (16)	-0.0025 (14)	-0.0044 (13)	0.0007 (13)
02	0.0112 (15)	0.0184 (17)	0.0086 (14)	0.0033 (12)	0.0023 (12)	-0.0010 (11)
01	0.0131 (14)	0.0175 (15)	0.0143 (15)	-0.0011 (12)	0.0039 (12)	-0.0038 (13)
03	0.0142 (15)	0.0177 (16)	0.0137 (15)	-0.0024 (13)	0.0006 (12)	0.0003 (12)

Geometric parameters (Å, °)

Yb1—Mo1 ⁱ	3.6018 (5)	Mo1—O2	1.845 (3)
Yb1—Mo1 ⁱⁱ	3.6294 (5)	Mo1—O1	1.791 (3)
Yb1—Mo1 ⁱⁱⁱ	3.6294 (5)	Mo1—O3	1.762 (3)
Yb1—Mo1	3.6018 (5)	K1—Mo1 ^{xi}	3.9738 (11)
Yb1—O2 ^{iv}	2.351 (3)	K1—Mo1 ^{xii}	3.7772 (14)
Yb1—O2 ^v	2.476 (3)	K1—Mo1 ^{xiii}	3.8322 (11)
Yb1—O2 ^{vi}	2.351 (3)	K1—Mo1 ^{xiv}	3.8322 (11)
Yb1—O2 ^{vii}	2.476 (3)	K1—Mo1 ^{xv}	3.9738 (11)
Yb1—O1	2.255 (3)	K1—O4 ^{xii}	2.687 (3)
Yb1—O1 ⁱ	2.255 (3)	K1—O4	2.687 (3)
Yb1—O3 ⁱⁱ	2.280 (3)	K1—O4 ^{xi}	2.784 (3)
Yb1—O3 ⁱⁱⁱ	2.280 (3)	$K1 - O4^{xv}$	2.784 (3)
Mo1—Yb1 ⁱⁱⁱ	3.6294 (5)	K1—O1 ^{xiii}	2.826 (3)
Mo1—Yb1 ^{iv}	3.7786 (5)	K1—O1 ^{xiv}	2.826 (3)
Mo1—Yb1 ^{viii}	3.7522 (5)	O4—K1 ^x	2.784 (3)
Mo1—K1 ^{ix}	3.8322 (11)	O2—Yb1 ^{iv}	2.351 (3)
Mo1—K1 ^x	3.9738 (11)	O2—Yb1 ^{viii}	2.476 (3)
Mo1—K1	3.7772 (14)	O1—K1 ^{ix}	2.826 (3)
Mo1—O4	1.726 (3)	O3—Yb1 ⁱⁱⁱ	2.280 (3)
Mo1—Yb1—Mo1 ⁱ	115.356 (17)	O2—Mo1—Yb1	101.15 (10)
Mo1 ⁱ —Yb1—Mo1 ⁱⁱⁱ	96.169 (13)	O2—Mo1—Yb1 ⁱⁱⁱ	97.58 (10)
Mo1—Yb1—Mo1 ⁱⁱⁱ	113.994 (10)	O2—Mo1—K1 ^{ix}	155.78 (8)
Mo1—Yb1—Mo1 ⁱⁱ	96.168 (13)	O2—Mo1—K1 ^x	85.99 (10)
Mo1 ⁱⁱⁱ —Yb1—Mo1 ⁱⁱ	122.531 (16)	O2—Mo1—K1	118.71 (10)
Mol ⁱ —Yb1—Mol ⁱⁱ	113.994 (10)	O1—Mo1—Yb1 ⁱⁱⁱ	89.70 (10)
O2 ^v —Yb1—Mo1 ⁱ	85.88 (7)	O1—Mo1—Yb1 ^{viii}	90.61 (10)
O2 ^{iv} —Yb1—Mo1 ⁱⁱ	90.31 (8)	O1—Mo1—Yb1 ^{iv}	145.62 (10)
O2 ^{vii} —Yb1—Mo1 ⁱ	76.37 (8)	O1—Mo1—Yb1	30.68 (10)
O2 ^{iv} —Yb1—Mo1	49.00 (8)	O1—Mo1—K1	120.77 (10)
O2 ^{vii} —Yb1—Mo1 ⁱⁱ	48.48 (8)	O1—Mo1—K1 ^x	95.37 (10)
O2 ^{iv} —Yb1—Mo1 ⁱⁱⁱ	77.14 (8)	O1—Mo1—K1 ^{ix}	43.81 (10)
O2 ^{vi} —Yb1—Mo1 ⁱ	49.00 (8)	O1—Mo1—O2	118.75 (14)
O2 ^{vi} —Yb1—Mo1	153.85 (8)	O3—Mo1—Yb1	89.67 (10)
O2 ^{vi} —Yb1—Mo1 ⁱⁱ	77.14 (8)	O3—Mo1—Yb1 ^{viii}	144.09 (11)
O2 ^{vii} —Yb1—Mo1	85.88 (7)	O3—Mo1—Yb1 ⁱⁱⁱ	29.97 (10)
O2 ^v —Yb1—Mo1 ⁱⁱ	159.95 (7)	O3—Mo1—Yb1 ^{iv}	88.72 (10)
O2 ^v —Yb1—Mo1 ⁱⁱⁱ	48.48 (8)	O3—Mo1—K1	66.11 (10)
O2 ^{iv} —Yb1—Mo1 ⁱ	153.85 (8)	O3—Mo1—K1 ^x	141.56 (11)
O2 ^{vi} —Yb1—Mo1 ⁱⁱⁱ	90.31 (8)	O3—Mo1—K1 ^{ix}	90.79 (10)
O2 ^{vii} —Yb1—Mo1 ⁱⁱⁱ	159.95 (7)	O3—Mo1—O2	112.01 (14)

O2 ^v —Yb1—Mo1	76.37 (8)	O3—Mo1—O1	103.88 (15)
O2 ^{iv} —Yb1—O2 ^v	70.66 (12)	Mo1 ^{xiv} —K1—Mo1 ^{xv}	80.44 (3)
O2 ^{iv} —Yb1—O2 ^{vii}	117.45 (14)	Mo1 ^{xii} —K1—Mo1	66.83 (3)
O2 ^{vi} —Yb1—O2 ^{vii}	70.66 (12)	Mo1—K1—Mo1 ^{xv}	139.938 (17)
O2 ^{vi} —Yb1—O2 ^v	117.45 (14)	Mo1 ^{xiii} —K1—Mo1 ^{xiv}	105.17 (4)
O2 ^{vii} —Yb1—O2 ^v	146.58 (15)	Mo1—K1—Mo1 ^{xi}	102.288 (13)
O2 ^{iv} —Yb1—O2 ^{vi}	153.89 (16)	Mo1—K1—Mo1 ^{xiii}	105.003 (13)
O1—Yb1—Mo1	23.91 (8)	Mo1 ^{xii} —K1—Mo1 ^{xv}	102.287 (13)
O1 ⁱ —Yb1—Mo1 ⁱⁱⁱ	96.67 (8)	Mo1 ^{xii} —K1—Mo1 ^{xiii}	139.065 (16)
O1—Yb1—Mo1 ⁱⁱ	96.67 (8)	Mo1 ^{xiii} —K1—Mo1 ^{xv}	56.91 (2)
O1 ⁱ —Yb1—Mo1	93.86 (8)	Mo1 ^{xiv} —K1—Mo1 ^{xi}	56.91 (2)
O1 ⁱ —Yb1—Mo1 ⁱⁱ	130.19 (8)	Mo1 ^{xii} —K1—Mo1 ^{xi}	139.938 (17)
O1—Yb1—Mo1 ⁱ	93.86 (8)	Mo1 ^{xii} —K1—Mo1 ^{xiv}	105.003 (13)
O1 ⁱ —Yb1—Mo1 ⁱ	23.91 (8)	Mo1 ^{xiii} —K1—Mo1 ^{xi}	80.44 (3)
O1—Yb1—Mo1 ⁱⁱⁱ	130.19 (8)	Mo1—K1—Mo1 ^{xiv}	139.065 (16)
$O1^{i}$ Yb1 $O2^{v}$	69.45 (10)	$Mo1^{xv}$ $K1$ $Mo1^{xi}$	108.26 (4)
$01 - Yb1 - 02^{vii}$	69.45 (10)	O4—K1—Mo1 ^{xiv}	149.21 (8)
$O1^{i}$ Yb1 $O2^{iv}$	130.70 (11)	$O4^{xi}$ —K1—Mo1 ^{xi}	21.66 (7)
$O1$ —Yb1— $O2^{iv}$	72.89 (11)	04—K1—Mo1 ^{xiii}	80.93 (7)
$O1^{i}$ Yb1 $O2^{vii}$	84.00 (11)	$O4^{xi}$ —K1—Mo1 ^{xiv}	72.90 (7)
$01 - Yb1 - 02^{v}$	84.00 (11)	$O4^{xi}$ K1 Mo1 ^{xii}	126.53 (8)
$O1$ —Yb1— $O2^{vi}$	130.70 (11)	$O4^{xii}$ —K1—Mo1	87.03 (8)
$O1^{i}$ Yb1 $O2^{vi}$	72.89 (11)	$O4^{xii}$ —K1—Mo1 ^{xi}	125.30 (8)
$01 - Yb1 - 01^{i}$	75.25 (16)	04—K1—Mo1	24.24 (7)
$O1^{i}$ Yb1 $O3^{iii}$	108.54 (12)	$O4^{xv}$ —K1—Mo1 ^{xiii}	72.90 (7)
$01 - Yb1 - 03^{iii}$	150.82 (12)	$O4^{xi}$ —K1—Mo1	80.82 (7)
$O1^{i}$ Yb1 $O3^{ii}$	150.82 (12)	$O4^{xii}$ —K1—Mo1 ^{xiii}	149.21 (8)
O1—Yb1—O3 ⁱⁱ	108.54 (12)	O4 ^{xv} —K1—Mo1	126.53 (8)
O3 ⁱⁱⁱ —Yb1—Mo1	130.01 (7)	O4 ^{xi} —K1—Mo1 ^{xiii}	88.68 (8)
O3 ⁱⁱ —Yb1—Mo1 ⁱⁱⁱ	101.50 (8)	O4 ^{xii} —K1—Mo1 ^{xv}	95.65 (7)
O3 ⁱⁱ —Yb1—Mo1 ⁱ	130.01 (7)	O4—K1—Mo1 ^{xi}	95.65 (7)
O3 ⁱⁱ —Yb1—Mo1	99.27 (8)	O4—K1—Mo1 ^{xv}	125.30 (8)
O3 ⁱⁱⁱ —Yb1—Mo1 ⁱ	99.27 (8)	O4 ^{xv} —K1—Mo1 ^{xi}	128.58 (9)
O3 ⁱⁱⁱ —Yb1—Mo1 ⁱⁱⁱ	22.72 (8)	O4 ^{xi} —K1—Mo1 ^{xv}	128.58 (9)
O3 ⁱⁱⁱ —Yb1—Mo1 ⁱⁱ	101.50 (8)	O4—K1—Mo1 ^{xii}	87.03 (8)
O3 ⁱⁱ —Yb1—Mo1 ⁱⁱ	22.72 (8)	O4 ^{xv} —K1—Mo1 ^{xv}	21.66 (7)
O3 ⁱⁱⁱ —Yb1—O2 ^{iv}	84.30 (11)	O4 ^{xv} —K1—Mo1 ^{xii}	80.82 (7)
O3 ⁱⁱ —Yb1—O2 ^v	139.02 (10)	O4 ^{xii} —K1—Mo1 ^{xii}	24.25 (7)
O3 ⁱⁱⁱ —Yb1—O2 ^v	71.18 (11)	O4 ^{xv} —K1—Mo1 ^{xiv}	88.68 (8)
O3 ⁱⁱ —Yb1—O2 ^{iv}	76.09 (10)	O4 ^{xii} —K1—Mo1 ^{xiv}	80.93 (7)
$O3^{ii}$ —Yb1— $O2^{vi}$	84.30 (11)	$O4^{xii}$ —K1— $O4^{xi}$	121.56 (5)
O3 ⁱⁱⁱ —Yb1—O2 ^{vi}	76.09 (10)	O4 ^{xii} —K1—O4	109.49 (15)
O3 ⁱⁱⁱ —Yb1—O2 ^{vii}	139.02 (10)	$O4$ —K1— $O4^{xv}$	121.56 (5)
O3 ⁱⁱ —Yb1—O2 ^{vii}	71.18 (11)	O4—K1—O4 ^{xi}	77.17 (8)
O3 ⁱⁱⁱ —Yb1—O3 ⁱⁱ	82.48 (16)	O4 ^{xii} —K1—O4 ^{xv}	77.17 (8)
Yb1 ^{viii} —Mo1—Yb1 ^{iv}	63.070 (9)	O4 ^{xi} —K1—O4 ^{xv}	149.74 (15)
Yb1 ⁱⁱⁱ —Mo1—Yb1 ^{viii}	120.155 (13)	O4 ^{xv} —K1—O1 ^{xiv}	89.65 (10)
Yb1 ⁱⁱⁱ —Mo1—Yb1 ^{iv}	85.752 (11)	O4 ^{xv} —K1—O1 ^{xiii}	63.27 (9)
	× /		× /

Yb1—Mo1—Yb1 ⁱⁱⁱ	66.007 (10)	O4 ^{xii} —K1—O1 ^{xiv}	106.49 (10)
Yb1—Mo1—Yb1 ^{viii}	86.536 (12)	O4 ^{xi} —K1—O1 ^{xiii}	89.65 (10)
Yb1—Mo1—Yb1 ^{iv}	120.176 (13)	$O4^{xi}$ —K1— $O1^{xiv}$	63.27 (9)
Yb1—Mo1—K1	138.532 (12)	O4 ^{xii} —K1—O1 ^{xiii}	136.42 (10)
Yb1 ⁱⁱⁱ —Mo1—K1 ^x	171.48 (2)	O4—K1—O1 ^{xiii}	106.49 (10)
Yb1 ^{iv} —Mo1—K1 ^{ix}	170.07 (2)	O4—K1—O1 ^{xiv}	136.42 (10)
Yb1 ⁱⁱⁱ —Mo1—K1	96.075 (15)	O1 ^{xiv} —K1—Mo1 ^{xiv}	26.02 (6)
Yb1 ^{viii} —Mo1—K1 ^{ix}	120.864 (13)	O1 ^{xiv} —K1—Mo1 ^{xiii}	80.64 (7)
Yb1 ^{viii} —Mo1—K1	132.869 (12)	O1 ^{xiii} —K1—Mo1 ^{xi}	73.47 (7)
Yb1—Mo1—K1 ^x	121.021 (14)	O1 ^{xiii} —K1—Mo1 ^{xiv}	80.64 (7)
Yb1 ^{iv} —Mo1—K1 ^x	93.824 (14)	O1 ^{xiii} —K1—Mo1	130.72 (6)
Yb1 ^{viii} —Mo1—K1 ^x	66.75 (2)	O1 ^{xiii} —K1—Mo1 ^{xii}	143.68 (7)
Yb1—Mo1—K1 ^{ix}	69.74 (2)	O1 ^{xiv} —K1—Mo1 ^{xi}	42.36 (7)
Yb1 ⁱⁱⁱ —Mo1—K1 ^{ix}	98.712 (15)	O1 ^{xiv} —K1—Mo1 ^{xii}	130.72 (6)
K1—Mo1—Yb1 ^{iv}	93.608 (16)	O1 ^{xiv} —K1—Mo1 ^{xv}	73.47 (7)
K1—Mo1—K1 ^{ix}	77.153 (12)	O1 ^{xiii} —K1—Mo1 ^{xv}	42.36 (7)
K1—Mo1—K1 ^x	75.448 (12)	O1 ^{xiv} —K1—Mo1	143.68 (7)
K1 ^{ix} —Mo1—K1 ^x	80.44 (3)	O1 ^{xiii} —K1—Mo1 ^{xiii}	26.02 (6)
O4—Mo1—Yb1	136.81 (11)	O1 ^{xiii} —K1—O1 ^{xiv}	58.30 (13)
O4—Mo1—Yb1 ^{viii}	101.62 (11)	Mo1—O4—K1	116.01 (15)
O4—Mo1—Yb1 ^{iv}	100.77 (12)	Mo1—O4—K1 ^x	121.81 (16)
O4—Mo1—Yb1 ⁱⁱⁱ	135.23 (11)	K1—O4—K1 ^x	120.30 (12)
O4—Mo1—K1 ^x	36.53 (11)	Yb1 ^{iv} —O2—Yb1 ^{viii}	109.33 (12)
O4—Mo1—K1 ^{ix}	69.81 (12)	Mo1—O2—Yb1 ^{iv}	128.04 (14)
O4—Mo1—K1	39.74 (10)	Mo1—O2—Yb1 ^{viii}	119.82 (13)
O4—Mo1—O2	109.61 (16)	Yb1—O1—K1 ^{ix}	113.22 (12)
O4—Mo1—O1	106.25 (15)	Mo1—O1—Yb1	125.42 (16)
O4—Mo1—O3	105.38 (15)	Mo1—O1—K1 ^{ix}	110.17 (14)
O2—Mo1—Yb1 ^{iv}	29.34 (8)	Mo1—O3—Yb1 ⁱⁱⁱ	127.31 (16)
O2—Mo1—Yb1 ^{viii}	34.93 (8)		

Symmetry codes: (i) -x, y, -z+3/2; (ii) x, -y+1, z+1/2; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) x-1, -y+1, z+1/2; (vii) -x+1, y, -z+3/2; (viii) x+1, y, z; (ix) -x+1/2, -y+3/2, z+1/2; (x) -x+3/2, -y+3/2, z+1/2; (xi) x-1/2, -y+3/2, -z+1; (xii) -x+1, y, -z+1/2; (xiii) x+1/2, -y+3/2, -z+1/2; (xiii) -x+1/2, -y+3/2; -z+1/2; (xiii) -x+1/2; -x+1/2

Potassium lutetium bis(molybdate) (Lu_Molybdate)

Crystal data

KLu(MoO₄)₂ $M_r = 533.95$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 5.0292 (2) Å b = 18.2519 (10) Å c = 7.8174 (4) Å V = 717.58 (6) Å³ Z = 4 F(000) = 952 $D_x = 4.942 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6634 reflections $\theta = 3.4-30.5^{\circ}$ $\mu = 17.68 \text{ mm}^{-1}$ T = 100 KPlate, white $0.44 \times 0.14 \times 0.04 \text{ mm}$ Data collection

Rigaku XtaLAB Synergy-S, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube Mirror monochromator Detector resolution: 10.0000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) $T_{min} = 0.240, T_{max} = 1.000$	19857 measured reflections 1105 independent reflections 1004 reflections with $I > 2\sigma(I)$ $R_{int} = 0.087$ $\theta_{max} = 30.5^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -7 \rightarrow 7$ $k = -26 \rightarrow 26$ $l = -11 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full	0 constraints Primary atom site location: dual

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.077$ S = 1.171105 reflections 57 parameters 0 restraints 0 constraints Primary atom site location: dual $w = 1/[\sigma^2(F_o^2) + (0.0305P)^2 + 4.6788P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 2.05$ e Å⁻³ $\Delta\rho_{min} = -3.03$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Lul	1.000000	0.50463 (2)	0.750000	0.00674 (13)	
Mol	0.52103 (8)	0.39975 (3)	0.51329 (5)	0.00699 (13)	
K1	0.500000	0.22690 (9)	0.250000	0.0116 (3)	
O4	0.3935 (7)	0.31279 (19)	0.5200 (4)	0.0119 (7)	
O2	0.2476 (7)	0.4667 (2)	0.4950 (4)	0.0098 (7)	
01	0.7429 (6)	0.40718 (19)	0.6920 (4)	0.0101 (6)	
O3	0.7347 (6)	0.40152 (19)	0.3343 (4)	0.0098 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Lu1	0.00628 (18)	0.0100 (2)	0.00389 (17)	0.000	0.00006 (8)	0.000
Mo1	0.0067 (2)	0.0091 (2)	0.0051 (2)	0.00028 (12)	-0.00024 (11)	-0.00031 (13)
K1	0.0142 (7)	0.0132 (8)	0.0073 (6)	0.000	-0.0006 (4)	0.000
O4	0.0128 (17)	0.0141 (17)	0.0087 (14)	-0.0011 (13)	0.0006 (12)	-0.0018 (12)
02	0.0079 (15)	0.0168 (18)	0.0046 (14)	0.0006 (13)	-0.0051 (11)	0.0004 (11)
O1	0.0100 (14)	0.0130 (16)	0.0074 (14)	-0.0011 (13)	-0.0028 (12)	0.0009 (12)
03	0.0118 (15)	0.0126 (16)	0.0051 (13)	0.0008 (13)	0.0002 (11)	-0.0001 (11)

Geometric parameters (Å, °)

Lu1—Lu1 ⁱ	3.9123 (2)	Mo1O3	1.765 (3)
Lu1—Lu1 ⁱⁱ	3.9123 (2)	K1—Mo1 ^{xi}	3.9540 (11)
Lu1—K1 ⁱⁱⁱ	4.2257 (17)	K1—Mo1 ^{xii}	3.7684 (14)
Lu1—O2 ^{iv}	2.344 (3)	K1—Mo1 ^{xiii}	3.8171 (11)
Lu1—O2 ^v	2.344 (3)	K1—Mo1 ^{xiv}	3.8171 (11)
Lu1—O2 ^{vi}	2.450 (3)	K1—Mo1 ^{xv}	3.9540 (11)
Lu1—O2 ^{vii}	2.450 (3)	K1—O4	2.683 (3)
Lu1—O1	2.245 (3)	K1—O4 ^{xii}	2.683 (3)
Lu1—O1 ^{viii}	2.245 (3)	$K1 - O4^{xv}$	2.770 (3)
Lu1—O3 ^{ix}	2.269 (3)	K1—O4 ^{xi}	2.770 (3)
Lu1—O3 ⁱⁱ	2.269 (3)	K1—O1 ^{xiii}	2.805 (4)
Mo1—K1	3.7684 (14)	K1—O1 ^{xiv}	2.805 (4)
Mo1—K1 ^x	3.9540 (11)	O4—K1 ^x	2.770 (3)
Mo1—K1 ⁱⁱⁱ	3.8171 (11)	O2—Lu1 ^{iv}	2.344 (3)
Mo1—O4	1.713 (4)	O2—Lu1 ^{xvi}	2.450 (3)
Mo1—O2	1.845 (4)	O1—K1 ⁱⁱⁱ	2.805 (4)
Mo1—O1	1.793 (3)	O3—Lu1 ⁱⁱ	2.269 (3)
	. /		
Lu1 ⁱⁱ —Lu1—Lu1 ⁱ	175.051 (17)	Mo1 ^{xiv} —K1—Mo1 ^{xv}	80.64 (3)
Lu1 ⁱⁱ —Lu1—K1 ⁱⁱⁱ	87.526 (9)	Mo1—K1—Mo1 ^{xv}	139.788 (18)
Lu1 ⁱ —Lu1—K1 ⁱⁱⁱ	87.526 (9)	Mo1 ^{xiii} —K1—Mo1 ^{xiv}	105.46 (4)
O2 ^{vii} —Lu1—Lu1 ⁱⁱ	34.41 (8)	Mo1 ^{xii} —K1—Mo1 ^{xi}	139.788 (18)
O2 ^{vii} —Lu1—Lu1 ⁱ	143.18 (8)	Mo1 ^{xii} —K1—Mo1	66.31 (3)
O2 ^{iv} —Lu1—Lu1 ⁱⁱ	36.22 (8)	Mo1 ^{xiii} —K1—Mo1 ^{xi}	80.64 (3)
O2 ^v —Lu1—Lu1 ⁱⁱ	145.70 (8)	Mo1 ^{xii} —K1—Mo1 ^{xv}	102.429 (13)
$O2^{vi}$ —Lu1—Lu1 ⁱ	34.41 (8)	Mo1—K1—Mo1 ^{xiii}	105.066 (13)
O2 ^v —Lu1—Lu1 ⁱ	36.22 (8)	Mo1 ^{xiii} —K1—Mo1 ^{xv}	56.95 (2)
$O2^{iv}$ —Lu1—Lu1 ⁱ	145.70 (8)	Mo1 ^{xii} —K1—Mo1 ^{xiv}	105.066 (14)
O2 ^{vi} —Lu1—Lu1 ⁱⁱ	143.18 (8)	Mo1—K1—Mo1 ^{xiv}	138.944 (16)
O2 ^{vii} —Lu1—K1 ⁱⁱⁱ	73.58 (8)	Mo1—K1—Mo1 ^{xi}	102.429 (13)
O2 ^{iv} —Lu1—K1 ⁱⁱⁱ	102.92 (9)	Mo1 ^{xiv} —K1—Mo1 ^{xi}	56.95 (2)
O2 ^v —Lu1—K1 ⁱⁱⁱ	102.92 (9)	Mo1 ^{xii} —K1—Mo1 ^{xiii}	138.944 (16)
O2 ^{vi} —Lu1—K1 ⁱⁱⁱ	73.58 (8)	Mo1 ^{xv} —K1—Mo1 ^{xi}	108.45 (4)
$O2^{iv}$ —Lu1— $O2^{vi}$	117.26 (15)	O4 ^{xii} —K1—Mo1 ^{xiv}	81.17 (8)
O2 ^v —Lu1—O2 ^{vii}	117.26 (15)	O4 ^{xv} —K1—Mo1 ^{xi}	128.63 (9)
$O2^{v}$ —Lu1— $O2^{iv}$	154.16 (18)	O4 ^{xv} —K1—Mo1 ^{xii}	81.05 (7)
$O2^v$ —Lu1— $O2^{vi}$	70.63 (14)	O4 ^{xv} —K1—Mo1 ^{xiv}	88.73 (8)
$O2^{vii}$ —Lu1— $O2^{vi}$	147.15 (17)	O4—K1—Mo1	24.06 (8)
$O2^{iv}$ —Lu1— $O2^{vii}$	70.63 (14)	O4 ^{xi} —K1—Mo1 ^{xiv}	72.87 (7)
O1—Lu1—Lu1 ⁱ	99.65 (8)	O4—K1—Mo1 ^{xi}	96.06 (8)
O1—Lu1—Lu1 ⁱⁱ	76.35 (8)	O4 ^{xii} —K1—Mo1	86.27 (8)
O1 ^{viii} —Lu1—Lu1 ⁱ	76.35 (8)	O4 ^{xi} —K1—Mo1 ^{xiii}	88.73 (8)
O1 ^{viii} —Lu1—Lu1 ⁱⁱ	99.65 (8)	O4 ^{xv} —K1—Mo1	126.40 (8)
O1 ^{viii} —Lu1—K1 ⁱⁱⁱ	37.61 (8)	O4 ^{xii} —K1—Mo1 ^{xii}	24.06 (8)
O1—Lu1—K1 ⁱⁱⁱ	37.61 (8)	O4 ^{xi} —K1—Mo1	81.05 (7)
$O1^{viii}$ —Lu1— $O2^{iv}$	130.40 (12)	O4 ^{xv} —K1—Mo1 ^{xiii}	72.87 (7)

01—Lu1—O2 ^{vi}	69.37 (11)	O4—K1—Mo1 ^{xv}	125.27 (8)
O1 ^{viii} —Lu1—O2 ^{vii}	69.37 (11)	O4 ^{xii} —K1—Mo1 ^{xi}	125.27 (8)
O1—Lu1—O2 ^{iv}	72.91 (12)	O4 ^{xii} —K1—Mo1 ^{xv}	96.06 (8)
$O1^{viii}$ —Lu1— $O2^{v}$	72.91 (12)	O4 ^{xi} —K1—Mo1 ^{xi}	21.55 (7)
O1—Lu1—O2 ^{vii}	84.51 (12)	O4 ^{xv} —K1—Mo1 ^{xv}	21.55 (7)
O1—Lu1—O2 ^v	130.40 (12)	O4 ^{xi} —K1—Mo1 ^{xii}	126.40 (8)
O1 ^{viii} —Lu1—O2 ^{vi}	84.51 (12)	O4 ^{xi} —K1—Mo1 ^{xv}	128.63 (9)
O1 ^{viii} —Lu1—O1	75.22 (17)	O4—K1—Mo1 ^{xiv}	149.44 (8)
O1—Lu1—O3 ^{ix}	108.54 (13)	O4—K1—Mo1 ^{xii}	86.27 (8)
O1 ^{viii} —Lu1—O3 ^{ix}	151.41 (12)	O4 ^{xii} —K1—Mo1 ^{xiii}	149.44 (8)
O1 ^{viii} —Lu1—O3 ⁱⁱ	108.54 (13)	O4—K1—Mo1 ^{xiii}	81.17 (8)
O1—Lu1—O3 ⁱⁱ	151.41 (12)	O4—K1—O4 ^{xv}	121.38 (5)
O3 ⁱⁱ —Lu1—Lu1 ⁱⁱ	75.08 (8)	O4—K1—O4 ^{xii}	108.51 (16)
O3 ^{ix} —Lu1—Lu1 ⁱⁱ	108.82 (8)	O4 ^{xii} —K1—O4 ^{xi}	121.38 (5)
O3 ⁱⁱ —Lu1—Lu1 ⁱ	108.82 (8)	$O4^{xii}$ —K1— $O4^{xv}$	77.57 (9)
O3 ^{ix} —Lu1—Lu1 ⁱ	75.08 (8)	O4—K1—O4 ^{xi}	77.57 (9)
$O3^{ii}$ —Lu1—K1 ⁱⁱⁱ	139.02 (8)	$O4^{xv}$ —K1— $O4^{xi}$	149.68 (16)
$O3^{ix}$ —Lu1—K1 ⁱⁱⁱ	139.02 (8)	$O4^{xi}$ —K1— $O1^{xiv}$	63.09 (10)
$O3^{ii}$ —Lu1— $O2^{vii}$	71.24 (12)	$O4^{xi}$ —K1— $O1^{xiii}$	89.78 (11)
$O3^{ii}$ —Lu1— $O2^{iv}$	84.63 (12)	$O4-K1-O1^{xiv}$	136.80 (10)
$O3^{ix}$ —Lu1— $O2^{v}$	84.63 (12)	$O4^{xv}$ —K1—O1 ^{xiii}	63.09 (10)
$O3^{ii}$ —Lu1— $O2^{v}$	75.88 (11)	$O4^{xv}$ —K1—O1 ^{xiv}	89.78 (11)
$O3^{ix}$ —Lu1— $O2^{vii}$	138.46 (11)	$O4-K1-O1^{xiii}$	106.89 (10)
O3 ⁱⁱ —Lu1—O2 ^{vi}	138.46 (11)	$O4^{xii}$ —K1—O1 ^{xiii}	136.80 (10)
$O3^{ix}$ —Lu1— $O2^{vi}$	71.24 (12)	$O4^{xii}$ —K1—O1 ^{xiv}	106.89 (10)
$O3^{ix}$ —Lu1— $O2^{iv}$	75.88 (11)	$O1^{xiv}$ —K1—Mo1 ^{xiv}	26.14 (7)
$O3^{ii}$ —Lu1— $O3^{ix}$	81.96 (17)	O1 ^{xiv} —K1—Mo1 ^{xiii}	80.84 (7)
$K1 - Mo1 - K1^{x}$	75.379 (13)	$O1^{xiii}$ —K1—Mo1 ^{xi}	73.72 (7)
K1—Mo1—K1 ⁱⁱⁱ	77.027 (12)	$O1^{xiii}$ —K1—Mo1 ^{xiv}	80.84 (7)
$K1^{iii}$ —Mo1— $K1^{x}$	80.64 (3)	$O1^{xiii}$ —K1—Mo1	130.93 (6)
O4-Mo1-K1	39.69 (11)	$O1^{xiii}$ —K1—Mo1 ^{xii}	143.70 (7)
$O4-Mo1-K1^{x}$	36.45 (11)	$O1^{xiv}$ K1 Mo1 ^{xi}	42.27 (7)
04—Mo1—K1 ⁱⁱⁱ	70.14 (12)	$O1^{xiv}$ K1 Mo1 ^{xii}	130.93 (6)
04 - Mo1 - 02	109.68 (17)	$O1^{xiv}$ K1 Mo1 ^{xv}	73.72 (7)
04—Mo1—01	106.21 (16)	$O1^{xiii}$ K1 Mo1 ^{xv}	42.27(7)
04—Mo1—O3	105.63 (16)	$O1^{xiv}$ K 1 Mo1	14370(7)
Ω^2 —Mo1—K1 ⁱⁱⁱ	155 36 (9)	$O1^{xiii}$ K1 Mo1 ^{xiii}	26 14 (7)
Ω^2 -Mol-Kl	119 41 (10)	$O1^{\text{xiii}}$ K 1 $-O1^{\text{xiv}}$	58 48 (14)
Ω^2 -Mo1-K1 ^x	85 95 (11)	$M_01 - 04 - K1$	116 25 (16)
$01 - Mo1 - K1^{iii}$	43 56 (11)	$Mo1 - O4 - K1^x$	122.00 (16)
$\Omega_1 - M \Omega_1 - K 1^x$	95 28 (11)	$K1 - 04 - K1^{x}$	122.00(10) 120.03(13)
01-M01-K1	120.42 (11)	$L_{11}^{iv} = O^2 = L_{11}^{xvi}$	109 37 (14)
$01 - M_0 = 02$	118 31 (14)	$M_01 - 02 - Lu1^{iv}$	127.40(15)
$03 - Mo1 - K1^{x}$	141 76 (12)	Mo1 -02 Lu1 ^{xvi}	127.40 (13)
$03-M01-K1^{iii}$	90.65 (11)	$L_{11} = 01 = K1^{111}$	120.15(14) 113.15(12)
O3-Mo1-K1	66.38 (11)	Mol-Ol-Lul	125 15 (17)
	~~~~~		

O3—Mo1—O2	112.35 (14)	Mo1—O1—K1 ⁱⁱⁱ	110.29 (15)
O3—Mo1—O1	103.74 (16)	Mo1—O3—Lu1 ⁱⁱ	127.02 (17)

Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y+1, -z+1; (iii) -x+3/2, -y+1/2, z+1/2; (iv) -x+1, -y+1, -z+1; (v) x+1, -y+1, z+1/2; (vi) -x+1, y, -z+3/2; (vii) x+1, y, z; (viii) -x+2, y, -z+3/2; (ix) x, -y+1, z+1/2; (x) -x+1/2, -y+1/2, z+1/2; (xi) x+1/2, -y+1/2, -z+1; (xii) -x+1, y, -z+1/2; (xiii) x-1/2, -y+1/2, -z+1; (xiv) -x+3/2, -y+1/2, -y+1/2, z-1/2; (xv) -x+1/2, -y+1/2, -z+1; (xiv) -x+3/2, -y+1/2, -z+1/2; (xvi) x-1, y, z.